NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA TEC:-HNICAL MEMORANDUM

NASA TM-78311

(NASA-TM-78311) ELECTAICAL tOkUUES ON the N81-10344ELECTROSTATIC GYKO In Tide gy bo kelativityEXPERIMENI (NASA) 60 p HC A04/MF A01

CL 14B		Uncias
	G3/35	29008

ELECTRICAL TORQUES ON THE ELECTROSTATIC GYRO IN THE GYRO RELATIVITY EXPERIMENTBy Peter Eby and Wesley DarbroSpace Sciences Laboratory
October 1980

George C. Marshall Space Flight Center

 Marshall Space Flight Center, Alabama
TABLE OF CONTENTS

Page
I. INTRODUC'IION 1
II. GENERAL DISCUSSION OF ELECTROSTATIC TORQUES 3
III. EXPANSION OF THE ROTOR SHAPE IN HARMONICS 7
IV. TORQUES IN TERMS OF HARMONICS 14
V. EXACT NUMERICAL CALCULATION OF TORQUES 25
VI. NUMERICAL RESULTS 28
VII. TORQUE ON A GIMBAIED GYRO INCLUDING ALL THE HARMONICS 31
VIII. SECONDARY TORQUES 36
IX. ORBITAL AVERAGING OF GRAVITY GRADIENT FORCES 39
X. AVERAGING OF TORQUES DUE TO SPACECRAFT ROLL 44
XI. SPIN AVERAGING 47
XII. CONCLUSION 48
REFERENCES 49
APPENDIX 51

Preceding page blank not filmer

LIST OF ILIUSTRATIONS

Figure Title Page:

1. Deviation from sphericity, Case I 8
2. Deviation from sphericity, Case II 9
3. Deviation from sphericity, Case III 10
4. Size of harmonics. Case I 11
5. Size of harmonies. Case II 12
6. Size of harmonics, Case III 13
7. Second hariaonic torque versus angle 16
8. Third harmonic torgue versus angle 17
9. Fourth harmonic: torgue versus angle 18
10. Jifth harmonic torgue versus angle 19

IIS'T OF SYMBOLS

$\overline{\mathbf{T}}$	Torque vector
$\vec{i}, \vec{j}, \vec{k}$	Orthogonal unit vectors in rotor axes
$\hat{F}_{x}, \hat{F}_{y}, \hat{F}_{z}$	Orthogonal unit vectors in electrode axes
v_{j}	Voltage on ith electrode ($i=x, y$, or z)
$0_{0}, \phi_{0}$	Polar and azimuthal angles of rotor spin vector in elect rode axes
0^{\prime}	Angle between rotor spin vector and intcgration point on elect rodes
d_{0}	Nominal rotor electiode gap
$\Delta \mathrm{d}$	Variation in rotor clectrode gap
α, β, γ	Direction cosines of integration point on electrodes
$\alpha_{0}, \beta_{0}, \gamma_{0}$	Direction cosines of rotor spin vector
r_{0}	Nominal rotor radius
${ }^{\circ}$	Permittivity constant
$\mathbf{r}\left(0^{\prime}\right)$	Rotor shape as function of ${ }^{\prime}$
${ }^{3}$	Elect rode hall angle
M_{i}	$\frac{0_{0}^{r}}{2 d_{0}^{2}}\left(v_{i+}^{2}-v_{i-}^{2}\right)(+ \text { and }- \text { refer to opposite electrodes })$
$\mathbf{P}_{\mathbf{i}}$	$\frac{v_{0}^{2}}{2 d_{0}^{2}}\left(v_{i+}^{2}+v_{i}^{2}\right)$
h_{i}	Preload alonge ith axis
f_{i}	Acceleration along ith axis
$?$	Difference in preioids for different axes
t	Niscentering
0	Misaligmment angle

ELECTRICAL TORQUES ON THE ELECTROSTATIC GYRO IN Thi GYRO RELATIVITY EXPERIMENT

I. INTRODUCTION

The ultimate accuracy of an electrostatic gyro is determined by the level to which the Newtonian electrical torques can be reduced. An understanding of these torques is necessary for extrapolation of performance in a one-g environment to that expected in a nearly zero-g environment. The success of the Stanford Gyro Experiment depends on the reduction of all Newtonian gyro drifts to levels well below the relativity drifts, which are expected to be $7 \mathrm{arcsec} / \mathrm{yr}$ and $0.05 \mathrm{arc} \sec / \mathrm{yr}$ for the geodetic and motional effects, respectively. It is important, first, to determine whether this is feasible and, second, to predict the accuracy to which the relativity effects can be measured, since this is important in assessing the relative desirability of performing the gyro experiment vis a vis other experimental tests of relativity theory. In addition, it is important to know the level of gyro performance on the ground at which a successful space experiment can be undertaken. For all these reasons, we give a general derivation of expressions for the torque on an electrostatic gyro from first principles. We also give a complete discussion of the subject, including numerical estimates of the torques for current state-of-the-art rotors. The various averaging effects are also discussed.

This report relies heavily on work done by Honeywell [1]. In Section II, we sketch the derivation of the basic torque equation derived in Reference 1. In Section III, we describe the sample rotors used for the purpose of our calculation. Section IV gives expressions for the torque in terms of the lower harmonics. These expressions are similar to those of Reference 1 but are those appropriate for circular electrodes. Section V gives the basic method of exact numerical integration we have developed and represents the main extension of the method of Reference 1. Our method includes the effect of all the higher harmonics up to the 20th. These harmonics are shown to be important and should be included in the calculation because some of the symmetry properties of the lower harmonics may not persist in the higher ones. Also, the Fourier series used in Reference 1 does not converge very rapidily. Numerical results for the three sample rotors are given in Section VI. Section VII gives results for the special case of a gimbaled gyro. This is not the actual configuration planned for the gyro experiments, but it illustrates the large reduction in torques for the gimbaled case. Section VIII describes how the method of Section V can be extended to secondary torques, i.e., those due to nonuniformity of the rotor electrode gap. The secondary torques are not calculated numerically in this report, but their magnitude
is estimated. The remaining scetions describe the three averaging effects: the orbital avoruging (Scetion IX), the averaging due to spucecruft roll (Section X), und the averuging due to rotor spin (Section XI). The orbital uveraging eombinod with spacecraft roll is shown to be effective for two of the throe components of gravity gradient fores. and the third component can be minimized by proper design of the spacecraft. The averaging due to spacecruft roll is shown to be effective for the primary torques and is crucial for the achicvement of the goal of 1 milliarcsec/yr drift for the gyro. The averaging due to spin is described but not calculated, since a complete map of the rotor is not yet available. Section XII states the conclusions of the report.

II. GENERAL DISCUSSION OF ELECTROSTATIC TORQUES

For a conductor in an external electric field \mathbb{E}, the force per unit area f is given by [1]

$$
\mathrm{f}=\frac{\varepsilon_{\mathrm{O}}}{2}|\overrightarrow{\mathrm{E}}|^{2}
$$

where $\varepsilon_{0}=8.85 \times 10^{-12}$ farads $/ \mathrm{m}$. The electric field is perpendicular to the surface of the conductor and zero inside the conductor, If we consider an irregularly shaped conductor, then the total force \vec{F} and torque \mathbf{T} are given by

$$
\begin{align*}
& \vec{F}=\frac{\varepsilon_{0}}{2} \int_{S}|\vec{E}|^{2} \vec{n} d S \tag{1}\\
& \vec{T}=\frac{\varepsilon_{0}}{2} \underbrace{}_{S}|\vec{E}|^{2}(\vec{r} \times \vec{n}) d S \tag{2}
\end{align*}
$$

where the integral is taken gver the entire surface S, \vec{n} is a unit vector normal to the surface, and r is a vector from some origin to the surface element dS. It is important to realize that \mathfrak{F} is dependent on our choice of origin. The evaluation of electric torques on a gyro is accomplished by choosing a suitable model for the actual shape of the gyro and calculating the integral in equation (2). For a perfectly spherical gyro $\mathbb{T}=0$, as is obvious from equation (2).

To calculate we need to make several assumptions, the validity of which we now discuss.
a) The rotor shape is symmetrical about its spin axis. This certainly appears reasonable if the rotor is spinning sufficiently fast, since the irregularities would then nverage out over many rotations of the rotor, Honcywell [1] has produced an argument which shows that this is, in fact, true if one has a sufficiently smooth rotor (see Section XI). There is one important exception, however, and that is for a rotor with radial mass unbalance perpendicular to the spin axis. In
this case, the suspension forces ann have an oscillatory component at the spin rate frequency und the radial mass unbalance torque does not average to zero. There is then present a toryue component parallel to the spin axis which ulters spin speed and can cause run-down.
b) The rotor shape can be represented by a cosine series of the form

$$
r\left(v^{\prime}\right)=r_{0}+\sum_{n=2}^{a} n_{n} \cos \left(n\left(l^{\prime}\right)\right.
$$

Almost any shape can be so represented, and the number of terms needed is related to the dimensions of the radial irregularities as discussed in Section III. A derivation that does not assume this is piven in Section \mathbf{V}.
c) The electric field at "given point in the notor electrode gap is given by $|\underline{E}|=V / d$, where d is the rotor electrode distance at that point und V is the rotor electrode potential. The justification for this is that the motor electrode gup is so small ($1500 \mu \mathrm{in}$. typical) that one can treat the situation locally as a parallel plate in which the electric field is uniform. Honeywell [1] has made some calculations that bear this out.
d) Electrode edge effects can be neglected. It is difficult to estimate how good this assumption is, but it is probably much better for hexahedral electrodes than eireular electrodes.
e) The variations in motor electrode gap $\wedge d$ defined by $d=d_{0}+$ Λd satisfy the conditions

$$
\begin{equation*}
\frac{\Lambda d}{d_{0}} \ll 1 . \tag{4}
\end{equation*}
$$

This is a good assumption, since the main contributor to \wedge d is the centering errors which are of order 15 pin. . giving

$$
\frac{1 d}{d_{0}} \because 0.01
$$

Given all these assumptions, one can write the expression for in the form

$$
\begin{align*}
\Psi= & \frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}} \sum_{i} V_{i}^{2} \iint_{S_{i}}\left(1-\frac{2 \Delta d}{d_{0}}\right) \frac{\operatorname{dr}\left(\theta^{\prime}\right)}{d \theta^{\prime}}\left(\vec{i} \sin \phi^{\prime}\right. \\
& \left.-\vec{J} \cos \phi^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}, \tag{5}
\end{align*}
$$

where the sum is taken over the six electrodes and θ^{\prime}, ϕ^{\prime} are spherical coordinates defined about the gyro spin axis. This follows directly from equation (2). We have used equation (4) and expanded the $1 / d^{2}$ term. set $r=r_{0}$ in the term $d S=r^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}$, and expressed the surface integral as a sum of integrals over electrodes at potentials V_{i}. The expression for ($\vec{r} \times \vec{n}$) is justified by noting that it must be tangent to a latitude line; i.e.. in the direction given by the unit vector $\vec{i} \sin \phi^{\prime}-$ $\vec{j} \cos \phi^{\prime}$ and of magnitude equal to the (small) angle between the radius vector and the normal vector to a curve $d r / d A^{\prime}$ (this is worked out in elementary calculus).

The integral in equation (5) is in a spherical coordinate system defined by the rotor spin axds tipped at an arbitrary angle with respect to the electrode axes. Since we must calculate the surface integrals in a coordinate system defined by the electrode axes, we need to transform equation (5) to this coordinate system. If $\left(\theta_{0}, \phi_{0}\right)$ represents the orientation of the spin axis in these coordinates, then

$$
\begin{aligned}
& \vec{i}=\cos \theta_{0} \cos \phi_{0} \hat{F}_{x}+\cos \theta_{0} \sin \phi_{0} \hat{F}_{y}-\sin \theta_{0} \hat{F}_{z} \\
& \vec{j}=-\sin \phi_{0} \hat{F}_{x}+\cos \phi_{0} \hat{F}_{y} \\
& \cos \phi^{\prime}=\frac{1}{\sin \theta^{\prime}}\left[\sin \theta \cos \theta_{0} \cos \left(\phi-\phi_{0}\right)-\cos \theta \sin \theta_{0}\right] \\
& \sin \phi^{\prime}=\frac{1}{\sin \theta^{\prime}}\left[\sin \theta \sin \left(\phi-\phi_{0}\right)\right]
\end{aligned}
$$

define the relationship between the primed and unprimed angles. The first two equations follow from the fact that the vector in the spin axis direction is

$$
\vec{K}=\sin \theta_{0} \cos \phi_{0} \hat{F}_{x}+\sin \|_{0} \sin \phi_{0} \vec{F}_{y}+\cos \theta_{0} \vec{F}_{2}
$$

and \vec{j} is defined to have no $\dot{\vec{j}}_{2}$ component, while \vec{i}, \vec{j}, and \vec{k} must be orthonormal. The second two equations follow from expressing ($F_{x}, l_{y}{ }^{\prime}$ \hat{F}_{z}) in terms of ($\vec{i}, \vec{j}, \vec{k}$) and looking at the expansion of an arbitrary vector in the two bases. Substituting these relations into equation (5), we find

$$
\begin{align*}
& t=\frac{c_{0} r_{0}{ }^{2}}{2 d_{0}{ }^{2}} \sum_{i} v_{i}^{2} \iint_{s_{i}}\left(1-\frac{2 \Lambda d}{d_{0}}\right)\left[i_{x}\left(i r_{0}-\gamma i_{0}\right)\right. \\
& \left.+\hat{F}_{y}\left(\gamma x_{0}-i r_{0}\right)+\hat{F}_{\%}\left(1 r \xi_{0}-\lim _{0}\right)\right] \frac{\operatorname{dr}\left((1)^{\prime}\right) / d(11)}{\sin \theta^{\prime}} \sin 0 d \theta d \phi \tag{6}
\end{align*}
$$

where $a=\sin 0$ cos $\psi_{1} \beta=\sin 11$ win $\psi_{\text {, }}$ and $\gamma=\cos 0$ and similarly for $\%_{0}, K_{0}, \gamma_{0}$. This is the basic equation we will use in all further calculotions. All that n zeds to be done is to take an expression for \wedge and $\operatorname{dr}\left(0^{\prime}\right) / d \theta^{\prime}$ and calculate the integrals. Also note that $\cdot \hat{K}=0$. The important quantity in the expression in dr($\left.0^{\prime}\right) / l^{\prime}\left(0^{\prime}\right)$, which determines the magnitude of the tongues. This completes the derivation of the basic torque equation. The remainder of the report is devoted to evaluating the equation.

III. EXPANSION OF THE ROTOR SHAPE IN HARMONICS

The basic integral in equation (6) has been evaluated at great length by Honeywell [1] for hexahedral electrodes. This has been done by expanding Δd and $\operatorname{dr}\left(\theta^{\circ}\right) / d \theta^{\prime}$ in a Fourier cosine series and calculating the integral separately for each harmonic. The results of this will be discussed in Section IV, but here we wish to discuss the convergence of such a series. To do this we have takel the latest roundness measurements of the best available rotors by Rank-Taylor-Hobson (December 20, 1976). These measurements are taken over three great circles on the rotor; and, since we are assuming azimuthal symmetry, we need only half of each great circle. The three curves we have selected are shown in Figures 1, 2, and 3, which give Δr as a function of polar angle θ. While some improvement may occur due to spin averaging (see Section XI), we believe this is a reasonable place to start in evaluating the harmonics for realistic rotors.

Figt es 4, 5, and 6, show the Fourier coefficients for the shapes given in Figures 1, 2, and 3, respectively. These have been obtained numerically from the actual assumed shapes. (The first harmonic has no significance for these calcu!ntions.) These curves show that we do get convergence, but it may require up to 20 harmonics depending on the scale of the irregularities in the rotor. For example. in Figure 3 more hamonics are required because of the sharpness of the bumps. In fact, there is an inverse relationship between the number of harmonics required and the smallest angular scale on which the irregularities occur. A rotor with very sharp bumps will require many harmonics to faithfully approximate its shape. The contribution to the integral in equation (6) from $\operatorname{dr}\left(\theta^{\prime}\right) / d \theta^{\prime}$ is proportional to $n \sin (n \theta)$ for the $n t h$ harmonic, so we have the possibility of increasing contributions to the torque as a result of increasingly higher harmonics. In fact, if Reference 1 is studied, it will be found that for the higher harmonics the number of terms in each torque expression actually increases with harmonic number, as do the coefficients of each term.

These consideration: illustrate the basic problem with this type of calculation. It appears that contributions resulting from higher harmonics will be significant when added up, but it becomes extremely tedious to calculate equation (6) for the higher harmonics. This is only feasible up to about the sixth harmonic and is extremely difficult even up to this level, as a perusal of Reference 1 will show. The only way out of this dilemma appears to be the method we use in Section V, where we evaluate equation (6) numerically for some actual rotor shapes.

Higure 1. Deviation from sphericity. Case 1.

Figure 2. Deviation from sphericity, Case 11. -

Figure 3. Deviation lirom sphericity, Case Ill.

Figure 4. Size of harmonics, Case I.

Pigure 5. Si\% of harmonies, Case II.

Figure 6. Si\%e of harmonies, Case lll.

IV. TORQUES IN TERMS OF HARMONICS

The method used to evaluate equation (6) is to expand $\operatorname{dr}(11) / d{ }^{\prime}$ and Δd in a liourier series of the form

$$
\Delta r=\sum_{n=2}^{\infty} a_{n} \cos \left(n()^{\prime}\right)
$$

from which $\operatorname{dr}\left(I^{\prime}\right) / d N^{\prime \prime}$ is obtained by differentiation, and the part of Ad due to rotor nonsphericity is obtained by $\Lambda d=-\Lambda r$. The torques due to just the $\operatorname{dr}\left(0^{\prime}\right) / d\left(0^{\prime}\right.$ tern $(\wedge d=0)$ are known as primary torques. We have calculnted these for circular electrodes up to the fifth harmonic: the results are shown in Table 1. The y and z components of T are obtained by suitable permutation of ' γ_{0}, β_{0}, γ_{o} and the P_{i} 's and M_{i} 's $\$ 11$.
Honeywell has calculated these torciues up to the sixth harmonic for hexahedral electrodes. We have developed a computer program to evaluate our expressions to see the angular behavior of the torques. This is necessary because heretolore the torques have been estimated from expressions vatid only near the z-axis, and it is of interest to see how these torques behave for arbitrary orientations. Also, with our computer calculation we can compare the het ual mapnitudes of the second versus fourth and third versus fifth harmonics to see if convergence is occurring. ligures 7 through 10 show the relative magnitude of the torques for the second through the fifth harmonic in arbitrary units for typical values of the hamonic coefficients. The second harmonic is small because we have assumed equal prelonds. It is clear that the fourth and fifth harmonics produce torques of the same order of magnitude as the second and third. A large number of calculations that are not shown here bear this out. This is aiso obvious from the inspection of Table 1. The expressions in Table 2 are computed from general expressions for the torque as in Table 1 by specializing the expressions to the case $\gamma_{0}{ }^{n} 1, \alpha_{0}<1, K_{0}<1$ and delining $\Omega 2=T / 1 a$, where T is the maprio tude of the torque, $I=2 / 5 \mathrm{mr}^{2}$ is the moment of inertin of the rotor and $\omega=v / r$ is the angular velocity of the rotor. The connection between the M's and P's in Trable 1 and the aceeleration f and preload h are derived as follows. lirom equation (1) we have for circular electrodes that the force on the motor is

$$
\begin{equation*}
F=\| \sin ^{2} H_{1}\left(M_{x} b_{x}+M_{y} V_{y}+M_{z} \dot{V}_{\%}\right) \quad ; \tag{7}
\end{equation*}
$$

this determines the components of the acceleration as

TABLE 1

$$
\begin{aligned}
& T_{x}=2.727 a_{2}\left(P_{z}-P_{y}\right) \beta_{0} \gamma_{0}+a_{3}\left\{7 . 0 7 8 \left(\beta_{0} \gamma_{0}{ }^{2} M_{z}\right.\right. \\
& \left.-\beta_{0}^{2} \gamma_{0} M_{y}\right)+0.5890\left[\left(\beta_{0}^{3}+\alpha_{0}^{2} \beta_{0}\right) M_{z}-\left(\gamma_{0}^{3}+\alpha_{0}^{2} \gamma_{0}\right) M_{y}\right] \\
& \left.+2.356\left(\gamma_{0} M_{y}-\beta_{0} M_{z}\right)\right\}+a_{4}\left\{\beta_{0} \gamma_{0}^{3}\left(16.37 P_{z}+3.74 P_{y}\right)\right. \\
& -\beta_{0}{ }^{3} \gamma_{0}\left(3.740 P_{z}+16.37 P_{y}\right)+3.740 \alpha_{0}{ }^{2} \beta_{0} \gamma_{0}\left(P_{y}-P_{z}\right) \\
& \left.+10.91 \beta_{0} \gamma_{0}\left(P_{y}-P_{z}\right)\right\}+10 \pi a_{5}\left\{0 . 5 6 2 5 \beta _ { 0 } ^ { 2 } \gamma _ { 0 } ^ { 2 } \left(\beta_{0} M_{z}\right.\right. \\
& \left.-\gamma_{0} M_{y}\right)+0.5625 \alpha_{0}{ }^{2} \beta_{0} \gamma_{0}\left(\gamma_{0} M_{z}-\beta_{0} M_{y}\right) \\
& +1.1273 \beta_{0} \gamma_{0}\left(\gamma_{0}{ }^{3} M_{z}-\beta_{0}{ }^{3} M_{y}\right)+0.03125 \alpha_{0}^{2}\left(\beta_{o}^{3} M_{z}\right. \\
& \left.-\gamma_{0}{ }^{3} M_{y}\right)+0.01562\left[\beta_{0}\left(\beta_{0}{ }^{4}+\alpha_{0}{ }^{4}\right) M_{z}-\gamma_{0}\left(\gamma_{0}{ }^{4}\right.\right. \\
& \left.\left.+\alpha_{0}^{4}\right) M_{y}\right]+0.09375\left[\gamma_{0}\left(\gamma_{0}^{2}+\alpha_{0}^{2}\right) M_{y}-\beta_{0}\left(\beta_{0}^{2}\right.\right. \\
& \left.\left.+\alpha_{0}{ }^{2}\right) M_{z}\right]+1.1265 \beta_{0} \gamma_{0}\left(\beta_{0} M_{y}-\gamma_{0} M_{z}\right) \\
& \left.+0.125\left(\beta_{o} M_{z}-\gamma_{0} M_{y}\right)\right\} \text {. } \\
& P_{i} \leq \frac{\varepsilon_{0} r_{o}^{2}}{2 d_{o}^{2}}\left(\left(v_{i+}^{2}+v_{i-}^{2}\right)\right. \\
& M_{i}=\frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}}\left(\left(v_{i+}^{2}-v_{i-}^{2}\right)\right. \\
& \theta_{1}=30^{\circ}=\text { electrode half angle }
\end{aligned}
$$

Figure 7. Sicemal harmonie torque versus angle.

Figure 9. Fourth harmonic: lorque versus angle.

ligure 10. lifth harmonic torgue versus angle.

$$
\begin{aligned}
& \dot{\vartheta}_{1}=\text { electrode half angle } \\
& \boldsymbol{r}_{0}=\text { rotor radius } \\
& V=\text { peripheral velocity } \\
& h=\text { preload }
\end{aligned}
$$

TABLE 2

Drift Rates	Second Harmonic	Third Harmonic
Aligned	0	$\frac{15}{2}\left(\cos ^{2} \epsilon_{1}-\frac{1}{5}\right)\left(\frac{a_{3}}{r_{0}}\right)\left(\frac{f}{v}\right)$
Misaligned	$5 \cos ^{2} \hat{i}_{i}\left(\frac{a_{2}}{r_{0}}\right)\left(\frac{\bar{V}}{\bar{V}}\right)\left(; h+\frac{1}{h}^{2}\right)$	$\frac{15}{2}\left(4 \cos ^{2} \epsilon_{1}-1\right)\left(\frac{a_{3}}{r_{0}}\right)\left(\frac{f}{v}\right) \in$
.3iscentered	$5 \sin ^{2}-1\left(\frac{a_{2}}{r_{0}}\right)\left(\frac{t}{d_{0}}\right)\left(\frac{f}{v}\right)$	$\frac{3}{2}\left(\frac{2-\cos \div_{1}\left(7 \cos ^{4} \xi_{1}-10 \cos ^{2} \div_{1}+5\right)}{\sin ^{2}{ }_{1}}\right)$
		$\cdots\left(\frac{a_{3}}{r_{0}}\right)\left(\frac{t}{d_{0}}\right)\left(\frac{h}{V}\right)\left(1+\frac{f^{2}}{h^{2}}\right)$

$$
\begin{aligned}
& f=\text { acceleration } \\
& t=\text { miscentering } \\
& \mathbf{d}_{0}=\text { nominal rotor electrode gap } \\
& \ddots=\text { misalipnment angle }
\end{aligned}
$$

;h = difference in preload for different axes

$$
f_{x}=\frac{\pi \sin ^{2} 0_{1}}{m} M_{x}
$$

The expression in Table 2 for the uligned third harmonic then agrees with that of Table 1 except for the $-1 / 5$, which represents the disflacement of the center of mass for a pear-shaped rotor of this type. Similarly, for the misaligned third harmonic, the terms in Tables 1 and 2 agree if we take $\beta_{0}=0$ and neglect x_{0}^{2} and β_{0}^{2}. This brinps out tire fact that the expressions in Table 2 are only good for $\gamma_{0} \sim 1$ (gimbaled gyro) and shows why it is necessury to writc a computer program to evaluate these torques for the nongimbilad ense. This is described in Section V for all the harmonics.

The preload h_{1} is defined here us the ncceleration that will drive the voltage on one of the ith clectrodes to zero and thus lose the suspension. (This definition tiffer:; from that of Reference 1.) For a linear suspension system we $\mathrm{l}_{\text {, ve }} \mathrm{V}_{1+}+\mathrm{V}_{1-} . V_{i o}=$ constant, so from equation (7)

$$
m h_{1}=\frac{c_{0}^{r_{0}^{2}}}{2 d_{0}^{2}}\left(v_{i 0}^{2}\right)\left(\| \sin ^{2} v_{1}\right)
$$

Uaing the identity

$$
\begin{aligned}
& \left(v_{i-}^{2}+v_{i+}{ }^{2}\right)=\frac{1}{2}\left[\left(v_{i+}+v_{i-}\right)^{2}+\frac{\left(v_{i+}{ }^{2}-v_{i-}^{2}\right)^{2}}{\left(v_{i+}+v_{i-}\right)^{2}}\right] \\
& =-\frac{v_{i 0}^{2}}{2}\left[1+\frac{\left(v_{i+}^{2}-v_{i-}^{2}\right)^{2}}{V_{i o}^{4}}\right] \\
& \text { and multiplying by } r_{0} r_{0}^{2 / 2 d_{0}^{2}} \text {. we obtuin }
\end{aligned}
$$

$$
\begin{equation*}
P_{i}=\frac{m}{2 \pi \sin ^{2} \theta_{1}}\left[h_{i}+\frac{r_{i}^{2}}{h_{i}}\right] \tag{8}
\end{equation*}
$$

This is the bresic equation connecting p_{i} with h_{i} and f_{i}. The preloads h_{i} are adjusted to be larger than the madimum neceleration expected in : given environment. The misaligned seicond harmonic in Table 2 is seen to agree with I'uble I if lis is again identified with, and is the difference in prelonds for different axes.

Comparing these expressions with Reference 2 indicates that there are tems present for the allgned and miscentered third harmonic that are nutincluded in Reference 2. 'These two terms put more severe restrictions on f and h than have proviously been indicated. We postpone generating ictual numerical tolerinces until section VI and refer to Reference 3, where numerical values for the parameters in Table 2 nre given which alkow the reduction of \therefore to $\because=1.6: 10^{-16}$ rad $/ \mathrm{sec}:$ 0.001 are sec/yr, the aceurney necossury far ${ }^{\prime} 2$ percent measurement of the lense Thirring effeet.

Tables 3 and 4 contain mixcentering toryues for the second and third harmonics in terms of arbitiary electade angle " 1 . The correspumil
 These exprexsions illustrate the rapid inerease in complexity for higher harmonics.

It is important to reatize thut the simplified expressions in Table 2 which have been used in previoula; drif ewtimates are only valid for near atignment of the evtor spin with the electrode axis. When this is not the case, the expressiuns in terms of hamonies become extremely tedious to evalume for the higher himmonics, and it is best to resort to numerical integration of exuation (6), as in sicection V. The planned orientation lior the final gyive experiment in not the gimbuled ense but the ense where the spin add is midwny between two electrodes. Thus, the expressions in rable 2 are nett really relevant far this orientation, and what we really noed is the cance $r_{0}={ }^{\prime}(1)=1 / \sqrt{2}$. This is difficult to evalunte for all the terms la rable 1 . but we immediately realize that the alignment factor 0 for the secumal hurmonic is mo konger applicable. This is " very important point and increares the arraesponding drifs by at least t wo orders of magnitude. 'This point is diseassed further in sections VI and VIl.

[^0]TABLJ: 4. THIRD HARMONIC MISCENTERING TORQUE (CIRCUI,AR BLEETRODES)

$$
\begin{aligned}
& \left.\frac{r_{3}}{24 a_{3}}\right|_{x_{c}}=\frac{x_{c}}{d_{0}}\left\{\dot{r}_{x}\left[H_{0} r_{0}\left(-\frac{5}{2} A_{2}-2 A_{1}\right)\left(P_{z}-P_{y}\right)\right]\right. \\
& +\hat{y}_{y}\left[\% _ { 0 } ^ { 2 } Y _ { 0 } \left\{P_{x}\left(2 A_{2}-2 A_{1}+2 n \frac{\left(1-\cos ^{5} \theta_{1}\right)}{5}\right)\right.\right. \\
& \left.+p_{y} \cdot\left(\frac{A_{2}}{4}\right)+p_{z}\left(\cdots \frac{11 A_{2}}{4}-2 A_{1}\right)\right\}+B_{o}^{2} \gamma_{0}\left\{\left(P_{x}\right.\right. \\
& \left.\left.+p_{y}\right)\left(\Lambda_{1}-\Lambda_{2}\right)+P_{z}\left(\frac{\Lambda_{2}}{4}\right)\right\}+\gamma_{0}^{3}\left\{(P _ { x } + P _ { z }) \left(A_{1}\right.\right. \\
& \left.\left.-\Lambda_{2}\right)+p_{y}\binom{\Lambda_{2}}{\frac{2}{4}}\right\} \quad r_{0}\left\{\left(P_{y}+P_{z}\right)\binom{\Lambda_{1}}{\frac{1}{4}}\right. \\
& \left.+p_{x}\left(\cdots\left(1 \cdots \cos ^{3} n^{\prime}\right)\right\}\right]-i_{\%}\left[{ } _ { 0 } ^ { 2 } \% _ { 0 } \left\{p _ { x } \left(2 A_{2}\right.\right.\right. \\
& \left.\left.-2 \Lambda_{1}+\left(\begin{array}{cc}
1 \cdots \cos ^{5} & n_{1}^{\prime} \\
2 & r^{\prime}
\end{array}\right)+r_{z}^{\Lambda_{2}} \frac{2}{4}\right)-p_{y}\left(\frac{11 \Lambda_{2}}{4}-2 \Lambda_{1}\right)\right\} \\
& +\because_{0}^{3}\left\{\left(P_{x}+P_{y}\right)\left(A_{1}-A_{2}\right)+P_{z}\left(\frac{\Lambda_{2}}{4}\right)\right\} \\
& +V_{0} r_{0}^{2}\left\{\left(r_{x}+P_{y}\right)\left(\Lambda_{1}-\Lambda_{2}\right)+p_{y}\left(\frac{A_{2}}{4}\right)\right\} \\
& \left.\left.\because_{0}\left\{\left(b_{y}+P_{\%}\right)\binom{\Lambda_{1}}{4^{\prime}}+b_{x}\left(\ldots \frac{\left(1-\cos ^{3} 0_{1}\right)}{6}\right)\right\}\right]\right\} \\
& A_{1}=\pi \int_{0}^{\prime \prime} \sin ^{3} \theta d \theta \\
& A_{2}=n \int^{1 / 1} \sin ^{5} \theta d \theta
\end{aligned}
$$

V. EXACT NUMERICAI, CALCULATION OF TORQUES

It is possible to evaluate equation (6) for arbitrary rotor spin orientation by doing the integrals numerically. To do this we use the substit utions in Reference 1 to include all the electrodes; that is:

```
z- elect rode \alpha
x+ electrode & & \gamma, \gamma *-内
x- electrode \alpha \alpha + - , \beta, 倝-\beta,\gamma>-\alpha
y+ electrode & & - R, \beta->\gamma,\gamma->-\alpha
y- electrode \alpha}~\beta,\beta~-\gamma,\gamma->-\alpha
```

One notices then that permuting in. R, and γ is equivalent to permuting α_{0}, β_{0}, and γ_{0} in the expression for $l \prime$ and at the same time permuting the three busic integruls given by

$$
\begin{aligned}
& I_{1}\left(\gamma_{0}, r_{0}, \gamma_{0}\right)=\int_{0}^{2 \|} d \| \int_{0}^{1} \sin \theta d \theta\left[\alpha \frac{d r\left(\theta^{\prime}\right) / d u^{\prime}}{\sin \theta^{\prime}}\right] \\
& I_{2}\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)=\int_{0}^{2 \|} d_{v} \int_{0}^{1} \sin \theta d \theta\left[\beta \frac{\operatorname{dr}\left(\theta^{\prime}\right) / \mathrm{d} \theta^{\prime \prime}}{\sin)}\right] \\
& I_{3}\left(\gamma_{0}, \beta_{0} \cdot \gamma_{0}\right)=\int_{0}^{2 \|} d \psi \int_{1}^{1} \sin \theta d \theta\left[\gamma \frac{\left.d r\left(1^{\prime}\right) / d\right)^{\prime}}{\sin \theta^{\prime}}\right] \\
& \cos t^{\prime}=M_{0}+B H_{0}+n_{0} \\
& x=0 \sin 11 \cos \phi \\
& \beta=\sin 10 \sin \psi \\
& \gamma=\cos 11
\end{aligned}
$$

Thus, it is possible to express equation (6) in terms of these three basic integrals with the arguments permuted in the uppropriate fashion. The end result of this is as follows (where we have neglected the id/d (crim):

$$
\begin{aligned}
& T_{x}=\frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}}\left\{\gamma_{0} I V_{z+}^{2} I_{2}\left(y_{0} \cdot r_{0} \cdot r_{0}\right)+V_{z-}^{2} I_{2}\left(-\varepsilon_{0}, r_{0},-\gamma_{0}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -v_{y-}^{2} 1_{3}\left(-r_{0} \cdot\left(y_{0} \cdot-i_{0}\right) 1+i_{0} 1 \cdot v_{4+}^{2} I_{3}\left(x_{0} \cdot r_{0} \cdot r_{0}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -V_{y^{-}}^{2} 1_{1}\left(-r_{0} \cdot\left(r_{0}-r_{0}\right) 1+r_{0} \mid \cdot v_{z+}^{2} 1_{1}\left(r_{0} \cdot r_{0} \cdot r_{0}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& T_{z}=\frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}}\left\{\beta_{0} \mid V_{z+}^{2} I_{1}\left(\mu_{0} \cdot \beta_{0} \cdot \gamma_{0}\right) \cdots V_{z-}^{2} I_{1}\left(-r_{0} \cdot \beta_{0},-\gamma_{0}\right)\right. \\
& +V_{x+}^{2} I_{3}\left(-\gamma_{0}, \beta_{0}, \alpha_{0}\right)-V_{x-}^{2} I_{3}\left(-\gamma_{0},-\beta_{0},-\gamma_{0}\right)-V_{y+}^{2} I_{2}\left(-\gamma_{0},-x_{0}, \gamma_{0}\right) \\
& \left.+V_{y^{-}}^{2} I_{i}\left(-\gamma_{0}, \alpha_{0},-\beta_{0}\right)\right]+\gamma_{0} I-V_{z^{+}}^{2} I_{2}\left(x_{0}, \beta_{0}, \gamma_{0}\right) \\
& -V_{z^{-}}^{2} I_{2}\left(-\gamma_{0} \cdot \beta_{0},-\gamma_{0}\right)-V_{x+}^{2} I_{2}\left(-\gamma_{0} \cdot \beta_{0}, \alpha_{0}\right)+V_{x-}^{2} I_{2}\left(-\gamma_{0},-\xi_{0},-\gamma_{0}\right) \\
& \left.\left.-v_{y^{+}}^{2} \mathbf{I}_{3}\left(-\gamma_{0},-\gamma_{0}, \beta_{0}\right)+v_{y}^{2} 1_{3}\left(-\gamma_{0} \cdot \gamma_{0},-\beta_{0}\right)\right]\right\}
\end{aligned}
$$

This is the final exact expression for the primary torques (with no $\Lambda d / d_{0}$ terms) in terms of an arbitrary rotor shape $r\left(V^{\prime}\right)$, and it does not rely on a harmonic expansion. The V_{i} 's can be expressed in terms of f_{i} and h_{i} directly from equations (7) and (8) as

$$
\begin{equation*}
v_{i \pm}^{2}=\frac{d_{o}^{2}}{\sigma_{0} r_{o}^{2}}\left[\pm f_{i}+\frac{1}{2}\left(h_{i}+\frac{f_{i}^{2}}{h_{i}}\right)\right] \frac{m}{\pi \sin ^{2} 0_{1}} \tag{9}
\end{equation*}
$$

We have written a computer program (see Appendix) to evaluate these integrals numerically for an $r\left({ }^{\prime \prime}\right)$ which we can take directly from a roundness chart. The program does the double integrais using an 8 -point Newton Coates quadrature formula with 97 divisions. It has been checked with the analytic expressions for tre second and third hamonies in Table 1 and found to be accurate to four signifieant figures. The $\mathbf{r}\left(0^{\prime}\right)$ is lourier analyed ($0 \cdot U^{\prime \prime}: \eta$), and the Fourier cosine series coefficients up to the $20 t h$ are used to reconstruct $d r\left(U^{\prime}\right) / d u^{\prime}$. Thus, we expect harmonics up to the $20 t h$ to be accounted for.

A number of computer runs were undertaken to establish the drift rates for various values of the parumeters involved. The three sample rotors were used as previously described. To establish the preload dependence, a series of computations ware made for a rotor orientution of $\theta_{0}=45^{\circ}, \phi_{0}=0^{\circ}$, where $\|_{0}$ is the angle from the electrode axis and ϕ_{0} is the azimuthal angle.

The results are shown in Tables 5 through 8 for various levels of acceleration. The h's were taken to differ by 1 percent. The results indicate that the drifts are proportional to the preload for the lower values of f. The drifts indicate the general order of magnitude to be expected for arbitrary rotor orientation. The general level of drift was several hundred milliare sec/yr for $1 \mathrm{n}, 10^{-6} \mathrm{~g}$.

TABId: 5. DRHFT RATES

$$
(1)_{0}=45^{\circ}, v_{0}=0^{\circ} \cdot\left(\cdots 10^{-10} \mathrm{~g}, \wedge \mathrm{~h}=0.01 \mathrm{~h}\right)
$$

$\mathrm{h}\left(\mathrm{g}^{\prime} \mathrm{s}\right)$	Case 1 (11	$\begin{aligned} & \text { Case II } \\ & \text { ec/yr) } \end{aligned}$	Case III
10^{-6}	86.0	291.0	202.0
10^{-7}	8.6	29.1	20.4
10^{-8}	0.89	3.01	2.30
$\left(0_{0}=45^{\circ}, \psi_{0}=0^{\circ}, \mathrm{f} \times 10^{-9} \mathrm{~g}, \wedge \mathrm{~h}=0.01 \mathrm{~h}\right)$			
$h(g ' s)$	Cinse 1	$\begin{aligned} & \text { Case } 11 \\ & \mathrm{ce} / \mathrm{yr} \text {) } \end{aligned}$	Case III
10^{-6}	86.0	291.0	204.0
10^{-7}	8.9	30.0	23.0
10^{-8}	2.5	8.3	8.5

TABLE 7. DRIFT RATES

$$
\left(\theta_{0}=45^{\circ}, \phi_{0}=0^{\circ}, f \leadsto 10^{-8} \mathrm{~g}, \Delta \mathrm{~h}=0.01 \mathrm{~h}\right)
$$

$h\left(g^{\prime} s\right)$	Cuse I	Case II (milliarc sec/yr)	Case III
10^{-6}	89.0	300.0	210.0
10^{-7}	25.0	84.0	85.0
10^{-8}	150.0	505.0	370.0

TABIJE 8. DRIFT RATES

$$
\left(0_{0}=45^{\circ}, \varphi_{o}=0^{\circ}, f \sim 10^{-7} g, \Delta h=0.01 \mathrm{~h}\right)
$$

$h\left(g^{\prime} \mathrm{s}\right)$	Case I	Case II (milliare sec/yr)	Case III
10^{-6}	254.0	839.0	850.0
10^{-7}	1497.0	5053.0	3705.0

Next the relative effect of the higher harmonics was investigated by running the program for each harmonic separately normalized to a harmonic coefficient of $n_{n}=1 \mu \mathrm{in}$. One secs from Table 9 that the higher harmonics do not decrease in importance very quickly. Combining this with ligures 4, 5, and 6, we see that the a_{n} above the second do not drof off very quickly, so that the higher harmonics may be important and should be included in the calculation.

TABLEE 9. DRIFT RATES ($\left.f \sim 10^{-9} \mathrm{~g}, \mathrm{~h} \sim 10^{-6} \mathrm{~g}, \mathrm{~A}_{\mathrm{n}}=1 \mu \mathrm{in}.\right)$

Harmonic Number	Nh $=0.01$ (milliare sec $/ \mathrm{yr}$)	$\wedge \mathrm{h}=0$
2	77.0	0.03
3	20.0	20.0
4	19.0	0.004
5	18.0	18.0
6	50.0	0.01
7	30.0	30.0
7	16.0	0.006
9	9.7	9.7
9	56.0	0.01
10	11.0	11.0
11	15.0	0.003
12	3.1	3.1

Finally, the factor r, was set equal to zero for the higher harmonics, and this greatly reduced the torques for the even harmonics, as shown in Table 9. This means that the factor ζ is generally applicable and that the expression for fourth hurmonic in Table 1 is probably wrong. We have not used it for computational purposes, and we include it in Table 1 to illustrate the complexity of the calculations involving higher harmonics.

To summarize, these results indicate that for the rotors considered, a preload $h \sim 10^{-6} g$ (determined primarily by roll rate), and the orientation planned for the final experiment $\left(\theta_{0}=45^{\circ}, \phi_{0}=0\right)$, the drifts are of order several hundred milliarc sec/yr, two orders of magnitude larger than the experiment goal of 1 milliarc sec/yr. To reach the design goal of the experiment one must do one or a combination of three things:
(1) reduce the preload, (2) align the rotor with the electrode axis (see Section VI), or (3) rely on roll averaging of torque.

While item 2 is a valid solution, it is probably too difficult to implement given the increased difficulty of reading out the gyro due to the presence of electrodes in the readout loop. Item 3 is also probably a valid solution. This is discussed in Section X.

We notice that for the second harmonic term in Table 1 and $\alpha_{0}=$ $\gamma_{0}=1 / \sqrt{2}$ we have

$$
s l=\frac{T}{I \omega} \sim \frac{1}{2 \pi \sin ^{2} \theta_{1}} \frac{(2.7)\left(a_{2}\right)}{(2 / 5) r_{0}} \frac{r h}{V} \alpha_{0} \gamma_{0} \sim 150 \text { milliarc sec } / \mathrm{yr}
$$

for $a_{2}=2 \mu \mathrm{in}$. (due to centrifugal distortion; see Reference 4), $h=$ $10^{-6} \mathrm{~g}, \zeta=0.01, \omega=200 \mathrm{cps}$. So just the second harmonic gives torques of the magnitude shown in Tables 5 through 10.

The current state of the art in electrostatic gyros is of order $3 \times$ 10^{6} milliarc sec/yr in a $1-\mathrm{g}$ environment. Scaling up the results of this section by 10^{6}, we obtain drift rutes of 10^{8} milliare sec/yr in a $1-g$ environment. Thus, the state-of-the-art rotors considered here will not have the $1-\mathrm{g}$ performance of existing electrostatic gyros. This is because the current electrostatic gyros produced by Honeywell rely on gimbaling, ball bulancing, centrifugal distortion compensation, and possibly computer modeling to reduce torques.

VII. TORQUE ON A GIMBALED GYRO INCLUDING ALI. THE HARMONICS

We can evaluate equation (0) without resorting to a Fourier expansion for the case $\gamma_{0}=1, \alpha_{0}=\beta_{0}=0$. In this case we have $\sin \theta=$ $\sin \theta^{\prime}$; so, neglecting the $\Lambda d / d_{0}$ term, we obtain

$$
\pm=\frac{\varepsilon_{0} r_{o}^{2}}{2 d_{o}^{2}} \sum_{i} V_{i}^{2} \iint_{S_{i}}\left[\beta \hat{r}_{x}-\alpha \hat{F}_{y}\right] \frac{d r(\theta)}{d \theta} d \theta d \phi
$$

For the z^{+}electrode we get

$$
\begin{aligned}
\mathbf{T}_{z^{+}}= & \frac{r_{0} r_{0}^{2}}{2 d_{0}^{2}} V_{2+}^{2}\left[\dot{F}_{x} \int_{0}^{0} d \theta \int_{0}^{2 \pi} d \phi \sin 0 \sin \phi \frac{d r(\theta)}{d \theta}\right. \\
& -\hat{F}_{y} \int_{0}^{0} d \theta \int_{0}^{2} d \psi \sin 0 \cos \phi \frac{d r(0)}{d \theta}=0 .
\end{aligned}
$$

Similarly, for the z - electrode, making the substitution $\alpha \rightarrow-\alpha \gamma \rightarrow-\gamma$. we have

$$
\vec{T}_{z^{-}}=0
$$

For the $x+$ electrode we have $\alpha \rightarrow \gamma, \gamma \rightarrow-(x$; so

$$
\begin{aligned}
{\underset{T}{x+}}= & \frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}} V_{x+}^{2}\left[\dot{F}_{x} \int_{0}^{2 \pi} d \psi \int_{0}^{1} \sin \theta d \theta\left(\frac{\sin \theta \sin \phi d r\left(\theta^{\prime}\right) / d 0^{\prime}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi}}\right)\right. \\
& -\hat{F}_{y} \int_{0}^{2 \pi} d \phi \int_{0}^{1} \sin 0 d \theta\left(\frac{\cos 0 d r\left(\theta^{\prime}\right) / d \theta^{2}}{\sqrt{\cos ^{2} \theta+\sin ^{2} 0 \sin ^{2} \phi}}\right)
\end{aligned}
$$

where

$$
\theta^{\prime}=\sin ^{-1} \sqrt{\cos ^{2} 0+\sin ^{2} \theta \sin ^{2} \phi} .
$$

This follows since the Jacobian of the transfomation is sin $\tilde{\theta} / \sin \theta[1]$ and

$$
\sin \theta=\sqrt{\alpha^{2}+\beta^{2}} .
$$

Therefore, maling these substitutions gives us the radical in the denominator. Similarly, $\boldsymbol{i t}_{\mathbf{x}_{-}}=-\mathbf{I}_{\mathrm{x}+}$ so

$$
\Psi_{x}=M_{x}\left[\hat{F}_{x} I_{1}-\hat{F}_{y} I_{2}\right]
$$

where

$$
\begin{aligned}
& I_{1}=\int_{0}^{2 \pi} d \phi \int_{0}^{\theta} \sin 0 d \theta\left(\frac{\sin 0 \sin \phi d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sqrt{\cos ^{2} 0+\sin ^{2} 0 \sin ^{2} \phi}}\right) \\
& I_{2}=\int_{0}^{2 \pi} d \phi \int_{0}^{0} \sin 0 d \theta\left(\frac{\cos \theta d r\left(\theta^{\prime}\right) / d 0^{\prime}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi}}\right) \cdot
\end{aligned}
$$

For the $\mathbf{y}+$ electrode

$$
\alpha \rightarrow-\beta, \beta \rightarrow \gamma, \gamma>-\alpha
$$

and

$$
\begin{aligned}
& \underset{T_{y+}}{ }=\frac{\varepsilon_{0} r_{0}^{2}}{2 d_{0}^{2}} v_{y+}^{2}\left[\hat{F}_{x} \int_{0}^{2 H} d \phi \int_{0}^{\theta_{1}} \sin \theta d \theta\left(\frac{\cos 0 d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi_{\phi}}}\right)\right. \\
& +\hat{F}_{y} \int_{0}^{2 \pi} d \phi \int_{0}^{\dot{\theta}_{1}} \sin \theta d \theta\left(\frac{\sin \theta \sin \phi d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi}}\right) .
\end{aligned}
$$

For the y-electrode $\alpha \rightarrow \beta$ and $\beta \rightarrow-\gamma$; so clearly

$$
\mathbf{t}_{y-}=-\mathbf{T}_{y+}
$$

and

$$
\dot{T}_{y}=M_{y}\left[\hat{F}_{x} I_{2}+\hat{b}_{y} I_{1}\right]
$$

The I_{1} integral can eusily be shown to be zero by the following argument. The ϕ part of the integral can be written as

$$
\begin{aligned}
\int_{0}^{2 \pi} f\left(\sin ^{2} \phi\right) \sin \phi d \phi= & \int_{0}^{\pi} f\left(\sin ^{2} \phi\right) \sin \phi d \phi \\
& +\int_{\|}^{2 \pi} f\left(\sin ^{2} \phi\right) \sin \phi d \phi \quad ;
\end{aligned}
$$

letting $\phi=n+U$ in the second integral, then $\sin \phi=-\sin U$ and the latter integral becomes

$$
\int_{0}^{\pi} f\left(\sin ^{2} u\right)(-\sin U) d U
$$

which exactly cancels the Argt integral. The Anal form of the torque is then

$$
\vec{T}=I_{2}\left\{-M_{x} \hat{F}_{y}+M_{y} \hat{\vec{F}}_{x}\right\}
$$

From Reference 1, page 137, this can be writtun

$$
T=\frac{t_{2}}{\pi \sin ^{2} 0_{1}}[-\mathbb{R} \times \vec{E}]
$$

where $\vec{K}=\hat{\mathbf{F}}_{2}$ is a unit vector in the direction of the apin axde and \vec{F} is the force on the rotor given by equation (7). This is of the form of a mass unbalance torque for the component of unbalance abng the spin axis. It includes all the hasmonics through the integral I_{2}, which can be evaluated exactly for any given rotor. This will lead to a drift rate of magnitude

$$
\Omega=\frac{|T|}{I \omega}=\frac{I_{2}}{\pi \sin ^{2} 0^{\circ}} \frac{m i}{\frac{m}{5} m r_{0} v}=\frac{5}{2 \pi \sin ^{2} 0_{1}}\left(\frac{I_{2}}{r_{0}}\right) \frac{f}{V}
$$

Using

$$
\begin{array}{lr}
f=10^{-9} \mathrm{~g} \\
V=2400 \mathrm{~cm} / \mathrm{sec} & \text { for } \omega=200 \mathrm{cps} \\
r_{0}=0.75 \mathrm{in} . & v_{1}=30^{\circ}
\end{array}
$$

we find

$$
s 2=\left(1.77 \times 10^{-9}\right)\left(1_{2}\right)
$$

for I_{2} in $\mu \mathrm{in}$. I_{2} has been evaluated numerically for the three sample rotors considered earlier, and the results are

${ }_{2}$

Case 1
$0.983 \times 10^{-6} \mathrm{in}$.
Case $11 \quad-0.710 \times 10^{-6} \mathrm{in}$.
Case III $\quad-0.995 \times 10^{-6} \mathrm{in}$.

Case I $\Omega=10.6$ milliarc sec $/ \mathbf{y r}$
Case II $\Omega=7.88$ millinare sec/yr
Case III $\Omega=11.0$ militure sec $/ \mathbf{y r}$.

The drifts are proportional to f und $1 / w$. So for a perfectly aligned rotor we get drift rates of the order 10 milliare sec/yr in a 10^{-9} e environment.

The large reduction in torques for the gimbaled case illustrates the great advantage for this orientution. This is, in fact, the orientation used for many exdsting clectrostatic gyros and is responsible for their current excellent difit performance. These gyros use a rotor with a preferred spin axis so the axiul mass unbalance torque can be minimized by balancing the ball. In fuct, ull the even harmonics vanish for this orientation [1]. As soon us the rotor spin axis is misaligned with the electrode axis, one picks up all the oven harmonics, and these involve the relatively large prelouds h. This accounts for the difference in the drifts calculated in this section and those calculated in Section VI. We can reduce the average f by drag-free control to the $10^{-10} \mathrm{~g}$ level, but h cannot be so reduced becuuse of the roll of the apacacraft (h) $10^{-0} \mathrm{~g}$ for 15 min roll period and 10 cm radius).
VIII. 8ECONDARY TORQUES

The secondary torques are by definition the torques that axise from the $\Delta d / d_{0}$ term in equation (6). There ase four sources of secondary torques [1]:
a) Rotor aspheridty:

$$
\Delta d=-\Delta x\left(\theta^{\prime}\right) \quad .
$$

whese

$$
\Delta r=r-x_{0}
$$

0 is diven by

$$
J^{\prime}=\cos ^{-1}\left(\alpha g_{0}+B \beta_{0}+\gamma Y_{0}\right)
$$

no It is a compzicuted function of the direction cosines $a_{0} \beta_{1}, \gamma$ and $\alpha_{0}, \beta_{0}, \gamma_{0}$.
b) Rotor miscontering:

$$
\Delta d=-a x_{c}-b y_{c}-\gamma z_{c} .
$$

where ..

$$
\vec{r}_{c}=\left(x_{c}, y_{c} \cdot z_{c}\right)
$$

indicates the vector from the conter of the housing to the center of mass of the rotor.
c) Electrode assembly errors:

$$
\Delta d=\varepsilon\left\{\frac{\Delta_{l}}{\sqrt{3}}(\alpha+\beta+2 \gamma)+\frac{\Lambda_{t}}{\sqrt{2}}(\alpha-8)\right\} .
$$

36
where Δ_{ℓ} is the translation of the upper hemisphere parallel to the projection of F_{2} on the separation plane and Λ_{t} is the transiation perpendicular to this direction, $c=+1$ for the upper half and $c=-1$ for the lower hals.
d) Electrode asphericity:

$$
\Delta d=R\left(a_{0} \beta, \gamma\right)
$$

where R specifes the deviations from perfect spheriofty of the electrodes. This requires a model for R. Honeywell [1] has computed the torques for the (a) and (b) casos up to the aixth harmonic and in case (c) for the second and third harmonics for hexahedral electrodes. Essentially no work has been done on cuse (d). Extracting numerical values from these formulas is difficult and, as we have seen previously, using only the lowest harmonics is mislending.

The secondary torgucs could be computed exactly uning the method described in 8 ection V. Onc definew the three integrals

$$
\begin{aligned}
& I_{1}^{\prime}\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)=\int_{0}^{2 \pi} d \phi \int_{0}^{1} \sin \theta d \theta\left[\frac{\Delta d}{d_{0}} a \frac{d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sin }\right] \\
& I_{2}^{\prime}\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)=\int_{0}^{2 \pi} d \phi \int_{0}^{1} \sin \theta d \theta\left[\frac{\Delta d}{\alpha_{0}} \beta \frac{d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sin \theta^{\prime}}\right] \\
& I_{3}^{\prime}\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)=\int_{0}^{2 \pi} d \phi \int_{0}^{\theta_{0}} \sin \theta d \theta\left[\frac{\Delta d}{d_{0}} \gamma \frac{d r\left(\theta^{\prime}\right) / d \theta^{\prime}}{\sin \theta^{\prime}}\right]
\end{aligned}
$$

where $L d \cdot i s$ a function of , $1, f, \gamma$ and $a_{0}, \beta_{0} \cdot \gamma_{0}$. For the four previously mentioned cases, a completc exprersion for the torques could then be generated by yuitable permutation of the direction cosines and the I'w. Each case would have 36 terms. Note, however. that, except for came (a), upon carrying out the permutations listed in Scetion V. the l's would not transform into themselves: thus, one would not have juat three basic integrals. For cases (b) and (c). one would have six bagic integraln (Ad proportional to cither ($1, \mathrm{~F}$, or γ): and for case (d). one would have twelve basic integrals. This ix a formidable computational task that has not been carried out as yet.

One important observation about the secondary torques is that none of them averages due to spacecraft roll. This is because they contain α, β, and γ, and this destroys the averaging discussed in Section X even for the case of the rotor spin aligned perfectly with the spacecraft roll axis.

In lieu of a complete calculation of sacondary torques, we can make the following observation. All the secondary torques are of order $\Delta d / d_{0}$ times the primary torques. So if we take the general level of primary torque drift to be of order 100 milliarc $s e c / y r$, which would only require a slight rotor improvement, we see that $\Delta d / d_{0}$ need only be $1 / 100$ to reduce the secondary torques to the milliarc sec/yr level. Since $d_{0}=$ $1500 \mu \mathrm{in}$., this requile:s a $\Lambda \mathrm{d} \sim 10 \mu \mathrm{in}$. Therefore, this is the specification we will require oxi $\Delta \mathrm{d}$. It is clearly satisfied for case (a). For case (b), a centering accuracy of $10 \mu \mathrm{in}$. is attainable, but it must be remembered that this is an absolute centering accuracy and not the stability of the centering point. The $10 \mu \mathrm{in}$. specification also applies to the housing centering errors and the electrode sphericity. A more definitive statement than this would require an enormous amount of numerical work. However, notice that these conclusions agree with the miscentering terms in Table 1, which are down by a factor t / d_{0} from the primary torques for the lower harmonics. Also, the calculation in Reference 1 of electrode assembly errors bears out that they are down by a factor Δ / d_{0} for the lower harmonics.

There is, however, a qualification to this statement because of the fact that the secondary torques, while down by a factor $\Delta d / d_{0}$, may not contain the reductions due to symmetry that occur in the primary torques. This is illustrated by the miscentered third harmonic term in Table 2, which contains no 5 term and is of order 15 milliarc sec/yr for $a_{3}=$ $1 \mu \mathrm{in} ., \mathrm{h}=10^{-6} \mathrm{~g}, \mathrm{t} / \mathrm{d}_{\mathrm{o}} \sim 10^{-2}$; and $\omega=200 \mathrm{cps}$. The higher harmonics will add to this, and the total magnitude of the drift requires the numerical integration described previously. (The miscentered second harmonic gives an insignificant drift for these same parameters and $a_{2}=2 \mu \mathrm{in}$. and $f \sim 10^{-9} \mathrm{~g}$.) However, if the miscentering vector remains fixed with respect to the electrodes as the spacecraft rolls, then these miscentering torques will average to zero because they will cause no change in electrode voltages as the spacecraft rolls. These considerations indicate that a complete numerical integration for secondary torques is probably necessary.

IX; ORBITAL AVERAGING OF GRAVITY GRADIENT FORCES

The purpose of this section is to compute the average gravity gradient acceleration as a function of distance from the center of mass of the satellite. The effect of roll averaging will then be computed.

The gravity gradient acceleration $\overrightarrow{\mathbf{F}}$ is given by the equation

$$
\overrightarrow{\mathbf{f}}=\underline{\mathbf{v}} \overrightarrow{\mathrm{p}},
$$

where \underline{V} is a matrix of the form

$$
(V)_{i j}=\frac{\partial^{2} v}{a x^{i} \partial x^{j}}
$$

and V is the gravitational potential. $\vec{\rho}$ is the vector position of the point at which the acceleration is co puted with respect to the center of mass. Taking $V=G M / r$, one ensily finds that for a rectangular coordinate system

$$
\underline{V}=\frac{G M}{r^{5}}\left(\begin{array}{ccc}
3 x^{2}-r^{2} & 3 x y & 3 x z \\
3 x y & 3 y^{2}-r^{2} & 3 y z \\
3 x z & 3 y z & 3 z^{2}-r^{2}
\end{array}\right)
$$

We now consider a circular orbit in the $y-z$ plane with the roll axis in the z-direction. This implies the guide star is in the orbit plane, a situation that can be realized with a suitable choice of orbit. Then for a particular point in the spacecraft specified by $\vec{\rho}$ one has

$$
\begin{aligned}
& \rho_{z}=\text { const. } \\
& \rho_{y}=\rho_{0} \cos \omega t \\
& \rho_{x}=\rho_{0} \sin \omega t
\end{aligned}
$$

where ω is the roll angular frequency. The orbital position is given by

$$
\begin{aligned}
& y=R \cos \Omega t \\
& z=R \sin \Omega t \\
& x=0
\end{aligned}
$$

where Ω is the orbital angular frequency and R the orbital radius. Substituting this into the equation for \underline{V} and \vec{I}, one obtains

We can now compute the avernge values of these quantities, noting that
$\langle\sin \omega t\rangle=\frac{1-\cos \omega T}{\omega T} \quad$.
where T is the averaging time. Similarly,
$<\cos ^{2} \Omega t \cos \omega t>=\frac{\sin \omega T}{2 \omega T}+\frac{\sin (2 \Omega-\omega) T}{4(2 \Omega-\omega) T}$

$$
+\frac{\sin (2 \Omega+\omega) T}{4(2 \Omega+\omega) T}
$$

$<\sin \Omega t \cos \Omega 2 t \cos \omega t>=\frac{1-\cos (2 \Omega-\omega) T}{4(2 \Omega-\omega) T}$

$$
+\frac{1-\cos (2 \Omega+\omega) T}{4(2 \Omega+\omega) T}
$$

$<\cos \Omega t \sin \Omega t>=\frac{\sin ^{2} \Omega T}{2 \Omega T}$
$\langle\cos \omega t\rangle=\frac{\sin \omega T}{\omega T}$
$\left\langle\sin ^{2} \Omega t>=\frac{1}{2}-\frac{1}{4} \frac{\sin ^{2} \Omega T}{S Z T}\right.$

We see that all components of $\langle\vec{f} \cdot$ are of order $1 / \Omega T=2 \pi / \#$ of orbits or $1 / \omega T=2 \pi / \#$ revolutions and thus average to zero with the very important exception of the second term in $\left\langle f_{z}\right\rangle$. Ignoring the term proportional to 1/siT, we have

$$
\left\langle f_{z}>\sim \frac{G M}{2 R^{3}} \rho_{z}\right.
$$

For $\rho_{z} \sim 10 \mathrm{~cm}$ this term is of order $10^{-8} \mathrm{~g}$. We see from Section VIII that this will make a large contribution to the torque; thus, every effort should be made to minimize it.

Notice that there are $\left\langle\mathrm{f}_{\mathrm{i}}{ }^{2}\right\rangle$ terms in the expression for torque, and none o: these averages to zero. ilowever, these occur in the combination $\left\langle f_{i}^{2}>/ h_{i}\right.$. For gravity gradient forces of order $10^{-8} g$ and $h_{i} \sim 10^{-6} g$, these terms are of order $10^{-10} \mathrm{~g}$, the same order of magnitude as the $<\mathrm{f}_{\mathrm{i}}>$ terms.

To summarize, we have shown that all gravity gradient accelerations average to zero under the combined effects of orbital and roll averaging with the exception of the component along the roll uxis, and this can be minimized by placing all the gyros in the plane of the drag-free proof mass perpendicular to the roll axis.

For an elliptical orbit, one can write

$$
\left[\begin{array}{c}
\left\langle f_{x}\right\rangle \\
\left\langle f_{y}\right\rangle \\
\left\langle f_{z}\right\rangle
\end{array}\right]=G M\left[\begin{array}{l}
\sigma_{0}<\frac{1}{r^{3}} \sin \omega t: \\
\eta_{0}<\frac{3 y^{2}-r^{2}}{r^{5}} \cos \omega t>+\left\langle\frac{y z}{r^{5}} \because \rho_{z}\right. \\
\rho_{0}<\frac{y z}{5} \cos \omega t>+\left\langle\frac{3 z^{2}-r^{2}}{r^{5}}\right\rangle \rho_{z}
\end{array}\right],
$$

where the average is now over an elliptical orbit. One can express y and 2 and thus r as a power series in the eccentricity e :

$$
\begin{aligned}
\frac{y}{a}= & \cos \Omega t+\frac{1}{2} e(\cos 2 \Omega t-3) \\
& +\frac{e^{2}}{8}(3 \cos 3 \Omega t-3 \cos \Omega t)+\ldots \\
\frac{z}{a}= & \sin \Omega t+\frac{1}{2} e \sin 2 \Omega t \\
& +\frac{e^{2}}{24}(9 \sin 3 \Omega t-15 \sin \Omega t)+\ldots \\
& r=\sqrt{y^{2}+z^{2}} \quad a=\operatorname{semi}-\text { major axis }
\end{aligned}
$$

One can convince oneself then that

$$
\begin{aligned}
& \left\langle\frac{1}{\mathbf{r}^{3}} \sin \omega t>\rightarrow 0\right. \\
& <\frac{3 y^{2}-\mathbf{r}^{2}}{\mathbf{r}} \cos \omega t>\rightarrow 0 \\
& <\frac{y z}{\mathbf{r}^{5}} \cos \omega t>\rightarrow 0,
\end{aligned}
$$

just as in the circular orbit case. This is because one will have terms of the form

$$
\left\langle\cos ^{m}(k s i t) \sin ^{n}(\ell s() \cos \omega t\rangle \quad,\right.
$$

where m, n, k, and ℓ are integers and these terms average to zero. So, after averaging, we obtain

$$
\left[\begin{array}{l}
\left\langle f_{x}>\right. \\
\left\langle f_{y^{\prime}}\right\rangle \\
\left\langle f_{z}\right\rangle
\end{array}\right]=G M\left[\begin{array}{l}
0 \\
\left\langle\frac{y z}{r^{5}>\rho_{z}}\right. \\
\left\langle\frac{3 z^{2}-r^{2}}{r^{5}}>\rho_{z}\right.
\end{array}\right] .
$$

But $<\frac{y z}{5}>$ is of order $e^{2 / a^{3}}$ for an elliptical orbit; so $<f>$ is of order $e^{2} G M \quad{ }_{\rho_{z}} / a^{3}$, which is small for a nearly circular orbit. Also. $<\frac{3 z^{2}-r^{2}}{r^{5}}>$ is different for a noncircular orbit. The corrections are of order e for small e. So by minimizing ρ_{z} we essentially eliminate the the average force in a noncircular orbit also.

While the z component of gravity gradient acceleration does not average to zero, it will not cause substantial torque on the gyro aligned with the z-axis. This can be seen by the following argument. The voltages needed to cancel the z-component of acceleration are such that for each point on the rotor the voltage is the same as for a point opposite on a line drawn through the spin axis. The torque due to the original point thus precisely cancels the torque due to the opposite point. This can be seen explicitly for the third and fifth harmonics in Table 1 which vanish for $\alpha_{0}=\gamma_{0}=1 / \sqrt{2}, \beta_{0}=0, M_{x}=M_{2}, M_{y}=0$, the case appropriate for the acceleration and spin aligned with the z-axis. The even harmonics will still be there, but these are primarily due to asymmetries in the preload that would be there in any case. The non-zero < f_{y} > for an elliptical orbit will cause n torque on the gyro aligned with the z-axis. This acceleration is of order

$$
\frac{G M}{R^{3}} e^{2} \rho_{z}
$$

and can be reduced to the $10^{-10} g$ level for $e \sim .1$. Thus, the non-zero average value of the z-component of gravity gradient acceleration will not significantly affect the gyro aligned with the z-axis from which the relativity information is extracted.

X. AVERAGING OF TORQUES DUE TO SPACECRAFT ROLL

In the final version of the gyro experiment, the spacecraft will be rolled about an axds through the guide star. This is necessary to achieve the required readout accuracy, but it is also effective in reducing the primary electrical torques on the gyro. In this section, we evaluate the eftect of averaging on the torques analytically.

Consicler first the case in which the gyro spin axis is perfectly aligned with the roll axis. Ne know that the torque is perpendicular to the roll axis. Then, if everything else is constant, the tip of the torque vector will describe a circle, and the average of the torque over one revolution will be precisely sero.

To prove this analytically we note that equation (6) is also valid in a coordinate system with the roll axis as the z-axis. Now consider an element of electrode sur:ace described by the direction cosines α, β, γ. As the spacecraft rolls, these will vcry in such a way that

$$
\begin{aligned}
& \alpha=\sin \theta^{\prime \prime} \cos \omega t \\
& \beta=\sin \theta^{\prime \prime} \sin \omega t \\
& \gamma=\cos \theta^{\prime \prime}
\end{aligned}
$$

where $\theta^{\prime \prime}$ remains constant. The rotor spin axis is at the point midway between two adjacent electrodes; in the present coordinates this means

$$
\alpha_{0}=\beta_{0}=0 .
$$

Hence $\theta^{\prime}=\theta^{\prime \prime}=$ constant. Thus, if the V_{i} 's remain constant in equation (6) then averaging over one roll we have

$$
\langle\alpha\rangle=0 \quad\langle\beta\rangle=0 .
$$

Since this holds for each element of electrode area, we have (neglecting $\Delta d / d_{0}$ terms)

$$
\langle\boldsymbol{T}\rangle=0
$$

for one complete revolution. At any given point the torque is reduced by a factor $i 1 / n$ of its static value, so that for 10^{4} revolutions ($\sim 1 \mathrm{yr}$ for 15 min roll period) the torques are reduced by four orders of magnitude. This holds only if the V_{i} 's remain constant, which is the case for the centrifugal accelerations due to the roll. It is not true for other accelerations, but these are taken care of by the drag-free proof mass and the gravity gradient acceleration averaging as described in Section IX. The averaging also does not hold for the secondary torques ($\Lambda \mathrm{d} / \mathrm{d}_{0}$ terms), since these terms may contain, α, β and γ and thus destroy the averaging. An important example of this is miscentering torques (see Section VIll).

If the rotor spin axis is not precisely aligned with the roll axis, then $\alpha_{0} \neq 0, \beta_{0} \neq 0$ and we get terms which do not average to zero, since $\gamma \alpha_{0}$ and $\gamma \beta_{0}$ terms are present, and also 0 now varies as the spacecraft rolls. Thesc terms are very difficult to compute, but we see they are of order α_{0} or β_{0} times the primary torques. For example, for R 10 arc sec misalignment of the rotor spin axis, α_{0} and β_{0} are of order 5×10^{-5}, so the nonaveraged part of the torques are reduced by this factor relative to the static primary torques.

Thus, we conclude that roll averaging is extremely effective in reducing torques provided the spin axis can be kept aligned closely to the roll axis. This statement applies only to the primary torques and requires that the preloads remain nearly constant during one roll period.

We can thus see that the effect of rolling the spacecraft is to eliminate the first h_{i} term in equation (9): therefore, we have run our program with this term set equal to zero. The results are shown in Table 10. They indicate that the drift rates can be reduced to the milliarc sec/yr level for $f \sim 10^{-9} \mathrm{~g}$ for the rotors considered here. We also note that the higher harmonics are not very significant. This was also the case for the torques before averaging when the relatively large second harmonic due to centrifugal distortion dominated the torque expression. This term is of order $2 \mu \mathrm{in}$. for $\omega=200 \mathrm{cps}$ and was included in the previous calculations of Tables 5 through 8. We conclude that milliare sec/yr drifts are feasible for $f \sim 10^{-9} \mathrm{~g}$ after averaging due to roll is accounted for. Roll averaging of secondary torfues could be accounted for also by setting $h_{i}=0$ in equation (9) and performing the integrations described in Section VIII.
table X. DRIFT RATES AFTER AVERAGING

Average $\mathrm{f}\left(\mathrm{g}^{\prime} \mathrm{s}\right)$	Case I	Case II (milliarc sec/yr)	Case III
10^{-8}	11.0	34.0	86.0
10^{-9}	0.89	1.2	4.4
10^{-10}	0.089	0.12	0.44

Honeywell [1] has given a proof that if the rotor is spinning sufficiently fast, then one can assume that the rotor is axially symmetric with a shape given by

$$
\mathbf{r}(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} r(\theta, \phi) d \phi,
$$

where $r(\theta, \phi)$ is the actual ball shape in terms of θ and ϕ. This is valid provided

$$
\frac{d \tilde{\mathbf{r}}(\theta)}{d \theta} \gg \frac{1}{\pi d_{0}} \int_{0}^{2 \pi} \Lambda\left(v^{\prime},(,) \frac{\partial \Delta\left(\theta^{\prime}, \zeta\right) d \zeta}{\partial \theta^{\prime}},\right.
$$

where

$$
\Delta(\theta, \phi)=\boldsymbol{r}(\theta, \phi)-\tilde{\mathbf{r}}(\theta) .
$$

Reference 1 refers to this as a "locally smooth" condition. To obtain the appropriate input for the torque calculation, one must compute $\tilde{\mathbf{r}}(\theta)$. This requires a complete map of the ball in θ and ϕ, which is not currently available. For the purposes of this report, we have used $\mathbf{r}\left(0, \phi_{0}\right)$ for $0<0<\pi$ and some ϕ_{0} instead of $r(0)$. Undoubtedly some averaging occurs in the integral of $\dot{\mathbf{r}}(0)$ that will improve the effective smoothness of the ball, but it is difficult to estinate how much until a complete map of the ball is available. A numerical integration to determine $\dot{\mathbf{r}}(\theta)$ will then be required.

XII. CONCLUSION

The main conclusion of this roport is that Newtonian electrical torques permit drift rates of order several hundred milliarc sec/yr with preloads of $10^{-6} \mathrm{~g}$ and existing rotors. The preload setting is determined by safety considerations, and the roll rate, and correspondingly better drift rates are possible with lower preload settings. Roll averaging will reduce the primary torques to well below the 1 milliarc sec/yr level. The secondary torques are at the 1 milliarc sec/yr level for existing rotors, assuming a fractional uniformity of rotor electrode gap of $1 / 100$. The gravity gradient forces average out when combined with the spacecraft roll except for the component along the roll axds. This component, however, does not produce significant torque on the gyro aligned with the roll axds from which the relativity information is extracted. The effects due to spin averaging of the cotor asphericity may lower the drift rates calculated here, but this cnlculation awaits a complete map of the rotor. The overall conclusion is that, from the point of view of electrical torque calculations, an accurncy of 1 millinere sec/yr drift is a feasible goal for the gyro experiment.

REFERENCES

1. Matchett, G.A.: Honeywell Report 20831FR, Vol. II, NASA Contract NAS-12-542. November 1968.
2. Everitt, C.W.F.: Confarence on Experimental Tests of Gravitational Theories, November 1970, JPL TM33499.
3. Spencer, Tom: Ball Brothers Contract Report F7303.
4. Eby, P.: NA8A TMX-64964, November 1975.

APPENDIX

cso of coneimition: oiagnosites.

EMD of comp ilatiom a olagmastres.

-

MKONAL PACE CS FP MMR GI!AIJTY

APPROVAL

ELECTRICAL TORQUES ON THE ELECTROSTATIC GYRO IN THE GYRO RELATIVITY EXPERIMENT

By Peter Eby and Wesley Darbro

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Eugene U. Urban
EUGENE W. URBAN
Chief, Cryogenic Physics Branch

richelong page blank rect fiance

[^0]: $x_{c}=$ miscentering error in \times direction

