NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

HIGH SPEED CMOS /SOS STANDARD CELL NOTEBOOK

By RCA
Advanced Technology Laboratories
Government and Commercial Systems
Camden, New Jersey 08102
September 1978

Prepared for

NASA-George C. Marshall Space Flight Cents Marshal! Space Flight Center, Alabama 35812

TECHNICAL REPORT STANOARD TITLE PAGE

17. KEY WORDS

19. SECURITY CLASSIF, (of the roporf)	
Unclassified	20. SECURI.
Unc	

CONTENTS

Section Page
I INTRODUCTION 1
II HIGH SPEED CMOS/SOS STANDARD CELL FAMILY 2
A. Cell Descriptions 2
B. Procedure for Generating Dynamic Data 4
C. Additional Cell Data 6
APPENDIX 15

LIST OF CMOS/SOS STANDARD CELL DATA SHEETS

112: Two-Input NOR
1130 Three-Input NOR
1140 Four-Input NOR
1220 Two-Input NAND
1230 Three-Input NAND
1240 Four-Input NAND
1310 Buffer Inverter
1340 Two to One Clocked Trans. Gate
1370 Low Z Transmission Gate
1510 Non-Inverting Buffer
1510 Double Buffer Inverter
1570 On-Chip Tristate
1620 Two-Input AND
1630 Three-Input AND
1640 Four-Input AND
1720 Two-Input OR
1730 Three-Input OR
1740 Four-Inpit OR
1870 Two, Two AND-Two NOR

1890 Two, Two, Two AND-Three NOR
2000 J/K Flip-Flop with Set/Reset
LIST OF CMOS/SOS STANDARD CELLL DATA SHEETS (Concluded)
2020
D Type, M/S S/R Flip-Flop
2310
Exclusive Oll
2570
Off Chip Tristate Pad
2810
D Flip-Flop with Inverted Output
2820 D Type M/S Flip-Flop
2830
D Flip-Flop with Feediack Loop
2840 D Flip-Flop with Reset
7000 PLA Input Decoder
7010 PLA Output Function String
9020 Off-Chip Tristate Pad
9030 Input Inverter Buffer Pad
9040 Input Inverter Buffer Pad
9050 Off-Chip Tristate l'ad
90609070Off-Chip Inverting Buffer Pad
9130 Buffered Non-lnverting Input Pad
9140

I. INTRODUCTKN

This report describes the NASA-MSFC high speed CMOS/'SOS standard cell family, which was developed on (1) NASA programs NAS12-2233 and NAS8-29072 under the direction of aiohn Gould, NASA Technical Program Director, MSFC, Huntsville, Alabama, and (2) internal Independent Research and Development programs.

The circuits were designed to be compatible with and maximize the performance of the Automatic Placement and Routing Program PR2D which was also originally developed under NASA program NAS12-2233 directed by John Gould and improved on other Government programs as well as on several Independent Research and Development programs. Together the program and circuits provide the capability of generating high speed, high performance, random logic custom LSI arrays with quick turnaround, high density, and low static and dynamic power.

The basic technology with which circuits are designed is the self-aligned, silicongate CMOS/SOS process.

These cells are used in the gencration of design automated custom LSI arrays in virtually the same manner as other RCA-designed standard cell families. Briefly this requires user-generated input data to the computer program which consists of the net or connectivity list of circuit cells as well as the cell or pattern identification numbe" which is available from the data sheets. With essentially this information, the computer placement and routing program will provide an automatically generated layout and interconnection in a data format consistent and compatible with an automatic precision mask artwork pattern gencrator.

This report contains standard cell data sheets for each of the cells. It contains a description of the general information and data that are contained on all data sheets. It also contains additional information and descriptions where appropriate. For example, additionnl isoormation is provided as to how the dynamic performance curves shown on the data sheets were generated, the validation process, and the means by which their accuracy will be updated. A user's guide is planned, which will complement the data contained here, to provide the design information necessary for complete user utilization.

II. HIGH SPEED CMOS/SOS STANDARD CELL FAMILY

A. CELL DESCRIPTIONS

The table lists the cells that currently make up the CMOS/SOS standard cell family. Data sheets are contained for these cells in the Appendix. Where necessary, the accompanying table contains information additional to that on the data sheets to describe cell operation.

Each data shect contains the following information:

- Cell family technology.
- Descriptive name of the cell indicating its function.
- Cell identification or pattern number. This number identifies the cell in the input data to the automatic placement and routing program.
- Supply voltage for which the given propagation delay and transition times are applicable.
- Width of the cell in mils.
- Circuit schematic of the logic configuration including the numbering of each input and output connection. These numbers provide the means by which the chip interconnection or net list is generated.
- Capacitance at each input and output connection. This capacitance is computed on the basis of the geometry, topology, and materials associated with the capacitor. The Miller effect is not included in value. It is automatically included when the device is analyzed by computer simulation techniques.
- Logic symbol plus the Boolean equation describing the cell function.
- Truth table.
- Dynamic performance data.

Dynamic performance data at $V_{D D}=10 \mathrm{~V}$ is provided for each logic cell. These data may be presented in several ways. These include propagation delay on a per stage basis, transition time, clock rate, minimum or maximum pulse width, delay measured with respect to the clock, or combinations of these. In all cases the dynamic data are given as a function of load capacitance.

For logic cells like the $1120,1130,1140,1220,1230,1240,1310,1520$ and the 1620 , the delay is given in the form of curves showing stage delay and transition times as a function of capacitive loading. The stage delay is the average of the propagation delay as measured at the 50 percent signal swing level for positive and negative going input signals. Similarly, the transition time is measured over the 10 to 90 percent rise and fall times. The input signal to these circuits during the gencration of these data is the output of an inverter stage which acts as a buffer against the programmed input pulse. The principal objective of this buffer is to minimize the effect of the transition time of the input on the dynamic data. The dependency, nevertheless, exists and should be considered.

In contrast to this, the dynamic data for those circuits which contain storage devices are given in terms of the minimum pulse width to transfer new data into the master and slave storage elements as well as propagation delay data. In the latter case, the delay is specified from the 50 percent level of the negative transition of the clock to the 50 percent level of the output of the slave.

As new cells are added to the CMOS/SOS family, they will be dynamically characterized in a manner that will optimize the cell's usefulness to the system designer.

B. PROCEDURE FOR GENERATING DYNAMIC DATA

The dynamic data shown on the data sheets are based on computer simulation techniques using a RCA-developed computer circuit analysis and simulation program. Primarily developed for integrated circuit application, the program contains specially developed device models with parameters expressed in process parameters as well as circuit parameters. To characterize a particular process, the parameters of the device models are provided values that correspond directly to the process being used.

A detailed description of how the dynamic data were generated can be found in the final report. ${ }^{1}$

Briefly, however, each cell was simulated as follows: all transistors were simulated by a device model that included its mask geometries; electrical characteristics like threshold voltages; intrinsic capacitances, process parameters values for mobility, gate oxide, field oxide thickness, and permitivity;

1. P. Ramondetta, A. Feller, R. Noto and T. Lombardi, "CMOS Array Design Automation Techniques, " Final Report on Contract NAS12-2233 Mods 6 and 11, RCA Advanced Technology Laboratories, Camden, New Jersey, May 1975.
effect of lateral diffusions expressed in terms of modified channel length; and resistance associated with the polysilicon gate and intracell connections. Each cell was analyzed with a lond that consists of a series resistor and capacitive load. The series resistor represents the anticipated average resistance that a typical cell will be driving as a result of polysilicor interconnections. In addition, the cell being analyzed is driven by an inverter circuit which is designed to provide a signal that simulates the input signal which it normally encounters in a CMOS/SOS LSI array environment.

A key to the accuracy and reliability of the results produced by the analysis and simulation techniques lies in the accuracy and validity of the values used to define the parameters of the device models. To date RCA has produced more than $50 \mathrm{CMOS} / \mathrm{SOS}$ LSI arrays including at least four test chips. Although all of the test chips, including the one described in the reference NASA final report, were designed for different purposes, each one had special circuits designed to characterize the process and generate device model parameter values, Then, as the various functional CMOS/SOS arrays were fabricated and tested, the values of the parameters were improved and updated. In this way, the accuracy and validity of the model are establisined with a corresponding increase in the accuracy and validity of the performance predicted by the simulation techniques. As additional $\mathrm{CMOS} / \mathrm{SOS}$ LSI arrays are produced using the CMOS/SOS standard cell family, the model and its parameter values will continue to be improved and updated.

Although the stage propagation delays and transition times given in the data sheets are specifically for a $10-\mathrm{V} \mathrm{V}_{\mathrm{DD}}$, they can be used to a first-order approximation to provide corresponding cell information at supply voltages other than 10 V . For example, at $5-\mathrm{V} \mathrm{V}_{\mathrm{DD}}$ and assuming a threshold voltage for P and N at 1.5 V , the delay will be reduced as compared to the $10-\mathrm{V}$ data as follows:

Reduction in stage delay at $5 \mathrm{~V}=\left[\frac{(10-1.5)^{2}}{(5-1.5)^{2}}\right] \cdot\left(\frac{5}{10}\right) \cdot(0.8)=2.4$

The 0.8 factor in the equation is an empirical figure that is considered reasonably conservative.

C. ADDITIONAL CELL DATA

1. D-Type, Master/Slave Flip-Flop (Cell No. 2820)

This cell is a true master-slave flip-flop designed for various register applications. With the addition $o^{\prime \prime}$ '" external inverter, such as the 1310 or 1520 cell, it may be used for counter and ioggle applications. Information is stored by means of tristate type devices, ensuring a data input characteristic that is purely capacitive. Data present at the " D " input are transferred to the " Q " output during the negative-going transition of the clock pulse. Loading the master flip-flop is initiated on the positıve-going edge of the clock pulse.

Operating Characteristics

- Clock should remain in the high state for a mirimum of 22 ns to insure a proper transfer of the data information into the master flip-flop.
- The clock should remain in the low state for a minimum of 20 ns to insure a proper transfer of the master data to the slave flip-flop.
- The clock transition (10-90 percent) edge time should be kept below 60 ns .
- For output loading on ' Q " g reater than 0.4 pF , allow a minimum of 26 ns to transfer the data to slave and latch it in.

The cell is implemented with a cumbination of functional, transmission gate, and tristate logic. The transmission devices are used to connect (and disconnect) the master and s!aiv storage devices from the " D " input nnd master rank, respectively. Each storage element is implemented with a single inverter and a low conductance feedback tristate device. Information is held by means of the smaller, high inpedance tristate inverter. The outputs of these tristate inverters are disconnected while their particular flip-flop is being loaded. Latch-up occurs during the transition time of the clock signal, during the falling edge for the master flip-flop, and during the rising edge for the slave flip-flop. At this time, the transmission devices are disconnecting. When the clock signal is high, the logical level at the " D " input is propagated through the first transmission device and loaded into the invorter of the master flip-flop. When the clack signal goes from a high to a low (1 to 0) state, two simultaneous events occur. The master's tristate begins to maintain and define the logical level at the input to the master rank, and the input transmission device begins to isolate the master rank from the " D " input. Concurrent with these events, the second transmission device begins to connect the slave to the master. Opposition from the slave's feedback tristate is eliminated by disconnecting the outpat from this node.
2. Off-Chip Inverting Bufter Pad (Cells No. 9060 and 9070)

These cells are designed for driving ln rye off-chip capacitive loads. To increase the gate density of the arrays using the drivers, the cells have been incorporated into an output pad design. Consequently, they are placed in the pad area. The two cells differ only in their ground and power bus connection.

TABLE. HIGH SPEED CMOS/SOS STANDARD CELL LIBRARY

Cell Number	Cell Function	Description/Comments
1120	Two-Input NOR	Logical NOR
1130	Three-Input NOR	Logical NOR
1140	Four-Input NOR	Logical NOR
1220	Two-Input NAND	Logical NAND
1230	Threc-Input NAND	Logical NAND
1240	Four-Input NAND	Logical NAND
1310	Buffer Inverter	On-chip operation with loads up to 4 pF
1340	Inverting 2×1 Multiplexer	When the control is in the high state (10 V), the output is $\overline{\mathrm{A}}$. When the control is low, the output is $\overline{\mathrm{B}}$.
1370	Low Z Transmission Cate	Electronic equivalent of a single pole, single throw switch. When the control is in the low state, the input and output are effectively disconnected and the other node either floats or is defined by other circuit elements. In the high state, the transmission gate is in the "ON" state with the output connected to the input with a series resistance of approximately 2000 ohms.
1510	Non-Inverting Buffer	Primarily designed for "on-chip" use, this cell can be used to reduce delays when the load capacitanee exceeds 2 pF .

TABLE (Continued)

Cell Number	Cell Function	Description/Comments
1520	Double Buffer Inverter	For capacitance loads in excess of 4 pF
1570	On-Chip Tristate	This cell is a tristate device designed fo\% on-chip use. A control is available to determine the operation mode of this cell. With the control high, the cell operates as an inverter buffer capable of driving heavy on-chip loads. With the control low, the cell is in the "OFF" state, with an extremely high output impedance - on the order of 0.1 pF . This permits the use of bidirectional busses on the chip.
1620	Two-Input AND	Logical AND through two functional stages
1630	Three-Input AND	Logical AND through two functional stages
1640	Four-Input AND	Logical AND through two functional stages
1720	Two-Input OR	Logical OR through two functional stages
1730	Threc-input OR	Logical OR through two functional stages
1740	Frur-Input OR	Logical OR through two functional stages
1870	Two, Two and-Two NOR	This cell performs the function $Z=\overline{A B+C D}$. Drive capability and performance are similar to the 1120 type cell.

TABLE (Continued)

TABLE (Continued)

Cell Number	Cell Function	Description/Comments
2310	Exclusive OR	$\begin{array}{llllll} C_{\text {lock }} & D & R & S & Q & \bar{Q} \\ * & 0 & 0 & 0 & 0 & 1 \\ * & 1 & 0 & 0 & 1 & 0 \\ * & * & 0 & 1 & 1 & 0 \\ * & * & 1 & 1 & \square & \square \\ * \end{array}$ Exclusive OR through a unique combination of four transistors.
2570	Off-Chip Tristate Pad	A special off-chip tristate device with 5 times the drive power of the $9020 / 9050 \mathrm{cell}$.
2810	D Flip-Flop with Inverter Output	This cell is one of three latches in the cell family. This cell provides all the functions of the 2830 cell except that it provides an output in which the polarity of the data is inverted.
2820	D Type MasterSlave Flip-Flop	See Section II C 1.
2830	D Flip-Flop with Open Feed-Back Loop	This cell performs the function $Q=D \bar{C}+Q_{n-1} C$ where D is the data input, C is the clock or control element, Q is the output of the latch and Q_{n-1} is the state of the latch prior to application of the negative clock. This cell can be used as an input or output register element, for buffering, for temporary storage, and as a control 11 ip-llop.

TABLE (Continued)

Cell Number	Cell Function	Description/Comments
2840	D Flip-Flop with Reset	' ': , cell is the third of the latch type cells in the CMOS/SOS cell family.
7000	PLA Input Decoder	This cell, together with the 7010, provides a PLA function. This cell provides a full three-input decoded output with an inhibit control that permits expandability. Functionally the cell consists of eight 4 -input gates with each providing the full 3 data input decoding.
7010	PLA Output Function String	This cell provides the programmable part of the PLA through mask programming. It essentially provides the 'OR" function and may be cascaded serially to provide more complex logic functions.
$\begin{aligned} & 9020 / \\ & 9050 \end{aligned}$	Off-Chip Tristate Pad	These cells are tristate high current drivers designed to drive high capacitance "off-chip" loads. The state of these cells are determined by a control input. When the control is high the cells are low Z, non-inverting buffers. when control is low, devices become high impedance devices that may iv common bussed or phantom ORed. The two cell types are distinguished by their location and orientation in the street area.
$\begin{aligned} & 9030 / \\ & 9040 \end{aligned}$	Input Inverter Buffer Pad	An input pad that provides waveform shaping buffer:ng and signal inversion.

TABLE (Concluded)

Cell Number	Cell Function	Description/Comments		
$9060 /$	Off-Chip Inverting Buffer Pad	See Section II C. 2.		
9070	$9130 /$	Buffered Non- Inverting Input Pad		An Input pad that provides waveform
:---				
shaping and buffering witia no signal				
inversion.				

APPENDIX

CMOS/SOS STANDARD CELL DATA SHEETS
G PAGE bLANK NO: FILIAAN.

DEVICES
3 PADS CELL WIDTH = 3 MILS
$V_{D D}=10 V$

TRUTH TABLE		
A	8	x
0 0 1 1	0 1 0 1	1 0 0 0

SOS STANDARD
CELL NO. 1220

- DEVICES

3 PADS CELL WIDTHE 3 MIL
$V_{\text {DO }}-10 \mathrm{~V}$

TRUTH TABLE		
A	8	x
0	0	1
0	0	1
1	1	0

PIN	CAPACITANCE (PF)
2	0.201
3	0.201
4	0.043

PIN	CAPACITANCE (PF)
2	0.266
3	0.266
4	0.266
5	0.076

LOGIC SYMBOL			
(2) (3) $x=\overline{A \cdot B \cdot C}$			
TRUTH TABLE			
A	0	c	x
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 1 1 1 1 1 1 0

ORIGINAL PAUI. is OF POOR QUALITY
SOS STANDARD CELL NO. 1240

- DEVICES
- PADS

PIN	CAPACITANCE (PF)
2	0.319
3	0.319
4	0.319
6	0.142

ORIGNAI, PAMV TA
or Man

INVERIING 2X1	SOS STANDARD	
MULTIPLEXER	CELL NO. 1340	
10 DEVICES		
4 PADS	CELL WIDTH $=$ E.0 MHLS	$V_{D D}=10 \mathrm{~V}$

PIN	CAPACITANCE (DF)
2	0.38
3	0.01
4	0.41
6	0.69

TRUTH TABLE			
A	B	C	2
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	0	0
1	1	0	0
1	1	1	0

24

URIGINAL PAGE IS OH POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

SOS STANDARD

CELL NO. 1620

- DEVICES

3 PADS
CELL WIDTH = \&MILS
$V_{D D}=10 V$

PIN	CAPACITANCE (PF)
2	0.010
3	0.243
4	0.243

ORIGINAL PAGE IS OF POOR QUALITY

TWO-INPUT OR
SOS STANDARD
CELL NO. 1720

6 DEVICES		
3 PADS	CELL WIDTH = 4 MIL8	$V_{D D}=10 \mathrm{~V}$

SOS STANDARD

CELL NO. 1730
8 DEVICES

- PADS
CELL WIDTH = 5 MILS
$V_{D D}=10 V$

LOGIC SYMBOL			
(2) (3) (a) $X=A+B+C$			
TRUTH TABLE			
A	8	c	\times
0 0 0 0 1 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0 1	0 1 1 1 1 1 1 1

ORIGLNAL PAGLE OF P(n)R OUALI'TY

FOUR-INPUT OR		SOS STANDARD	
	CELL NO. 1740		
10 DEVICES			$V_{\text {DD }}=10 \mathrm{~V}$

PIN	CAPACITANCE (PF)
2	0.400
3	0.400
4	0.400
6	0.400
6	0.010

J/K FLIP FLOP WITH SET/RESET

SOS STANDARD

 CELL NO. 2000.
CELL WIETH - 17 MILS
7 MIL FAMILY O 10 V

$$
\begin{aligned}
& a_{n}=c \cdot n \cdot a_{n-}+\bar{C} \cdot J_{n-1} \cdot \bar{K}_{n-1} \cdot \vec{n} \\
& +s \cdot \ddot{n}+J_{n-1} \cdot \cdot_{n-1} \cdot a_{n-1} \cdot \vec{n}
\end{aligned}
$$

Nota: J_{n-1}, K_{n-1}, und O_{n-1} ARE THE VALUEE of J. K And a beitore the clock changes state.

tauth/table					
c	J	K	8	R	0
2	0	0	0	0	o_{n-1}
2	1	0	0	0	1
2	0	1	0	0	0
2	1	1	0	0	$\overline{a_{n-1}}$
5	-	-	0	0	a_{n-1}
-	-	-	1	0	1
-	-	-	0	1	0
-	-	-	1	1	PROMIBITED
notes: $\mathbf{o}_{\mathrm{n}-1}$ is the state of the output before the last clock TRANSITION - don:t care					

CELL I/O CAPACITANCE VALUES		
PIN	CAPACITANCE (PF)	
2 J		0.12
3,0		0.90
4, K		0.12
б.C		0.37
6.5		0.16
7, A		0.16
MIN CLK TO LOAD MABTEA	$\underbrace{\substack{\text { MIN CLK TO } \\ \text { LOAD SLAVE } \\ \text { CLK }}}_{\text {EXTERNAL LOAD ON O<3 pF }}$	
$\underset{60 \%}{\text { cLK }}$		

CELL I/O CAPACITANCE VALUES	
FN	CAPACITANCE (PFI)
2	0.20
2	0.22
6	-
6	0.10
6	0.20
7	

UKIGINAL PAGE IS OF POOR QUALITY

12 DEVICES 3 PADS

$$
\text { CELL HEIGHT }=7.0
$$

SOS STANDARD CELL NO. 2830
$v_{D O}-10 v$

(2) 0

(3)

		SOS STANDARD CELL NO. 2200
11 Devices 4 PADS	CELL WIDTM - a MuL $^{\text {a }}$	

TRUTH TABLE			
c	R	D	-
0	0	1	0
0	0	0	1
1	0	1	δ_{n-1}
1	1	0	1
0	1	1	NOT determined
\bar{o}_{n-1} is Output before clock goes high			

PLA OUTPUT FUNCTION STRING
SOS STANDARD
1 PAD
O THROUGH SIDE CONTACTE

ELLL NO. $7 \times \times 0$

CELL MEIGNT: RAMMLS

 CELL WIDTM: 3 MULS
LOGIC EQUATION
$0-s+T+U+V+W+X+Y+z$
MOTE: ANY OF THESE TERMS FOR WHICH THE MASK IS PROGRAMMED TO A LOGIC zERO DROPS OUT OF THE EQUATION.

TAUTMTARLE								
5	1	U	V	W	X	Y	2	0
1	0	0	0	0	0	0	0	x_{1}
0	1	0	0	0	0	0	0	x_{2}
0	0	1	0	0	0	0	0	x_{3}
0	0	0	1	0	0	0	0	x_{4}
0	0	0	0	1	0	0	0	x_{5}
0	0	0	0	0	1	0	0	x_{6}
0	0	0	0	0	0	1	0	x_{7}
0	0	0	0	0	0	0	1	X_{8}
0	0	0	0	0	0	0	0	FLOATING

MOTKS:

1. $X_{1} \rightarrow X_{0}$ VAlUES are determined By PROGRAMMING AT THE CONTACT MASK LEVEL.
2. COMEINATIONS NOT SHOWN IN TABLE ARE NOT ALLOWED BY THE INPUT DECODER CELL WHICH DRIVES S, T, U, V. W, X, Y, AND Z.
3. EXPANDABILITY ACHIEVED BY PHANTOM OR "ING" OUTPUTS.

CELL I/O CAPACITANCE VALUES	
PIN	CAPACITANCE (DF)
S, T, U, V,W, X, V, Z	$0.12 \quad$ EACH
0	0.24

DELA: ${ }^{\text {E R ROM S, T, U, V, W, X, Y OR } 2 \text { TO } 0 ~}$ vercue gapacitive load on o

original pag.. OF POOR QUALITY

ORlilival．Pab： OF Paが明，

SOS STANDARD
CELL NO．9130／9140
－Devices
1 PADS
CELL WIDTH： 8 mils

\＆U．S．GOVERNMENT PRINTING OFFICE 1978－640－409／216REGION NO A

