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Summary 
This  report presents a method for estimating the 

crack-extension resistance curve (R-curve) from 
residual-strength (maximum load against initial crack 
length) data  for precracked fracture specimens. The 
method allows additional  information to be  inferred 
from simple  test results, and  that information  can be 
used to estimate the  failure  loads  of  more 
complicated structures of the same material and 
thickness. 

The analytical basis for  the method was developed 
by the author in a previous report. Numerical 
differentiation of the residual-strength data is  re- 
quired,  and  the problems that it may present are 
discussed. The  method is demonstrated  and verified 
by using various types of residual-strength data  from 
the literature. 

Introduction 
This report presents a method  for estimating the 

crack-extension resistance curve (R-curve) from 
residual-strength (maximum load against original 
crack length) data  for precracked fracture specimens. 
Such data may be found  in  the  literature  or may  exist 
in company files. The  method allows additional 
information to be inferred from simple  test results, 
and  that information  can be  used to estimate the 
failure  loads of more complicated structures (such as 
reinforced panels) of the same material and 
thickness. 

The progressive development of the R-curve 
concept has been  reviewed  in reference 1. The 
concept postulates that,  for a given material and 
thickness, there is a unique relationship between the 
amount of stable  crack  growth  under rising load and 
the crack-tip stress intensity factor.  The relationship 
is  called the crack-extension resistance curve, or 
R-curve, and represents the response of  the material 
near the crack tip  to externally imposed loading. If 
the R-curve  is known, both  failure  load  and critical 
crack length can be predicted (as functions of initial 
crack length) for  any specimen or  structural 
configuration for which an  appropriate stress 
intensity analysis  is available. For example, refer- 
ence 2 illustrates the use of the R-curve to predict the 
failure  load  for a strap-reinforced panel. Current 
methods for determining the R-curve (ref. 3) require 
that  the specimen  be instrumented to measure  crack 

opening displacement, and  the Rcurve is derived 
from  the load-displacement record. 

The analytical foundation for  the present report is 
developed in reference 4. That report examines 
several  semiempirical fracture analyses that  attempt 
to relate maximum load to initial crack length in 
terms of  one  or  two empirical parameters. It showed 
that  an R-curve can be  developed that is 
mathematically equivalent to any  one  of  the semi- 
empirical analyses. In  the present report the R-curve 
is developed directly from residual-strength data 
without recourse to  any semiempirical analysis. 

This  report first reviews some characteristics of the 
R-curve concept when applied to practical test 
specimens. Next the  method  for generating an esti- 
mated R-curve  is derived. Numerical differentiation 
of the residual-strength data is required,  and the 
problems  that it may present are discussed.  Finally 
R-curves are estimated for several materials by  using 
data  from the  literature. 

Symbols 
length of single-tip crack or half-length of 
double-tip crack 

effective modulus, E for plane stress or 
E / ( l -  u 2 )  for plane strain, where E is 
Young's modulus and Y is Poisson's ratio 

strain energy  release rate 
fracture toughness, GA or GR at instability 

crack extension resistance 
opening-mode stress intensity factor 
number of crack  tips  (one or two) 
specimen width 
stress intensity calibration factor, K r / u f i  
sensitivity factor (eq. (1)) 
sensitivity factor (eq. ( 5 ) )  
effective crack extension (sum of physical 

condition 

crack extension plus a plastic zone 
correction) 

relative crack length, na/W 
stress normal  to  crack 
ultimate tensile strength 
yield strength 



Subscripts: 
C at critical or instability condition 
0 initial value (before loading) 

R-Curve Concept 
The R-curve concept is illustrated schematically in 

figure 1 €or an infinite body  containing a crack whose 
original length is 2ao. The  strain  energy release rate is 
given  by 

m d  represents the driving force (per unit thickness) 
tending to cause  crack  propagation.  The material’s 
resistance to crack  propagation GR is a function of 
crack extension A. In R-curve analysis the subscripts 
A,  R ,  and c are customarily used to  denote applied 
and resisting forces and critical values, respectively. 
The  R-curve is located with its origin at a=ao. As 
stress normal  to  the crack is applied and increased to 
90 percent of the  subsequent critical stress in figure 1, 
the  crack must extend  only  a small distance to 
develop  a large resistance. At this point the crack- 
extension resistance equals the driving force,  and  the 
crack is stable. As the  stress is increased. 

GC-. / 

Crack  length, a 

Figure L - Schematic  representation of R-curve in- 
stability concept for  an  infinite body. 

progressively larger amounts of  crack extension are 
required to resist the  crack driving force. Finally at 
the critical stress uc the driving-force curve and  the 
R-curve are  tangent. Beyond the point of tangency 
the driving force increases faster  with  crack length 
than does the material’s resistance. This instability 
condition represents the failure of  the  body.  The 
point of tangency defines the  fracture toughness G ,  
and  the critical crack length 2a,. Since the driving- 
force curve  for an infinite body is a straight line, it 
should be apparent  that  both the fracture  toughness 
G ,  and  the  amount of crack extension at instability 
A, increase with increasing original crack length 2ao. 
If the R-curve exhibits a  plateau, G,  and A, may 
asymptotically approach limit values. 

Instability Calculations 

In simple finite bodies  and test specimens the 
presence of stress-free boundaries results in an 
additional increase in the crack driving force as the 
crack  extends  toward  a  boundary.  Thus the slope of 
the driving-force curve increases continuously with 
increasing crack length. The instability condition for 
a typical finite-width specimen  is shown in figure 2 
and is determined as follows. For a given specimen 
configuration  and  loading the dimensionless stress 
intensity calibration factor is defined as 

Y E  3 =fcn(h) 
& 

where K I  is the opening-mode elastic stress intensity 
factor, h=na/ W is the relative crack length, and n is 
the number of crack tips (one  or two). If  we define a 
dimensionless sensitivity factor as 

a0  ac 
Crack  length. a 

Figure 2 - R-curve  instability concept for a finite body. 
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then  (for constant stress) the crack driving-force 
curve  and its slope are 

E'GA = *u2a 

E' - = pu2(1  +2a) dGA 
da 

For  convenience the crack-extension resistance curve 
and its slope are written here as 

g(A)  =E' GR 

g ' (A)  =E' - dGR 
dA 

At the   instabi l i ty   point ,  G A   = G R  and 
dGA/da=dGR/dA (fig. 2 ) .  If g ( A )  and g ' (A)  are 
mathematically describable, the instability point is 
determined by the simultaneous solution of the 
following equations: 

E'G, = Y:u:(ao + A , )  =g(A , )  (2) 

E ' E (  = Y:u,"(l +2ac)=g' (A, )  
da (I, 

The coefficients Y and CY are usually  expressed as 
trigonometric or polynomial  functions of the relative 
crack  length X. As a result a closed-form 
simultaneous  solution is seldom  possible,  and 
numerical  methods  must be  used to solve for A,. This 
can  be  done as follows: Dividing  equation (3) by 
equation (2) and rearranging  terms give 

If the functions g(A) and g'(A) and  the  appropriate 
equation  for CY are substituted into  equation (4), then, 
for prescribed values of a0 and W, A, is the least 
positive root of  equation (4). This  root  can  be  found 
by any  of several numerical  methods.  Next,  the 
function g(A) is evaluated at A,  to calculate g(A,). 
Finally the  fracture  stress u, is obtained  from 

equation (2) by  using the  appropriate  value  of Y,. In 
this report  the expression 

Y =  (?r secant - ) 7FX 112 
2 

is used for  the center-crack specimen (ref. 5) .  

Instability in Finite Bodies 

For a crack in an infinite body  both G, and A, 
increase with increasing initial crack length. In a 
finite body as the initial crack length is increased 
from zero, G ,  and A,  increase at  first. However, 
because dY/& continually increases with X, both G, 
and A ,  reach  maximum values that depend on  the 
specimen width W and  the  forms of both the driving- 
force  curve and  the R-curve. As the initial crack 
length is increased still further,  both G,  and A,  begin 
to decrease. This  behavior is shown schematically in 
figure 3, where instability curves are shown  for  a 
wide range of initial crack lengths. The locus of all 
instability points is shown by the dashed line. 

It is useful to define a sensitivity factor 

which is shown  for  the center-crack specimen  in 
figure 4. For  comparison, y is also shown for  the 
standard compact (tension) specimen.  This was 
derived by  using the expression 

Y=h"/2(1 - q 3 l 2 ( 2  + X)(0.886 + 4.64 X 

- 13.32 X2 + 14.72X3 -5.6 X4) 

L Locus of 

Relative  crack  length, A 

Figure 3. - R-curve  instability for a  wide  range of initial 
crack  lengths, 
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Figure 4 - Sensitivity  factor for center-crack  and com- 
pact specimens. 

from reference 6.  Note  that  the  function X has a 
minimum  value.  Then for a given specimen width the 
first term in equation (4) must also have a minimum 
value. In graphical terms this means  that if, at a given 
point,  the R-curve's slope is too low or its magnitude 
too high or  both, a driving-force ( G A )  curve cannot 
be both coincident and tangent at that  point.  Thus 
for a given  specimen width the value of X at ymin 
defines the critical crack length at which both crack 
extension A, and  fracture  toughness G ,  or Kc are 
maximum. Note  that  both ymin and the relative crack 
length at which  it occurs are different  for  different 
specimen types. The fact that  the  function y has a 
minimum has  additional significance that is  evident 
later in this report. 

Comments 

Although  the subject has received scant attention 
in the  literature, it is  possible to estimate  the R-curve 
from residual-strength data by using purely graphical 
methods. The method is shown in figure 5 .  To 
simplify the  illustration,  assume  that we know the 
residual strengths  of  four specimens having the same 
initial crack length but  different widths. Construct a 
driving-force (GA)  curve for each specimen  by  using 
residual strength in the  equation following equa- 
tion (1). Then  draw  the estimated R-curve from  the 
point (a  =uo, GA = 0) in  such a way that it is tangent 

I 
Y 
U 

V 
E 

a0 
Crack  length, a 

Figure 5. - Example of graphical  method  for  estimating R- 
curve  from  residual-strength data. (W4 < Wj  < W2 < W1 = 

00; 0 4 < 0 3 < 0 2 < 0 1 )  

at  some point to each of  the driving-force curves. If 
initial crack lengths are not  constant, it is convenient 
to let the x-axis be given  by crack extension A. Then 
each driving-force curve begins at a distance uo to the 
left of the origin.  Although  the  procedure  appears 
simple, in practice it  is tedious  and subjective at best. 
If significant data scatter exists, one's skill  with the 
French curve will be severely tested. 

In  concluding  this section it should  be  emphasized 
that, in this  report, A is the effective crack extension. 
It  is the  sum of the physical crack extension plus an 
adjustment to account for  the  effect  of  crack-tip 
plasticity. The  nature  of  the plasticity adjustment, 
although technically significant, has no influence on 
the analyses and conclusions in this  report. 

Analysis 
The analytical foundation  for this report was 

developed in reference 4. However, the  common 
elements of  the  derivation are repeated  here for  con- 
venience. In  the preceding section it  was shown that, 
if a mathematical  formulation  for  the R-curve is 
available,  fracture stress can be predicted as a 
function  of original crack length. In this section i t  is 
shown that, if proper estimates of residual strength 
and its first derivative can be made,  the R-curve can 
be estimated. 

The first step requires that we differentiate 
equation (2) with  respect to A,, and  that  operation 
requires some  prior  consideration. For a given spec- 
imen type  there are many combinations  of specimen 
width and initial crack length that will result in 
instability at  the  same point on  the R-curve, and each 
combination  has an associated fracture stress. To 
cause a small change dA, in the instability point, 
there must be a change in the specimen width or  the 
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initial  crack  length or both,  and  there will be a 
change  in  the  fracture  stress.  Thus,  when 
differentiating  equation (2), the terms  W, u, and a0 
are  treated  as variables. 

Differentiating both sides of equation (2) with 
respect to A, yields 

d 
dAc 
- E'G, = Y,u,~cY, 2 2  

da0 ao+A, d W  +1-  - 

Then  equation (6) becomes 

and, since dao/dA, #O, we have 

Case ZZ: ao/W=Constant [dW =(W/ao)dao].- 
Now assume that  there is a  function h such  that 

h(a0) = (I, 2 l  

and substituting  equation (3) results in 

Now equation (6) becomes 

o=u: [ 2  (1 +2a,) - r -. 

and since dao/dA, #O, we have 

At  this  point it is helpful to reduce the problem to 
one  of a single independent  variable  by prescribing Case ZZZ: a0 = Constant (dao = O).-This case is of 
the  manner in which a0 and  Wmay vary. Three cases limited usefulness but is  included for completeness. 
are considered. Assume that  there is a  function j such  that 

there is a  function f such that we can  define 
Case Z: W = Constant (dW = O).-Assume that 



A 

Now equation (6) becomes 

0 = - (a0 + A,)[ - %j(W) + j ’ (  W)] d W  
dAC 

and since d W/dA, # 0 and (a0 +A,) # 0, 

In  reference 4 the  functions f, h,  or j and  their 
derivatives  were  obtained  from  analytical 
formulations  presented  in  various  semiempirical 
fracture  analyses.  However, if sufficient  and  suitable 
experimental data  are available,  these  functions  and 
derivatives can be obtained  directly  from  the data by 
curve fitting and numerical  differentiation.  Then  the 
fitted  function and its  derivative  are used to 
determine  the  corresponding R-curve as  follows: 
First,  at a given point on the  residual-strength  curve, 
the functionf, h, o r j  and its  derivative  are  estimated 
by using suitable  numerical  methods (discussed 
later).  Second,  the  function  and  its  derivative are 
substituted  into  the  appropriate  version  of  equation 
(7), which must be solved for A,. A numerical 
solution is usually required, and in  this  report a 
standard  program  for  a  desktop  calculator was used, 
with A ,  always taken as the least positive root. 
Finally A, and  the  fitted value of 0: (which equalsf, 
h, or J]  are  substituted  into  equation (2) to  calculate 
E’G, .  The resulting pair (E’Gc,Ac) define  a  point 
(E’GR ,A) on  the  R-curve.  The  process is repeated at 
additional  points on the  residual-strength  curve. If 
desired,  the R-curve can be expressed in  terms of 
K R  ’ ( E ’ G R ) ” ~ .  Also, a  suitable  function can be fit 
to describe GR or KR as  an explicit function  of A. 

At best this  estimation  method  has  the same 
limitation  as  a  standard R-curve test run  under  load 
control;  namely,  for  a given specimen the R-curve 
can  only be measured  (or  estimated) to  the  point at 
which the  crack becomes unstable.  Furthermore  the 
extent to which the  R-curve can be  estimated may 
depend on  the  shape  of  the  actual  R-curve,  the  nature 
of  the  residual-strength data, or both. For  example, 
suppose  that  the  actual R-curve has a pronounced 
knee  (typical of high-strength,  low-toughness 
materials),  as shown in figure 3. There,  as  the  initial 
crack  length  increases  from  0.2 W to 0.8 W, the 
location  of  the  instability  point on  the R-curve moves 
only a small  distance. Thus, even if one  had  many 
residual-strength data for such a material, having 

only  normal  scatter  and  covering  the wide range  0.2 
5 x 0  (0.8, the estimated  R-curve  plot  would 
probably  consist  of  many  points  grouped in a  tight 
cluster. 

The best possible R-curve estimate  should result 
from  residual-strength data  that meet the following 
criteria: 

(1) One specimen geometry  factor  (initial  crack 
length, specimen width, or their  ratio) must be 
constant, since equations (7) were derived on  that 
basis. 

(2) The residual-strength data should cover a wide 
range  of  initial  crack  lengths.  For  constant-width, 
center-crack  specimens,  however,  the  range 
0 < X0 e 0.47 is adequate. 

(3) The  distribution  of  initial-crack-length values 
should  favor  the  shorter  crack  lengths.  For  example, 
the  distribution (X0 =0.05, 0.1, 0.2, 0.4) is better 
than (X0 =0.1, 0.2, 0.3, 0.4). The  shorter  initial 
cracks  help  define  the lower portion  of  the  estimated 
R-curve and (because of the usual shapes of residual- 
strength curves) enhance  the process of numerical 
differentiation. 

(4) The  distribution  of  initial-crack-length values 
and  the  scatter  in  the  residual-strength  data  should be 
such that numerical  differentiation  of  the  residual- 
strength  curve  can be done with  confidence. 
Numerical  differentiation  of  residual-strength data is 
discussed further in appendix A. 

Verification 
The  analytical  methods described herein  are 

applicable to any specimen type  for which a  stress 
intensity  analysis is available.  However,  residual- 
strength  tests are almost always done  on  center-crack 
specimens. For  this  reason  the examples to follow  are 
limited to center-crack data. Experimental data sets 
containing both residual-strength  and R-curve data 
from  center-crack specimens are relatively few  in 
number.  Nevertheless  enough were found  to 
illustrate  the  application of the analysis to Case I ,  
Case 11, and Case I11 data. All calculations were 
performed by using the U.S. customary  units in 
which the  data were originally  presented and then 
converted to SI units. 

Data  for 2014-T6 Aluminum Alloy 

In  reference 7 this  author presented test data for 
2014-T6 aluminum  alloy specimens 1.5 mm (0.06 in.) 
thick,  tested at 77 K (- 320”  F).  The specimens were 
7.5, 15, and 30  cm (3, 6,  and 12 in.) wide, and initial 
crack  lengths  ranged  from 3 mm (1/8 in.) to one- 
third of the specimen width.  The  average  values of 
initial  crack length and  residual  strength  for  the 
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longitudinal  grain  direction, as given in  table  II(a) of 
reference  7,  are used here. 

Numerical differentiation  of  these data was done 
as follows: Each specimen width was considered  as a 
data subset,  and the point (a0 =0, uc =uu)  was 
treated  as a common data point. A parabola was fit 
to each group  of  three successive data  points,  and  the 
parabola was differentiated at  the middle  point. If 
there are N data points  in a subset,  then N - 2  
deviatives can be evaluated. Also, a two-parabola 
spline  function was  fit to each group of four 
successive data points,  as  described in appendix B. 
The  knot was placed midway between the second and 
third  data  points,  and  the  spline  function  and  its de- 
rivative were evaluated at the  knot. In this way an 
additional N -  3 derivatives  can  be  evaluated.  Then 
equations (7a) and (2)  were  used to calculate  points 
on the  estimated R-curve, as  described  earlier. These 
are shown as open symbols in figure  6. 

Reference 7  also  reports values of critical crack 
length.  From  these  values  the  crack-extension 
resistance  and  the effective crack length at  instability 
(failure) were computed  as 

.- 

Y V E 20 'i .- !.I u 20 

,-See text 
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Specimen 
width. 

W. 
cm (in. 1 

0 30 (12) 
0 15 ( 6 )  
A 7i ( 3) 

2 
Open symbols denote data derived  from 

residual  strenaths  (this  reDortl 
Solid symbols denote data based on re- 

ported  critical  crack  lengths 

0 .5  1.0  1.5 
Effective  crack  extension, A, cm 

I" I I 
0 .1 . 2  . 3  . 4  . 5  .6 

Effective crack  extension, A, in. 

Figure 6. - R-curve  for 2014-T6 aluminum alloy. (Data from 
ref. 7.) 

aeff = a, + (E' GR /27ru&) a0 -t A (8b) 

respectively. These  are shown as solid  symbols  in 
figure 6. 

It is apparent in figure 6 that  the flagged point lies 
outside  the  band  of  the  remainder.  This  point was 
obtained  after  fitting a two-parabola  spline  function 
to  four successive residual-strength data points. 
Examination  of the spline  coefficients  shows  that  one 
of  the  fitted  parabolas is concave-down. As discussed 
in appendix A this is not  reasonable and hence this 
point  should be ignored.  The  remaining  points 
derived from  residual-strength data by using the 
method  of  this  report  (open symbols) agree  quite well 
with those  calculated  from  critical-crack-length 
values (solid symbols). If needed,  a  curve  could be 
fitted to these  points  to give an explicit equation  for 
the R-curve, but  this was not  done  here. 

Data  for 2219-T87 Aluminum Alloy 

The data for 2219-T87 aluminum  alloy used herein 
originally  appeared in an  internal  report 
(Eichenberger, T. W.: Fracture Resistance Data 
Summary.  Report D2-20947,  Boeing Airplane Co., 
June 1962) but  are  also  tabulated  in  table 1 of 
reference  8.  Center-crack specimens 2.5 mm (0.10 
in.) thick were tested.  The data  for specimens 60 and 
120  cm (24 and 48 in.) wide are used here because 
they cover a wide range of crack  lengths. 

The  numerical  differentiation of these data was 
done in exactly the  same  manner  as  that of the 
2014-T6 data, except that  the  points given by 
(a0 = W/2, uc =0) were also  treated  as data points. 
Once  again,  reported values of  critical  crack  length 
were also used  in equations (8) to compute  crack- 
extension resistance  and  effective  crack extension at 
instability.  Figure  7  shows that, as  before,  points 
derived from  residual-strength data (open  symbols) 
agree well with those  calculated  from  critical-crack- 
length values. These data were also used in  refer- 
ence  4, and  there  an explicit R-curve  equation was 
needed.  The simple exponential  form 

E'GR = 8.07 X 1015  Ao.554 

where E'GR is in N2/m3  and A is  in cm, or 

E'GR = 11.2 x lo9 A0.554 

where E'GR is in lb2/in3  and A is in  inches,  provides 
a good  fit to  the  open symbols. Residual strengths 
calculated  from  this  equation by using conventional 
instability  analysis were found in reference 4 to agree 
quite well with the original data over the  entire  range 
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Fitted  exponential 
curve (see text)-, 

5 .- Y v) 120t 

2ok 

Specimen 
width, 

W, 
cm (in. J 

0 120 (48) 
0 60 (24) 

Open symbols  denote data derived  from 

Solid symbols denote data based on re- 
residual  strengths  (this  report) 

ported  critical  crack  lengths 

OL , 
0 2 4 6 8 10 12 

Effective crack extension, A, cm 

1 
0 1 2 3 4 5 

Effective crack extension, A, in. 

Figure 7. - R-curve  for 2219-T87 aluminum alloy. (Data from 
ref. 8.) 

of  crack lengths, with the average  error being  less 
than 3 percent. 

Data  for AM355 Alloy  Steel  Sheet 

Reference 9 includes some  unusual test data  for 
AM355 alloy steel specimens 0.5 mm (0.02 in.)  thick. 
One series of tests used specimens  of various sizes 
having  a constant ratio of initial crack length to 
specimen  width  (Case 11). Another series  was run 
with constant initial crack length and varying  widths 
(Case 111). In addition,  a considerable amount of 
subcritical crack  growth data is reported. 

Specimens with and  without stiffeners (to prevent 
local crack buckling) were tested,  but  only  stiffened- 
specimen data  are considered here. Numerical 
differentiation of the constant-ratio  (Case 11) data 
(table XI, ref. 9) was done in the  same  manner as 
before except that  the point (ac =uu, a0 =0)  was not 
used. Then  equations (7b) and (2) were  used to 
calculate points on  the  estimated  R-curve.  The 
constant-crack-length (Case 111) data required a 
different  treatment.  The residual-strength data (table 
VI, ref. 9) are plotted in figure 8. One point appears 
to be erroneously low and was ignored. The re- 
maining points do not lie along  a simple, smooth 
curve, and direct numerical  differentiation  would  not 

0 J 
0 10 20 x) 40 50 60 

Specimen width, W, cm 
~~ .. 

1 
0 4  8  12 16 20  24 

Specimen  width, W, in. 

Figure 8. - Residual strength  and  fitted  curve  for AM355 steel. 
(Data from ref. 9. ) Initial  crack  length, 2a 10 cm(4 in. ); 
ultimate  tensile  strength, ou, 1660MPa (2g.8 ksi). 
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Figure 9. - R-curve  for AM355 steel. (Data from ref. 9 . )  
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be prudent.  Some  type  of data smoothing is needed. 
The  equation  plotted  in  figure 8 is relatively simple, 
has  the  proper  curvature and limits, and  appears to 
fit the  data fairly well. This equation was used to 
compute  smoothed values of  stress (which replaced 
the  experimental values) and associated  derivatives. 
These were then used in  equations (7c) and (2) to 
calculate  points on  the estimated R-curve. Subcritical 
crack  growth data  are presented in figures 20 and 22 
of  reference 9. These consist of four  to eight points 
per specimen and were taken  during  the  constant- 
ratio (Case 11) tests.  For  each  point  the  crack- 
extension  resistance  and  the  effective  crack  length 
were calculated by using equations (8). 

Points  on  the  estimated Rcurve, computed  by 
three  methods, are shown  in  figure 9 and  are in 
generally good  agreement.  Those derived from  the 
constant-crack-length (Case 111) residual-strength 
tests lie along  the high side  of  the  scatter  band, and 
this may be due  to  the choice of  the  function used to 
smooth  the data. 

Concluding Remarks 
This  report  has  presented a method  for  estimating 

the R-curve from  residual-strength data. The  method 

was verified by using various types of  residual- 
strength data  from  the  literature. Numerical 
differentiation  of the residual-strength data is 
required, and  the  data used herein  presented no 
significant  problems  in  that  respect. 

For  other  data  not examined here  the success or 
failure  of  the  method hinges on  the numerical 
differentiation  process, which for  residual-strength 
data is not a well-established procedure.  Some 
guidelines are given in  appendix A, but  engineering 
judgment may still be required. If the  data can be 
differentiated with confidence, the method  should  be 
successful. If not,  the results  can be misleading or 
erroneous.  In that case it may be better to fit the  data 
to a semiempirical  fracture  analysis and derive an 
equivalent R-curve by using the  method  of  refer- 
ence 4. 

Lewis Research Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, May 20, 1980, 
505-33. 
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Appendix A 

Numerical  Differentiation of Residual-Strength  Data 

Numerical differentiation is a mathematical 
procedure that can  be  done  with great elaboration 
and high precision but which nevertheless can  often 
be highly subjective. A set of experimental data can 
be  thought of as a  number  of  estimated values of a 
function whose analytical form is, for  the most part, 
unknown. The problem is to find  a simple, 
differentiable function  that closely approximates  the 
unknown function over at least part of  the test range. 
There are two steps to  the solution: The first is the 
choice of  a suitable form (i.e., polynomial, 
exponential ,   tr igonometric,   etc.)   for  the 
approximating  function;  the  second  is  the 
determination  of  the best numerical values for  the 
coefficients of the function.  The  second  step requires 
only established mathematical  methods,  but  the first 
requires  engineering  judgment.  Numerical 
differentiation is more sensitive to the  choice  of  func- 
tional  form  than  are  interpolation  or  numerical 
integration.  For  example, consider the  following 
sketch,  whereflx) is the  true  (unknown)  function  and 
P(x) is the  approximating  function.  Here  the 
functional  form of P(x) seems  well chosen, and the 
errors in slope are small. However,  a  straight line will 
also fit within the bounds of f (x)  and  would give 
much larger slope errors. Thus the  choice of 
functional  form is often  the  more  important  step in 
numerical  differentiation. 

In some  experiments  the  proper  form for  the 
approximating function is known in advance, either 
from first principles or  from historical evidence. For 
residual-strength data  there  are  no such guidelines. It 
seems prudent  therefore  to use a  simple  form for  the 
approximating  function  and to check  the fitted 
function for reasonableness. In this report  second- 
degree  polynomials  (parabolas) were  used almost 

exclusively. In  some cases two  parabolas were linked 
to  form a spline function (appendix B). These  simple 
functions  appear  to  be  adequate,  at least for  the  data 
that were examined here. 

Once the chosen  function  has been fit to  data  and 
the values of its coefficients determined,  the  fitted 
function  should be checked for reasonableness. This 
may  be  done  by  considering  some  basic 
characteristics  of  residual-strength  curves. If 
specimen  width is constant  (Case  I),  the slope of  the 
residual-strength curve  should  always  be negative. 
The second derivative should  be positive (i.e., the 
curve is concave-up) except as nag approaches  Wand 
possibly as a0 approaches 0. Also, by combining 
equations ( 5 )  and (7a) and observing figure 4 we can 
show that 

1 da n 
a dao 2 W  

- " - > "Yrnin 

for  constant-width tests. For tests where  the  ratio 
a0 / W is constant  (Case 11) the slope should  always be 
negative and  the  second derivative should  always be 
positive. For constant-crack-length tests (Case 111) 
the slope of  the residual strength  curve da/dW is 
always positive and  the  second derivative is always 
negative (concave-down).  Furthermore  the  curve is 
always  asymptotic to a finite strength value as W 
becomes large with  respect to ao. Any fitted function 
that conflicts with these characteristics should be 
considered suspect, and engineering judgment will  be 
required  to  obtain a  satisfactory  numerical 
differential.  Graphical  differentiation is a last resort, 
but  because  of its subjectivity it  was not  considered in 
this report. 

y = f ( X )  - E 
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Appendix B 

Two-Parabola  Spline  Function 

A spline  function is a sequence  of piecewise 
polynomials  of degree N >  1 whose coefficients are 
such that  the function itself and its  first N -  1 deriva- 
tives are continuous  over  its  entire  range.  The 
junctions  of  the  polynomials are called knots.  In  this 
report  some of the  numerical  differentiation was 
accomplished by fitting  two  parabolas  through four 
consecutive data points to form a spline  function. 
The  function and its  first  derivative were then 
evaluated at  the  knot, which  was midway between the 
second and  third  points.  This is done  as follows. 

Let four  consecutive data points be denoted  as (xi, 
ui) where x1 <x2 <x3 <x4. We  wish to fit  two 
parabolas  through  the four points  such  that 

If the  knot is located at x=xk such that x2 <x& e x 3 ,  
the  continuity  conditions at the  knot are 

where the  prime  denotes  differentiation.  After 
subtracting  the  appropriate  part  of  equation (B2) 

from each  of  equations (Bl), expanding and 
rearranging  terms, and substituting  equation (B3), 
equations (Bl) can  be  written as 

which are easily  solved.  When differentiating 
residual-strength data, this  approach  has  two 
advantages.  First,  the  interpolation value y k  and  the 
derivative y i  are  obtained  directly.  Second,  the signs 
of  the  coefficients a 2  and P2 indicate  the  curvature 
of  the  parabolas. As discussed in appendix A, both 
a 2  and 0 2  should be positive for Case  I  or  Case I1 
data  and negative  for  Case I11 data. If a 2  and P2 
have opposite  signs,  there will  be an inflection at  the 
knot and  the  derivative  should be regarded with 
suspicion. If the  remaining  coefficients  are  desired, 
they  are 
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