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SUMMARY

General parameter-plane equations are derived to generate stability bound-
aries for a class of systems characterized by a feedback loop that contains a
complementary filter and a model for either the low- or high-fregquency portion
of the plant. This combination allows those frequencies of the part of the
plant that is modeled to be fed back for control while suppressing other
frequencies.

For all specific examples considered, the stability regions obtained using
the complementary filter and frequency model were larger (and in some cases,
considerably larger) than those obtained using a low-pass filter in the feed-
back of the system output. Furthermore, higher gain control was possible.

INTRODUCTION

A filter can be thought of as a circuit, a differential equation, or a
transfer function which passes certain frequencies in an input while attenuat-
ing or rejecting others. The specific filter discussed in this paper is
referred to as a complementary filter. It consists of two subfilters - a
high-pass filter and a corresponding low-pass filter - the outputs of which
are summed.

A primary application of the complementary filter is as follows. Suppose
two different sensors are used to measure a state of a system. Moreover, let
the first instrument be good at measuring the high-frequency content of the
signal but not the low-frequency content. In other words, the first instrument
records the signal plus a low-frequency noise. The second instrument gives an
accurate indication of the signal at the low frequencies but degrades at the
higher frequencies (high-frequency noise). One approach is to pass the signal
from the first instrument through a high-pass filter and the signal from the
second instrument through a low-pass filter and then sum the results to get a
representation of the whole signal. The only constraint placed on this system
by the complementary Filter is that the transfer functions of the high-pass and
the low-pass filters must sum to unity. Under ideal conditions of no noise,

a signal which passes through a complementary filter will be reproduced exactly.
No distortion or phase shift will occur in the signal. However, with noise,
this will not be the case. With a noisy input, parameters in the complementary
filter are adjusted so that the total impurity from the low-frequency noise in
the first instrument and the high-frequency noise in the second instrument is
minimized.

The complementary filter is a simple concept, but at the same time, it is
a very powerful and useful concept. The complementary filter in earlier work
(refs. 1 and 2) is referred to as a "distortionless™ filter. According to the
editorial comment in reference 1, this type of filter enjoyed much success in
a variety of applications around 1956. It has applications in aircraft flight



measurements and inertial navigation (refs. 3, 4, and 5). A compensation-
filtering scheme was used in reference 3 to significantly increase the band-
width of an early Skylab control-moment-gyro system configuration by combin-
ing noisy position-sensor information and "clean" rate-command information.

For practical reasons, the rate command was used instead of the actual system
rate, In this sense, the compensation filter is a complementary filter. Brown
(ref, 4) discussed the relationship of the complementary filter to the Kalman
filter. Higgins (ref. 6) continued this comparison and showed that the comple-
mentary filter is a special case of a steady-state Kalman filter. Schmidt
(ref. 7) compared the complementary and Kalman filters for the STOLAND system.
It is important to note at this point that application of the complementary
filter does not require any knowledge of the more complex Kalman filter.

Accurate mathematical models of the high-frequency modes of a system are
not always available. Consequently, in a control design based on models of the
low-frequency modes, it may be undesirable to feed back the very high frequen-
cies, which were not taken into account in the control design. Also, in flexi-
ble booster control, it is important not to set up any resonance with the struc-
tural mode of the system. At the same time, however, it is desired to control
the rigid-body modes. A novel and ingenious use of the complementary filter
was made by Tutt and Waymeyer (ref. 8) in flexible booster control: "This
approach does not adapt to body bending, but instead is contrived to ignore
it . . ." by using the basic concept of the complementary filter and a rigid-
body model in the feedback loop. This same basic’ idea was recently applied in
the high~vibration environment of a helicopter to eliminate low-frequency rotor-
induced vibrations (refs. 9 and 10). This latter work used a high-frequency

plant model.

The objective of this paper is to apply the parameter-plane method (ref. 11)
to derive stability boundary equations for a particular class of systems
(defined by a general block diagram), which use the Tutt and Waymeyer (ref. 8)
feedback approach. The parameter-plane method is used to display the stability
region in the two-dimensional space of a parameter of the complementary filter
and a control gain. Specific examples are presented, and a standard low-pass
filter feedback is used for comparison.

SYMBOLS

A(I,J) matrix element in the Ith row and Jth column

A function of S8 defined in deriving explicit expressions for K
and T

AR,A7 real and imaginary parts of A, respectively

B function of S8 defined in deriving explicit expressions for K
and T

Br,B1 real and imaginary parts of B, respectively



Cr/Cy

DRr.D1
D(I)
D(S)

D(S)

F(S)
G(I)

H(S)

N(I)
N(S)

N(S)

|

Ty /T2

function of S defined in deriving explicit expressions for K
and T

real and imaginary parts of C, respectively

function of S defined in deriving explicit expressions for K
and T

real and imaginary parts of D, respectively
denominator of the Ith transfer function G(I)
denominator of system transfer function H(S)

characteristic equation, or denominator of H(S) relatively prime
to N(S)

Laplace transform of input signal to complementary filter
transfer function of the Ith system

system transfer function

high-frequency noise

-5

integers

system control gain constant

particular values of K

low-frequency noise

function defined in equation (37)

numerator of the Ith transfer function G(I)
numerator of system transfer function H(S)
numerator of H(S) relatively prime to D(S)
Laplace complex variable

absolute value of S

parameter in low-pass and high-pass filters

particular values of T



t time
U(s) Laplace transform of system input
X1, +Xg outputs of low-frequency and high-frequency plant models, respectively

(XH)LP Xy after passing through low-pass filter

X(S) Laplace transform of system output
Y (S) Laplace transform of output signal from complementary filter
o, B,y functions defined in equations (33), (34), and (35), respectively
A, b quantities which take on the values of either unity or negative unity
) real part of S
w imaginary part of S
ANALYSIS

The complementary filter is briefly discussed, then the system block diagram
for the present analysis is presented, followed by a formulation of the charac-
teristic equation of the system. Using this characteristic equation for the
block diagram, the parameter-plane method (ref. 11) is used to develop general
equations for generating stability boundaries in the plane defined by a filter
parameter and the system control gain. Stable regions are identified from these
stability boundaries.

Complementary Filter

Figure 1 shows the complementary filter operating on an uncorrupted signal
F(S) and having an output Y(S). Since H(S) and 1 - H(S) occur in parallel,
the resultant transfer function is given by their sum, which is unity - hence,
the name complementary filter. The point to be made from figure 1 is this:
If a signal F(S) passes through a high-pass filter with transfer function
H(S) and a low-pass filter with transfer function 1 - H(S), which are comple-
mentary, and if the signals from the two filters are summed, then the output
signal Y(S) will be the same as the input signal F(S). There is no distor-
tion or phase shift of the input.

Figure 2 shows a complementary filter with noisy inputs. Suppose £ is
a low-frequency noise and h is a high-frequency noise. The output is
described by

H(S) [F(S) + %) + [1 - H(S)][F(S) + h]

Y (S)

F(s) + {H(S)2 + [1 - H(S)]n} (1)



Notice in equation (1) that Y(S) = F(S) except for the residual error term
in the braces.

Figure 3 shows the specific form of the complementary filter of interest
in this paper. Equation (1) becomes

TS 1
Y(S) = F(S) + <—>SL + (——)h (2)
TS + 1 TS + 1

In signal processing, the problem is to choose T to minimize the residual
error. The following section uses the same filter components shown in figure 3
but with different inputs to accomplish a desired objective. The influence of
T on system stability is emphasized.

Frequency Feedback Model With Complementary Filter

Figure 4 shows the system block diagram examined in this paper. The system
has an input U(S) and an output X(S). The overall plant is composed of low-
Erequency and high-frequency plants preceded by a servo. The complementary
filter consists of the specific high-pass and low-pass filters shown in fig-
ure 3. The objective is to examine stability regions in the plane of the filter
parameter T and the system gain K.

The operation depicted in figure 4 is explained as follows: Let X; and
Xy be the outputs of the low-frequency plant and high-frequency plant, respec-
tively. If the low-~frequency plant model and servo model are exact models, then
the output of the low-frequency plant model will also be Xj. Notice that the
input to the high-pass filter component of the complementary filter is X;, while
X1, + Xy is the input to the low-pass filter component. Since X; passes
through both the high-pass filter and low~pass filter components of the comple-
mentary filter, it will be unchanged. Meanwhile, Xy passes through the low-
pass filter. Hence, as shown, the resultant feedback is Xp + (Xg)pr that is,
the output of the low-frequency plant plus the output from the high-frequency
plant which has been passed through a low-pass filter. The term (Xg)p 1is
the low-frequency part of the high-frequency plant. Adjusting T adjusts the
low-frequency part of Xpg that is fed back for control. This paper examines
the effect of K and T on system stability.

Characteristic Equation
The notation in figure 4 is convenient for deriving general expressions
involving the system transfer functions., The N(I)'s and D(I)'s are the

numerators and denominators, respectively, of the block transfer functions.

The system transfer function between X(S) and U(S) in figure 4 is
denoted by



X(s)

—— = H(S 3
o (s) (3)
with
N(S) N(S)
H(S) = ~—— = —— (4)
D(S) D(S)

where N(S) and D(S) signify polynomials in S which may have some common
factors that can be canceled. The numerator N(S) of the transfer function
and the denominator D(S) have no common factors and are mathematically said
to be relatively prime polynomials in 8.

The polynomial D(S) is referred to as the characteristic polynomial, and
D(S) = 0 is called the characteristic equation. Roots of D(S) are called
characteristic roots. It is well known that a linear, time-invariant system
is stable (X(t) * 0 as t *> ® if and only if all roots of the characteristic
equation have negative real parts.

The system transfer function H(S), expressed in terms of the individual
G(I) block transfer functions in figure 4, is easily shown to be

klc(1) + G(2)]e(6)
H(S) = (5)
1 + K[G(4) G(5) G(7) + G(1) G(3) G(6) + G(2) G(3) G(6)]

Replacing the G(I)'s in equation (5) with their equivalent ratios shown in fig-
ure 4 allows equation (5) to be written as equation (4) with

E(S) = K[N(1) D(2) + D(1) N(2)IN(6) D(i) D(2) D(3) D(4) D(5) D(6) D(7) (6)

D(s) = D(1) D(2) D(6){D(1) D(2) D(3) D(4) D(5) D(6) D(7)
+ K[D(1) D(2) D(3) N(4) N(5) D(6) N(7)
+ N(1) D(2) N(3) D(4) D(5) N(6) D(7)

+ D(1) N(2) N(3) D(4) D(5) N(6) D(7)]} (7)

Notice in figure 4 that



N(4)

]

D(4)

]

N(3)

D(3)

For perfect modeling, G(5) = G(1), and G(7) = G(6); therefore,

N(5)

D(5)

N(7)

D(7)

For convenience,

N(S)
where

N(S) =

Equations (9), (13), and (15) allow equation (7) to be factored as

D(S)

"

where

D(S)

D(3)

™S + 1

N(1)

D(1)

N(6)

D(6)

equation (6) is expressed as

D(1) D(2) D(4) D(5) D(6) D(7) N(S)

K[N(1) D(2) + D(1) N(2)ID(3) N(6)

D(1) D(2) D(4) D(5) D(6) D(7) D(S)

D(1) D(2) D(3) D(6) + K[D(2) N(4) N(5) N(7)

+ N(1) D(2) N(3) N(6) + D(1) N(2) N(3) N(6)]

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

a7)

(18)

(19)



The ratio of N(S) to D(S) is the system transfer function. Recall that
D(S) = 0 1is the characteristic equation. By equations (8), (10), (11), (12),
and (14), the characteristic equation can be expressed as
D(1) D(2) (TS + 1) D(6) + K[D(Z) (TS) N(1) N(6) + N(1) D(2) N(6)
+ D(1) N(2) N(6)] =0 (20)

A more convenient and compact form of the characteristic equation for appli-
cation of the parameter-plane method is

TA + KTB + KD + C = 0 (21)
where

A =s[(p(1) D(2) D(6)] (22)

B = S[D(2) N(1) N(6)] (23)

C =D(1) D(2) D(6) (24)

D = N(1) D(2) N(6) + D(1) N(2) N(6) (25)

The values of S which satisfy equation (20) or equation (21) are the char-
acteristic roots. Clearly, these roots will vary as K and T take on differ-
ent values. The parameter—-plane method is used to examine how the stability con-
dition (stable or unstable) changes with different combinations of K and T.

Stability Boundaries

In this section, equations are derived to generate stability boundaries
in the plane of K and T for the system shown in figure 4. For comparative
purposes, similar equations are developed for a low-pass filter feedback system,
This latter system is the same as the system in figure 4, except that the path
through the servo model, frequency model, and high-pass filter is removed.

Complementary filter system.— The numerators and denominators of the block
transfer functions in figure 4 are functions of S. Consequently, A, B, C,
and D in equations (22) to (25) are functions of S. Let S = iw and write
A, B, C, and D as complex numbers:




A = Ag + iAI (26)

B = Bp + iBg (27)
C =Cg + iCy (28)
D = DR + iDg (29)

Substituting equations (26) to (29) into equation (21) and setting the
resulting real and imaginary parts equal to zero yields the two simultaneous
equations for K and T:

1
o

TAR + K(TBR + DR) + CR = (30)

|
(=4

TAp + K(TBp + D1) + Cp = (31)

Subtract equation (31) multiplied by (TBy + Dg) from equation (30) multiplied
by (TBy + Dy) to get the quadratic equation in T:

ar2 + BT + Yy = 0 (32)
where

o = ByAg - BgAp (33)

B = DfAR + BiCr - DrAr - BRrCr (34)

Y = DiCr - DRCy (35)

The roots of equation (32) are

-8 + VM

P = ————— (36)
20

where



M= B2 - gay (37)

The two roots in equation (36) are denoted as T; for the positive radical and
as Ty for the negative radical. The gain K, obtained by adding equations (30)

and (31), is

T(AR + Ay) + CRr + Cgp
K = - (38)
T(BgR + Br) + Dr + D1

In equation (38), K =K; when T =Ty, and K = Ky when T = Tj.

At this point, it may be worthwhile to state explicitly the meaning of equa-
tions (36) and (38). For particular constant values of K and T, the charac-
teristic equation will have a set of corresponding roots. As K and T are
varied, these roots will move, generating root-locus curves. Suppose it is
desired to find values for K and T which result in a root-locus curve inter-
secting the imaginary axis at some specified point § = iw*, where w* is a
particular value of w. This is accomplished by setting S = iw* in the char-
acteristic equation, equating the real and imaginary parts to zero, and solving
the two resulting simultaneous equations for K and T.

Equations (36) and (38) produce those combination values of K and T
which will result in a root-locus curve intersecting the imaginary axis at
8 = iw. For a given value of w, the value of T is calculated from equa-
tion (36), which is an implicit function of w. Then, K 1is calculated from
equation (38) using this value of T and the same value of w. By letting
w vary, a plot of K versus T can be generated. The resulting curves are
stability boundaries that correspond to the imaginary axis in the S-plane.
Hence, in the same manner that the imaginary axis divides the S-plane into a
stable region {(left half-plane) and an unstable region (right half-plane), the
stability boundaries partition the plane of K and T into stable and unstable

regions,

Since only real values of T are of practical interest, calculations are
only continued for M 2 0 in equation (37). Also, since the characteristic
roots occur in complex-conjugate pairs, it is sufficient to plot T versus K
as W increases from zero. Using negative values of w would only duplicate
the results obtained for positive values of W,

Low-pass filter system.- The low-pass filter system is the same as the sys-
tem shown in figure 4, except that the path passing through the servo model,
frequency model, and high-pass filter is omitted., It can be shown that the
associated characteristic equation is

D(S) = D(1) D(2) D(3) D(6) + K[N(1) D(2) N(3) N(6)
+ D(1) N(2) N(3) N(6)] =0 (39)

10



Equations (10) and (11) permit equation (39) to be written as
D(1) D(2) (TS + 1) D(6) + K[N(1) D(2) N(6) + D(1) N(2) N(6)] =0 (40)

or, in the more convenient form,

A(TS + 1) + KB =0 (41)
where

A =D(1) D(2) D(6) (42)

B = [N(1) D(2) + N(2) D(1)]N(6) (43)

Setting S = iw and using the complex representations for A and B
(egs. (26) and (27)) modifies equation (41) to

Setting the real and imaginary parts in equation (44) equal to zero results in
the two simultaneous equations:

~ArTw + AR + KBg = 0 (45)

ARTw + Ay + KBy = 0 (46)

The simultaneous solutions of equations (45) and (46) are

ARBy - BRrAT
w(AIBI + BRAR)

- (ARZ + AIZ)
ARBR + AIBI

In equations (47) and (48), T and K are single-valued functions of W,

11



Zero characteristic roots.- It is only natural that in solving for T to
obtain equations (36) and (47), division by zero is encountered. This follows
because T always appears with § in the transfer functions for the low-pass
and high-pass filters in figure 4. With S = iw, one can think about solving
for Wwr' and then dividing by w to get an equation for T. The w 1is shown
explicitly in the denominator of equation (47) for emphasis. Hence, in generat-
ing the stability boundaries, special attention must be given to the question:
What combination values of T and K result in the characteristic equation
having zero roots (S = 0)? The computer program which formed the system charac-
teristic equation from the component transfer functions and then solved for its
roots used the following convenient notation.

Let
N(1) = A(1,1) + A(1,2)S + A(1,3)82 + . . . (49)

D(1) = A(2,1) + A(2,2)S + A(2,3)S2 + . . . (50)

and so forth. Then, form the matrix where the first row contains the coeffi-
cients of the polynomial N(1), the second row the coefficients of the poly-
nomial D(1), etc. Symbolically,

N(1) r;(1,1) A(1,2) A(1,3) ..
D(1) |A(2,1) A(2,2) A(2,3) ...
N(2) |A(3,1) .« . .

D(2) |A(4,1) . e

N(3) |A(5,1) . ..

D(3) |A(6,1) ...

N(4) |A(7,1) . . .

D(4) |A(8,1) .« ..

N(5) [A(9,1) .« . .

D(5) {A(10,1) . ..

N(6) [A(11,1) ...

D(6) |A(12,1) RN

N(7) [A(13,1) ...

D(7) |A(14,1) « .. J (51)

12



The constant term for N(1) is A{Q1,1); for D(1), is A(2,1), etc. Using
this notation and setting S = 0 in equation (20) gives

—A(2 ]) A(4 1) A(12 1) 52
A(l r1) A(4 1) A(]] 1) + A(2,1) A(3,1) A(11,1) (52)

For later applications, N(6) =1 or A(11,1) =1, so that equation (52)
reduces to

-A(2,1) A(4,1) A(2,1)
T A(1,1) A(4,1) + A(2,1) A(3,1)

(53)

When K has the value computed using equation (53), the characteristic
equation has a root on the imaginary axis at the origin, regardless of the value
of T. This constant value of K, for arbitrary value of T, is plotted also
in the parameter plane as a stability boundary. 1In the K,T plot, this special
boundary appears as a vertical line which intersects the K-axis at the value
assigned by equation (53).

Infinite characteristic roots.- To obtain the stability boundaries associ-
ated with infinite characteristic roots, the combination values of T and K
which satisfy the characteristic equation when |S| = Iiwl * ® are computed.
This is accomplished by dividing the characteristic equation by its maximum
power in S. Afterwards, the only term not having some power of S in the
denominator is the original coefficient of the maximum power of S. Hence, as
’Sl + o, this coefficient approaches zero in order to satisfy the remaining
characteristic equation.

For all subsequent applications, the maximum power of S in the charac-
teristic equation will occur in the D(1) D(2) (TS) D(6) term in equations (20)
and (40). After dividing by the maximum power of S and afterwards letting
|S| + o, there remains a constant term times T equated to zero. After divid-
ing by this constant term, T = 0. The result is that T =0 and K arbitrary
is a stability boundary, that is, the K-axis.

Stability Regions

As the coordinating parameter ® > 0 increases in the set of equations
developed for K and T, a plot of T versus K can be drawn as, for example,
in figure 5. This partitions the T,K plane into different regions which are
either stable or unstable. The stability condition of a given region is then
evaluated by choosing a point inside the region and computing the characteris-
tic roots for this point. The number of roots with positive real parts
(unstable roots) in each region is circled in figure 5. A circled zero indi-

13



cates a stable region. The number of unstable roots gained or lost in moving
from one region to another is evident. In subsequent applications, only the
stable regions are emphasized.

Calculation Procedure

Figure 6 illustrates the general procedure used to construct the stability
regions for the complementary-filter system. First, a set of transfer functions
for the blocks in figure 4 is input to a computer program. Next, the quantities
w, M, Ty, Ky, T, and K, are obtained from a computer printout generated
by incrementing w. From this printout, values of ®w for which M2 0 are
selected for further consideration. The program has options for plotting
Ty versus Ky or Tj versus Kj. To generate the stability boundaries
(T versus K curves), W 1is incremented in the range where M 2 0, and values
of T (eq. (36)) are plotted against corresponding values of K (eq. (38)).
These boundaries can be overlooked if this incrementation interval for w is
too large. Efficient generation of the stability boundaries requires close
monitoring of the computer printout and plotter by the investigator.

The same procedure is followed for the low-pass filter system. The program
has an option for selecting either the complementary or low-pass filter system.
For the low-pass filter, equations (47) and (48) are pertinent.

Degree of Stability

In this paper, the substitution S = iw 1is used to generate stability
boundaries. For values of K and T falling within the stable regions, con-
fined by these boundaries, there are no characteristic roots located on or to
the right of the imaginary axis in the S-plane. 1In a similar manner, stability
regions could be generated such that for combination values of K and T fall-
ing within these regions, there are no roots any closer to the imaginary axis
than some specified number O, This is accomplished by setting S =0 + iw and
following the same procedure described in this paper. For further reading on
relative stability, refer to references 11 and 12,

High~Frequency Plant Model

A low-frequency plant model is indicated in figure 4 because the objective
was ultimately, through use of the complementary filter, to filter out the high
frequencies from the feedback signal.

In reference 9, it was desired to filter out the low frequencies; hence,
a high-frequency plant model was used. To use the equations of this paper for
a high-frequency plant model, simply call G(1) the high-frequency plant,
G(2) the low-frequency plant, and G(5) the high-frequency plant model, and
interchange G(3) and G(4).

14



Approximation Models

All numerical results presented in this paper are based on perfect models
of the servo and low-frequency plant of the real system. To examine the effects
of modeling errors, equations (12) to (15) should not be used. This translates
into the fact that equation (21) still holds, except that

A =s[p(1) D(2) D(5) D(6) D(7)] (54)
B = S[D(1) D(2) N(5) D(6) N(7)] (55)
C = D(1) D(2) D(5) D(6) D(7) (56)
D = N(1) D(2) D(5) N(6) D(7) + D(1) N(2) D(5) N(6) D(7) (57)

Equations (54) to (57) allow variations in the models G(7) and G(5) from
those of G(6) and G(1), respectively. Everything else remains the same.
There are no changes in the equations corresponding to the low-pass filter
system.

The flight investigation of reference 9, which used a high-frequency plant
model, reported that the " . . . overall system performance was insensitive to
mismatch between the dynamics of the plant and the plant model used in the com-
plementary filter computation."”

APPLICATIONS
The overall plant is composed of two subplants, a high~frequency plant and

a low-frequency plant. Arbitrary plant transfer functions are assigned for numer-
ical computation. For the high-frequency plant,

N(2) 0.352 + 0.45S + 0.9

- = — (58)
b(2) S2 + 0.065 + 9
and, for the low-frequency plant:
N(Q1) 28 + 1
= (59)

D(1) g2 4+1.408 +u

where A and i are either 1 or - 1.

15




Four special cases are enumerated based on the denominator term in the low-
frequency plant:

Case 1: 82 + 1.48 + 1 (stable plant: A =1, p=1)
Zase 2: S2 - 1.48 + 1 (unstable plant: A =-1, u=1)
casa 3: S2 + 1.48 - 1 (unstable plant: A =1, u=-1)
Case 4: S2 - 1.4S ~ 1 (unstable plant: A = -1, u= -1)

Stability regions resulting from feedback implementing a low-pass filter
are compared graphically with those from feedback incorporating the complemen-
tary filter in figure 4. Plots are presented for two conditions: (1) without
servo (figs. 7 to 10) and (2) with servo (figs. 11 to 14).

Without Servo

Case 1.- Figure 7 shows the block diagram and stable regions resulting from
use of the low~pass filter and the complementary filter. Comparing figures 7(b)
and 7(c) shows the improvement brought about by using the complementary filter.
Especially note that larger K values are permitted. In effect, larger K
values mean tighter control because K enhances the system error so that it
can be further reduced.

The stability boundaries in figure 7(b) and 7(c) intersect the K-axis at
the same points. This will always be the case, because for T = 0 in figure 4,
the complementary filter reduced to the low-pass filter.

Case 2.- The low-frequency plant has negative damping and is unstable.
The block diagram and stability regions are shown in figures 8. Note the negli~-
gible stable region for the low-pass filter in figure 8(b) and the vast improve-
ment in figure 8(c) for the complementary filter.

Case 3.- The results in figure 9 show a larger stable region for the com-
plementary filter.

Case 4.- Figure 10 displays a tremendous improvement in the size of the
stability boundary when the complementary filter is used over that when the low-
pass filter is used.

With Servo

The block diagrams in figures 11, 12, 13, and 14 are the same as those in
figures 7, 8, 9, and 10, respectively, except for the servo and servo model.
The same basic conclusions persist, namely, (1) the system with the complemen-
tary filter has a larger stable region in the K,T plane than the system with
only a low-pass filter and (2) for a given value of T, a stable system can be
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maintained while using larger error gains K for tighter control. Inciden-
tally, figqure 11 (b) corresponds to the stable region shown in figure 5 for
T 2 0.

CONCLUDING REMARKS

A complementary filter is commonly used in signal processing to estimate
a state or signal when more than one measurement of the state is available. 1In
previous work, the complementary filter has been used in conjunction with a
model of the rigid-body modes for flexible booster control. This approach
allows the structural modes to be filtered from the feedback signal, while the
low-frequency rigid-body modes are not.

In this paper, general parameter-plane equations are derived to generate
stability boundaries for a class of systems characterized by a feedback loop
that contains a complementary filter and a model for either the low- or high-
frequency portion of the plant. This combination allows those frequencies of
the part of the plant that is modeled to be fed back for control while suppress-
ing other frequencies. The plant and model rational transfer functions can be
specified arbitrarily.

Numerical examples are presented which compare the stability regions
obtained using the complementary-filter-model system with those regions incurred
in using just a standard low-pass filter feedback. For the selected examples,
it is shown that the complementary-filter-model system produces a larger stabil-
ity region and allows larger error gains (tighter control or regulation) to be
used.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 9, 1980
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Figure 1.- Complementary filter with noise-free input signal.
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Figure 2.- Complementary filter with noisy inputs.
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Specify system transfer functions (figure 4)

| -

Obt'ariuh vaiiAiJes for: w M, T Ki, T2 K2
(Eqs. (36), (37), (38))

N

Plot stability boundaries (T versus K)
(Eqs. (36), (38))

J

[dentify stable regions by computing characteristic roots
(Eq. (20))

Figure 6.- Calculation procedure.
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Figure 7.- Block diagram and stable regions for case 1 without servo.
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(c) Stable region with complementary filter.

Figure 7.- Concluded.
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Figure 8.~ Block diagram and stable regions for case 2 without servo.
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