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ABSTRACT

Hypersonic flow about a body of revolution with or without sn

angle of attack is of much interest both from the design and computa-

tional view points. In thin paper a formulation of the complete

Navier-Stokes problem for a viscous hypersonic flow in general

cui g ilinear coordinates is presented. This formulation is applicable

to both the axially symmetric and three-dimensional flows past bodies

of revolution. The equations for the case of zero angle of attack

have been solved past a circular cylinder with hemispherical caps by

point SOR finite difference approximation. The free stream Mach

number and the Reynolds number for the test case are respectively

22.04 and 168888. The whole algorithm is presented in detail along

with the preliminary results for pressure, temperature, density and

velocity distributions along the stagnation line.
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1. INTRODUCTION

i

The problem of predicting the flowfield about arbitrary blunt

bodies traveling at supersonic and hypersonic speeds has been the

subject of much theoretical and experimental research. Supersonic

flow about blunt bodies is characterized by a detached bow shock wave

around tho nose of the body that divides the flowfield into regions of

!	 supersonic and subsonic flow. The existence of these regions of mixed

flow has limited existing analytical methods for the blunt body problem

to semiemnir l ,,al techniques or inviscid flow approximations. However,

these methods cannot simultaneously predict flow properties in all

regions of the flowfield. In addition, the relationship between the

shape of the body and the shape and location of the bow shock I ►es

restricted most existiue solutions to relatively simple body shapes.

In an effort to overcome tht : problems associated with existing

approximate methods, several researchers have developed numerical

solutions of the full set of governing equations for full y compressible,

viscous flow, viz., the Navier-Stokes equations, by finite difference tech-

niquos. Unfortunately, the problems inherent in numerical solution of

the Navier-Stokes equations have usually outweighed the techniques'

usefulness as a research tool. In particular, the numerical insta-

bilities that arise from replacing the actual equations with finite

difference approximations and the large computational fields required for

accurate resolution of the flowfield have, in the past, prevented the

!	 treatment of problems of practical interest, i.e., arbitrary body shapes
M

F	 and high Reynolds Number flows. However, in recent years, the continuing

i
improvement of digital computers and the introduction of more efficient

numerical methods have made treatment of realistic probiems feasible.
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Tire present investigation presents a method for the numerical solution

of the Navier-Stokes equations for both supersonic and hypersonic viscous

flow about arbitrarily shaped blunt bodies.

The techniques used in this research are an extension of the

methods introduced by Warsi, Devarayalu, and Thompson [1,2] and

Devarayalu [3] for supersonic flow about 2D blunt bodies. The Navier-

Stokes equations are first transformed from Cartesian coordinates to a

set of general coordinates by applying basic relations from tensor

analysis. The numerical techniques developed by Thompson, Thames, and

Mastin [4,5.6] are then used to generate a boundary fitted curvilinear

coordinate system for prescribed body and outer boundary ahapes. This

type of coordinate systerr. will map into a rectangular coordinate grid

in the transformed plane. Since the body and the outer boundary become

straight lines in the transformed plane, the statement of boundary

conditions for arbitrary body shapes is greatly simplified. In addition,

this method of generating coordinates allows coordinate lines to be

concentrated in any region in the field. A dense mesh system can then

to imposed in regions of large gradients in the flow variables such

as boundary 1L?ers or across shock waves.

In the currenc investi gation, a new approach to the transformation

of the Navier-Stokes equations has been employed. Warsi (7] has shown

that the transformed equations can be written in a form that retains

the conservation law or "divergence" form of the original equations for

all cases except axisymmetric flow. Conservation equations are favored

in compressible flow problems because they will satisfy the Rankine-

Hugoniot relations for shock waves when the differencing scheme applied

to the equations is conservative.

The next step in the solution process is the development of an

algorithm to solve the transformed equations numerically. In this
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research, the solution of the transformed equations was accomplished by

replacing the partial derivatives in the equations with finite difference

approximations that produce a set of implicit finite difference equations.

These equations are then solved by the Successive Over Relaxation (SOR)

!	
iterative technique. The implicit formulation was chosen for its uncon-

ditional stability. The conservation law form of the equations allows

construction of simple, easily programmed S.O.R. algorithms.

In the present investigation, the Navier-Stokes equations were

solved at all points in the field. The bow shock appears in the field

as a zone of transition of the flow variable smeared over a few grid

lines. This technique is called "shock capturing." However, several

authors [8,9,10] have found this technique to be impractical for large

Reynolds Number flows because of the numerical difficulties associated

with the large gradients that appear ii, she flow variables in the regions

where the bow shock forms. Instead, they treat the shock as a boundary

{	
across which the Rankine-Hugoniot equations are applied. The Navier-

Stokes equations are solved only in tre region behind the bow shuck.

The flow in front of th( shock is considered inviscid. This technique

is called "shock fitting." While generally favored, implementation of

the "shock fitting" technique can be quite complicated for arbitrary

body shapes. Therefore, in spite of the numerical difficulties associated

with shock-capturing, this technique was used in the present research

because of its simplicity.

Numerical solutions of the .Javier-Stokes equations by finite

difference techniques are plagued by various types of numerical insta-

bilities. These instabilities appear as oscillations in the flow

variables that, if left unchecked, will cause the solution to diverge.

These oscillations can be controlled by introducing dissipation into

3



i

the solution by either dissipative differencing schemes or explicit

artificial viscosity terms added to the calculation of the viscosity

coefficient. Both of these methods were used in the present research.

All of the techniques described in this section were used to

develop a computer program (11] to solve the Navier••Stokes equations

for the case of axisymmetric :low of a perfect -as about a blunt body

(	

traveling at hypersonic speed. The axisymmetric flow case was chosen

1	 in order to provide initial data for an eventual extension of the program

to 3D flow. The body used in this research consists of a circular

+	 cylinder with two hemispherical caps. The freestream Mach Number is

22.04. The Reynolds Number ,eased on body diameter is 168888, and the

Knudsen number for this flow is about .0002.
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2. FORMULATION OF THE PROBLEM

For the purpose of solving the blunt body problem in general body

oriented curvilinear coordinate systems, we consider the non-dimensional

Navier-Stokes equations in the invariant tensor form. The formulation

presented here is fo r a real gas which is assumed to be thermally though

not necessarily calorically perfect. A computer program based on these

general considerations has been developed which can also be easily used

for calorically perfect gases.

A dimensional quantity is denoted by a superscript * and the value

of a quantity at free stream by a subscript	 The equations have been

non-dimensionalized by using the following free stream values.

x
L	 for all lengths

*

UCO	 for velocity vector

*

P.	 density

* *2
P .U.	for pressure and energy per unit volume

*
T m	 temperature

*
um	 viscosity

*
Cp	specific heat at constant pressure

The non-dimensional form of the conservation equations are

ap
at + div(py) - 0	 (2.1)

^pv) + div i - 0	 (7.2)

3t+div b	 0	 (2.3)

i

i
E

5



where

Y pw + pi - Eo

c - KI+d

K - A divv

d	 defv

b	 (T + p)v - co•v - Sp grad T

(2.4)

2
'Y	 pe + 2 plvl

c - 1/Re M um/pQOUCOL

S - cTmC p Cp/PrUm^

Pr	u Cp/k

k	 dimensional fluid conductivity.

In Eqs. (2.4), j, and a are the non-dimensional first and second coefficients

of viscosity respectively.

The set of equations (2.1) - (2.4) form a closed system when the

following additional conditions are associated with them.

(i) The equation of state

p - C1 (y - 1)pTCp /y	 (2.5)

where

C1	 CT^/UPM	 m

6



*3	 *4
+ :A4T^ )T3 + (A ST. )T4 (2.10)

1

i

C  - non-dimensional specific heat at constant pressure

1
y - ratio of specific heats .

Both C  and y are assumed to be functions of temperature T.

(ii) Sutherland ' s viscosity law:

N	 (1 + S1 )T 3/2 /(T + S 1 )	 (2.6)

where S1	D /T*	D	 110.33'K .

I
f	 (iii) Stokes' law:
I

3a + 2u - 0	 (2.7)

(iv) Eucken's formula:

	

p r (T) - 4 y /(9y - S)	 (2.8)

The temperature T is obtained by solving a fifth degree equation defined as,

(see appendix).

(A1 - 1)T + 2(A2T*)T2 + 3(A3T*2)T3

1	 *^	 1	 *4
+ 

(A4 T. )
T

,, 
+ 5(A5T )T5

C—(^ 	
Z^vl2)	

(2.9)

2

where

C2 - C 1 /f (1)

f 	 - A l + (A2T )T + (A3Tm )T2
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The constants Ai are

Al a 3.6535

A2 m -1.33736 x 10-3/ °K

A3 m 3.29421 x 10 6/(OK)2

A4 = -1.91142 x 10-9/(oK)3

AS . 0.275462 x 10-
I2

/(OK) `'

On transformation, Eqs. (2.1) - (2.3) have been expressed in the

fstrong conservation-law form (cf. Warsi [7)) as follows

f

2t + a i (ov i ) - 0	 (2
a^

<Cv) + ak (Xika i ) 0
a^

aC+ aY
ia 	 0	 (2.13)

ac

Where ^ i (i - 1,2,3) are the curvilinear coordinates, v i are the contra-

variant components of the velocity vector v, and a  are the covariant base

vectors. Further,

o ' 4 0

Xik , avivk + gik(P - ex) - EDik

Y i - (E + P)vi - 
LO  - 

Su"i 
g ij aT

aE

8
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P- /S_ p , E- j Y , x	 K

/[Kv i + v(g"gjo ik v vis)vm (2.14)

Dij - /g- dij

and g is the determinant of the coefficient matrix gij.

2.1 Axially-Symmetric Body

!	 We now particularize the equations for the case of flow past an

axially symmetric body of arbitrary shape. Referring to Fig. 1 let

E 1 - E' 
E2 - 

n be the coordinates in the meridian plane and E 3 _ 0 the

j	 azimuthal angle, where x is the axis of symmetry. Thus the generation

of the coordinates E and n, with n - constant along the body contour, is

exactly a two-dimensional problem. The forms of gijo 9 ij ^ and Y k (tile

Christoffel symbols) for the axially s ymmetric body ate:

	

2	 2

911 - x
E + rE

2 + r 2

	

822 - x n	 n

F-
33 - 

r2 - y2 + zZ

j - xEr - xnrE

912 - x Exn + rfrn

I

g13 - g23 - 0

g - r,tg ll g22 - ( g 12 ) 2 1 - r2J2

9 . ^ - r2 g22/6

922 ' r2911/g

9



9 3 - 1/r2

9 1 - -r2912/g

91 3 • 923.0

	

L2_	agli	 3812	 3811

r 1 ' 2g^ 822 " a4 - 8 12
(.,

` - ar - - 2n ) J

1 - r 2	 agii	 3822

	r 12	 2g t322 an - 812 a^

r l	
L

r l	 - 0

	

13	 23

	

a R	 ag	 ag

r2 2 - 2
2

8 (822 ( 2 ant - a&?) - 812 an

1 - T 3

	

r33	 g ( g 1 2 r n - 922r^)

	

2 - r 2	 ag12	 a8 11 	 3811

r 11	 2& 18 11 (2 at - - an ) - 812 aC )

2	
r2	 ag2-	 (2 ^ g 1 2 - 3g 22

)Jr 22	 2gt811 an	 812	 an	 a^

	

`	 r2	
3822	 agl1

i 12	 28 (8 11 ' a1 - 8 12 an )

r13 is
r23 - 

0

	

2	 r3
r33	

R 
( F 12 r ^ - K11Tn)

	

r3	 a 1 . 3	 - 1.3,, . r 3	 - 0

	

11	 22	 1.	 33

r.

13	 r

10



i

i
E

r
3 n
23	 r	

(2.15)

The base vectors a  are

al - ix^ + jr,coso + kr^sinO

a2 - ixn + lrn co" + kr n sirto	 (2.16)

a3 - r(kcos © - jsino)

where i, j, k are the unit vectors along the Cartesian coordinates x, y,

z, respectively.

The relations between the Cartesian components of the velocity vector

denoted as U, V, W and the contravariant components are

U = v l x& + v2xn

V - Scoso - rv 3 sino	 (2.17)

W = Ssin^ + rv3cos^

where

= v'r & + v2 rn

(2.18)

= Vcos¢ + Wsin^

From (2.17), we have

v l = (Ur - Sx )/ g
n	 n

11



V2 - (Sx^ - Ur i )/ g

V 3 - (Wcos^ - VsinO)/r

(2.19)

It must be noted that rv 3 is the velocity of swirl.

The symmetric momentum-stress tensor X ik appearing in Eq. (2.12)

and defined in (2.14) is now used to define another tensor XM A defined

below.

XM11 = X11x^ + X12xri

XM 1 = X 11x + X22x
^	 n

23
XM13 = X13x& + X xn

x,121 = (X''r , + X 12 r n )cos^ - rXi3sin$

XM22 = (X12rC + X22 r n )coss - rX23sijq

X1,123 = (X13r^ + X ,,M'3- rX33sinm

XM 31 = (Xllrr
11

+ X 12 r n )sino + rXl3cos+y

XM32 . (X12r + )(22 r 1 )sin^ + r: 3cosQ
r

	X1433 = (X13r + X23r n)sinS + rX 33 coso	 (2.20)

When Eqs. (2.16), (2.17) and (2.20) are used in Eqs. (2.11) - (2.13),

we get the following equations.

Do

3t + — (
QV 

1) 
+ an(ov2) + a^(av 3 )	 U	 (2. 21)

12



ac(oU) + a^^k*1 11 ) + a^(xM' = ) + - (ov3u)

	

3	 3
- e[1(ti-^^ + S) r 11 - 3 1( dm + S)rE}

	

+ Lipr(rr^ 3E
3
	- 

r1; 3n 3) + L 3m }j ^ 0	 (2.22

	

at us) + a^(^rr' 1 ) +	 + ^^(ov3U)

3
+ c[a^ {a( ^- + S)x n } - 3n {1(	 + S)x^}

^	 3v3	 3v3	 IJ
(r 

3v 1 	2v-'

	

— 3m { '' r ^ x & 3r1 — x
	 +
rl aE )	

r	
E a0

- + rn 30 ) }]

3 3
- or(v 3 )^ - F + ek + EJO + 2U)v

ao

+ Ejj (A + 20S
r

0

at(ov 3) + r a (orv l v 3 ) + r 3 (orv2v3)

	

+ — ^^ v 3 2	
3	 I 3

	

^^( ( ) ) - r aE [ 	 (822 3E - g 12 an )

,IV 3 Ur Z	 av3 _	 av3

	

+ ^^J- 3̂  -) - r an[ J (g li are	 112 aE )

	

)v:	 a	 Iv 3	 av 3
+ uJ^^ j — c ^^[ur(xE ^n — xn 

3E )

UJ	
3v1	 )%..

+ r (rE 1m + rr^ '0 ) ]

(2.23)

13



+ r 3 u— 	
eU(x an

3
 — xn a&

3

 )

i

	

T2'T(r^ a^ + rn az ) - 0 	 (2.24)

3E	 a)L	 aY 2	 a	 av3	 s, 1
at + a^ + an - e

r̂ [arJ( â + =^v

33v1	 Ur3v3	 av3 _	 av3

+ UrJv 3^ + J (g22 a^	 912 a. )^

— ean [arJ( v + r)v 2 + UrJv3^v2))

Ur3v3 	 3v 3 	3v3
+	 J (g l 1 )rd	 512 3^ )

	+ a¢ [r(E + P)v 3 - C^3 - STJ• a¢] = 0	 (2.25)

In numerical vector form, Equations (2.21) - '2.25) can be wr4.tten

as

aW
+ U + a + am+ 	 H=	 0	 (2.26)

For the case of axially symmetric flow at zero angle of attack and

with zero swirl the preceding equations become simplified by setting v 3 = 0,

and am = 0

Boundar y Conditions:

(i) Free stream conditions:

The flow at upstream infinity is assumed to be uniform at supersonic

free stream conditions U m , p er , p0. at an angle of attack a with the axial

direction. The non-dimensional form of the free stream conditions are

16
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P - 1 , p - P . , M - M.

(2.27)

`	 U = Cosa , S - sinacosm 	 rv 3 	sinasi::^

(ii) At the body surface:

U - S - v j	 0

(2.2&)

T = T	 or 
(3n )W	 w

(iii) Out-flow plane: zero derivative conditions.

(iv) Symmetry conditions on the planes Q = 0, 	 n for the axially

symmetric case.

For the case of aero angle of attack, the calculations on the stagna-

tion line & - & s are to be performed separately. Let F be either U, o or
5

E. Then on -lie stagnation line

(2.29)

aF	 - - (3F)

S = ^ 	 m=S+^r

I .

15



3. NUMERICAL SOLUTION OF 1'aE NAVIER-STOKES EQUATIONS

The numerical methods used to solve the Navier-Stokes equations

are presented in this section. The development of finite difference

approximations of Equations (2.26) and the algoritlmi used to solve

them are described. Boundary conditions and the calculation of values

along the stagnation lines are discussed. The procedures used to

control nonlinear instabilities in the solution are described.

Finally, a discussion of the initial conditions for the test case used

in this research is given.

A. Finite Difference Approximations and the Solution Algorithm

The numerical vector Equation (2.26) for the case of zero angle of

attack, 3E _ 0 , was discretized into a set of difference equations by

replacing the partial derivatives with finite difference approximations.

These difference equations were written in a form that allows either of

two fully implicit differencing schemes to be used. In both of these

schemes, spatial derivatives were replaced by second order central

difference approximations. In the first scheme, the time derivative is

replaced by a three point backwards difference approximation at N+1

where N is the time step of size At.

In the second scheme, the time derivative is replaced by a first

order backwards difference at N+1. The spatial derivatives are

replaced by the average of the derivatives evaluated at time steps

N+1 and N. This scheme is comm.nily referred to as "trapezoidal" or

Crank-Nicolson differencing. Beth of these differencing; schemes are

second order accurate in space and time.

SOR iteration was used to solve the system of equations resulting;

from the difference approximations described above. The SOR algorithm

fur both differencing schemes is

I t,



	

W +J	 1J
N+l(P) 

+ wR l ^ J	 (3.1)

where w is the relaxation parameter and (p) denotes values at the

previous iteration. The residual vector, R, is

R	 = (1+d 
)WN	 - d V-1 - WN+1(p) _ d At RESN+I

" I l i	 3 -I ,J	 3-I,J	 -^I, 1	 2	 I,J

	(d2-d3)RHSIli
	 (3.2)

where

RHSI,J = 
f I+1,J - FI-1,J + 

G
I,J+1 - ^I,J-1 

-2H
I,J	 (3.3)

In equation (3.2), setting the parameters, d 2 = d 3 - 1/3, yields the

three point backwards time differencing scheme. Setting, d 3 = 0 and	 I

62 = 1/4, yields the trapezoidal scheme.

All parameters in Equation (3.2) evaluated at NO use the most

recent values of W from the previous iteration. Modifications to

Equation (3.2) to control non•-lineal• instabilities are discus ped later

in this chapter.

B. Boundary Conditions on the InfinLt y Boundary

The infinity boundary is divided intu inflow and outflow regionp.

The freestream values of the flow variables are maintained along the

inflow boundary. Values along the outflow boundary are computed by

extrapolation of the physical flow parameters (p, U, S, Y) from the

field. The extrapolation formulae for the outflow boundary is derived by

assuming the spatial derivatives of the flow variables along lines of

constant C at the outer boundary are equal to zero. The three point

backwards difference approximation of the first derivative then can

17
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be used to write the following formula:

FI,JMAX M (4FI,JN.AX-1 - FI,JMAX-2)/3
	 (3.4)

where F - (p, U. S, `Y) and J - JMAX denotes the outer boundary.

C. Boundary Conditions Along the Body Surface

The body surface is taken to be an impermeable, isothermal boundary.

The no slip condition (U - S _ v 1 _ v2 _ 0) is imposed along the boundary.

Pressure and energy at the boundary are computed by Eqs. (2.5) and (2.9).

The wall density is computed by solving the continuity equation at the

body surface. The no slip condition permits the continuity equation at

the boundary to :e written as

( at ) I,1	 (an) I,1	
(3.5)

where B - ov2 and J - 1 denotes the body surface.

Two different differencing techniques were used to evaluate

Eq , iat:on (3.5). In the first technique, the time derivative is evaluated

at the N+1 time level by a first order backwards difference. The spatial

derivative is evaluated at the Nth time level by a three point backwards

difference approximation. Equation (3.5) then becomes

	

N+1	 N	 '%t	 N	 N
	o l'l	 01,E - 6 {4B1,2 - B 1,3 (3.6)

where 
3I,1 

a 0. This equation was used for the first two time steps of

the Solution. Equation (3.6) is an explicit equation and is known to

cause instabilities with repeated use. Therefore, an implicit equation,

derived by replacing both the time and the space derivatives with three

n ^ 4 nt backwards differences evaluated at time level N+1, was used at

succeeding time steps. These aparoximations yield

18



	

oN+1	 1 (4o N
	- oN-1) - At 

(4B
N+1 - BN+1 )	(3 ^)

	

I,1	 3	 I,1	 I,1	 3	 I,2	 1,3

where BI
'
l = 0

D. Calculation of Values Along the Stagnation Lines

For axisymmetric flow, Equations (2.26) contain singularities along

the forward and rear stagnation lines where r - U. The values of the

flow variables along the stagnation lines must therefore be computed

by extrapolation from the field. The extrapolation scheme proposed by

WindhoFf and Victoria [121 was used in the present research. Let F(^,q,m)

be any one of the flow parameters p, U, or 4' on the stagnation lines.

Then, by symmetry

F(I S ,•I,^)	 F(I s ,J,O+Tr)	 (3.8)

and

(a^)Q3m	 (a^)^=m+Tr
	(3.9)

where I s - I at the stagnation line.

An extrapolation formula for the flow variables along the stagnation

line can be constructed by replacing the derivatives in Eq. (3.9) by

three point forward difference approximations. This substitution and

Eq. (3.8) combine to yield

FI	
6 [ 4 ( F I	+ FI	) - (FI	+ FI	)1	 (3.10)

s,J	 5+1,J	 s-1,J	 s+2,J	 s-2,J

If the symmetry of the flow variables is ideally maintained during the

crurse of the solution, Eq. (3.10) can be replaced by

F I ^ J - I (4F I	^J - F I	 .J)	 (3.11)
S	 s+1	 s+2

19



Equation (3.11) was initially used to compute the values of the flow

variables along the forward stagnation line.

Along the rear stagnation line, the values of the flow variables

were computed by averging the values at I-2 and IMAX-1. The Cartesian

velocity component, S, is set to zero along both stagnation lines. The

contravariant components of velocity, v i and v 2 , can then be computed

by Equations (2.19). For S - 0, Eqs. (2.19) yield

	

Ur
rt	

Ur

	

v l = - 1
	

v2	 -	 k3.12)

E. Control of Numerical Instabilities

T'he numerical instabilities described in Chapter 1 are all

part of numerical solutions of systems of partial differential equations

such as the Navier-Stakes equations. The oscillations in the flow

variables that signal the onset of numerical instabilities must be 	 1

damped as soon as they appear in the solution in order to maintain a

stable solution. Although several methods for controlling; numerical

instabilities have been proposed, the most successful techniques for

compressible flow problems have introduced terms into the finite dif-

ference approximations of the equations being solved to "filter" or

"smooth" the oscillations. Thcse additional terms act to add artificial

viscosity that. increase the effects of dissipation in the solution. An

equivalent method is to add an explicit artificial viscosity term to the

calcul-tion of the coefficient of viscosity, u. Both of these methods

were itsed in the present research.

Initially, the Shuman filtering technique employed by Viiegenthart

1131 and liarten and Zwas [14] was used. The Shuman tilter is implemented

by replacing; W  and WN-1 in Eq. (3.2) with
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W I,j + 4 r.J [WI+l,j + I-, 1-1.J + W1,J+1 + W
l'j-1 - 4WI'3 ]	 (3.13)

where W I,j represents the physi•_al values of the flow variables

%0,0U,pS,T) and a is a switching parameter that can be used to turn

the filter on and off or to vary the strength of dissipation. Setting

a equal to 0.5 yields the form of the Shuman filter used in Refs.

[1,2,3]. Application of this form of the filter at all points in the

field will eliminate oscillations in the flow variables. However,

the excessive dissipation introduced by the lull Shuman filter lowers

the effective Reynoldb number of the flow and delays convergence to a

steady state. Therefore, it is desirable to apply the filter only in

regions where oscillations occur. This can be accomplisised by setting

the value of the switching parameter by either of two methods.

In the first method. the field is searched prior to the start of

a time step for N shaped wave forms. The filter is then applied at

the inner points of the N-wave. The sP-ond method is similar to the

technique used in Ref. [14]. The valut of a is varied from point to

point in proportion to the magnitude of the local gradient of one of

the flow variables such as density or pressure. Therefore, more

diffusion will be applied in regions of high gradients, such as across

shock waves, where numerical instabilities have a tendency to occur.

It should be pointed ouc that the N-wave and Lite switched forms of the

Shuman filter will not completely eliminate oscillations enough to allow

the solution to converge the steady state.

Because of the severity of the full Shuman filter. a uecond technique

for introducing dissipation into the solution was tried. This technique

adds an explicit fourth order artificial viscosity term to the computation

of the viscosity coefficient. This method of adding artificial viscosity
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is related to the fourth order amoother ua4d h . Baldwin and MacCormack

(151 and was used successfully b) • Thompson 1161 in ar incompressible

flow problem. In the current research, this method was implemented by

replacing the viscosity computed by Sutherland's law with

2	 2
u- `s [ 

1+ 
C( 3 P + a 2

	a{z	 an

where u s is the viscosity given by Eq. (2.6). C is ar. arbitrary constant

whose magnitude is determine.l experimentally.

F. Initial Conditions

The uniform flow conditions used in this research were as follows:

	

M - 22.04, jV * J - 7000.0 m/sec, ^^*	 7.73067 x 10 5 kg/m 3 , and
w	 u+	 n

T , - 250.81 0 K. From these conditions the pressure, coefficient of

*
viscosity and Knudsen number are computed to be: P

n• 5.57043 N/m•,

1.60209 * 10 kg/m-sec and 1,	 0.000193. For a body diametor

of five meters, the free stream Reynolds number is equal to 168888.

The ratio of specific heats was assumed to be y = 1.41. An isothermal

wall temperature, T
w
 - 1000.01)K. was maintained throughout the course

of this research.

Because the solution algorithm used in the present investigation

is iterative, an initial guess for the values of the flow variables

is needed at all field points in order to start the solution. however,

finding a method of starting the solution that didn't diverge in the

a	 initial time step proved to be one of the major tasks of this research

project. Although several methods of starting the solution were

attempted, only one techniqu-, provided an initial guess that would

converge for the first time step. In this technique, the U component

of velocity is assumed to vary linearly along a line of constant !,
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from the body to the outer boundary. The S component of velocity was

assumed to be zero. Temperature, pressure and density at all points in

the field was assumed to be equal to their values along the outer

boundary. A similar technique was applied in Refs. 18,9,10] to ini-

tialize the values of the flow variables in the region between the

body and the bow shock wave. In the present research, it was found

that this method would converge if the time e.:ep size was lowered to

Lt - .001. The acceleration parameter was 0.9 for all four equations

of motion. Althcubh the first time step converged using this method

of starting, the full Shuman filter was required for about ten time

steps to maintain stability



4. COMPUTATIONAL PROCEi ►URF.S AND RESULTS

A. Computational Procedures

The numerical techniques aescribed in the previous chapter were

used to write a caiaputer program that can solve the Nav'er-Stokes

equations for either 2D or axisymmetric flow about an arl.itrary axially-

symmetric blunt bodv. The solution process begins with the generation

of a coordinate system and the calculation of the corresponding metric

data for a prescribed body and an outer boundary cf. rig. 2. As shown

in Fig. 3, the outer boundary used in the presEnt research is an ellipse

centered at the midpoint of the body. It is assumed that the outer

boundary is placed far enough away from the body surface so that the

flow on the downstream boundary will be supersonic. The region between

the sixth and the forty-sixth lines of constant '. is taken as the outflow

boundary.

Once the metric data for a given coordinate system is computed

and stored on file, the actual solution of the Navier-Stokes equations

is begun by assuming an initial guess of the solution for the entire

computational domain. The solution is then advanced through time until

a Steady State solution is reached. However, as has been previously

mentioned, finding an initial guess that did not diverge in the first

time step proved to be me of the major tasks of this research.

It was originally intended to first obtain a stead; , state solution

for the case of 2D Now and then use the resulting data as an initial

guess for the axisymmetr:c flow case. Generally, the uniform flow

conditions along the upstream boundary in he used to provide an

initial value at each fiela point since the initial guess and the

resulting transient solution are not required to be physically

rea.istic. For this initial guess. the boundary coti.litions along the
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wall become the driving functions for the solution. However, as in

Ref. [3], it was found that this method would not work when the free

stream Mach number is very high. After considerable numerical experi-

mentation, it was found that the solution could be started at the

desired Mach number (22.04) by assuming a linear variation in velocity

between the body and outer boundary along lines of constant ^. Energy

and density were set to the free stream values at all points in the

field. However, this technique had two disadvantages. The first dis-

advantage was that the time step size had to be lowered to .001 for a

fixed acceleration parameter of 0.9 for all the four equations of

motion. Extensive numerical experimentation did not produce a combi-

nation of time step and acceleration parameter that would allow a

larger time step to be used. The second disadvantage was that the

values of temperature, velocity, and pressure in the region between

the expected location of the tow shock and the outer boundary produced

by the linear velocity distribution differed substantially from the

free stream values. The formation of a shock transition region was

therefore substantially delayed because of the time required for the

free stream flow to convect into this region and increase the magnitude

of the velocity toward the free stream value at a time step of .001.

The 2D case was started using the linear velocity distribution and run

for several hundred time steps. Although the solution showed signs of

eventually approaching the free stream in the region in front of the

shock, the computer time required to obtain a steady state solution

would have been considerable.

Figures 4 and 5 present distributions of temperature and velocity

magnitude along the stagnation line that are typical of the linear

velocity distribution initial guess.
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At this point in time, the cost of using the local computing

facility became prohibitive. Further progress was delayed until

arrangements could be made to use the computational facilities at

NASA's Marshall Space Flight Center. Because of the delay induced by

rho tranifer of the computer program to NASA-Marshall and the time

limits imposed by contractual requirements, it was decided to abandon

attempts to obtain a steady state 2D solution. Instead. the methods

described above were used to restart the solution for the case of

axisymmetric flow. In an attempt to speed up the solution process,

a transition region between the values of the flow variables at the

.utticipated location of the bow shock and the free strea^t values was

Introduced explicitly after fifty timt• steps. The stand off distance

of the shock along the stagnation line was computed using the empirical

equations of Billig 1171. A linear variation between the values of

the flow variables at the rl location directly in front of the anticipated

shock location and the free stream values was taken over five cell

lengths in the tt direction. 'nce solution was continued in a normal

manner from this point on.

It was found that the full Shuman filter described in the previous

chapter was rt•yuired to control instabilities intiui ed in solving the

finite difference equations. however. once the flow field wa s established,

it was found that repetitive use of E lie full Shuman filter tended to

smear the shock transition region toward the outer boundar y . Unfortunately,

the dissipation introduced b y the Lull filter was required to control the

"wiggles" that appeared in the flow variables. 'Cho switched and N-wave

forms of the filter did not appear to introduce enou i;h dissipation to

coat rol these -' sc it lat ions .

At this point, the calcul.it iott of the explicit artificial viscosity

2b



term described in the previous chapter was introduced into the program.

It was found that the arbitra ry constant, C, Lad to be on the order

of 10
-b
 for the method to be effective. This method of introducing

dissipation seemed to work quite well at first. However, as the

solution progressed in time, the value of the temperature along the

stagnation line in the region where the shock wave had started to form

suddenly started to decrease. This trend continued until a negative

value of temperature was reached. It is felt that modifying the

viscosity coefficient in this manner produced unrealistic values of

energy that lead to the calculation of the negative temperature.

The solution has been run through 700 time steps at a step size

of 0.001. Efforts to increase this step size have been unsuccessful. 	
I

For a fixed acceleration parameter of 0.9, it took on the average

.825 min. of computer time to converge a time step to a tolerance of

10- '. Convergence was usually obtained after two or three iterations.

For a 51 x 50 mesh, this time represents a computational effort of

about .0194 sec. per grid point per time step.

All runs were made on UNIVAC 1100/80 series computers at

Mississippi State University and NASA-Marshall. The computer program

was written in FORT"AN using the UNIVAC ASCII FORTRAN compiler. This

program required approximately 102,000 words of core on the 1100/80.

B. Discussion of Results

The solution of the Navier-Stokts equations for the case of

axisymmetric flow with the initial conditions given in the previous

chapter has been obtained through a non-dimensional time of 0.7.

Since this is still a very early time, the results at this time can

only be considered as preliminary. Therefore, only qualitative



judgments can be made about the following results. Figures 6-11

depicts the non-dimensional values of density pressure, temperature,

and velocity magnitude along the forward stagnation line (I - 26)

at a non-dimensional time of U.7. The trends in these values seem

satisfactory. The transition region that denotes the existence of

the shock wave is readily seen. The standoff distance of the shock

as given by the plots of temperature and pressure compare favorably

with the standoff distance computed by the empirical equations given

in Ref. 1171. Density and velocity magnitude are plotted as functions

of both the non-dimensional distance from: the nose of the body and

the coordinate ti. The pronounced rise in density in the viscous

region close to the body is clearly seen in Figures 6 and 7.

Figures 8 and 9 show that the velocity profile in the transition

region has been smeared over about twelve grid cells. The temperature

profile along the stagnation line is given in Figure 10. The maximum

value of temperature Shown in the plot seems unrealistically high.

This is thought to be due to a combination of the transient nature of

the flow and the assumption of an ideal gas. Figure 11 presents the

distribution of pressure along the stagnation line. Figur_ 12 represents

a plot of density contours about the body whose values are greater

than that of free stream values. This plot indicates a large region

of rarefied flow extending; over much of the field. This rarefaction

is felt to be a transient plictiomena Induced by the initial guess.
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5. CONCLUSIONS AND RECOTu4ENDATIONS

A method for solving the Navier-Stokes equation for hypersonic

flow about axially symmetric bodies has been presented. Although only

preliminary results have been obtained, the following conclusions

can be drawn.

(1) The technique offers significant computational advantages

because of the conservation law form of the equations and

I
the reduced amount of metric data required for axisymnmetric

and 3D flow calculations.

(2) The major difficulty encountered with the method was finding

an initial guess that would remain stable and converge to

a realistic solution. Although the linear velocity variation 	

fi
technique used in the present research supplied a stable

initial solution, large amounts of dissipation were required

to maintain stability. The time step imposed by this

starting method also is very costly in terms of computer

I	 time. The method of starting from a steady state 2D

solution needs to be pursued. A gradual start in which the

solution is started at a lower Mach number and gradually

brought up to the desired Mach number should be investigated.

(3) The problem of controlling numerical instabilities was not

satisfactorily reconciled. Although the switched form of

the Shuman filter was not particularly effective in this

research, it seems to offer the most promise for reducing

the severity of numerical instabilities without substantially

retarding the progress of the flow toward steady state.
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(4) A more refined mesh system should be employed to increase

the accuracy of the solution in the region of the bow shock.

7

30



REFERENCES

1. Warsi, Z. U. A., Devarayalu, K., and Thompson, J. F., "Numerical

Solution of the Navier-Stokes Equations for Arbitrary Blunt Bodies

in Supersonic Flows," Numerical Heat TranFfer, Vol. 1, 1978, p. 499.

2. Warsi, Z. U. A., Devarayalu, K., and Thompson, J. F., "Numerical
Solution of the Navier-Stokes Equations for Blunt Nosed Bodies in

Supersonic Flows," Report MSSU-EIRS-ASE-78-1, Engineering and
Industrial Research Station, Mississippi State University (1978).

3. Devarayalu, K., "Numerical Solution of the Navier-Stokes Equations
for Supersonic Flows with Strong Shocks," Ph.D. Dissertation,
Mississippi State University (1978).

4. Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic

Numerical Generation of Body Fitted Curvilinear Coordinate System
for Field Containing any :Number of Arbitrary Two-Dimensional
Bodies," Journal of Computational Physics, Vol. 15, 1974, p. 299.

5. Warsi, Z. U. A., and Thompson, J. F., "Machine Solutions of Partial
Differential Equations in the Numerically Generated Coordinate
Systems," Report MSSU-EIRS-ASE-77-1, Engineering and Industrial
Research Station, Mississippi State University (1976).

6. Thompson, J. F., "Numerical Solution of Flow Problems Using Body-
Fitted Coordinate Systems," Lecture Series in Computational Fluid
Dynamics, von Karman Inst. for Fluid Dynamics, Belgium (1978).

7. Warsi, Z. U. A., "Conservation Form of the Navier-Stokes Equations

in General Non-Steady Coordinate Systems," to appear in AIAA Journal.

8. Tannehill, J. C., Holst, T. L., and Rakich, J. V., "Numerical
Computation of Two-Dimensionai 'Viscous Blunt Body Flows with an
Impinging Shock," AIAA Journal, Vol. 14, No. 2, 1976, p. 204.

9. Rakich, J. V., Vigneron, Y. G., Tannehill, J. C., "Navier-Stokes
Calculations for Laminar and Turbulent Hypersonic Flow Over Indented
Nosetips," AIAA Paper 78-260, Huntsville, Alabama, 1978.

10. Kutler, P., Chakravarthv, S. R., Lombard, C. K., "Supersonic Flow

over Ablated Nosetips Using an Unsteady Implicit Numerical Procedure,"
AIAA Paper 78-213, Huntsville, Alabama, 1978.

11. Weed, R. A., "Numerical Solution of the Navier-Stokes Equations for
Hypersonic Flow about Axially-Symmetric Blunt Bodies," M.S. Thesis,
Mississippi Stara University, August 1980.

12. Widhopf, G. '. and '7ictoria, K. J., "On the Solution of the Unsteady
' vier-Stokes Equations Including Multicomponent Finite Rate

Chemistry," Computers and Fluids, Vol. 1, 1973, p. 159.

31



13. Vliegenthart, A. C., "The Shuman Filtering Operation and the
Numerical Computation of Shock Waves," Journal of Engineering Math,

Vol. 4, No. 4, 1970, p. 341.

14. tlarten, A. and Zwas, G., "Switched Numerical Shuman Filters for
Shock Calculations," Journal of Engineering Math, Vol. 6, No. 2,
1972, p. 207.

15. Baldwin, B. S and MacCormack, R. W., "Interaction of Strong Shock

Wave with Turbulent Boundary Layer," AIAA Paper 74-558, Palo Alto,
California, June 1974.

16. Thompson, D. S., "Numerical Solution of the Navier-Stokes Equations
fur High Reynolds Number Incompressible Turbulent Flow," M.S. Thesis,

Mississippi State University (1980).

17. Billig, F. S., "Shock-Wave Shapes Around Spherical and Cylinderical-

Nosed Bodies," J. Spacecraft, Vol. 1, No. 6, 1967, p. 822.

18. Zucrow, M. J. and Hoffman, J. D., "Gas Dynamics," John Wiley and
Sons, 1976.

32



MERIDIAN PLANE
•----------

PLANE B

x

PLANE B

x

Figure 1.	 Coordinate Systems Used in Definition
of Metric Data

33



r
3

r
4

r

- 4

r n.

E

F!,ure 1. Physical Plane.

Transformed Plane
(Natural Coordinates)

•
r
4

noon
o

x

Figure 2. Field Transformation.

34



Figure 3. The Computational Coordinate System
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Figure 4. Temperature Distribution Along the

Stagnation Line at Time 0.05.
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Figure S. Velocity Distribution Along the
Stagnation Line at Time 0.05.
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Figure 7. Density Distribution Along the

Stagnation Line as a Function
of n at Time 0.7.
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Figure 10. Temperature Distribution Along

the Stagnation Line at Time 0.7.
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Figure 12. Density Contours at Time 0.7.
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Appendix

Thermodynamic Equations

On the molal basis, the specific heat at constant pressure of a

thermally perfect gas in the range 300°K to 1000°K is given by, [18],

	

C = R(A1 + A2T* + A3T* 2 + A4T
*3
 + A 5T*4 )	 (A-1)

P

where the constant A i have been g!7-n after Eq. (2.10), and R is the

universal gas constant,

R = 8314.3]/kgmol - °K .

Introducing

	

* C	 -

	

C =- 	 R= R
	P m	 m

where m is the molecular weight, we have

*	 *	 *2	 *3	 *4
C p = R(A l + A2 	 + A3 	 + A4  	 + A 5 	 )	 (A-2)

On non-dimensionalization

*

T
*	 C

T	 p C PM

we obtain

C = f (T)	 (A-3)	P
	 f (1)

n

where f(T) has been defined in Eq. (2.10).
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Note that

	

CPW - Rf(1)	 (A-4)

The ratio of the specific heats 
P 

and C  denoted as

Y	 Cp/Cv

can now be expressed a function of T by using the thermodynamic equation

C - C = R
P	 v

and the Eqs. (A-3) and (A-4) as

	

Y(T) = f(T)T)	 1	
(A-5)

For a thermally perfect gas

	

de = C dT	 (A-6)
v

and

dh = C dT	 (A-7)
p

On non-dimensionalization, Eq. (A-6) becomes

T C C

de = ---3`0 r ur	 (A-8)

U*m

Using (A-3), (A-4) and (A-5), we get

de = C 2 [f(T) - 11dT
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where,

C2 - C1/f(1)

(A-9)

C 1 - * f (1)
U

Substituting (2.10) for f(T) in Eq. (A-V) and integrating, we obtain

e(T) = C,^[(A 1 - 1)T + I(A2Tw)T2 + 3(A3TIV)T3

+ 4(A4T*3)T" + 5(A
5T^4 )T"	 (A-10)

Having expressed a as a function of T, we now use the expression for e

from (2.4) to have

e	
It - 1-Ivl2

P
(A-11)

Substituting e(T) from (A-10) in (A-11) we get a fifth degree equation

for obtaining the temperature, viz., Equation (2.9).
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