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INITIAT IONIPROPAGAT ION DURING ROLLING CONTACT

by Norimune Soda* and Takashi Yamamoto**

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Rolling-fatigue tests of 0.45 percent carbon steel rollers were carried

out using a four-roller type rolling contact fatigue tester. Tangential

traction and surface roughness of the harder mating rollers were varied and

their effect was studied. The results of the study indicate that the

fatigue life decreases whin traction is applied in the same direction as

that of rolling. When the direction of traction is reversed, the life in-

:reases over that obtained with zero traction. The roughness of harder mat-
es

ing roller also has a marked influence on life. The smoother the mating

roller, the longer the life. Microscopic observation of specimens revealed

that the initiation of cracks during the early stages of life is more

strongly influenced by the surface roughness, while the propagation of these

cracks in the latter stages is affected mainly by the tangential traction.

INTRODUCTION

Rolling contact fatigue which occurs in rolling element bearings, gears

and a number of other important mechanisms has long been a limiting parame-

ter for the designer working with elements having concentrated contacts.

The generally used criterion for defining the onset of the rolling contact

•	 fatigue is the normal contact stress.
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The rolling contact fatigue life, however, varies markedly with the

presence of sliding and the roughness of the contact surfaces even when the

applied normal load is kept constant.

In order to establish a more reliable criterion as well as to better

comprehend the mechanism of rolling contact fatigue, an adequate explanation

must be developed as to why the element experiencing sliding (this occurs on

the slower of two elements in contact) should pit more readily and further

why the life is influenced by the surface roughness.

It has been definitely demonstrated that the dependency of life on the

slip/roll ratio is attributable to that of tangential traction. This is

ac:omplished by analyses of the relationship of life, slip/roll ratio and

tangential traction working at the contact surface when using a four-roller

type rolling contact machine (1,2). In the present study the same machine

was used. The effect of (only a single factor, that is, roughness or tangen-

tial traction was extracted and studied independently.

With ordinary fatigue of metals the mechanism is frequently discussed

from the metallurgical point of view, This view holds that fatigue consists

of two processes, 1) fatigue crack initiation or formation and 2) propaga-

tion or crack growth (3). It has not yet been satisfactorily established

whether both the mechanisms of ordinary fatigue and that of rolling contact

fatigue are substantially the same or different. There have been an in-

creasing number of publications in which attempts have been made to approach

the rolling contact fatigue by differentiating between the two processes (4

to 9). In order to understand the mechanism of rolling contact fatigue, it

is worthwhile to analyse all the experimental results of rolling contact

fatigue from the aforementioned view point even if the approach is phenome-

nological and tentative;
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In this paper, the effects of tangential traction and surfac(l Vnighne!)%

on rolling contact fatigue life are determined and certain aspects of roll-

ing contact fatigue cracks are analysed. The mechanism of rolling contact

fatigue is discussed from the view point that the fatigue process consists

•	 of crack initiation and propagation.

APPARATUS

A four-roller type rolling contact machine was used in these studies.

For most conventional test rigs, predetermined "apparent" slide/roll ratios

are usually given between the rollers by controlling the rotational speeds

with motors and dynamometers. The greater the surface roughness the more is

the tangential traction even between the surfaces under the condition of

constant slip/roll ratio. The tangential traction generally varies with the

lapth of time. This is due to the decrease in the diameter caused by plas-

tic deformation or wear of the contacting surfaces. The slip/roll ratio is

determined by the nominal rotational speeds of the components (10). The

machine used in this study is free from such limitations.

A "center roller" is supported by the three "outer rollers" located

every 120 degrees around the former, Fig. 1. The shaft of the two bottom

outer rollers are supported by the bearings which are fixed to the frame.

The top outer roller is mounted on the shaft which is supported by verti-

cally movable bearings. A static load up to 450 kg can be applied to the

shaft by weights. This allows the identical normal load to be placed on the

three contacts.

The rotational speeds of both the center and the outer rollers were

positively controlled by separate driving systems to attain a pure rolling

condition or any desired slip/roll ratio. The center roller is connected

directly to a torque transducer, and then to a d.c. electric motor/dyna-
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mometer. The three outer rollers are driven through a gearing at identical

speeds by another motor/dynamometer. The torque transducer allows are accu-

rate measurement of the tangential traction working on the contact points.

An acceleration detector is attached to the loading mechanism for

determining the rolling contact fatigue life. For lubrication, a drip feed

system is used which feeds lubricating oil onto the top outer roller at a

rate of about 10 cc per minute.

SPECIMENS

Life of and fatigue cracks in the center roller are determined.

Rollers made of 0.45 percent C plain carbon steel are used as the "center

roller." The rollers were machined from rods which were hardened and an-

nealed to 200 diamond pyramid hardness, the dimension of which is 40 mm in

diameter and 10 mm in width. Fig. 2. Surfaces were finish ground circum-

f erencially, being 1 um in their peak-to-valley roughness. The composition

and properties of the material are listed in Table 1,

In most experiments mating outer rollers are made of JIS SUJ2 (equiva-

lent to AISI 52100 steel), the dimension of which are 40 nm in diameter and

9 mm in width. The rollers were hardened to 100-800 diamond pyramid hard-

ness. Surfaces were finished circumferencially by emery papers to 0.1, 0.5

and 1.0 um in peak-to-valley roughness.

In some experiments, combinations of the center roller, 9 mm in width

and the outer rollers, 10 mm in width were adapted. However, the contact

width is the same, 9 mm for all experiments.

PROCEDURE

The test rollers were mounted on the apparatus after being cleaned by

washing with naphtha and trichloroethylene. The speed of the center roller

was kept constant at 1500 rpm throughout the experiment, while those of the
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outer rollers were controlled to give any desired tangential traction. the

normal load applied was 303 kg. The maximum Hertzian pressure at this lode!

is 112 kg/mm? . Straight mineral oil was used as lubricant. Lubricant

viscosity is listed in Table 2.

Life of rolling contact fatigue elements is determined as follows.

Once pitting has appeared on the roller surface, the process accelerates.

The acceleration detecting system brings the apparatus to a halt and the

fatigue life is then determined. An acceleration level of 2G has beefi

arbitrarily chosen at which the detecting mechanism operates. This does not

cause a serious error because the pitting accelerates to a high value quick-

ly. All tests were carried out in the laboratory atmosphere. The approxi-

mate temperature was 20 * C, and the approximate relative humidity was 70

percent. Tangential traction is determined as T/R, where R is the radius

of rollers and T is the torque transmitted at the contact point.

All the cracks observed in this study were of a surface origin. The

size of a propagated crack was determined by the length measured in the

axial direction of the crack opened to the contact surface and the distance

of the crack tip from the surface.

For the observation of fatigue cracks at the contact surface, the cen-

ter roller was taken out after every 3-5x1O4 cycles of contact and washed,

then photomicrographed. The roller was again mounted on the apparatus and

th; same procedure was repeated throughout its life. Photomicrographs of

the plane sectioned perpendicular to the axis of the roller were taken for

the observation of the propagated cracks.

The distance of a crack tip fru}the surface was estimated by measuring

the maximum thickness of the surface layer beyond which the tip of the
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largest crack does not reach. The surface layer was removed continuously by

lapping until the largest crack disappeared.

in this paper, the sliding was represented by the torque or tangential

traction transmitted between the center roller and the outer roller. "Posi-

tive" implies that the tangential traction is coincident with the direction

of rolling, which is also defined as "follower." "Negative" implies the

inverse, which is defined as "driver." Hithento the terminology of so-
	 . A

called "negative sliding" has been .sed frequently. This is defined as that

which occurs on the slower of two elements in contact. In Fig. 3 the com-

parison of the terminologies is indicated between conventional terminology

and that used herein.

RESULTS

It is well known that the rolling contact fatigue life decreases

markedly with an increase of so-called "negative sliding." What then, is

the life under the condition of "positive sliding," which is defined in

terms of the faster of the two elements in contact? The results are shown

in Table 3. In these experiments, both center and outer rollers are made of

0.45 percent C plain carbon steel. The driver survives the followers of

from 30-80 times longer and does not fracture on the surface at all.

The relationship between life and the tangential traction which was

chosen over a particular range of both "negative sliding" and "positive

sliding" is shown in Fig. 4, together with a parameter for the roughness of

harder mating outer rollers. The life varies markedly accordinq to the

direction and the magnitude of the torque, or tangential traction. The life

increases uniformly with the tangential traction approaching the "positive

sliding" region, which is the situation where one has negative tangential
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traction. Figure 4 also shows definitely that the surface roughness of

harder mating roller influences remarkedly rolling contact fatigue life.

In Fig. 5 the relationship between the life and the roughness is

plotted on the log-log axes. It should be noteu that a 10 times reduction

•	 in the surface roughness gives an increased life in terms of cycles to pitt-

ing of 10 times.

The representative aspects of micro-cracks formed at the contact sur-

faces are shown in Fig. 6. The roughness of harder mating roller is 1.0,

0.5 and 0.1 Um in peak-to-valley roughness, respectively. The figures at

the right side are high magnification photographs of the area marked by the

solid line on the surfaces after 9.0x103 cycles of contact. Micro-cracks

appear in the early stages with an increase of roughness of the harder mat-

ing roller, which corresponds closely to the behavior of the roughness de-

pendent rolling contact fatigue life shown in Figs. 4 and 5. However, there

is no difference in the phenomenon of crack formation among the drivers, the

pure rolling rollers and the followers. Symbol D. R. represents the direc-

tion of rolling and D. T. the direction of tangential traction working at

the contact surface. Figure 7 shows an example of a series of a propagating

crack taken at frequent intervals during life to pitting failure. From the

results a fan-shaped crack is clearly visible at the surface in less than

one-half of the life to pitting. In this particular case the estimated life

is 6.5x10y cycles of contact. Similar observations were made for other

conditions of tangential traction.

The relationship between the axial length and circumferential width of

, the propagated crack that opened on the contact surface and the cycles of

contact are presented in Fig. 8. With the followers, the crack propagation

rate, which is defined as a ratio of the increment of the axial length of

7
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the crack to the cycles of contact necessary for the crack growth, is larger

than that of the drivers. At the contact surface, usually several cracks

were found having different crack propagation rates. Under certain condi-

tions of negative tangential traction, i.e., in the case of the driver,

there was a situation observed in which the size of the crack shrinks, gett-

ing smaller and smaller. Figure 8 are examples presented for reference pur-

poses. In this study attention was paid to the greatest rate of crack prop-

agation in the roller. Figure 8 also shows positive evidence that a posi-

tive tangential traction tends to increase the crack propagation rate over

that of the case of no tangential-traction. The opposite is also true if

the direction of traction is reversed.

Turning now to the question how deep does the crack tip reach beneath

the surface, Fig. 9 shows the initial micro-cracks both at the surface and

in the subsurface layer for the specimen shown in Fig. 6. These micro-

cracks disappear after a layer of 4 um in depth is removed from the surface.

A typical propagated fan-shaped micro-crack is shown in Fig. 10. The

left-hand micrograph indicates the entire crack before sectioning. The

right-hand photo shows the shape of the crack after sectioning the roller

near the center of the crack perpendicular to the axis. The fan-shaped

micro-crack is visible; the tip does not reach the layers where the maximum

shear stress or the maximum alternating shear stress occurs. The maximum

shear stress occurs at a depth of 150 um, and the maximum alternating shear

stress at a depth of 70 um.

Figure 11 presents examples of small cracks that appeared on the sur-

face of the follower and the driver in the early stages of failure. Both

cracks are similar in shape except near the tip. The size of the crack for

8
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the driver is larger than that for the follower. This is so because the

crack of the driver is found at a more progressed stage. Figure 11 also

presents no distinct relation between the profile of crack and the plastic

flow pattern of the material in the axial plane.
t

All cracks observed in this study are recognized as surface originated

ones which propagate into the substrate. A representative relation between

the distance of the crack tip from the surface and the cycles of contact is

shown in Fig. 12. The roughness of harder mating roller is 0.5 um in peak-

to-valley roughness and the tangential torque is 5 kg-cm and -5 kg-cm,

respectively. There 	 observed two phenomena, i.e., a low propagation

rate phenomenon and a high propagation rate one. For the case of the low

propagation rate, the rate is independent of the tangential traction, which

appears to be related to the micro-cracks which form during the crack ini-

tiation process of rolling contact fatigue. In the case of high propagation

rate, however, it is dependent on the tangential traction which corresponds

well with the results of Fig. 8.

From the aforementioned results, it may be concluded that both the

effect of roughness and the tangential traction on rolling contact fatigue

can be understood if fatigue is considered to consist of two processes, that

is, crack initiation and propagation. The former is related to the rough-

ness, and the latter is distinctly related to the tangential traction.

DISCUSSION

The mechanism of rolling contact fatigue has been explained in terms of

several sources of stress concentration within the macroscopic contact

stress field. In the subsurface region, hard nonmetallic oxide inclusions,

structural changes, etc. have been regarded as predominant stress raisers,

and sites at which fatigue cracks originate (11 to 13). On the other hand,

4_
	

9



it has been pointed out that with high purity steels there is a shift with

the predominant fatigue damage originating at the surface. Witis rolling

contact components made of softer material, such as gears and cams, the

fatigue is therefore essentially surface-initiated. la4ing into considera-

tion a wide variety of the aspects of rolling contact fatigue, the mechanism

has been discussed with the aid of several competitive modes of damage.

The microscopic examination of failed 0.46 percent carbon steel rollers

has not revealed any relationship between fatigue cracks and subsurface in-

clusions, Micro-cracks always appear first at the surface and propagate

into the substrate of the roller. The mechanism of surface originated types

of rolling contact fatigue can be explained in terms of surface flaws that

may serve as the prime source for local stress intensification leading to

surface cracking. In this study surface asperities of the harder mating

roller act as stress raisers fc' testing rollers.

Figure 13 presents some examples of strain hardening occurring on the

surface and in the subsurface after a certain number of cycles of contact.

Two distinct hardening regions can be observed. The first has its maximum

at the surface and shows a sharp decrease in hardness with the distance from

the surface. The second is broader and similar to that of the static maxi-

mum shear stress given by the Hertz theory for smooth surfaces. Effects of

the roughness of harder mating roller is more evident in the first region

than in the second, Fig. 13(b). On the other hand, the effect of the tan-

gential traction is not noticeable in the distribution of strain hardening,

Fig. 13(c). Stress concentration caused by asperities at the surface is

recognized quantitatively in the surface layer in photoelastic fringe pat-

tern of Fig. 14.
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Strain hardening can be taken as a measure of the deterioration, since

more damage must have been accumulated in a strain hardened material. It,

therefore, has a higher possibility of ini. sting microscopic cracks as

shown in Fig. 6. Reo'-,ies of severe strain hardening appear adjacent to and

•	 at some distance from the surface in the material after rolling contact.

This may be exp l ained by a simplified stress analysis. Except for the case

of perfect END lubrication, most load is supported by a number of real con-

tact points, and Hertzian contact pressure is nothing but the local average

of the loads working on these minute contact points. Thus, the load shared

by a number of real contacts develops localized stress fields in a thin

layer adjacent to the surface, and the averaged Hertzian pressure develops a

broader stress field in the material beneath it. The stress patterns in

these two regimes result in a pattern of strain hardening as described

earlier.

The comparison between strain hardening and subsurface plastic flow for

the results of Table 3 is shown in Fig. 15. Hardness of the driver is

larger owing to receiving larger number of repetitive contacts than the

follower.

As mentioned in the description of the results (Table 3) pitting or

flaking does not occur at all at the surface of the driver. The phenomenon

may be explained from the pattern of the subsurface plastic flow and the

effects of the tangential traction. Micro-cracks initiated at the surface

by repetitive contact can propagate into the substrate, if some requirement

is not satisfied concerning the tangential traction. With rolling contact

fatigue, the crack has a tendency to propagate into the thin surface layer

in the direction of rolling at an angle of about 20-30 degrees to the sur-

f,?ce, putting its tip toward the direction of movement of normal load,

11
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i.e., the inverse direction of rolling. This phenomenon has not yet beell

explained satisfactorily. The direction of crack nropagation is tout m , v ed-

ly influenced by the direction of tangential traction in the thin surface

layer. As shown in the etched photographs, Fig. 15, the direction of plas-

tic flow does not appear to correspond to the direction of the focus of

crack propagation. This disagreement in direction may act as one of retar-

dations for crack propagation into the substrate for the case of the

driver. One possible reason for the higher fatigue life for the driver may

be related to this observation.

CONCLUSION

An experiment is described on rolling contact fatigue for 0.45 percent

carbon steel rollers during lubricated rolling contact with varying tangen-

tial traction and surface roughness of the mating rollers.

The fatigue life decreases when a tangential traction is applied in the

same direction as that of rolling. When the direction of traction is re-

versed, the life increases over that obtained under zero traction. The

roughness of harder mating roller has a marked influence on the life. The

smoother the mating roller, the longer the life. Micrographs of the surface

of the rollers and sectioned specimens reveal that microscopic cracks lead-

ing to rolling contact fatigue initiate at the surface or in a thin sub-

surface layer. The initiation of cracks during the early stages of life is

more strongly influenced by the surface roughness, and the propagation of

these cracks in the latter stages is affected mainly by the tangential trac-

tion. The direction of the locus of crack propagation does not appear to

correspond to the direction of subsurface plastic flow. This disagreement

in direction may act as one of retarding forces for crack propagation into

the substrate of the driver.
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PLAIN CARBON STEEL

Analysis, percent Strength

C Si Mn P S Cu Ni Cr Yield
kg/mm

Tensil,
kg/mm

0.45 0.25 0.76 0.013 0.023 0.03 0.01 0.040 59

TABLE 2. - VISCOSITY OF LUBRICANT

Temperature, O F Viscosity, cst

100 9.8
200 2.3

TABLE 3. - COMPARISON OF LIFE OF THE

FOLLOWER WITH THE DRIVER

Follower life Driver life

2.1x106 3.1 1.7 a4.8x107
2.3 .8 1.2 (not fatigued)
2.3 1.4 1.3
2.0 1.9 .9
2.1 .8 1.3
3.1 1.8 .8
1.6 2.1 .8
1.5 1.6 .8
2.3 2.5 .6

aSlip/roll ratio, 0.7 percent; torque,
16 kg-cm (µ - 0.0026).'
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elastic fringe pattern (isochromatics).
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