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ABSTRACT

The design of a failure detection and identification (FDI) system consists

of designing a robust residual-generation process and a high-performance decision-

making process. In this research the design of these two processes were

examined separately.

Residual-generation is based on analytical redundancy. Redundancy relations

that are insensitive to modelling errors and noise effects are important for

designing robust residual-generation processes. The characterization of the

concept of analytical redundancy in terms of a generalized parity space, as

presented in this thesis, provided a framework in which a systematic approach to

the determination of robust redundancy relations was developed.

The Bayesian approach was adopted for the design of high-performance

decision processes. The FDI decision problem was formulated as a Bayes sequential

decision problem. Since the optimal decision rule is incomputable, a methodo-

logy for designing suboptimal rules was proposed. A numerical algorithm was developed

to facilitate the design and performance evaluation of suboptimal rules. This

design approach was applied to an example, and the results were compared with

those of Monte Carlo simulations.
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CHAPTER 1

INTRODUCTION

Physical systems are often subjected to unexpected changes, such as

component failures and variations in operating conditions, that tend to

degrade overall system performance. We will refer to such changes as fail-

ures, although there may not be any physical failure present. Maintaining

a certain level of performance under failure is the objective of reliable

system designs. In some cases, it is possible to design a system that is

relatively insensitive to certain failures without explicitly detecting them.

However, the inevitable tradeoff is reduced effectiveness of the system

during normal conditions. Therefore, explicit failure detection and accom-

modation may be more desirable if such degraded overall performance must be

avoided. Another situation where explicit failure detection and identifica-

tion is required in one wnen an appropriate back-up actuator or sensor needs

to be activated to replace the faulty one. He:ce, one needs to know which

instrument should be used. Although failure detection and accommodation re-

present a single objective, it is often reasonable to assume that the appro-

priate remedy for each possible failure is known. From this perspective,

the detection and identification of failures can be treated as a separate

problem and this is the subject of this thesis research.

1.1 Problem Descr Rtion

The study of failure detection and identification (FDI) in dynamical

systems is based on the analysis of the structure and behavior of systems,

which are described by mathematical models. In this research, we are
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nbainly concerned with the linear, time-invariant stochastic, discrete

time model:

q
x(k+l) - Ax(k) + I bj uj (k) + t(k)	 (J.-1)

Jul

y
j
 (k) ! cj x (k) + n j (k)

where x is the n-dimensional state vector, u l , ... ,u are the q known
q

actuator inputs, and yl , .... ym are the m sensor outputs (measurements)t

& and n are independent zero mean, white Gaussian (noise) sequences with

covariance

E{& (k) C' (t) } - Q6k,2

E{n,(k)n' (t)} - Rbk.t

where 6k,*	 thethe Kronecker delta. The column vector b j corresponds to th

j-th actuator and input uj , and the row vector c  corresponds to the j-th

sensor. Equations (1--i) and (1-2) are used to model a dyn&mical system in

the normal mode, i.e. in the no-fail situation.

Failures represent abrupt changes. Hence, various failure modes (fail-

ure types) can be modelled as deviations from the normal mode. A faulty

sensor may take the form of a change in ci , a bias, or increases measurement

noise in (1-2). A malfunctioning actuator may manifest itself as a shift in

b , and an actuator "stuck" at a c:ert,:'-i position that causes an input bias
J
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may be described by a bias in (1-7.). In some applications, the linear

model (1-1)-(1- 2 ) is used to represent the linear'- zed beh%vi .or of a nonlinear

system at a particular operating point. A change in the se t. point can

result in a different set of system matrices, i.e. A, (b j ), and (C j ;. Thus,

shifts in all the system matrices are often necessary in order to model such

a change.

Each failure is characterized by three attributes: 1) the failure

mode or failure type (i), e.g. a biased sensor or a "stuck" actuator;

2) the failure time ( T) -the time at which the failure occurs, and 3) the

magnitude (extent) of the failure (v), e.g. the size of a sensor bias.

By the very nature of a failure, these attributes are not known. Depending

on the situation, not all three attributes are of equal importance. Consider,

for instance, the problem of a failed sensor. with the availability of

back-up sensors, being able to identify the failure mode ( failed sannor)

may provide acceptable overall performance. However, if we want to compen-

sate an estimate of x based on, for example, the Kalman filter (KF) (1] for

the error due to a failed sensor, we need to identify the failure time and

the failure magnitude as well as the failure mode. when back -up sensors are

not ava: .lable, we have to make use of a degraded sensor. Then, we need to

determine both the failure mode and the failure magnitude (e.g. the size of

the bias that has developed in the sensor). However, i^ is rometir - s neces-

sary to estimate both T and v in order to do a good job of identifying i,

even when the failure mode is the only important parameter. This is analogous

to the problem of estimating a subset of the state variables of a system.
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In order to obtain accurate estimates of these variables, it is sometimes

necessary to use a full order filter to estimate the entire state vector.

In any case, the detection of a failure (i,T,v) requires the examination of

the measurement for the failure's characteristic effects.

In recent years, numerous approaches (e.g. the voting scheme 121[31,

the generalized likelihood ratio (GLR) method 141[5], the multiple model

method [5][6] and the detection filters of Beard [7] and Jones 18]) have

been developed to perform FDI in dynamical systems with linear stochastic

models. A comprehensive survey that includes a description of the underlying

principles and a discussion of the advantages and shortcomings of the various

methods has been prepared by Willsky [9]. With such a wealth of background

information available we shall forgo a detailed review of previous work in

FDI. Instead, we proceed to the basic structure of a FDI system and the

issues that require careful consideration during the design of such a system.

The FDI process can be thought of conceptually as consisting of two

stages: residual-generation and decision--making. For a particular set of

hypot'hesized failures, a general FDI system has the basic structure shown in

Figure 1-1. outputs from sensors are initially processed to enhance possible

hypothesized failure effects so that they can be easily recognized. The

processed measurements are called the residuals, and this enhanced effect of

a failure is called the signature of the failure. Intuitively, the residuals

represent the difference between the observed sensor outputs and the expected

sensor outputs in the normal mode. In the absence of a failure, the

residuals should be unbiased, showing agreement between observed and expected
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normal behavior of sensor outputs, and a failure signature often takes the

f,^rm of residual biases that are characteristic of the failure. The rosidual-

generation process can be of varying degrees of complexity for dLfferent types

of FDI systems. For example, in a voting system, the residuals are simply

the differences of the outputs of the various pairs of like sensors, whereas

in the GLR system, the residuals (which are also the filter residuals) are

generated by the more complex Imo'.

In the decision process the residuals are examined for the presence of

failure signatures. Decision functions or statistics are first calculated

using the residuals. Then, a decision rule is applied to the decision sta-

tistics to determine if any failure has occurred in the system. A decision

process may consist of a simple threshold test on the instantaneous values

or moving averages of the residuals, or it may be based on more sophisticated

from statistical decision theory e.g. the sequential probability ratio test

(sPRT) [10].

The design of a FDI system requires the consideration of several issues.

The immediate concern is the performance of the detection system, i.e. how

responsive the system is to failures and how accurate the decisions are.

Unfortunately, systems that respond quickly to abrupt changes are necessarily

sensitive to noise effects. Thus, a tradeoff exists between detection speed

and detection accuracy. In addition, the detection probabilities, i.e. the

probabilities of correct detections and cross-detections (declaring one type

of failure, when, in fact, another has occurred) cannot be arbitrarily
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specified as parameters of the design. They represent additional tradeoffs

inherent in the FDI design problem. These performance tradeoff issues can

be most directly considered in the design of the decision process of the FDI

system rather than the residual generation process. one of the goals of this

research is to develop an approach for designing decision processes that

systematically examines the tradeoffs among the various performance issues.

A desirable and important quality for a practical FDI system to possess

is robustness, i.e. the relative insensitivity of the system's performance

to parameter variations and modelling errors or uncertainties. An ideal ap-

proach to designing a robust system is to include all uncertainties in the

problem specification, and a robust design will result from optimizing (in

some sense) the performance of the system with the uncertainties. However,

this generally leads to a complex mathematical problem that is too difficult

to solve from a practical point of view. At the other extreme, a simpler

alternative approach is to ignore all modelling uncertainties in the perfor-

mance optimization process. The resulting design is then evaluated in the

presence of modelling errors. If the degradation in performance is toler-

able, the design is accepted, otherwise, it is modified and re-evaluated.

Although this iterative method often yields acceptable designs, it has several

serious drawbacks. Since the effects of the uncertainties are not directly

determined, it is often unclear what parts of the design should be modified

and what form the modifications should take. Furthermore, each iteration

may b.a very expensive to carry out since extensive Monte Carlo simulations are

often required for performance evaluation.
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A better approach that considers the possible modelling errors directly

is suggested in the work of Deckert, et.al . on aircraft sensor FDI problems

[11]. The basic idea there is to identify the parts of the system that are

known well and those that may contain substantial uncertainties. Then a FDI

system (i.e. its residual-generation stage) is designed based primarily on

the well-known parts (and only secondarily on the less well-known parts) of

the system behavior. For example, the velocity and acceleration of an air-

craft are related in two ways. Aerodynamic forces that give rise to the

aircraft's acceleration are functions of the velocity (and other variables).

However, this function relating velocity and acceleration is only known em-

pirically and can be rather inaccurate. On the other hand, the kinematical

relationship between velocity and acceleration is governed by a well-known

physical relationship, v--a. Therefore, the perfor*:znce of a design based on

the kinematical relationship is insensitive to system parameter variations,

while a design based on the aerodynamics is sensitive to such variations.

Because, modelling errors affect the residual-generation process directly,

the above approach suggests that robustness can effectively be achieved by

designing a robust residual-generation process. We will adopt this approach

to the robustness issue, as it is much simpler than the ideal approach (of

an integrated treatment of robustness in the residual- and decision-making

systems) and more direct than the trial-and-error method. Consequently, it

will yield more insight into the general problem of robust FDI system design.

In addition, this approach will provide the designer with a qualitative

measure of the attainable level of robustness in the early stages of this

design, and this will allow him to assess what be can expect in terms of

overall performance.
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Computational complexity is another important design consideration.

Clearly, a practical system should only require a reasonable amount of

storage and computation. An FDI system that take into account detailed

dynamical behavior of the system is mare complex but is likely to be more

effective for a greater variety of failures than a system that does not use

the same information. Furthermore, it may permit a reduction in hardware

redundancy. In this study, the tradeoff effects among complexity, performance,

and possible hardware redundancy are considered in the design of both the

residual-generation and decision processes.

The goal of this research is to develop a iaethodology for designing

FDI systems that takes into consideration the issues of performance, robustness,

and computational complexity. Viewing the FDI process as consisting of two

stages allows us to break up the FDI system design problem into two parts.

We will examine the design of robust residual-generation processes and the

design of high-performance decision-making proceeds separately.

1.2 overview of Thesis

This thesis report basically consists of two parts, each dealing with

one of the two stages of the FDI process. In Chapter 2 and 3 we will con-

sider the design of residual-generation processes. The decision rule

(decision pr.=cess) design problem is the subject of Chapters 4,5, and 6.

All residual-generation processes exploit some form of analytical

redundancy - the relationship among sensor outputs and actuator inputs

specified by the dynamics of the system under the no-fail situation, e.g.

I
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the kinematic relation v-a. (when such a relation is violated, a failure

among the components, i.e. sensors and actuators, involved in the relation

must have occurred). In order to facilitate the design of robust residual-

generation processes, a thorough understanding of the concept of analytical

redundancy and how it can be exploited in deriving residuals is needed. In

Chapter 2 we will present a characterization of analytical redundancy (for a

linear time-invariant system in the absimce of noise and modelling uncertain-

ties) in terms of the concept of a parity space. We will describe several

forms of residual-generation that are based on analytical redundancy, and we

will discuss how such residuals can be used for FDI.

In Chapter 3 we will consider the effect of modelling errors and noise

on redundancy relations, and we will define a simple measure of such effects.

Clearly, a residual-generation process is robust (or as robust as it can be)

if it is based on the redundancy relation that is least vulnerable to noise

and modelling errors. The choice of such a redundancy relation is formulated

as a minimax optimization problem (aimed at minimizing the worst case effect

of noise and modelling error). Together with the viewing of analytical

redundancy in terms of a parity space, the minimax design represent a new ap-

proach to the problem of designing robust residual-generation processes.

The design of a decision process involves resolving the tradeoff among

detection performance issues such as expected detection delay, false alarm

rates, and the various detection probabilities. We have chosen to examine

this problem using the Bayesian approach with which the design problem can be
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easily conceptualized. In Chapter 4, we will describe the Bayes formulation

of the FDI decision problem and the optimal Bayes decision rule. Although the

optimal rule is generally not computable, the structure of the Bayesian ap-

proach can be used to derive practical suboptimal rules. we will consider the

design of suboptimal rules based on the Bayes formulation in Glapter S.

Numerical algorithms for designing such rues and evaluating the associated

performance indices (detection probabilities, etc.) will also be presented.

In Chapter 6, we will report on our experience with this approach to designing

decision rules through a numerical example and simulation.

A brief summary of this thesis and a discussion of some future research

directions are included in Chapter 7.



-20-

CHAPTER 2

ANALYTICAL REDUNDANCY AND RESIDUAL GENERATION

2.1 Introduction

The first stage of the FDI process is the generation of residuals,

and one of the goals of this research is to investigate the problem of

designing simple and robust residual-generation processes. To date, this

problem has not been dealt with directly for the general case, although it

was successfully resolved for a particular application Ill ). The present
chapter and the next one are devoted to developing one approach to this

general design problem.

The first step towards our goal is to gain a better understanding

of the concept of analytical redundancy - the basis for residual-generation.

There are basically two forms of analytical redundancy: 1) direct redundancy-

the instantaneous relationship among outputs of sensors, and 2) temporal

redundancy - the relationship among the histories of sensor outputs and

actuator inputs. Before we proceed to present a mathematical characterization

of redundancy we will describe some examples of the two forms of redundancy.

Direct redundancy exists among sensors whose outputs are algebraically

related, i.e. the sensor outputs are related in such a way that the variable

one sensor measures can be determined by the instantaneous outputs of the

other sensors. A simple example is the case of identical sensors, where

we have, L, the absence of sensor noise,

yl = y2	
(2-1)
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The general form of direct redundancy exists among a set of sensors that

are modelled by linearly dependent c j 's in equation (1-2), e.g. a set of

four accelerometers measuring acceleration in 3-space 112 ). In such a case

some fixed linear combination of the sensor outputs should always be zero

(or close to zero when noise effects are included) in the normal mode.

Alternatively, the ideal output of one of those sensors can be generated by

a linear combination of the outputs of the remaining sensors, i.e.

mec

2
yl = L

i^ 
aYyi

where the a  are constants. It is clear that the identical sensor case (2-1)

is a specialization of (2-2). In the absence of a failure, the ideal output

calculated in this way should agree with th-a observed output of the sensor..
m

That is, the residual yl (k) - E aiyi (k) should be zero. A deviation from
i=2

this behavior provides the clue to a failure among the set of sensors. We

note that, through direct redundancy, certain dissimilar sensors may, in

effect, be compared.

Direct redundancy has been exploited to generate residuals for the voting

scheme for sensor FDI, where the "majority rule" principle is applied to

detect and identify the failed sensors. (we will discuss voting in Section

2.3). Examples of successful application of the voting method include [ 2 )

[ 3 )[ 12). The residuals of the voting system simply consist of

weighted sums of sets of linearly dependent (instantaneous) scr ►:or outputs.

Thus, direct redundancy based residual-generation is simple. However it has

(2-2)
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two major disadvantages. A high degree of hardware redundancy is required

to use the "majority rule" principle. In addition, direct redundancy is not

applicable for detecting actuator failures.

In contrast to direct redundancy, temporal redundancy is useful for

both sensor and actuator FDI. Consider, for example, the temporal relation-

ship between velocity (v) and acceleration (a):

	

v(k+1) - v(k) + Ta(k), 	 k=1,2,...	 (2-3)

where T is the period of discretixation. Just as direct redundancy (2-2)

provides the basis for comparing outputs of linearly dependent sensors,

(2-3) prescribes a way of comparing velocity measurements with accelerometer

	outputs, i.e. the residual is	 r(k+l) - v(k+l) - v(k) - Ta(k). 	 As a result,

outputs from velocity sensors and accelerometers can be compared in a mixed

velocity-acceleration sensor voting system for detecting and identifyinq

both types of sensor failures.

Temporal redundancy facilitates the comparison of sensor outputs among

which direct redundancy does not exist. Consequently, a reduction in Hardware

redundancy for sensor FDI can be realized. viewed in a different light, the

use of analytical redundancy implies that additional sensor failures can in

principal be detected with the same level of hardware redundancy.

To see how temporal redundancy can be exploited for detecting actuator

failures, let us consider the first-order model of a vehicle in motion:

	

v(k+l) - atv(k) + Tu(k),	 k=1,2,...	 (2-4)
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where v denotes the vehicle's velocity, and a is a scalar constant between

zero and one reflecting the effects of friction and drag. T is the dis-

cretization step, and u is the commanded engine force (actuator input)

divided by the vehicle's mass. Now, the velocity measurements can be com-

pared to the actuator inputs by means of (2-4), i.e.

r(k+l) - v(k+l) - av(k) - TOM. An actuator failure may be inferred, if

the sensor is functioning normally but (2-4) is not satisfied.

While the additional information supplied by dissimilar sensor outputs

and actuator inputs at dif€:rent times throuqh temporal redundancy facilitates

the detection of a great v..riety of failures and reduces hardware redundancy,

exploitation of this additional information often results in increased com-

putational complexity, since the dynamics of the system will have to be

accounted for. Depending on the accuracy of the system model, the biggest

drawback, however, could be the increased sensitivity to system parameter

variations due to the dependence on the system dynamics - the robustness

issue.

Frc;m the above discussion, one approach to the design of robust

residual-generation processes in any given application is evident: the various

redundancies that are relevant to the failures under consideration are to be

identified, and residual-generation should be based on the redundancies that

are least sensitive to modelling uncertainties. This is the approach we

will examine.

In order to apply this design philosophy, we need: 1) a precise

characterization of analytical redundancy, and 2) a quantitative description

E
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of the effects of noise and modelling uncertainties on the generation of

residuals. We will examine the first problem in this chapter and the second

problem in Chapter 3.

In the next section, we will present a general formulation of the

con%op; of analytical rediuAAnc:y in linear time-invariant systems. This

formulation is a generalization of the parity equations studied by various

researchers (e.g. 12;tsj) and the parity space discussed by Potter and Sumn

1131, and it provides a unified setting for discussing all approaches to FDI.

In Section 2.3 we will discuss a generalized voting scheme for FDI, where

residual-generation is based on the explicit forms of analytical redundancy

described in section 2.2. In section 2.4 we will examine the effects of

failures on the residuals generated from these explicit forms of analytical

redundancy in order to understand how such information is used to detect

failures in FDI schemes other than the voting method. In FDI systems such as

GLR 141 and the detection filters of Heard 171 and Jones 181, residual-genera-

tie)n is accomplished by means of filters, which do not utilize analytical

redundancy in as explicit a form as in a voting system. Based on the insights

obtained in section 2.4 we will explore the role of analytical redundancy in

the residual-generation process of these systems in section 2.5.

2.2 Analytical Redundancy -arity Rela tion

In this thesis we have focussed our effort on developing an approach

to designing robust residur.t-generation processes for linear time-invariant

(LTI) systems. In order to focus on the concept of redundancy we will base

uur discussions in this chapter primarily on an LTI system that is in a
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node-free environment and for which we have an exact model. We will

analyze the effect of noise in subsequent chapters as we consider the ;ise

of redundancy for the design of high-performance FDT schemes.

The system of interest to us here is characterized by the deterministic

model

4
x(k+l)	 Ax (k) + I bju j (k)	 (2-5)

J-1

yj (k)	 c jx(k),	 j- 1,. ..,m	 (2-6)

where x is the n-dimensional state vector, A is a constant nxn matrix,

b  is a constant (column) n-vector, and c  is a constant (row) n-vector.

The scalar u  is the known input to the j -th actuator, and the scalar y  is

the output of the j-th sensor.

In order to facilitate the following discussion we introduce the

following notation:

cj

C j (n j ) .	 c jA
	 nj - 0,1,...	

(2-7)

L cjAnj
The well-known Caley-Hamilton theorem (15) implies that there is an nj,

1<n.<n, such that

nj+1	 nj<nj

rank C.(n.)
> >	 n	 n >n

j	 j— j

(2-8)
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The matrix C j (n j -1) characterizes that part of the system that is observable

from the j-th sensor. Specifically, the null space of C j (nj -1), N(Cj(n1-1)),

is known as the unobservable subspace of the j-th sensor, because any component

of the state lying in N(C j (n-1))	 will not affect the output of the j-th

sensor ( 151. The rows of C.(n.-1) span a subspace of Rn that is the

orthogonal complement of the unobservable subspace. Such a subspace is defined

here to be the observable subspace of the j-th sensor, and it has dimension

nj	The system (2-5)-(2-6) is observable (through the a sensors) if the

sum of the m observable subspaces is the whole space 0. We will assume that

the system is observable.

In Subsection 2.2.1 we will characterize analytical redundancy in terms

of the concept of a parity space and parity relations, and in Subsection 2.2.2

we will discuss residual-generation schemes based on analytical redundancy,

i.e. on parity relations.

2.2.1 The Generalized Paritv Space
_	 m

Let m be a row vector of dimension n = I (n +1) such that
j=1

W= [l...km1, where wi , j=?,...,m, is a (n j +1)-dimensional row vector.

Consider a non-zero w satisfying

C1 (nl)

[wl ,...wmJ	 x = 0,	 yx 6 Rn	(2-4)

C (n )
m m

(Note that in the above equation C j (n j ) has n j+l rows while it has only rank

n,. The reason for this will become clear when we discuss the temporal
J
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redundancy associated with a single sensor.) Since the system is observable,

there are only n-n linearly independent w's that satisfy (2-9). We let 0

be an (n-n)x n matrix with a set of such independent w's as its rows. (The

matrix Q is not unique.) Assuming all the u j 's are zero for the moment, we

have the n-n linearly r.spendent parit y equations or parity relations

that are independent of the state x%

VI (k,nl)

Vm(k,nm)

where

yl(k)

yj (k,n j ) _	 j=l,...,m

J

y. (k+n.)
^ 

(2-10)

(2-11)

The (n-n)-vector p is called the parity vector. Under the ideal conditions

set forth in the beginning of this section, p is zero. More generally, in

the presence of noise and failures, p is a non-zero vector representing the

inconsistencies among the sensor outputs. Different failures will produce

different p's. Thus, the parity vector may be used as the signature-carrying

residual for FDI. We will further discuss residual-generation based on

parity equations in the succeding sections.

The space of all (n-n)-dimensional parity vectors defined by (2-10) is

called a Parity space.	 We note that the parity space discussed 4bo've

is an extension of the parity space examined by Potter and Suman [ 13 ] to
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include sensor outputs at different times, thereby, taking into account

the dynamics of the system. In [13), Potter and Suman exclusively studied

equation (2-10) with n1=n2= ... =n 0.	 We will exploit our generalized

notion of a parity space to characterize analytical redundancy.

When the actuator inputs are not zero, (2-10) must be modified to be

	

V1 (k,n l )	 B1 (nl)

SZ	 -	 U(k,r.0) = p
	

(2-12)

	

Y (k,n )	 $ (n )

	

m m	 m m

where
0

_	 c.B	 0
B  (nj ) =	 J

n.-1
c.
J
 A J	 B	 ....

0

(2-13)

c J.B	 0 ...	 0

B = [bl...bgI
	

(2-14)

no = max[nl , .... nm)
	

(2-15)

U(k) = [u1(k:...uq MP
	

(2-16)

U (k,n0 ) 	 [u'(k) ... u'(k+n0))'
	

(2-17`

Bj (n j ) is an (n j +1)x n 0 q matrix (q is the number of actuators). Equation

(2-12) defines the generalized parity vector p, and the (n-n)-dimensional
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space of all such vectors is called the generalized parity space. Any

linear combination of the rows of the left hand side of ( 2 -12) is called

a parity function. Note that (2-8) implies that we generally do not need to

consider a higher dimensional parity space that is defined by (2-12) with

n  replace by n  > n j , j=1,...,m, although it is possible to do so

It is now clear that (2-12) with p=0 (which is the case under ideal

conditions) characterizes all the analytical redundancies cf the LTI system

(2-5) and (2-6), because it specifies all the essential relationships among

the actuator inputs and sensor outputs. Each parity equation can be regarded

as a redundancy relation, and it can be obtained by taking a linear combination

of the rows of (2-12).

An important notion in describing analytical redundancy is the order of

a redundancy relation. Let w be the vector of a particular parity relation,

i.e.

m

E W' [Y(k,nj ) - BAnj )u(k,n0 ) ] = 0	 (2-18)
j=1

where 
[wl ... w

m]= w. We can define the order p of such a relation as follows.

Since some elements of w may be zero, there is a largest index n such that

the n-th element of wJ for some j is non-zero but the (n+l)th through the

n,-th elements of each wJ are zero (or n.<n.) Then, p is defined to be p=n-1.
7

The order p describes the "memory span" of the redundancy relation.

For example, when p=0, instantaneous outputs of sensors are examined. When

p>0, at least some sensor outputs at times up to p steps in the past need to

be considered in the parity equation, e.g. the kinematical equation (2-3)
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is a first order parity relation. Hence, direct redundancy is characterized

by p=0, while a temporal redundancy relation has a p>0.

Based on the properties of observability subspaces we have developed a

general characterization of analytical redundancy in terms of a parity space.

To illustrate the generality of this characterization we will examine a few

examples of redundancy .relations.

Direct Redundancy

Direct redundancy is described by a zeroth order parity relation

Y1 (k,n l )	 B1(nl)

[w1 0 ... 01 ... jw' 0...0]	 _	 -	 U(k,n0)	 = 0	 (2-19)

ym (k,nm )	 Bm(nm)

where wi is a scalar denoting the (i+l)-st elements of wi . At least two of

the wi must be non-zero for (2-19) to be a meaningful parity relationship.
i

Because of the structure of 8,(n ) (see (2-13)), (2-19) can be written as
J ^

yl (k)

[w^ ... w^)	 = 0
	

(2-20)

Y 2 (k)

In this case the parity function (left hand side of (2-20)) can be directly

used as the residual.
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A single sensor

Due to (2-8) (Caley-Hamilton) it is always possible to find a non-zero

Wj such that under the ideal condition, ( 2-12) becomes

WI [Yj (k,nj ) - Bj (nj )U(k, n0 )) = 0
	

(2-21)

Expression (2-21) represents a form of temporal redundancy - i.e. it is the

relationship among the histories of the j-th sensor output and the actuator

input, and it is of order nj.

relation involving only one (t

to consider Cj (nj ), as opposed

parity space. Parity relation

Note that (2-21) is the lowest order parity

Ze j-th) sensor, and this is why we have chosen

to Cj (n j -1), in defining the generalized

(2-21) prescribes a consistency test that

requires comparing to zero a linear combination of a window of sensor j outputs

and the actuator inputs. Such a combination (the left hand side of (2-21))

can be used as the residual r(k). Since this test involves only one sensor,

it may be used as a self-test for sensor j, if B j (n j )=0 or if the actuators

can be verified (by other means) to be functioning properly. Similarly, it

can be used to detect actuator failures when sensor j can be verified to be

normal. The Caley-Hamilton theorem implies that a self-test redundancy such

as (2-21) always exists for sensor j.

Equation (2-21) can be alternatively written as

n	 n

yj (k) _ -(m^ )- 1
	W 	 yj(k-t) -	 a	 u(k-t)	 (2-22)

n j	nt=1	 -t	 t=1 n.-t
j
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where

(Cr 0 ... a	 0...0] - Wjsj(nj)	 (2-23)
n j-1

and 0t• t=0,... ,nj-1, i @ a q-dimensional row vector; wt, t=0,...,nj

is the (t+l)-th component of w3 , and u(k) is the q-dimensional actuator

input vector at time k. Equation (2-22) represents an auto-regressive

moving-average (ARMA) model for the j-th sensor output. It is only a
n.

moving average (MA) if c jA 3=0.	 Under the ideal condition,the value of

y  at time k can be predicted from the past values of yj and actuator

inputs using (2-22). The residual defined by taking the difference between

the left and right hand sides of (2-22) is indeed the difference between

such a prediction of y j (k) and the observed y j (k). Hence, a non-zero residual

will provide the clue for a (sensor j or an actuator) failure.

Temporal redundancy between two sensors

A temporal redundancy exists between sensor i and sensor j, if there are

wl

	

	 (w0 ... wfi -1 Ol	 (2-24a)
i

wj = (r.'O ... w -1 01	 (2-24b)

J

satisfying the redundancy relation

	

l V (k,n.)	 8.(n.)
i j	

i	 i	 -	 i i	
U(k,n )^ = 0	 (2-25)

[w w l	 Vj (k,nj )	 8jtnj)	 0
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Equation (2-25) is a special case of the general form of parity equation

(2-18) with We-0, s#i, s)dj. The relation (2-25) is of order P< max[ni,njl.

Clearly, (2-25) holds if

	

[w^...w
n-l IC

i (ni-1) _ -[wo. . .w^j_llCj (n j -1)
	

(2-26)

Now, the rows of Ci (ni-1) and Cj (nj -1) span the observable subspaces of

sensors i and j, respectively. Hence, (2-26) implies that a redundancy

relation exists between two sensors if their observable subs paces overlap.

Furthermore, when the overlap subspace is of dimension n,there are n

linearly independent [wiwj ] pairs that will satisfy (2-26). Therefore,

there are as many independent redundancy relations of the form (2-25) as the

dimension of the overlap subspace.

Because the order of the redundancy (2-25) is p, either wp or wp must

be non-zero. Assuming wp00, we can write ( 2-25) in the form of an ARMA

model for yj:

Y (k) _ - twj ) -1  	 wi y (k-t)+	 (Qj +Q1 )u(k-t)
j	 P	

[ t!lwj_tyj(k-t)+
P 	 t=0 P-t i	 t=1 P-t p-t	

(2-27)

where we have used the notation ( 2-23). (Note that the summation of the i-th

sensor outputs ranges from 0 to p but those of the j-th sensor outputs and

actuator inputs are from 1 to p.) Note that.viewing ( 2-27) as an A,RMA model

for yj , we see that y  plays the role of an input, just as do the actuator

inputs u.
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Similar to the single sensor case, (2-27) indicates that y j (k) can

be predicted from a linear combination of the i-th sensor outputs

(yi (k-p), ... ,y i (k)), the j-th sensor outputs (yj(k-p),...,yj(k-1)), and the

actuator inputs (u(k-p),...,u(k-1)). The kinematical relation between

velocity and acceleration measurements (2-3) is a parity relation expressed

in the form of (2-27). The parity function (the left hand side of (2-25)),

which represents the difference between the observed and predicted sensor

outputs, can be directly used as the residual.

In summary, we have conceptualized the notion of analytical redundancy

in terms of a generalized parity space. We have also illustrated how various

redundancy relations can be obtained from this parity space and how these

relationsmay be used in forming residuals. In the next subsection we will

further discuss residual-generation based on parity relations.

2.2.2 Residual Generation Based on Parity Relations

In the preceding discussion we saw that parity functions can be used

as residuals. These residuals may in turn be y used in a voting system for

FDI. We will discuss the voting scheme in the next section. In the remainder

of this section we will describe other methods for generating residuals based

on parity relations (temporal redundancies). We will mainly use the kinematical

relation (2-3), which is a first order parity relation involving two sensors,

to illustrate these mechanisms of residual-generation,but the basic concept

can be readily generalized to higher order cases involving more sensors and

actuators.
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For easy reference we re-write (2-3) here

.

v(k+l) - v(k) + Ta(k)
	

(2-28)

A direct method for generating a residual r l (k) is as follows

r l (k) - v(k) - v(k-1) - Ta(k-1)
	

(2-29)

This is an example of the type of residual described in the preceding sec-

tion that involves direct calculation of a parity function as in equation

(2-18). In a noisy environment, r l (k) is a random sequence. In the absence

of a failure it is zero mean. When a failure occurs it becomes biased

(possibly for only a short period of time as we shall see below). it is by

detecting the presence of the bias in Ak) that a failure can be inferred.

Now consider a velocity sensor failure that manifests itself as a constant

bias in the v-measurement. Suppose this failure occurs at time T. Then

A k) will contain a bias at time T, but it will become zero mean-for k>T.

That is, the failure signature vanishes after one time step. (This is

because the sensor bias effect is cancelled out via the terms v(k) - v(k-1)

in (2-29)). Thus, if this failure is not detected at time To r1 (k) defined by

(2-29) will not provide any clue of this failure after time T.

Fortunately, another way of using the parity relation (2-29) to generate

useful residuals is available. The ARMA representation (2-29) of the

kinematical relation implies that with an initial observation of the

v-measurement, say v(0), v(k), k-1,2,.. can be predicted using the accelera-

tion measurements only. Such a predicted v(k) can be subtracted from the
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observed v(k) to form the residuals r2(k):

v(k+l) - v(k) + Ta(k)
	

(2-30a)

r2 (k) - v (k) - v (k)
	

(2-30b)

where v and v denote the observed and the (open- ,loop) predicted velocity

measurements, respectively. Since no velocity measurement is used in the

prediction other than during the initialization, the bias effect of the

failure (its signature) will be present in r 2 (k) for k>T. In addition, a

constant accelerometer bias will produce a ramp in r 2 but only a constant

bias in rl . The possible drawback of this scheme is that noise effects

(due to the accelerometer) are accumulated. Therefore, it is useful for

cases where the noise accumulated over the failure-monitoring period is

small. Alternatively, when the noise level is low,this scheme can be applied

with periodic re-initialization of the velocity prediction process. A

variation of this residual-generation scheme for accelerometer failures was

used with success in the aircraft sensor FDI problem ( 111.

A third residual-generation scheme may be devised using the parity

relation (2-29) in a closed-loop fashion. Based on the AM representation

(2-29) a filter for the velocity can be constructed:

v(k+l) - v(k) + Ta(k) + hr 3 (k)	 (2-32a)

r 3 (k) - v(k) - v(k)	 (2-32b)

A
where v denotes the closed-loop prediction of the velocity measurement, and

h is the filter gain (0<h<l). Th#- filter residuals OW also represent
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the difference between the observed and predicted (or expected) velocity
f

measurement, and hence, can be used as residuals for FDI. The advantage of

using r 3 over r2 is that the filter gain can be chosen so that the variance

Of v (hence that of r3) will not grow indefinitely with time. As a result,

the periodic re-initialization of the prediction process can be eliminated.

The tradeoff, for example, is that the signature contained in r 3 for a velocity

sensor bias failure, will vanish with increasing elapsed time k -T, and that

an accelerometer bias will lead to a steady state bias, not a ramp, in r3.

This residua:-generation scheme is used in FDI schemes such as the GLR 14 1.

In summary, we have described three ways a temporal redundancy or parity

relation may be used to generate residuals for FDI. (Note that for direct

redundancy only the first method i.e. r l , is available since no dynamics

are involved). Generally, r1 W is the residual of the instantaneous com-

parison of the left hand side and right hand side of the parity equation

(2-27), and it is dependent on yj(k-p),...,yj(k). The residual r 2 (k) is the

difference between y j (k) and its predicted value that is computed from

yj(0),...,yj(p-1), u(t), and y i (t), i#j, t-l,...,k using (2-27). Thus r2

effectively represents a dynamic comparison (since all past u and yi are

used via the dynamics (2-27) in forming r 2). in contrast to r1 (k), r2(k)

depends on y1 (0), ... ,yj (p-1), and yj (k) but not on yj(k-p),...,yj(k-1). The

third type of residual r 3 (k) is the innovations of the filter of y j (k) based

or, (2-27). Similar to r 2 , r3 is based on a dynamic comparison. Moreover,

r3 (k) depends on yj(k-p),...,yj(k-1) just as r l (k), albeit in a closed-loop
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manner. These residual& can be directly used it; a voting scheme, which

will be discussed in the next section. other methods for exploiting the

failure information contained in the parity space will be explored in

Sections 2.4 and 2.5.

2.3 The Generalized Voting Scheme

In this section we will describe how parity relations can be utilized

in a generalized voting scheme (GVS) for FDI. other usage of parity

relations for FDI will be discussed in the next two s*rtions. For sim-

plicity we will assume in this section that only one failure can occur,

but extension of the following idea to the case of simultaneous failures

is straightforward.

The structure of a generalized voting system based on M parity rela-

tions is shown in Figure 2-1. This FDI system basically consists of M

tests each of which serves to determine if one of the M parity relations is

violated. Each test has its own residual-generation process that is based

on a single parity relation. If the underlying parity relation is a direct

redundancy, the residual is simply the parity function. If the parity

relation represents a tenporal redundancy, then residual-generation may

take on one of the three forms discussed in Subsection 2.2.2, i.e. the

residual may be simply the parity function, the difference between the

true observation and the open-loop prediction of a sensor output, or the

difference between the true observation and the closed-loop prediction of a

sensor output. A decision rule in applied to the residual" associated with
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each parity relation to determine if the corresponding parity relation is

violated. A different decision rule may be used for each of the M parity

relationso Typically,=the decision rule employed in a voting system takes

the P,rm of a threshold tests on a single point of residual or the swing

average of a wing of residuals. However, more sophisticated rules such as

the sequential rules examined in Chapter 4,5, and 6 may be applied to make

better use of the failure information contained in the residual for high-

performance.	 ...he last stage of the GVS, the voting logic (to be described

in the following) is applied to the outcome of the M consistency tests to

detect and identify the failed component. Next, we will describe the voting

logic.

In order to apply GVS, we need a set of parity relations with the

property that each component (i.e. a sensor or an actuator) of interest is

included in at least one parity relation and each component is excluded from

at least one of the parity relations. (If there are M components, the

number of parity relations considered is M or more. However, later in this

section we will see that with a slight modification of the logic described

below, as few as M-1 parity relations can be used.) When a component fails,

all the parity relations involving it will be violated, while those excluding

it will still hold. This meant that the components involved in parity rela-

tions that hold can immediately be declared as unfailed. Moreover, the one

component that is common to all of the violated parity relations is then

readily identified as failed. This is the basic idea of generalized voting

and is also the logic used by GVS to deter-t and identify failed components.

It differs from the common notion of voting in the sense that through analytical
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redundancy (parity relations) dissimilar components (including sensor and

actuators) may vote together. We note that the voting system for linearly

dependent sensor studied by various researchers [ 2 ][ 3 ][ 121 and the

aircraft sensor FDI system [ 111 are special cases of GVS.

-	 In the remainder of this section we will discuss some important consid-

erations involved in designing a generalized voting system. We will do so

by means of a second order (n=2) example:

all	 a12
A	 (2-33a)

0	
a22

b = 10	 1]'	 (2-33b)

cl = 11	 O]	 (2-33c)

c2 = 10	 11	 (2-33d)

In this case, nl 2, n2=1, n-n=3, and there are (only) t1wee independent

paucity equations:

y1 (k)-(a11+a22)Yl (k-1) + a11a22y1(k-2) - a12u(k-2)=0	 (2-34)

y1  - a11y1 (k-1) - a12y2 (k-1)-0	 (2-35)

y2 (k) - a22y2(k-1) - u(k)-0	 (2-36)

These parity relations can be applied in a GVS for detecting failures in

the sensors and the actuator, because each of the three terms y l , y2 , and u
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is included in two parity relations and excluded from one. Since all the

parity relations represent temporal redundancy, any of the three forms of

residual-generation (see Subsection 2.2.2) may be used. Three important

issues concerning the design of a GVS are examined in the following.

1) The output y2 appears in (2-35) and (2-36) with different time

lags (and so does u in (2-34) and (2-36)). Therefore, a sensor 2 failure

will violate the parity relation (2-35) one time step later than (2-36)

(regardless of the fora, of residual-generation used). A decision process

r'-sponding quickly to this effect will declare an actuator failure. But this

is erroneous. If one more time step is considered, both parity relations would

be violated, and the correct failed component (sensor 2) can be identified.

Although this type of transient behavior will disappear (for open-loop

residuals, it will disappear in less than n steps, where n is the dimension

of the system), it suggests that temporal behavior of the residuals should

be carefully considered in designing decision processes that can respond

quickly and accurately.

2) Under the assumption that only one failure can occur, only two of

the three parity relations (2-34)-(2-36) are needed for FDI. To see this,

consider only (2-34) and (2-35). An actuator failure affects only (2-34)

and a sensor 2 failure affects only (2-35), while a sensor 1 failure affects

berth (2-34) and (2-35). Thus, the voting logic can be modified to recognize

these failure phenomena, and FDI can be accomplished based or, two parity

relations. In fact, it is easy to see that any combination of two of the
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above three parity relations may be employed to generate residuals for

•	 use with the modified voting logic for FDI, and we have a choice among

three combinations. * In the deterministic case with an exact model, all

such combinations will serve equally well, and we may use any me of these

combinations of parity relations. However, in the presence of noise and model-

ling uncertainties, all the parity relations are obscured, albeit to different

extents. Thus, residual-generation should be based on parity relations that

are least vulnerable to such adverse effects. This design approach is the

focus of this part of our research and it will be fully considered in Chapter 3.

3) While some systems have more parity relations than needed for voting,

others may have less than the necessary number. For instance, suppose in the

above example we replace the single actuator with two actuators characterized

by bl = 11 11' and b2 = [-1 11, respectively. This new configuration will

not change n since A and c.
3
 remain unchanged, and there are three parity

relations:

yi(k)-(all+a22)yl(k-1)+alla22yl(K-2)+(a22 a12)ul(k-1)-ul(k-2)

(a22+a12)u2 (k-1)+u2 (k-2)-0	 (2-37)

yl (k) ally, M-1) - a12y2(k-1) - u
l (k-1) + u2 (k-1)=0	 (2-38)

Y2
 (k) - a22y2 (k-1) - u1 (k-1) - u2(k-1)-0
	

(2-39)

These three parity relations are inadequate

* A system may inherently have more candidate parity relations than required
for GVS (with or without the modified logic). For example, suppose C 2=(1 11

in (2-33d). Then n2-2, n-n-4, i.e. there are four independent parity

t	 equations, while only three (two for the modified logic) are needed.

}t

Z

i
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above three parity relations may be employed to generate residuals for

use with the modified voting logic for FDI, and we have a choice among

•
three combinations. 	 In the deterministic case serve equally well, with

an exact model all such combinations will and we may use any one of these

combinations of parity relations. However, in the presence of noise and model-

ling uncertainties, all the parity relations are obscured, albeit to different

extents. Thus, residual-generation should be based on parity relations that

are least vulnerable to such adverse effects. This design approach is the

focus of this part of our research and it will be fully considered in Chapter 3.

3) While some systems have more parity relations than needed for voting,

others may have less than the necessary number. For instance, suppose in the

above example we replace the single actuator with two actuators characterized

by bl = [1 11' and b2 = [-1 11, respectively. This new configuration

will not change n since A and C remains unchanged, and there are three parity

relations:

yl(k)-(all+a22)y1(k-1)+a11a22yl(k-2)+(a22-a12)u1(k-1)-(a22+a12)u2(k-1)+u2(k-2)

(2-37)

y1 W - allyI M-1) - a12y2(k-1) - u
1 M-1) + u2 (k-1)=0	 (2-33)

y2 (k) - a22y2(k-1) - u1 (k-1) - u2 (k-1)=0	 (2-39)

Note that (2-39) is the same as (2-36). Tht,;se relations are inadequate

* A system may inherently have more candidate parity relations than required
for GVS (with or without tie modified logic). For example, suppose C 2=[1 11

in (2-33d). Then n2=2, n-n=4, i.e. there are four independent parity

equations, while only three (two for the modified logic) are needed.
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for GVS, which requires four relations for four components. (These relations

s	 are also in-sufficient for use with the modified logic described earlier,

because a sensor 1 and an actuator 2 failure will both violate all three

parity relations.) Therefore, other FDI schemes that exploit the failure

information carried by the residuals in ways different for GVS will have to be

used. We will examine these methods in the next two sections.

2.4 Failure Characteristics in Parity Space

The generalized voting scheme discussed in the previous section repre-

sents one method for using one form of the failure information contained in

the residuals for FDI. In this section we will examine other methods of

exploiting this information to detect and identify failures, and we will

contrast them with GVS. We will primarily consider (open-loop) residuals

that are generated using parity functions, i.e. the residual vector is simply

a parity vector. In Section 2.5 we will discuss the case with (closed-loop)

residuals generated by filters.

First we will consider sensor FDI using direct 	 redundancy. Based on

direct redundancy, the residual vector r(k) has the form (y is m-dimensional)

r(k) - 5y (k)	 (2-40)

Each row of the right hand side of (2-40) is a parity function. For GVS,

Sl is chosen such that for each sensor (j) there is at least c.ne component of

r that is dependent on y  and one component that is independent of y j . When

a sensor j failure occurs, all residual components depending on y j will

become non-zero, while all other components remain zero (assuming no noise).

9
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The mechanism of the GVS involves examining each individual component

separately for a bias. Based on the location of the biases in r, a failure

identification is made.

Another way of using the failure information contained in the residuals

is as follows. A faulty sensor, say the j-th one, contains an error signal

V(k) in its outputs

yj (k) = c jx (k) + V 	 (2-41)

When this sensor fails, we have (assuming no noise)

r 	 12.V (k)	 ( 2-42)
^	 7

where S2. is the j-th column of S2. That is, no matter what v(k) is, the
7

effect of a sensor j failure on the residual always lie in the direction

Qj . Thus, Q 	 is the failure direction in parity space (FDPS) corresponding

to sensor j. (In (13 ]. S2j is referred to as the j-th measurement axis in

parity space.) If an St can be chosen such that all its columns represent

*
distinct directions in the parity space, then a sensor of failure, j-1,...,m,

can be inferred from the presence of a bias component in the residual along

S2 j . Clearly an S2 suitable for voting satisfies this condition. Generally,

there may exist an SZ with as few as two rows and with columns pointing in m

distinct directions in the parity space. This approach to sen ^r FDI was

studied by Potter and Suman 1 13 ) and Daley et al 115 ).

* The columns of Q are, in fact, linearly dependent (but possible distinct)
because there are at most m-n0 linearly independent parity functions (rows of

fl) while there are m columns in Q. Here, m is the number of sensors, and n0

is the rank of C (C iic a matrix with c j as its rows, and nD is the number of

linearly independent sensors).
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A FDI system based on recognizing FDPS examines all the residual

components together, because the failure signature being looked for is a

particular direction in parity space not restricted to one of the coordinate

axes defined by individual parity relations. This FDI scheme (called the

FDPS method for brevity) is different from the GVS in that the latter examines

each residual component separately. These two schemes actually exploit

different aspects of the failure information carried by the residuals. This

difference can be illustrated by a simple example described below. Suppose

that the residual r(k) is a 3-vector given by (2-40). To provide a basis for

comparing GVS with the FDPS method we assume that Sa is chosen such that r is

suitable for use in both FDI methods. Let us further suppose that the second

component r2 of the residual is independent of y 2. In order to detect a

sensor 2 failure, GVS will look for a bias in r  and a bias in r 3 (see Figure

2-2a). To detect the same failure, the FDPS methods will search for a signature

in the direction n in the r
1 -r 3

plane (see Figure 2-2b). In this case the

FDPS is defined by a precise combination of the biases in r  and r 3 , and it

represents a more detailed characterization of the failure signature (information)

than the biases considered by GVS. It is by the exploitation of this detailed

information that the FDPS method can, at least in theory, detect and identify

m sensor failures using a 2-dimensional r, i.e. £2 has two rows but m distinct

columns.

These two forms of failure information are also used by GVS and the

FDPS method when temporal zedundancy is employed. In such cases GVS still

examines each residual component separately for the presence of a bias.
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r3

r,

FIGURE 2-2a: Failure Information Used by GVS.

r3

FIGURE 2-2b: Failure Information Used by the FDPS Method.
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However, the failure effect js not necessarily confined to a fixed direction

in parity space. To illustrate this, consider a residual vector r(k) based
F

on the parity equations (2-37)-(2-39). We can write r(k) as

1 -(all+a22)	
alla22	 0	

0	 yl(k)

y1(k-1)

r(k) = 1 -a12	 0	 0 -a12	
y1 (k-2)

y2 (k)0	 0	 0	 1 -a22	 y2 (k-1)
J 16

u1(k-1)

	

a22-a12	 -1 -(a22+a12 )	 1
ul(k-2)

+ -1	 0	 1	 0	 u1 M-1)	
(2-43)

-1	 0	 -1	 0	 u2(k-2)

When sensor 2 fails, its output is described by ( 2-41) and the residual

becomes

0	 0

r(k)	 0	 V 	 +	 -a12	 V(k-1)	 (2-44)

1	
-a22

Unless VW is a constant function of tire, the effect (signature) of a

sensor 2 failure is only confined to a 2-dimensional subspace of the parity

space. It is easy to see that this is also true for the other three components.
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From the above observation, we can conclude that if a component is

involved in more than one component of the residual (parity) vector am a

window of more than one point in time of the signal associated with this

component is used in generating the residual vector (i.e. if temporal

redundancy is used), then the signature of this component failure is generally

constrained to a multi-dimensional subspace of the residual space. Now each

failure is associated with a subspace in the parity space. These subspaces

in general may overlap with one another, or some may be contained in others.

If no such subspace associated with a failure is contained in another, FDI

can still be performed by determining which subspace the residual lies in.

(We note that the detection filters of Beard [ 7 ] and Jones ( 8 ) effectively

act in a closed-loop fashion to confine the signature of an actuator failure

to a single direction and that of a sensor failure to a 2-dimensional sub-

space in the residual space. We will discuss this in the next section). From

(2-43), it is easy to see that the subspaces associated with the four components

(2 sensors and 2 actuators) are all 2-dimensional but no two of them are the

same. Hence, FDI can be accomplished using the mechanism described above,

whereas the GVS would not be applicable in this case (see Section 2.3).

The two forms of failure information discussed above represent time-

independent failure characteristics, i.e. they are not dependent on detailed

models+ of the (time history of the) failures as we have not assumed anything

about the nature of VW.  The temporal information buried in the residuals

is also useful. It may be used to determine the naturs of the failure or c s

added informatics to distinguish failures. For example, consider a sensor

failure with signature described by (2-44). under this failure, r(k) generally
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traverses a 2-dimensional subspace. If r(k) is observed to vary only

along (0 -a12 1-a22 7', we can deduce that a constant bias has developed

in this sensor. Turning this around, if we motel the failure that we wish

to look for as a bias, then we can look along the specific direction

10 -al` 1-a22 1.	 Also, if we model v(k) in any other parametric form,

e.g. as a ramp, we will specify a specific type of temporal trajectory

for the signature. It is this type information that is used in the GLR

algorithm, and it is this type of failure signature characterization that

will form the starting point of our investiaation of decision rules in

Chapters 4,5, and 6.

To see how temporal information can help in distinguishing failures, let

us consider r(k) given by (2-43). The subspaces associated with the two

actuators are clearly not the same, but they overlap with each other. In a

noisy environment it may be difficult to determine which subspace r(k) belongs

to, especially when a major component of r!k) lies in the overlap. Mow,

suppose we have models for how the two failed actuatorswould behave over time.

Then, we can determine the (temporal) signature of these failures (i.e. r(k)

under each failure assuming no noise). Since these signatures describe the

temporal behavior of the residual (the direction of r'k) for each k) under the

corresponding failures, they represent more detailed characterization of

failure information. As a result, iistinguishability of these two failures

can be improved by using a scheme that looks for these signatures in the

residuals (by means of correlating the residuals with the signatures). Indeed,

this is the basis for the GLR method.
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From the above discussion we can see that in *)rder to exploit temporal

information, failure models are required. Moreover, decision processes making

use of the temporal behavior of the residuals are more complex, because the

failure signatures (now time functions) must be stored or generated on-line.

Correlation of the residualo with the failure signatures will also add to the

computational complexity.

In summary, we have described several forms of information contained

in residuals generated from parity functions which are exploited for FDI. The

simplest form is that employed by GVS. Failure directions (and subspaces)

in parity space are time-independent failure characteristics utilized by

several FDI schemes.	 Temporal information concerning failures, if available,

can provide even more useful information for detecting failures, .-ilthough

there is a cost in additional system complexity.

2.5 FDI Systems Using Filters

In the previous section we discussed how the information contained in

the residuals generated by parity functions is utilized for rDI. The Ye is

a large class of FDI systems sucn as GLR ( 4 l and the detection filters of

Beard ( 7 ) and Jones (8) that use filters to generate residuals for FDI. In

these residual-generation processes, analytical redundancy is not used in

the same explicit form as in the processes discussed in the last section.

Here we will attempt to determine its relationship with the methods discussed

in Section 2.4.
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The general form of the filter we will consider is given by the

following equations

x(k+llk) - Ax(klk) + Bu(k)	 (2-45a)

x(k+l (k+l) - x(k+llk) + Kr(k+l) 	 (2-45b)

.r(k+l) - y(k+l) - ^x(k+l k)	 (2-45c)

where x(klt) is the estimate of x at k given y(1),...,y(t), t <ki C is a

matrix whose rows are the c g 's; y is the vector of the m sensor outputs;

K is thz filter gain that is chosen differently in different FDI schemes, r

is the filter innovations and which are the residuals used for TDI. Since the

prediction x(k+llk) is based on the system dynamics (2-5) the filter has

already made use of temporal redundancy of the system. Note that Cx(k+llk)

is the prediction of y(k+l) based on y(1),...,y(k), the residual given by

(2-45c) is a vector analog of the closed-loop residual (r') discuseed in

Subsection 2.2.2. In contrast to an open-loop residual-generation process

	

(whose main purpose is 	 FDI), a filter actually serves two functions:

to provide an estimate of the state in the normal mode (no failure) and to

generate residualsfor FDI.

In the absence of a failure, the innovations are given by

p (k+l) - Ae(k)	 (2-46)

r(k)	 - Ce(k)	 (2-47)

where

e(k) - x(k) - x(kik-1)	 (2-48)

	

A - All-KC)	 (2-49)
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A is the closed-loop filter matrix, and a is the error of the state estimate.

Under an actuator failure, the residual is characterized by

e(k+l) = AeW + f z M
	

(2-50)

and (2-47), where f is a vector (corresponding to b  associated with the

failed actuator) and z(k) is some scalar time function representing the

temporal characteristics of the failure. When a sensor j failure occurs,

the residual becomes

e(k+l) = Ae(k+l) + (AK) j v(k)	 )	 (2-51)

r(k)	 = Ce(k) + e,v(k)	 (2-52)
I

where (AK) j is the j-th column of the matrix product AK, ej is the

m-dimensional vector with the j-th element being one at,i all remaining

elements equal to zero, and v(k) is the scalar time function representing

the temporal characteristics of the failed sensor. Therefore, a component

failur- affects the residuals through the matrices A and C.

Note that A depends on the filter gain K (2-49). As a result, the

failure effect on r can be controlled to some extent by a choice of K. For

different FDI schemes K is chosen to achieve different effects. For example,

in GLR K is chosen so that (2-45) is a Kalmar, filter, i.e. r(k) is a zero

wear. white sequence under the no-fail condition. With this choice of K,

failures generally do not produce special effects such as fixed directions

in the residual space. For hypothesized z(k) or v(k), the failure signatures,

which are time functions, can be calculated. :;ie GLR scheme achieves FDI
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by recognizing such signatures contained in the residuals, and it makes

heavy use of the temporal information.

The detection filter [ 71[ 8 1 for an actuator failure has a special

filter gain that makes CA lf, i=0,l,...,n-1, lie in the same direction as

Cf. Thus, this actuator failure produces a directional effect on r, and

the detection of this failure can he accomplished by checking the residual

for a component in this direction. For a sensor failure, the gain of

the detection filter is chosen such that the failure signature is constrained

to a 2-dimensional subspace of the residual space. (Because of the term

(AK)i V(k), which actually depends on the gain, and e
i
v(k) in (2-51) and (2-52),

it is generally only possible to choose a K so that a sensor failure signature

is confined to a 2-dimensional subspace [81). Therefore, the detection fil-

ters produce residuals carrying directional signatures, which are similar to

those of the open-loop residuals discussed in the last section.

In summary, we note that residual-generation using filters is based on

temporal redundancy. However, failure signatures are directly affected by

the choice of the filter gain. In GLR the gain is chosen to whiten the

residual, and the failure signatures are arbitrary time functions. Consequently

the GLR schemes relies on temporal information for FDI. In a detection filter,

directional failure si gnatures are produced in a closed-loop fashion via a

proper choice of the filter gain, and the FDI mechanism is similar to that

used with the open-loop residuals with directional signatures (see Section 2.4).

Therefore, similar types of failure information may be produced via open-loop

* The original work of Beard and Jones concerns the continuous time problem,
but the theory readily extends to the discrete time case where the system
matrix is invertible. Also, it is possible to design a single detection
filter for detecting several failures.

W^
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or closed-loop residual-generation process.

The discussion included in this section represents a preliminary

effort in trying to understand how closed-loop FDI systems use analytical

redundancy. Further research in the future is required for a thorough

understanding of this subject.
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CHAPTER 3

DESIGN OF ROBUST RESIDUAL GENERATION PROCESSES

3.1 introduction

In Chapter 2, we presented a unified view of analytical redundancy in terms

of generalized parity space, and we also discussed how parity functions can be

directly used to generate residuals in the open-loop fashion for FDI. When the

system model is exact and there is no noise disturbance, Chapter 2 provides

the framework for obtaining the exact parity equations relating the various

sensor outputs and actuator inputs. However, modelling uncertainties and noise

effects will corrupt Vie parity relations. Thus, residual-generation process

'	 based on any nominal deterministic system model will be to some degree sensitive

to modelling errors and noise. In this chapter, we will examine the problem of

designing residual-generation processes that are robust in the presence of model-

ling uncertainties and noise disturbance.

Thoughout this chapter, we will assume that the structure of the system

under consideration is known to have the form (2-5)-(2-6), and we are only

uncertain of the exact values of some of the elements of the system matrices.

That is, we have the following system model that includes both modelling uncer-

tainties and noise disturbances,

x(k+l)	 A(Y)x(k) + I bj Oouj (k) + t(k)	 (3-1)

j=1

yj (k) = Cj (y)x(k) + nj (k),	 j=1 ...... ,m	 (3-2)

where Y is the vector of N uncertain parameters of the model, and we assume

that YEI' where t is a known range of parameter values (Yerc Rn)•
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The dependence of A, b  and c  on Y indicates that their elements may

be(different) functions of the parameter vector. This allows the modelling

of elements in the system matrices as uncertain quantities that may be

dependent on one another. The vectors E and n -In, ... %) are independent,

zero-mean, vbite Gaussian noise vectors with constant covariance matrices

WO) and R PO), respectively.

In this chapter we will concentrate on the problem of determining

optimal parity functions, where "optimality" will be defined in terms of

a measure of how large a deviation from zero could occur in a given parity

relation in the presence of model uncertainties. Parity relations deter-

mired in this manner can be directly used in an open-loop FDI system, and

our technique essentially provides the optimum design for this application.

of course, these parity relations can also be used to define AR14A models

based on which closed-loop filters can be constructed to generate residuals.

Although our design is aimed directly at optimizing the robustness of such a

open-loop algorithm, one would generally expect that a parity relation that

is robust open-loop could also be good for closed-loop residual-generation.

The problem of determining optimal parity relations for closed-loop residua)-

generation should be investigated in the future, and our work provides the

framework for such an investigation.

Before we proceed to describe the nature of the design problem at hand,

it is useful to define the structure and the coefficients of a parity function.

Recall that a parity function is a weighted combination of the actuator inputs

and sensor outputs (see (2-18)). The structure of a parity relation refers

to the set of input and output terms and the associated sets of time lags

for each that are included in the parity function. For example, consider the
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parity relations

y1 W + 7y1 (k-1) + 32y2 (k-1) - 0	 (3-3)

yi (k) - .ly1 M-1) + 5y2 (k-1)	 0	 (3-4)

yl (k) + 3y1 (k-1) + 4y2 (k-1) - .Olu1 M-1) = 0	 (3-5)

Relations (3-3) and (3-4) have the same structure, because both parity

functions include y 1 (k), y1 M-1) and y2 (k-1); (3-3) and (3-5) have dif-

ferent structures, because (3-5) include the additional u 1 M-1) term.

The coefficients of a parity function refer to the (non-zero) coefficients

of the sensor output and actuator terms in the parity function. For

example, the parity coefficients of (3-5) are 1,3,4, and -.01.

A redundancy relation is specified by a parity structure and a set of

parity coefficients. Any parity function (p) can be written in the form

p = aY(k) - BU (k)	 (3-61

where Y(k) and U(k) are vectors consisting of the sensor outputs and

actuator inputs included in the parity function, respectively; the row

vectors a and $ represent the coefficients of the sensor output and

actuator input terms in the parity function, respectively. Under the ideal

conditions of a deterministic systems whose parameters are known exactly, a

and $ contain the non-zero elements of W and A of (2-12). For example,

we have the following Y(k), U(k), a, and 8 for ( 3 -5)
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Y1(k-1)

Y (k)	
yl (k)

y2 (k-1)

	

U{k) _	 (ul(k-1)]

	

a :	 [3 1 41

	

Q =	 [.01]

Therefore, in the above notation, the components of Y(k) and O(k) define

E	

the parity structure, and a and R represent the parity coefficients.

We now proceed to describe our approach to the design of robust

residual-generation processes. This approach is best illustrated in terms

of an example. Recall the three parity equations corresponding to the

2-dimensional example ( 2 -30) considered in Section 2.3.

yl (k)-(a11+a 22 )y1 (k-1) + all a22Y1(k-2) - a 12u 0.-2) = 0	 ( 3-7)

yl (k) - a11y1 (k-?.) - a12y2 (k-1) = 0
	

(3-8)

y2 (k) - a22y2(k-1) - u(k-1) = 0
	

(3-9)

In Section 2.3 we indicated that only two of the above parity relations

need to be usee. in a generalized voting system to detect and identify a

single component failure. When the elements of A, i.e. all , a12, 
and 

a22

are perfectly known and there is no noise, all combination of two of the

above parity functions will serve equally well for generating residuals.
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When the exact values of a ll , a
22' and 

a22 are not known, (3-7)-(3-9)

only specify the structures of three parity functions whose coefficients

are uncertain quantities. In order to make use of any of these parity struc-

tures, we have to determine an appropriate set of coefficients for it.

Ideally, the value of a parity function is zero in the absence of a failure.

Under noise disturbances and modelling uncertainties, any choice of parity

coefficients will result in a non-zero value for the parity function even

when there is no failure. Hence, a natural design objective is to choose a

set of parity coefficients that will make the parity function, in some sense,

as close to zero as possible in the absence of a failure. Such a choice of

coefficients effectively minimizes some measures of the effects of noise and

modelling error on the parity functions. we will call this minimized measure

of adverse effects the parity error (and we will define it precisely in

Section 3.3).

When we have chosen the parity coefficients for all three parity struc-

tures, we will have also determined their corresponding parity errors. Then,

it is clear that the residual-generation process should be based on the two

parity functions that provide the largest failure signature to parity error

ratios.

From the above discussion, it is evident that our design approach

consists of three steps: 1) identify the useful parity structures,

2) determine the coefficients and the parity errors for these parity

structures, and 3) *.termine the signature to parity error ratios that are

used in deciding which parity functions are to be used for open-loop

residual-generation. we will examine these three design steps in Sections

3.2, 3.3 and 3.4, respectively.
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The parity ^oefficient design problem will be formulated as a minimax

optimization (Section 3.3). The solution to such a problem is generally

difficult. In Section 3.5, we will discuss a simple numerical example from

which we can derive some useful insight into the solution procedure of the

general minimax optimization. Finally, a summary of our approach to the

design of robust residual-generation processes is included in Section 3.6.

3.2 Parity Structures Under Modelling Uncertainties

In this section, we will discuss how to obtain parity structures when

there is uncertainty in the system model. First, we will review how a parity

structure is obtained under the ideal condition (exact model and no noise).

A parity function is determined from a set of linearly dependent rows of

Cj(nj+l), j-1 .... m.	 Let C be the matrix composed of this set of dependent

rows. corresponding to these rows there are the components of

yj (k,n j ), j-1,...,m, which are collected together to form the vector Y(k),

and there are the rows of 8i ( nj ), j=l,...,m, which are collected into
the matrix $. Thus we can write a parity function as

p = W(y(k)-$U(k,n0))
	

(3-10)

with WC-0. Note that p is used in this chapter to denote a scalar parity

function. Since not all components of U(k,n0) are necessarily involved

in a parity relation, we may collect all the non-zero columns of B into a

$ and the corresponding components of U(k,n0) into U(k). Then we have

p = WY (k) - AU(k)	 (3-11)
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which is in the form of (3-6). The structure of this parity function is

defined by the components of Y(k) and U (k). In terms of the notation de-

fined above, we have

Y(k) -Cx (k) +86(k)	 (3-12)

In the presence of modelling uncertainties and noise, ( 3-12) becomes

i(k) - C (Y) x (k.Y) + @ (Y) j (k) + ;(k) + 8 (Y) U (k)
	

(3-13)

where

^ - [E (k) ... E(k+p)3'	 (3-14)

and p is the order of the parity function. If the i-th component of

Y (k) is y  (k+Z1), then

Ti (k) - ns (k+11 )	 (3-15)

and the i-th row of 0, i.e. 0(i), is

Rl-1
0(i) - [cs (Y)A	 (Y) ... cs (Y)0...03	 (3-16)

and 0 has p columns. It follows from ( 3-1) and ( 3-2) Z and n are

independent, zero-mean Gaussian random vectors with covariances

Q	 0

E  (k) ' (k)) = Q =	 ' .	 (3-17)

0	 Q

E{i1(k) n' (k) } - R	 (3-18)
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and the (i,j)-th element of R is

Rij -
 'at 811#1  2
	

(3-19)

where di 
'R	

is the Kronecker delta function, Rat is the (s,t)-th element
1 2

of R, and we have assumed that Y j (k) - yt (k+R2 ). Note that x(k,Y) is a

random vector that is uncorrelated with Z(k) and n(k) and

E{x (k ,Y)) - x0(k.Y)
	

(3-20)

E{ [x (k,Y) - x0 (k,Y) ) [x (k,Y) - x0 (k,Y)P } 	 Ex (Y)	 (3-21)

where E (Y) is the steady state covariance of x(k,Y), which is dependent
x

on Y through A(Y) and B(y). in (3-13) we have also explicitly shown the

dependence of C and 8 on the parameter Y.

Now we will consider parity structures under modelling uncertainties

and noise effects. when (3-13) holds, the rows of C(Y), which are chosen

based on some nominal value Y0 of Y, may not be linearly dependent for some

other Yet. Even if they are linearly dependent for all yet, for any choice

of the parity coefficients, p (3-11) is generally not zero in the absence

of a failure. This is because 	 W satisfying WCIy0)-0 does ItJL generally

imply WC(Y)-0 for all Yet. However, the parity structure of (3-11) is

useful if we can find a set of parity coefficients that will make p close to

zero under the no-fail condition. From this point of view, it is not

necessary for a parity structure to be based on a C that is composed of

linearly dependent rows of C j (n
i
+1), j=l,...,m, as long as we can determine
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a set of appropriate coefficients that will result in a p that is close

to zero when there is no failure. Then, the procedure of obtaining a

parity structure described in the beginning of this section can also be

applied to a (! that is composed of some arbitrary set of rows of

Ci (;J+1), j-1,0.0 0 10. The usefulness of such a parity structure depends on

the choice of coefficients which will be considered in the next section.

Using the above reasoning, we can obtain many .;andidate parity struc-

ture for residual-generation. However, not all of these structures are

useful for a particular FDI system. Consider a generalized voting system,

for instance. We need a set of parity functions *hat satisfy: 1) all

components of interest must be included in at least one parity function,

and 2) all components (possibly except one) must be excluded from at least

one parity function. Requirements such as these help in limiting the number

of candidate structures to be considered. In most applications, special

feature of the system matrices will provide additional insights in the

choice of parity structure. We will not address this problem further, but

will focus on optimizing the set of parity coefficients once we have chosen

a parity structure. Then we can use the results of this optimization to

compare the usefulness of different parity structures.

3.3. Design of Parity Coefficients

Here, we will examine the problem of determining an appropriate aet

of coefficients ((%,S) for a given parity structure (3-6)

p w ai(k) - Sv(k)
	

(3-22)
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when we have noise and uncertainties in the system modelled. by (3-1) ( 3-2).

In the following, we will describe a formulation of this design tank as a

minimax optimization problem.

Consider the parity function ( 3-22). Under modelling uncertainties

and noise, p is generally not zero for any choice of a and 0. it is in

fact a function of a,6, y ,x,v,_C,and -n• Substituting (3-13) in (3-22) we hs+ve

p(a,S,Y,x(k,Y),U(k)) - a(C(Y)x(k,Y)+m(y)i(k)+n(k)+$(y)U(k)l

- sU(k)	 (3-23)

ideally, for (3-23) to be a parity function, p must be zero under the

no-fail condition. Therefore, in order for p to be a useful parity function,

we have tho choose a and B such that p is close to zero in tre absence of

a failure.

Due to the noises	 and the random state x(k,y),p is a random

variable. A convenient quantity indicating the magnitude of p is

E{p 2(a,6,Y,x(k,y),6(k)), where the expectation is taken with respect to the

joint probability density of x(k,y),^(k), and i W (assuming the parameter

vector has the value Y). Define

e(a,S,x0(k,Y*), Ix(y*),U(k)) - max E{p2(a,6,y,x(k,Y),U(k)) 	 (3-24)
;er

where Y* is the value of Y that solves the maximization, and x 0 (k, y* ) and

Ex (Y* ) are the mean and covariance of x(k,y* ) (3-20), (3-21). The quantity

e can be interpreted as the worst tffect of the modelling error and noise

on the parity function p. Then, we can attempt to achieve a conservative

design by solving
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min a(a,0,x0(k,Y*), Ex (Y * ), U(k))
a,R

(3-25)

As it stands the minimization problem ( 3-25) is not meaningful. Since

p is linear in at and B, (3-25) has a trivial solution: a-0, 8--0. A parity

function primarily relates the various sensor outputs, i.e. a parity func-

tion always includes sensor outputs but does not necessarily include actuator

input (t.g. a direct redundancy rclation). Therefore, a must not be zero.

Without loss of generals'-I, we can restrict a to be unit magnitude. The

actuator input term in a parity function may be regarded as serving to make

the parity function zero (compare (2-10) and (2-12)). Then, B is essentially

free. However, we will now show that for each value of UM, B actually

only has a single degree of freedom. For a given U(k), any B can be written as

B	 AU' (k) + z
	 (3-26)

where A is a scalar, and z' is a vector lying in the subspace orthogonal

to U(k), i.e. z6(k)-0. Hence, the component z. in 6 will not produce any

effect on p. This implies that we only have to consider B of the form

B - AU'(k)	 (3-27)

where A represents the only degree of freedom of B.

Now we can construct a meaningful, optimization problem:

min Max E(p2 (e,B,Y,x(k,Y),E (Y),6(k))3	 (3-28)

u,B Yet	
x

s.t. Oa' -1
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Using a 8 of the form (3-27) and (3-17), (3-19), and (3-23), we can write

E(p2 1 as

	E{p2(a,A,Y,x(k,Y),;(k))}=[aa)S(Y,x0(k,Y),Z (Y),6 W )[AI 	 (3-29)
x

where S is the symmetric, positive-definite matrix for all Y

S11	 S12
S(Y.x0(k,Y),U(k)) _	 (3-30)

S21	 S22

S 	 C(Y) Ix 0 (k,Y)x0(k,Y)+Ex (Y)IC' (Y) + O(Y)QO' (Y) + R	 (3-31)

+ 8(Y)U(k)U' (k)8' (Y) + C(Y)x0(k,Y)U' 00	 (Y)

+ 8(Y)U(k)x0(k,Y)C'(Y)

S12 = S2i = -1118 (Y) U (k) + C' (Y) x0 (k,Y) )	 ( 3-32)

S22 = U2
	

( 3-33)

U = [U' M6 W 1	 (3-34)

Note that S is dependent on x 0 (k,Y) and Ex ('r), the mean and covariance

of the system state, given Y is the true parameter vector. In general,

x0 (k,Y) and Ex (Y) are very complex functions of Y. As a result, the

maximization of E{p 2 } over Y is very difficult to perform. However, the

problem may often be simplified by a reasonable approximation discussed in

the following.
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The principal feature of a parity function is to relate the outputs

of different sensors and inputs to actuators at different points in time.

The matrices C, 0, and H, which contain the dynamics of the system, repre-

sent the dominant feature of the parity relation. From this vantage point,

the primary effect of the uncertainty in Y is manifested through C, 0, and

B. Thus, it seems reasonable to approximate x0 (k,y) and Ex(7)

by x0 (k) and Ex corresponding to some nominal value of Y since the effect of

Y on a through x0 (k,y) and Ex (y) is indirect and only of secondary

importance. With this approximation, the dependence of S on Y is simplified,

and the minimax problem takes the form

min max [aa]S(y,xO(k),Ex,U(k))[aX]' 	 (3-35)
a, a yeI'

s.t. aa'=1

Despite the fact that the objective function of (3-34) is quadratic

in a and a, it is generally very difficult to solve, because S may depend

on Y arbitrarily, In Section 3.5, we will discuss a simple example for

which a solution procedure has been developed. There, we will also report

some insights into the solution of the general problem obtained from this

example.

We let a* and X* denote the values of a and X that solve (3-35),

with 0* = 9U (k) , and

e * (x (k),E ,U(k)) = e(a * ,s* , x (k),E ,U(k))	 (3-36)
x
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We call e * the parity error of the parity function

p*	a.*Y (k) - S*U (k)	 (3-37)

Hence, e* is a measure of the (minimtiz.id worst case) effect of modelling

error and noise on (3-36). From the viewpoint of our design objective

(3-28) e * measures the fittness of (3-37) as a parity function.

As an aside, we note that a and $ are not further constrained such

that aC(Y) =0 and a = a8(y) for some value Yer. This is because even if

they were, the resulting parity error would not be smaller than that of

(3-36). In addition, just as for a and R* , the a and B satisfying aC(Y)s0

$ = a$(y) do not satisfy aC(Y true )-0 and B =a 8 (Ytrue) in general. We

now return to the minimax problem.

Note that the minimax solution a* and X* ( S* ) are dependent on x0(k)

and U(k). In general, this means new coefficients would have to be computed

at each time step if we wanted to continually achieve the optimum. This is

clearly an undesirable requizement. Very often a set of coefficients will

work well for a range of conditions, i.e. for x in some region of the state

space. Therefore, a practical approach is t- schedule the coefficients ac-

cording to the operating condition. Each operating condition can be repre-

sented by a set-point, which is characterized by some nominal state x0 and

U0 that are independent of time. Parity coefficients can be pre-computed

(by solving (3-35) with x0 and U0 in place of x0 (k) and U(k)) and stored.

Then, the appropriate coefficients can be retrieved for use at the cor-

responding set-point. When the state and the in puts are varying slowly,
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this scheme of scheduling coefficients is especially likely to deliver

performance close to the optimum. In the remainder of tris chapter we will

focus on the design of parity coefficients for given set points.

The above formulation of the parity coeffic:ienc design problem may be

slightly generalized to account for the fact that the true actuator input

may not be U0 exactly. To accomplish this we will let the actuator input

term U(k) be U0 + 6U(k) in the minimax problem (3-28). The term U0 is the

set-point input (yielding the set-point state x0) and 6U(k) is a random

process that may be used to model two effects. In a true set-point operation,

the set-point is often maintained by means of feedback through a compensator.

Thus, the actuator input contains U0 and SUM, which represents the

variation in the input due to feedback. Based on the structure of the com-

pensator, an expression for 6U(k) can be derived and subsequently used in

(3-28). we note that SU(k) in this case will be correlated with the state x.

Using such an input in (3-28) will lead to additional terms in the S matrix

that are the covariance of SU and cross covariance of SU and x. Since U(k)

is not a fixed term, $ will no longer be of a single-degree-of freedom but

completely free. As a result we will have to consider the full vector S in

the minimax problem instead of the scalar variable A as in (3-29). However, the

basic form of the design problem is not altered.

In the case where the set-point design is used in the parity coefficient

scheduling schema described earliei, 6U(k) may be used to model deviations

from U0 that are due to time-varying inputs used to change the state, such as

in a manuevering vehicle. This will allow us, to some degree, to account for

F1
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the fzTt that the input is not necessarily fixed at U  in the minimax design.

For simplicity, we may model 6U(k) here as a white Gaussian process with

covariance E  that is uncorrelated with the state (although more complex

models can be used). Again, the inclusion of such a 6U will not change the

structure of the minimax problem, which will be the same as in the previous

case.

In this section, the minimax design method was developed based on the

assumption that Y is unknown. If a probability distribution over r may be

obtained (or postulated), an alternative design formulation of the parity

coefficient design problem is possible. Namely, instead of minimizing

max E{p2 ), we can consider minimizing E{p 2 ), where F, denote expectation
Yer

with respect to the joint distribution of x(k), 1j.	 and Y. Then, we are

looking at the averaged effect of Y on p. The design problem simply becomes

a constrained quadratic minimization (it is essentially an eigenvalue-

eigenvector problem), and it is simpler to solve. Detailed investigation of

the merits of this approach is left for a future study.

3.4 Choice of Parity Functions for Ope n-Loop Residual-Generation

In the last section we presented a method for determining a set of parity

coefficients for any given parity structure and given nominal set-point x0,

U0 that is best in the sense that it minimizes the maximum mean square value

of the parity function under the no-fail condition. After applying this method

to the candidate parity structures, we have a set of candidate parity functions.
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In this section, we will discuss the criteria for choosing an appropriate

set among the candidate parity functions for use in open-loop residual-

generation processes.

Associated with each candidate parity function (3-28) is a parity

error e * (3-35). Since p * is linear in a * and $*, the magnitude squared

of the combined vector of parity coefficients [a,$] scales the parity error.

Therefore, the parity errors associated with the candidate parity functions

can be compared if they are normalized. We define the normalized parity

error	 e

e* = e*/Ij[a*,O* ]Ij 	(3-41)

where

I I [a*, *] I I = { [a* . R* ] to* . B* ] ' }1/2	 ( 3-42)

and the normalized parity coefficients

a = a*/II[a*,R*]II 	(3-43)

R =*/^IIa*, ^ * ]II 	 (3-44)

Then, we can consider normalized parity functions:

p* = Ot* Y(k) - S* UM	 (3-45)

it is now clear that normalized parity functions that have the mallest narmalized

parity errors are preferred, because they are close to being ideal parity

functions.
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However, this is not the only issue that must be considered in

designing robust FDI systems. Note that the usefulness of a parity function

as a residual depends on how visible failure effects are in comparison to

the inherrent parity error. To illustrate consider an example in which we

assume an additive failure and we let g denote the additive terms that ap-

pear in the normalized parity function under this failure. (Note that g

is the signature of this failure and it is dependent on C * and S* .) We

define the signature to parity error ratio 7 as

It „ Igl /Ie* 3 1/2
	

(3-46)

Suppose we have to choose between two parity functions for the FDI of

a particular failure. Then, we should choose the one that gives a bigger W.

For instance, consider the parity structure (3-8)(3-9) of the example discussed

in Section 3.1. Suppose we have determined the normalized parity coefficient

for these structures, and we have the parity functions

pl s .778 yl (k) + .545 yl (k-1) + .311 y2 (k-1)

P2 = .592 y2 (k) - .474 y2 (k-1) + .652 u(k-1)

If the failure we are interested in detecting is a bias of magnitude v in

sensor 2, the signature g  and g2 corresponding to p  and p2 are

91 s .311V

92 = .118v
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and

?rl = .311V/le11

x2	 .118V/[e27V2

where e1 and e2 are the normalized parity errors of p l and p2 . Therefore,

for detecting a bias in sensor 2, we should choose p1 (p2
) if T1>(<)x2,

i.e.	 if e1 <(>)6.92 2.

In summary, parity functions with small normalized parity errors are

usually preferred. In considering the detection and identification of

particular failures, the signature to parity error ratios should be compared.

The requirement for using IT is that the nature of the failure will have to

be given. In the above example, the failure of interest is simply a bias in

the second sensor.

3.5 A Numerical Example

In this section, we consider the coefficient design problem for a

simple example. We will develop a simple solution procedure for this problem,

and we will also discuss the relation between this solution method and the

solution of more general coefficient design problems.

The Numerical Example

The system under consideration is a 4-dimensional system operating at

a set-point with two actuators and three sensors. The values of the system

matrices are shown in Table 3-1. Except for two elements of the A matrix,
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.5 -.7 .7 0

0 .8 Y1 0
A

-1 0 0 .1

0 0 Y2 .4

0 0

8 = 1 0

0 1

0 0

C1 =	 10	 0 1 Ol

C2 -	 10	 1 0 Ol

C3 =	 10	 0 0 'l

Y1£ 1.02, .21
	

NOMINAL Y1 = .1

Y2  1-.2, -.11
	

NOMINAL Y2 - -.15

TABLE 3-1: System Parameters
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all other parameters of the system are known exactly. These two uncertain

elements are assumed to be two independent parameters denoted by 'yi and Y2.

The ranges of these parameters are also shown in Table 3-1. The system is

stable over the specified range of parameter value. In addition, there are

plant and sensors noises, but we will describe them when we discuss the

numerical results later in this section.

Suppose we want to design a generalized voting system for detecting a

sensor failure. Three candidate parity structuresare

y2 (k)

pl 
a
 ai	 Y2

 (k+l)	 ( 3-47)

yl(k)

Y2 (k)

P2	a2	
Yi (k)	 (3-48)

yl (k+l )

yl (k+2)

Y3 (k)

P3 a3	 y3 (k+l)	 ( 3 -49)

yl(k)
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The corresponding # and C matrices are shown in Table 3-2. Mote that each

CM depends linearly on either 
Y1 

or Y2 and that the rows of C2 are not

linearly dependent for any value of Y2 . The parity structures under con-

sideration do not include any actuator inputE due to the fact that c1B,

C2B, c2AB, and Y are all zero. This will not cause any severe restriction

in the following discussion, because the absence of the actuator inputs does

not change the structure of the minimax problem (3-35). Assuming only a

single sensor failure may occur, only p, plus either p  or p2 need to be used

for residual-generation (because both p  and p2 include sensors 1 and 2).

Solution Procedure

Here, we will discuss the procedure for determining the coefficients for

the above parity ,,tructure and also discuss several direct extensions sug-

gested by this procedure. We will discuss its relation to the solution of the

more general coefficient problem at the end of this section.

Since the three parity,  4tructures are of the same form (i.e. p-CY M ),

we can consider one generic problem characterized by C, a, 4, etc.

(without the index associated with the particular parity structure). We

will let Y denote the scalar parameter that appearsin C (since C is dependent

on only one parameter in each of the three parity structures). The minimax

problem is of the form

min max	 (x S (Y) a'	 ( 3-50)

M YeIY1,Y2I

s.t aa' -1
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0 1	 0	 0	 -0-

	

Cl = 0 .8 y
	
	

0	 ml=	 0100

0 0	 1
	 0	 -0-

	

0	 1

C2	
0	 0

	-1	 0

	

-.5	 .7

0	 0

1	 0

0	 1

-.7+.172	.04

-0-

0 0 1 0	 0 0 0 0

^2 •

-100 .1 0010

-0-

-0-

m 3	 0001

-0-

0	 0	 0	 1

C3	 0	 0	 Y2	 .4

<<	 0	 1	 0

TABLE 3-2: The C and 0 Matrices.
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where the dependence of S on tha _`t-point x0 is suppressed, and y  and

denote the minimum and maximum of the parameter variation. Substituting C 	 -

and • of Table 3-2 into the expression for S in (3-33), we can easily see

that S is quadratic in y (because C and 0 are linear in Y), and S is positiv,^

definite for any value of Y. Then, OS(y)a' is convex in Y.	 In order to see

this, we can write aS(y)a I - w2'f2 + w 1 Y + w 0>0, where 
w 2 w l , wO are

scalars dependent on a.) It follows that the maximum of aS(y)at' for any value

of a occurs at either y  or y2 , and (3-50) becomes

min max If l (a) ,f2 (a) ]
	

(3-51)
a
s.t. Oa'-1

where

fi (CO - aS(1i)a',	 1-1,2	 (3-52)

To gain some! insights into the solution of (3-51), let us consider a

2-dimensional version of this problem, i.e. suppose that S is W. In

Figure 3-1. we have shown the ellipses f i (a) - s i t 1-1,2 in the at-plane.

As 
9  

increases, the ellipses grow in size. Recall that a is constrained

to be magnitude one, and this conFtxaint takes the form of a unit circle in

the a-plane. Along the unit circle we can trace the value of f i (at), and

this is shown in Figure 3-2. There are basically two cases. The first case

is when the minimum of both f 3 and f2 (along the unit circle) fall below

the other function (see Figure 3-2a).	 It is easy to see that the solution

of (3-51) has to be at oneof the intersection points al or a2 ,	 i.e.

f1 (al) - f2 (aI) and f 1 (a2 ) - f 2 (a2). in Figure 3-2a, the minimax solution is
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n
--2

UNIT
CIRCLE

al

2(a)=52

FIGURE 3-1: Ellipses in a-plane.

(b)

FIGURE 3-2: Value of f along circumference of unit circle in a-plane.
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clearly at ai , since f 1 (al)< f 1 01 ). The second case is when the minimum

of either f1 or f2 remain above the other function (see Figure 3-26). Then

it is clear that the minimum a * is the mini:nax solution.

The above reasoning car. be easily extender. L_7 higher dimensional

problems, i.e. S is of arbitrary dimension, as long as S(y) is quadratic

in y. In fact, it can be easily shown that the solution of (3-51) car, be

obtained by a two-step procedure (see Appendix A). To simplify the descrip-

tion of this procedure, we need to define a a2 and A in following manner

fi (al) = min fi ((%)	 i=1,2	 (3-53)
a

s.t. aa'-1

A= {a: f1 (a) = f2 (a), aa' =1)	 (3-54)

Since f1 (a) = aS(yl)a(S is .ymmetric and positive-definite), a l is simply

the eigenvector of S(y l ) corresponding to the smallest eigenvalue.

The two-step solution procedure for (3-51) is:

1)	 The first step involves checking the conditions

fI (al	a)> f2 ( l )	 (3-55a)

f2 ( a2)> f 1 ((1	 (3-55b)

.:
if both otl and a2 satisfy (3-55) , then the al giving a smaller f i (aj ) is

'he solution of ( 3-51) . If only one Crl satisfies (5-55) , it is the solution.

f
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If neither satisfies ( 5-55), then we have to perform step 2.

2) Search over the set A (3-54) to find an a that minimizes f1 W) or

f2 (a) (since over A, f 1 (a) = f2 (a)). This is equivalent to solving a

quadratic programming problem with quadratic constraints:

(3-56)min fl(a)
a

s. t. aa' =1

als(yI)-S(y2)1a^=©

The solution of (3-56) is the minimax solution to (3-51), if step 1 fails

to Produces a solution. The minimization may be solved numerically using

existing optimization techniques 1141.

The above solution procedure can be readily extended to the case where

S is a quadratic function of an N-vector y and each element of y is indepen-

dently bounded by an interval (i.e. T is a hyper-rectangle). Then the

minimax problem ( 3-51) becomes

min max	 f.(a)
	

(3-57)

a 
i=1,...,2N x

s.t, aa' =1

where f i (a) = aS (yi)a', and yi , i=1,...,2N denote the 2N corners of T.

The above solution procedure is modified as follows. In Step 1, we have

to consider the minimax of all f1 (a). That is, we have to replace (3-55) by

f i (al )	 min	 fj(al),	 N	 (3-58)

j=1,.. .,2N
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In step 2, we will have to solve (3-56) for all combinations of fi (a) and

fj WO, i)Oj. Then the minimum of all the solutions of the quadratic programs

is the minimax solution.

This solution method can be extended to handle parity structureswith

actuator inputs. Of course, the corresponding 5 matrix has to be quadratic

in Y for our approach to be valid. In Appendix A, we will discuss such an

extension to include actuator inputs for the scalar case. The N-parameter

case with input terms can be treated in the same way as the N-parameter

case with no input term was treated in the above discussion.

Numerical Results

The minimax design problem has been solved for a set of six test con-

ditions consisting of different set-points and different plant and sensor

noise intensities. These test conditions are described in Tables 3-3 and

3-4. The two set-points 1-4.16 7.03 4.06 -1.011' and 14.06 2.90 5.80

-1.451' can be obtained by applying u1=1 and u2=10 to the nominal system

model. The nominal state covariances E1 and E2 due to the two differentx	 x

hypothesized plant noise intensities Q1 and Q2 are listed in Table 3-5.

A computer program based on the penalty- multiplier method 1141 for

solving non-linear optimization problems is used when it is necessary to carry

out step two of this solution procedure. In addition to the symmetry (i.e. if

a is a candidate solution of (5-56), so is -a), there are generally local

minima for (5-56). In order to obtain the global minimum, a large number of

initial guesses may have to be used in the minimization program. For our
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.25 0 0 0

0 0 0 0

Q1
0 0 0 0

0 0 0 .25

.25 0 -.325 0

0 .5 0 0
2

Q	 = -.325 0 .625 0

0 0 0 .25

	

R1	
0

R =
	

R2	 R  = 1,2, 1=1,2,3

	

0	
R3

TABLE 3-3: Noise Variances

	

COND. CODE	 PARAMETERS

a	 x0= [0 00 01

	Q 1,	 DIAG R = [1 1 11

x0 = 1-4.16 7.03 4.06 -1.011
b

	

Q1,	 DIAG R = [1 1 11

x0 = [4.06 2.90 5.80 -3:4S1
c

Q1,	 DIAG R = [1 1 11

x0 = [4.OG 2.90 5.80 -1.451
t	

d
Ql,	 DIAG R = [1 2 21

x0	[4.Oc 2.90 5.80 -1.451
e

Q1 	 DTAG R - [2 1 11

x0	[4.06 2.90 5.8	 -1.451
f

Q2,	 DIAG R - [1 1 11

TABLE 3-4: Test Conditions.
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.5580 .0342 -.1508 -.0552

1

E	 s
.0342 .0102 -.0129 -.0097

x
-.1508 -.0129 .5772 .0117

-.0552 -.0097 .0117 .3113

1.958 -.8434 -1.114 -.1049

2 -.8434 1.803 .7691 -.1996

E	 e
x -1.114 .7691 2.608 -.1081

-.104 -.1996 -.1081 .3829

TABLE 3-5: Nominal E
x
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problems, we always used either aor a2 (corresponding to the minims of fl

and f2 ) as the initial guess for the second step, and the algorithm has always

converged to an e * quite rapidly. Other initial guesses were also tried, but

they either led to the same solution or higher a values. Therefore, we may

conclude that we have determined the global minima for our problems. The

resulting coefficients are tabulated in Table 3-6.

For this exanple, it is evident that the parity coefficients are

generally strongly dependent on the test condition (the values of x0 , Q, and

R). Although this dependence is very complex, some insights may still be

obtained from the numerical results. Consider, for instance, p  under con-

ditions b and c. From Table 3-6, we have for condition b the parity function

p*lb = .6411 
Y2 
(k) - .7666 y2 (k+l) + .0378 Yl (k)	 (3-59)

and for condition c

Plc	
.8947 Y2 (k) - .3667 Y2 (k+l) - .2551 Yl (k)	 (3-60)

The only diff-mence between these two test conditions lies in the value of

x0 (see Table 3-5). Since the first and fourth column of C l (Table 3-2)

are zero, only the second and third elements of x0 (x02 and x03 ) will play

a role in the coefficient optimization problem. The parity function pl can

be written in the form of (3-26):

pl a1x02 + a2 (x02+Y1x03) + a3x03 + Z(Yl
,a)
	

(3-61)
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TEST PAR. -6*
COND. FUNC.

Ot*

1 1.002 .7282 -.6808 .0791

a 2 1.008 .9983 .0223 .0483 .0219

3 1.118* .6833 -.7208 -.1167

1 1.082 .6411 -.7666 .0378

b 2 1.101* .4462 .5079 -.4356 .5942

3 1.210 .7027 -.7115 -.064

1 1.096 .8947 -.3667 -.2551

c 2 1.055 .9599 -.1484 .1992 .1296

3 1.230 .7592 -.6504 .0249

1 1.908 .7865 .3023 -.5385

d 2 1.123 .7345 -.5931 .4697 -.6559

3 2.228 .7981 -.6007 .0684

1 1.124 .8058 -.5832 -.1025

e 2 1.122' .9669 -.1204 .1242 .1875

3 1.230 .7441 -.6678 .1692

1 1.427 .7327 -.6803 -.0166

f 2 1.311* .5146 .4404 -.3312 .6570

3 1.254 .6385 -.7687 .0375

*
Solution obtained in Step 1 of

solution procedure

TABLE 3-6: Minimax Parity Coefficients and Parity Errors
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where al, a2 and a3 denote the elements of a corresponding to y2(k),

y 2 (k+l), and y i (k) respectively, and ^ denotes the remaining noise terms.

It is clear that x03 and a2 modulates the effect of Y1 on pl . Qualitatively,

as 
(x031 becomes large relative to Ix021 

(with all the noise covariances the

same), the optimal a2 will reduce in size (relative to al and a3) in order to

keep the effect of Y 1 small. As Ix03! increases, the signal *a noise ratio

of y 1 (k) also increases. Therefore, we expect la3l to become large so as

to make better use of the information provided by y l (k). Under conditions

b, x02 (-7.03)> x03 (-4.06), and under condition c, x 02 (-2.9)< x03 (-5.6). An

inspection of (3-59) and (3 -60) shows that the above reasoning holds.

Note that both p  and p2 relate the first sensor with the second one,

and p2 is a higher order relation than p l . Furthermore, the rows of C.

are not linearly dependent for any value of y 2 . However, the parity error

associated with p2 is smaller than that of pi in all cases except condition

a. This shows that a higher order parity function (which is likely to contain

high order effects of y 1) is not necessarily more vulnerable to modelling

errors and poise. In addition, a parity function based on a C matrix with

rows that are linearly dependent for all values of 7 does not necessarily

produce a smaller parity error than a parity function that is based on a C

with independent rows.

In Table 3-7 we have tabulated the signature to parity error ratio (ri)

associated with the parity function for sensor bias failures under conditions c

'	 and d. (Wi denotes the signature to parity error ratio associated with a

I
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TEST
COND.

PARITY
FUNCTION

Tr
1 ^2 ^3

pl .243v1 .504v2 -

c p2 .176v1 . 934v2 -

P3 .022v1 - .107V3

P1 .390v1 .788v2 -

d p2 .733v1 . 693v,,

p3 .046v1 - . 126v3

TABLE 3-7: tt Values for Selected Test Conditions
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parity function for a sensor i bias failure of magnitude v.) The parity

function p2 has a larger 7r2 in condition c	 and a larger 7r
1 

in condition

dl p  has a larger 7r
1 

in condition c. The parity function p3 has very

small 7r  and 
7r  

in both conditions c and d. Therefore, p3 is not very useful

for detecting a small bias in either sensor 1 or sensor 3.

Further Discussion of Minimax Solution

Earlier in this section, we discussed a simple method of solving the

minimax problem when the objective function CIS(,()(%' is quadratic in y.

The simplicity of the solution is a direct consequence of the fact that the

maximization of aS(Z()a' with respect to 'y (3-50) can be replaced by the

maximum among as(yi )a' at the finite number of corners (y i ) of T (which is

assumed to be a hyper-rectangle) for all a. Whenever this replacement can

be done, this simple solution method applies. This is possible, for ins-

tance, when aS(y)a' is convex over T for all a (aa'=?). Nonlinear dependence

of the elements of A, B, and C on 'y and higher order effects (due to prc,iAncts

such as CA, CA2 , etc.) in C, 0, and 8 will make the objective function of the

minimax problem (aS ('y) a' or [Cal S (y) [Cal l when there are actuator terms)

non-quadratic in y. In such cases, the task of checking for convexity is

generally difficult. Moreover, convexity is not a ne--essary condition for

replacing the maximization of aS(Y)a' aver 'y by the maximum of

as(yi )a', i-l,...,M (where M is the number of corners of t). By examining

the geometry of the problem, some insights have been obtained, and we will

discuss them in the following.

t
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Suppose there is on.. ► a scalar parameter Y and there are only two

elements al and a2 , among all elements of C and 0, that are dependent on Y.

(Although we will only consider aS(Y)a' in this discussion, it is clear

that the extension to include actuator terms is immediate.) Then, al and a2

are also dependent on each other. Let us write h a (al ,a2 ) = OS(Y)a';

ha (a1 a2 ) is a positive quadratic function of al and a2 for any value of a.

For each value of a, we can draw the ellipsis h a (a1 a2 ) =e for different

values of 8 in the a l-a2 plane (Figure 3-3a). Note that the ellipsis increases

in size with increasing 8.

Because al and a2 both depend on Y, they can only take on values along

the curve (aI(Y),a2(Y)) with Y varying over its range t. The curve is

characterized by a scalar equation, say G 1 (a 1 a2 )=0 (see Figure 3-36). By

tracing along this curve (called G 1 ) and noting the values of ha and Y along

it, we can obtain the function ha (Y) = aS(Y)a' for a fixed a (see Figure

3-3b).	 it is evident that the maximum of h does not occur at either end
a

of r	 (in the case shown in Figure 3-36). Now suppose the relationship

between al and a2 is characterized by another curve G2 (al ,a2 )-0 (Figure 3-4a;.

The plot of ha versus Y for G2 (Figure 3-C)) shows that the maximum of ha is
2

at Y.

Based on the geometry described above, we can re-state the condition

under which max ha (Y) = maxth(Y 1 ),ha (Y2a	 )) for a fixed a as follows.

Y

(We will let a = tc
I 

ICY 2 )' to simplify the notation).	 For each a, consider

the ellipses ha (o)	 ha (Y 1 ) and h(I (a) = h
(I

(y 2 ) that pass through a(rl ) and

a(Y2 ) respectively. Define Y* such that

Y*	arg max (h (Y
1
),ha (Y2 1)	 ( 3 -67;

Yl,Yz
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Q'2

h,M (cra2)= 8

cr(y2)

c,

FIGURE 3-33: Contours of 
ha(a1'72) 

and G  for a fixed Cx.

N
hcz(y)

Y1
	 y2

FIGURE 3-3b: ha (Y) along Gl.

)

y
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_r_.I%

FIGURE 3-4a: Contours of ha (a(7 ) and G2 for 3 fixed a.

FIGURE 3-4b: ha (Y) along Gz.
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Note that Y* is dependent on a, and ha (a) = ha (Y* ) is the bigger of the

two ellipses passing through o(Y 1) and a(Y2 ). Then,

max h(Y) - max(h(Y 1 a),h(Y2
C1
	 a	 )l if and only if the curve G (describing the

Y

relationship between a l and a2) lies within the bigger ellipse ha (t7)	 ha (Y ).

Mathematically, this is equivalent to the condition

b (a) < ha (Y* ),	 oe{(Y: G(Q) =0}	 (3-63)

It should be noted that a brute-force approach to testing condition ( 3 -63)

will result in the evaluation of ha (Y) for all Yer. A conceptually simpler

approach to testing this condition is described below.

Consider the simultaneous equations

ya (a) = h
a
 (Y* )	 (3-64a)

G (q) = p	 ( 3-64b)

Assuming v is continuous in Y (hence the curve G is continuous), we can

deduce that if the set of solutions to (3-64) does not contain any point

a other than a(Y1) and/or a(Y 2 ), then the curve G is either completely inside

or outside the ellipse ha (a) = ha (Y * ) (and touching it only at a!Y 1) and/or

0(Y2 )).	 Then, the curve r, lies inside the ellipse if the follo!+ ng is

true.

ha(o)< ha (Y* ),	 a e{-j: G(a)-o}
	

( i-65)

Therefore, the testing of the condition ( 3-63) requires studying the

solutions of the simultaneous equations (3-64). If the solution set of

11
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(3-64) does not contain any a other than a(y1) and a(y2) and (3-65) holds,

then max a(Y) - max[a( Y1	2).ha (Y)] for a fixed o.
Y

In order for the simple minimax solution described earlier to apply,

condition (3-61) has to hold for all a such that W-1. This implies that

we have to examine the solution of (3-64) and condition (3-65) as a function

of a. This is generally a difficult task, because, even for a fixed a, the

solution of (3-64) is difficult to determine for an arbitrary G. Nevertheless,

this approach provides an important perspective on the problem, i.e. the

objective function aS(y)a is now separated into ha (a), which is independent

of y, and G(a), which contains all the effects of Y. This explicit isolation

of the effects of Y will allow us to exploit the structure of G (i.e. the

inter-dependence of al and a2 through this mutual dependence on Y) to deter-

mine if (3-63) holds. However, future work is required to develop this

concept into a practical procedure for testing (3-63). In closing, we note

that the above discussion for the case of 2 a's and a scalar Y can be readily

generalized to include multiple a's and a vector y.

3.6 Summary

In this chapter we have developed an approach to the design of robust

residual-generation processes. We have examined in detail the three basic

steps of the design method: i) the choice of parity structures in the

presence of modelling uncertainties, ii) the design of parity coefficients,

ii') the choice of parity functions for generating residuals based on

signature to parity error ratios.

C -C2
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The conceptualization of analytical redundancy as parity relations

together with the design method described in the chapter represent a new

approach to the design of residual-generation processes for FDI. The for-

mulation of the parity coefficient design problem as a minimax optimization

provides a basis for exploitating analytical redundancy in a robust manner.

Although the minimax problem is difficult to solve, a simple solution

procedure has been found for some special cases. The insights provided by

this solution method will aid in the study of the solution if more general

minimax problems required to design robust residual-generation schemes.
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CHAPTER 4

OPTIMAL SEQUENTIAL DECISION RULES

4.1 The Sequential Decision Problem-Background

The output of the residual-generation process is the random residual

sequence, r(k). The behavior of the residual is described by a set of pro-

bability density functions {p(r(1),...,r(k)1(i,T,V)), k-1,2,...,} that is

characteristic of the presence of the failure (1,T,V) (the notation (i,T,V)-

(0,-,-) denotes the absence of any failure), and such probability density

functions represent the signature of the failure. The FDI process involves

monitoring the residual for changes from its normal (no-fail) behavior.

Residual samples are observed in sequence. If a failure is judged to have

occurred and sufficient information (from the residual) has been gathered,

the monitoring process is stopped. Then, based on the past observations of

residual, an identification of the failure is made. If no failure has oc-

curred, or if the information gathered is insufficient, monitoring is not

interrupted so that further residual samples may be observed. The decision

to interrupt the residual-monitoring to make a failure identification is

based on a compromise between the speed and accuracy of the detection, and

the failure identification reflects the design tradeoff among the errors in

failure classification. Such a decision mechanism belongs to the extensively

studied class of sequential tests or sequential decision rules. In this

research, we will extend existing concepts and formulations of the sequential

decision problem to the design of decision rules for FDI systems.

The first important piece of work in sequential analysis was presented

in 1947 by Wald 1101, where the Sequential Probability Ratio Test (SPRT) was

proposed as a procedure for testing a simple hypothesis againsta simple
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alternative. It was shown, a year later, by Wald and Wolfowitz [181 that

the SPRT is optimal in the sense that among the class of sequential tests

that have misclassification errors not greater than those of the SPRT, the

SPRT will take the smallest expected number of samples to reach a decision.

The conceptual and structural simplicity of the SPRT has made it the basis of

many studies in the design and application of sequential tests. Por example,

the SPRT was employed as a means of identifying aircraft sensor failures

[111, and SPRT- like tests were developed for robust signal detection 1191.

In addition, modifications such as those investigated by Anderson [ 201 and

Chien and Adams 1211 have been suggested to enable the SPRT to deal with

a wider class of problems in a satisfactory manner. Specifically, Anderson

has modified the decision thresholds of the SPRT so as to maintain a reason-

able expected sample size when the same SPRT is used in testing a simple

hypothesis against a composite alternative, and Chien and Adams have introduced

resets for the SPRT in order to detect a change from one hypothesis to another

at some unknown time. In the latter case, the change in the hypothesis at

an unknown time indeed models the occurrence of a (the only possible) failure.

The decision problem to which the SPRT is the solution is a special and

very simple case of the general Bayes Sequential Decision Problem (BSDP) first

studied by Arrow, Blackwell and Girshick and later described by Blackwell and

Girshick 1221• The BSDP provides a general formulation that can be adapted

to many meaningful decision problems. In particular, it is suitable for the

FDI decision problem, where the occurrence of a failure may be regarded as a

change from the normal (no-fail) hypothesis to some failure hypothesis at an

unknown time. The optimal Bayes Sequential Decision Rule (BSDR) has a form



-1Go-

similar to that of the dynamic programming solution to the discrete time

optimal control problems [17]. Even with the aid of modern cagputers,

the BSDR can rarely be calculated for the general problem, and only in some

limiting cases [23] 124 ] has some feel for the solution boon obtained.

For this reason, alternative suboptimal sequential procedures were often

investigated as means of solving sequential decision problems e.g., 125 ]

(26] ( 271.

The inclusion of changes among hypotheses at unknown times further

complicates the computational aspect of the BSDR. As noted by Chernoff

and tacks in their study of estimating a parameter which may change in time

[28 ], only suboptimal or ad hoc procedures are practical solutions. However,

for the case where only a charge from a simple hypothesis to a simple al-

ternative is allowed, some useful results are available. As mentioned earlier,

Chien and Adams were able to modify the SPRT to accommodate this feature.

In addition, Shiryaev solved the problem in the Bayes formulation 129 ],

where the Bayes objective used was a means of stating the desire to minimise

the expected delay to detecting a change	 while keeping the probability

of false alarm or the expected number of false alarms before the change to

some fixed value. Such an interpretation of the Bayes formulation suggests

the usefulness of the BSDP for incorporating the numerous tradeoff issues

of the decision process in FDI into a single design objective. In this way,

the BSDP provides a conceptually simple design objective for the !DI problem,

and it has been the basis of our research in the design of sequential de-

cision rules. Although the optimal solution is impossible to calculate, the

structure of the Bayes formulation provides a framework in which simple
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suboptimal rules can be derived. We shall report our work along this direc-

tion in the remainder of this chapter and the next. In section 4.2, the

Bayes formulation of the FDI problem is discussed. The nature of the optimal

BSDR and the difficulties in its calculation are examinee: in Section 4.3 for

ways of obtaining simple suboptimal rules. Chapter 5 contains the resulting

approach to designing suboptimal sequential decision rules.

4.2 The Bayes Approach for FDI

In this section we will present a formulation of the FDI decision pro-

cess as a BSDP, and we will discuss the advantages and limitations of the

Bayes approach as a tool for designing decision rules for FDI.

In a sequential decision problem, the decision maker is allowed to

make a sequence of observations. After each observation, he will decide

whether to stop sampling and choose a terminal action, or to continue sam-

pling and postpone the terminal decision to a later time. Hence the sequen-

tial decision rule consists of a stopping rule and a terminal decision rule

which, in the FDI problem, are used to determine when to interrupt the

residual-monitoring and what failure declaration to make, respectively. Each

sequential decision rule leads to a particular performance tradeoff determined

by the Bayes formulation. As we develop the Bayesian approach to FDI, we will

see how the inherent tradeoff issues are incorporated into the formulation.

The BSDP formulation of the FDI problem consists of six elements:

1) 0: the set of states of nature or failure hypotheses. An

element 0 of 0 may denote a single type i failure of size V occurring at time

t (0-(i,T,V)) or the occurrence of a set of failures (possibly simultaneously),

i.e. 0 - {(il, T1 'IV 1),...,(in,Tn,vn)}. 	 Although they do not add to the
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structural complexity of the decision problem, multiple failures do increase

the size of 0 and hence also increase the computational burden in the solution

of the problem. In this study we will focus our attention on single failures

for simplicity. Moreover, since failuresroccur infrequently, it is unlikely

for failures to occur in rapid succession. (Su)ficient time is generally

available for detecting and identifying a failure and re-starting the decision

process before another failure occurs. From this vantage point, single fail-

ure indeed represent the dominant phenomenon.

In many applications it suffices to just identify the failure type

without estimating the failure size. then we may consider composite failure

hypotheses of the form (i,T) - a type i failure of any size occurring at time

T. Moreover, it is often true that a detection system based on (i,T,V) for

some appropriate V can also detect and identify the type of the failure

(i,T,V) for V>V. Thus, we may use (i,T,V) to represent (t,T). In the air-

craft sensor FAI problem (1]], for instance, excellent results were obtained using

this approach. In situations where it is necessary to estimate v in order

to identify the failure type or choose a post-failure remedial action, a

finite grid of failure magnitudes should provide sufficient resolution. In

both cases, the failure size can be absorbed in the index i so that (1,T) may

represent a composite hypothesis or a failure of a certain magnitude. Now

we have the discrete nature set

0 - ((1,T), i-1,6..,M, T-1,2,...,)
	

(4-1)

where we assume there are K different failure types of interest and any one

of them may occur at time T-1, or 2, or
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2) U: the prior probability mass function (PMP) over the nature

set 0. This PMF represents the a priori information concerning the failure,

i.e. how likely it is for each type of failure to occur, and when is a fail-

ure likely to occur. Because this information may not be available or ac-

currate in some cases, the need to specify U is a drawback of the Bayes

approach for such cases. Nevertheless, we will see that it can be regarded

as a parameter in the design of a BSDR.

In general, U may be arbitrary. Here, we will employ a special form of

U• We assume the underlying failure process has two properties: i) the M

failures of 0 are independent of one another, and fi) the occurrence of each

W 1

	

	
failure i is a Bernoulli process with (success) parameter p i . The Bernoulli

process (corresponding to the Poisson process in continuous time) is a com-

mon model for failures in physical components 130 1; the independence

assumption describes a large class of failures (such as sensor failures)

while providing a simple approximation for the others. In this framework,

the set 0 consisting of single failures only represents a subset, albeit a

dominant one, of the exhaustive events defined over all possible outcomes

including multiple failures. More precisely, 0 only describes the arrival

of the first failure. Hence the PMP defined over 0 is a conditional PMF-

U(i,T) is the conditional probability that a failure will occur at time T

and that the failure will be of type i, given that this failure is the first

ever to occur. Using the preceding reasoning, it is straightforward to show

that

U(1,T) s a(i)P(1-p ) T
-1 

	 T-1,2,...,
	 (4-2)
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where
M

p 1 - n U-P )	 (4-3)
J.1	 j

M
GM : Pi(1-Pi) 

-1 
t E P (1-P j )

-11 -1
	(4-4)

Jul

The parameter P may be regarded as the parameter of the combined (Bernoulli)

failure process - the occurrence of a (any) failure; OM can be interpreted

as the marginal probability that the first failure is of type i. Note that

(4-2) indicates the arrival of the first failure is memoryl*ox, i.e.

_	 T-T0_ 1
u(i,T!no failure before T0 )	 a(i)P(1-P)

(4-S)
= 11(1,T-T0),	 T>T0

This property will be useful in obtaining time-invariant suboptimal decision

rules (see Chapter 5).

3) U(k): the discrete set of terminal actions (failure identifications)

available to the decision maker when the residual-monitoring is stopped at

time k. An element d of V M may denote the pair (j,t), i.e. declaration of a

type j failure to have occurred at time t. Alternatively, d may represent an iden-

tification of the j-th failure type without regard for the failure time

k
(B = 

U
t-1 (J,t)), or it may signify the presence of a failure without

specification of its type or time, i.e. simply an alarm (6 -U j
M,k

•l,t-1 010 ).

Since the purpose of FDI is to detect and identify failures that have oc-

curred, V(k) should only contain identifications that either specify fail=*

times at or before k, or do not specify any failure tile. As a result, the
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number of terminal decisions specifying failures times grows with k while

the number of decisions not specifying any time will remain the same.

In addition, D(k) does not include the declaration of no failure, since the

residual-monitoring is stopped only when a failure appears to have occurred.

By continuing the residual monitoring, it is understood that no (or insuf-

ficient) evidence has been gathered to declare any failure.

4) L(k;6,6)1 the terminal decision cost (loss) function at time k

defined over 9 x D(k). L W O,d) denotes the penalty for deciding 60(k)

at time k when the true state of nature is b - (i,T). It is assumed is be

bounded and non-negative and have the structure:

'.(kt (i,T),6)	
LU,T),6)	 T<k,	 60 W	 (4-61

LF	T>k 6eV W

where L(6,6) is the underlying cost function that is independent of kt LF

denotes the penalty for a false alarm, ani it may be generalized to be

dependent on d.	 It is only meaningful for a terminal action

(identification) that indicates the correct failure (and/or time) to receive

a lower decision cost than one that indicates the wrong failure (and/or time).

we further assume that the penalty due to an incorrect identification of

the failure time is only dependent on the error of such an identification.

That is for d- (J,t),

L((i,T),(j,t)) - L(i,j,(t-T)) 	 (4-7a)

E	
and for 6 with no time specification

L((f,T),d) = Lti,d)	 (4.7b)

i



Clearly L provides the weans for penalising that various cross -detections

according to how undesirable each of them is.

5) r(k): the residual (observation) sequence. (We shall use r(k)

to denote both the random variable and its value, but the meaning will be

clear from the context.) We shall assume r(k)e Rn. The residual samples

need not be independent and identically distributed in general, but their

joint distribution is dependent on 9 and is assumed to be known. Ne shall

let p(r(1),...,r(k)j(i,T)) denote their joint conditional density.

Assuming that the residual is affected by the failure in a causal manner,

its conditional density has the property

p{r(1),...,r(k),(i,T)} ^ ptr ( 1},...,rtk)^to,-))

i•I,,..,M, Vk	 (4-8)

where (0,-) is used to denote the no-fail condition. In this research, we

further assume that the residual is an independent Gaussian sequence with

time-independent covariance function V(muamsmatrix), i.e.

k
p(r(1),...,rtk)^(i,t)	 jj	 (4-9a)9-1

p(r(k)((i . T))	 1	 exp{- Z [(r(k)-g(kri,TWV 1

	

^ V (2n)	 (4-9b)

where g(ksi,T) is the mean of the residual given that the failuure (i,T) has

occurred. With the covariance assumed to be the' same for all failures, the

L*an function g(k:i,t), characterizes the effect of the failure (i.T), and
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it is henceforth called the signature of (i,T), with g(kt0,-)-0 for the

no-fail condition. For time-invariant systems g(ksi,T) become

q(kii,T) •	
g i (k-1;	 k>T

(4-10)

0	 k<T

We have chosen to study residuals of the form (4-9) and (4-10) because

their rpecial structure facilitates the development of insights into the

design of decision rules. Moreover, the Gaussian assumption is reasonable

in many problems and has met with success in a wide variety of applications,

e.g., ( 51 (11). It should be noted that the use of more general proba-

bility densities 5orthe residual, e.g. time-dependent V and signatures

that depend on both k and T (g(i,k,T)), will not invalidate the 3iscussions

in Section 4.3. The simple signature (4-9) and (4-10) considered here will

facilitate the design of suboptimal rules (see Chapter 5).

6) w(k,(i,T)): the delay cost function naving the properties:

w(k,(i,T))	 w(i,k-T) 	> 0	 T<k	 (4-10a)

0	 T>k

w(i,kl-T)> w(i,k2
-T) 	 k1 > k. > T	 (4-10b)

After a failure has occurred at T, there is a penalty for delaying the

terminal decision uncil °_,* k>T with the penalty	 an increasing function

of the delay M-T). In the absence of a failure, no penalty is imposed on
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the sampling. in this study we will consider a delay cost function that

is linear in the delay, i.e.

0	 TA

where c(i) is a positive func Aon of the failure type i t and may be used to

provide different delay penalties for different types of failures.

We have described the setting of the BSDP for the FDI decision process.

The most important feature presented is the tradeoff structure provided by

the terminal decision and delay cost functions. Generally, the more obser-

vations the decision maker has, the more certain he is about the true state

of nature, and this will lead to a lower expected terminal decision cost

which is due to false alarms and incorrect detections. on the other hand,

he is penalized for the dela y in d;r!is..on that results from taking more

observations. Hence, the cost functions L and v together form the ba_is for

considering the tradeoffs among the variou3 performance issues (detection

delays, false alarms, etc.) simultaneously when the design objective is to

minimize the total expected cost. Now we proceed to characterize sequentia-

decision rules for minimizing the total cost, employing the approach of

Ferguson (311.

A sequential decision rule naturally consists of two s As: a stopping

rule (or sampling plan) and a terminal decision rule. The stopping rule,

denoted by	 is a sequence of

functions of the observed residual samples, with f(k;r(1),,..,r(k))=1, or 0.

When 0(k;r(1),...,r(k))=1, (0), residual-monitoring or sampling is stopped
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(continued) after the k residual samples, r(1),...,r(k) are observed.

Alternatively, the stopping rule may be defined by another sequence of func-

tions T _ ( (0), (l;rt1)),...,t^(k;r(1),...,r(k))....), where

0(k;r(1),... ,r(k))-1 (0) indicates that residual monitoring has been carried

on up to and including time (k-1) and will (not) be stopped after time k

when residual samples, r (1),...,r(k) are observed. The functions 0 and T

are related to each other in the following way

k-1
t^(k;r(1),...,r(k)) _ ^(k;r(1),...,r(k)) ^ [1-Q^(s,r(1),...,r(s))]

S=0	 (4-12)

with *(0) = ^(0). The conditional probability of stopping at time k, given

that the true state of nature is U,T), is

Ei,T*(k;r(1),...,r(k)) = fe(k,r(1),...,r(k))p(r(1),...,r(k),i,T)dr(1)...dr(k)

R x...xTP	 (4-13)

and the probability, P s U,T), of eventually stopping given 6 = U,T) is

Ps U,T) _	 Ei,T0(k;r(1),...,r(k)) = 1
k=0

(4-14)

If Ps U,T) # 1 for all U,T)e 0, it is possible for the sampling to go on

indefinitely even in the presence of a failure, and the expected delay cost

will be infinite. Therefore, only stopping rules will P s (i,T) - 1 are

meaningful.
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The terminal decision rule is a sequence of functions,

D = (d(0),d(l;r(1)),...,d (k;r(1),...,r{k)),...), mapping residual samples,

r(1),...,r(k) into the terminal action set D(k). The function

d(k;r(1),...,r(k)) represents the decision rule used to arrive at an action

(identification) if sampling is stopped at time k and the residual samples,

r(1),...,r(k) are observed. Actually, D only needs to be defined for those

r(1),...,r(k) for which t (k;r(1),...,r(k)) - 1. But it will become clear

that it is useful to consider terminal decision rules independently of the

stopping rule.

The FDI sequential decision procedure consists of two steps. According

to the sampling plan, the decision maker determines if he is to continue

the residual-monitoring. If he is to stop, he makes a failure identification

according to the terminal decision rule. As a result of using the sequential

decision rule ((,D), given (i,T) is the true state of nature, the total ex-

pected cost is:

w

U [(.i,T),(1,D)7 = I E. T{^(k:r(1),...,r(k))[c(k,(i,^))+
k=0	

(4-15)L(k; (i.T),d(k;r(1),...,r(k)))]}

The BSDP is defined as: determine a sequential decision rule ((D * ,D* ) so that

the sequential Bayes risk U5 is minimized, where

	

M	 on

	

us (0,D) = EU0 f(i,T),0,D)) = I	 1 11(i,T)U0 1U,T),(t,D )1	 (4-16)
i=1 T=1

(1) * ,D* ) is called the Bayes Sequential Decision Rule (BSDR) with respect to

?-,, and it is optimal in the sense that it minimizes the sequential Bayes risk.

ORIGINAL PAUX J§

OX POOR QU11LITJF
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"'he BSDR can be determined by carrying out the minimization of (4-15) in

two steps: first with respect to D, than with respect to tt . While we post-

pone further discussions of the BSDR to the next section, we proceed to

examine the Bayes risk closely for a better understanding of the BSDP.

Using (4-6) and (4-11), we can re-write U0 as

T-1

	

U01(i,T),(O,D)I	 IF I Ei'T{t^^(k:r(1),...,r(k))}
k=0

+ c 	 1(k-T)Ei,T {4) (k;r(1)....,r(k))}I

k=T

m
+	 [Ei,T {t (k;ri1),...,r(k))L(i,T) , d(k;r(1),...,r(k)))}I
k=T

(4-16)

In the following we will describe a special interpretation of the sequential

risk for the FDI problem. Let us define the following notation

T-1
PF,(T) _ I Ei/Tt (k;r(1),...,r(k))	 (4-17)

k=1

_	 CO
D = U D(k)	 (4-18)

k=0

S(k, d)={[r (1),..,r(k)]:t^(k:r{1),...,r (k)=l,d(k,r (1),...,r(k))=d},

d8I1	 (4-19)

Pr{S(k,d)`i,T} _

	

	 p(r(1),...,r(k)li,T)dr(1)...dr(k) 	 (4-20)
3.(k,6)
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where P,(T) is the probability of stopping to declare a failure before the

failure occurs at T, i.e. the probability of false alarm when a failure

occurs at time T; D is the set of terminal actions far all times; S(k, 6) is

the region in the sample space of the first k residuals where the sequential

rule (0,D) yieldsthe terminal decision S. Clearly, the S (k,S)'s are

disjoint sets with respect to both k and d, and we note,that

	

E. ^(k;r(1),...,r(k)) = E	 P {S(k,&) (ijT}	 (4-21)
1, T	

deD (k) r

Then (4-15) can be expressed as

CO

UD((i,T),(O,D)I=LFPF(T)+(1-PF(T)){ c(i) E ((k-T)(1-PF(T))-lEi,T4(k,r(1),..,r(k))I
k=T

	

+	 L M,T),d)	 (Pr{S(k,d)'i,T}(1-PF)-l}
deD	 k=T

	

(4-22)	 -

By (4-13), (1-PF(T))
-1
 Ei'T^(k;r(1),...,r(k)) for k>T is the conditional

probability that residual-sampling will be stopped at time k, given a type i

failure has occurred at time T and the sampling process has not been stopped

before the failure occurred (i.e. no false alarm), and (4-21) then takes the

form

UO ( ( i,T),(O,D)I =LFPF (T)+(1-PF (TMC(i)t(i,T)+ I L((i,T),d)P((i,T),d)I

	

deD	
(4-23)

where
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i(i,T)_	 (k-T)(1-PF(T))-lEi'T^(kfr(1).•..,r(k)) 	 (4-24)
k-T

€	 ^

	

P((i,T),d) _	 Pr{S
y

(k,d)li,T)( 1-PF)-1
	 (4-25)

k-T

The expression t(i,T) is the conditional expected delay in decision (i.e.

stopping sampling and making a failure identification), given a type i

failure has occurred at time T and no false alarm has been signalled before

this time. Similarly, P((i,T),d) is the conditional probability of even-

tually declaring d, given an i-th type failure has occurred at time T and

no false alarm has ueen signalled --P((i,T),d) is the generalized cross-

detection probability. Finally, the sequential Bayes risk Us can be written

as

	

M	 CO

	

US (0,D) = I	 E u(i,T){LFPF(T)+(1-PF;[))(e(i)i(i,T)+ E L((i,T), 6)P((i,T),6)3

	

i=1 T=1	 deft	
(4-26)

Equation (4-26) indicates that the sequential Bayes risk is a

wei . '-'-d combination of the conditional false alarm probability, expected

delay to decision and cross-detection probabilities, and the optimal se-

quential rule (0 * ,D*) minimizes such a combination. From this vantage

point, the cost functions (L and c) and the prior distribution (p) provide

for the weighting, hence, a basis for indirectly specifying the tradeoff

relationships among the various performance issues. The advantage of the

indirect approach is that only the total expected cost instead of every
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individual performance issue needs to be considered explicitly in designing

a sequential rule. The drawback of the approach, however, lies in the

choice of a set of appropriate cost functions (and sometimes the prior

distribution) when the physical problem does not have a natural set, as it

doesn ' t in general. In this case, the Bayes approach is most useful with

the cost functions (and the prior distribution) considered as design para-

meters that may be adjusted to obtain an acceptable design.

4.3 The Bayes Sequential Decision Rule

In this section, we will describe the optimal solution to the BSDP.

Is

	

	 Before we do that, it is instructive to examine the (unconditional) ex-

pected delay and terminal decision cost at time k, UM, for a terminal

action deU(k)

M o0

U 	 = I	 I !c(k; ( i,T)) + L(k; ( i,T),8))p(i,T)
i=1 T-1

M k	 M C0

_	 (c(i;(k—T^ T L((i,T),6) Ill U,T) + LF L	 L	 p(j.t)
i=1 T=1	 j=1 t-k+1

M	 k
_ I	 I (c(i,k-T) + L((i,T).6 ) 1vI(k;i,T) + y' (k 10,
i=1 T-1

where the first equality follows from the definitions, the second one is

a direct consequence of (4-6) and (4 -10), and the last one follows from

the notation

U(i,T)	 i=1, ... ,M, T=1,...,k
11' (k;i,T)

M
	 cc

1	 1	 u(j,t)	 i=o

j=1, t-k+l
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where (0,-), i.e. i=0 is an artificial failure state representing the event

of a failure occurring after the terminal decision time k. Alternatively

(0,-) may be viewed as the no-fail state that has a dwindling prior pro-

bability as time progresses. Clearly, u' is a time-dependent Pff , and it

effectively defines a growing nature set, 0(k) _ {(i,T), i-0,1.... *Me T-1,..,k),

that corresponds to the increasing number of possible failure times. For

failure-monitoring over the interval [ l,k0JW (k0 ;0,-) denotes the probability

of no failure over the interval with (0,-) as the no-fail state. Since

they can be used interchangeably in the calculation of the expected cost,

(O,u) and (0(k),u'(k)) are equivalent for the BSDP. But the latter will
r

be used, due to the resulting simplification in notation. We now proceed to

describe the BSDR.

It is clear that the expected delay cost is independent of what terminal

decision is made. Thus, once sampling is stopped the optimal terminal

decision rule must be that which minimizes the expected decision cost. This

implies that the Bayes terminal decision rule D * is independent of the

stopping rule and is a sequence of fixed-sample-size (FSS) Bayes rules[32].

Therefore, D* _ (d*(0),d*(l;r(1)),...,d *(k;r(1),...,r (k)),...) where d*():)

is the k-sample Bayes rule (with respect to p'(k)) that minimizes the FSS

Bayes risk:

M k
7r(d(k)) -	 I	 I i^° (k;i,T)L(.U,T),d(k))p(r(1),..,r(k) Ii,T)dr(1) ... dr(k)

I T=1	 (4-28)

Rm x..x Rm

Hence, the k-sample Bayes rule d* (k) also minimizes the integrand of (4-28),

By simple manipulations, the Bayes rule can be expressed in terms of the
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likelihood ratios A or the posterior probabilities q of the nature states

given the residual samples, r(1),...,r(k) 132 1:

M k
d* (k) = arq min	 E	 I L((i,T),d(k))p'(k;i,T)A(k;i,T) 	 (4-29)

d(k)	 1=0 T-1

or

M k
d* (k) = arg min	 I	 I L((i,T),d(k))q(i,Tlk)	 (4-30)

d(k)	 i=0 T=1

where, assuming p(r(1),...,r(k)10,-) 30 01

AWi,T)	 P(r(1)....,r(k)Ii,T)
	

(4-31)

and

q(i,Tjk) =	 1j'(k;i1T)j2(r(1)....,r(k)Ii,r)	 (4-32)

C
M k

G	 E u- (k;j,t)p(r(1),...,r(k)j3,t)
J.0 t=1

The Bayes rule given in (4-29) is in the form of a likelihood ratio test.

In some cases, it is more convenient to work with the log likelihood ratios

Y
L(k;i,T) :

	

L(k;i,T) - Rn A(k;i,T)	 (4-33)

and (4-29) can be transformed accordingly. In general, the FSS decision

rule divides the residual sample space into terminal decision regions

(T(k,d), k=1,2,...} such that d(k;r(1),...,r(k))=6eU(k) if

(r (1) , ... ,r O*e T (k, d) ,	 Then (4-28) can be re-written as
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M k
ff Wk))	 u'(kii,T)	 Wi,T),6)Q(kIi,T,6)	 (4-34)

1=0 T-1	 J (k)
where

Q(kii,T,6)fip(r(1),...,z(k))dr(1),...,dz(k)	 (4-35)

 T(k, 6)

Note that

6I(k)Q(kji,T,6) s 1
	

(4-36)

The quantity Q(ksi,T,6) has the interpretation of a k-sample detection

probability (i.e. probability of deciding 6 based on k observations when

(i,T) is true) of which the probabilities of cross detection, correct

detection, etc. of the k-sample decision problem are special cases. From

(4-34) we see that the Bayes rule d * (k) minimises a linear combination of

the detection probabilities where the decision cost function and the

prior probability V I play the role of weights.

Now we will turn our attention to the optimal stopping rule. First we

will consider stopping rules that terminate sampling at or before time "0,

i.e.

KI V(kj r(1),...,r(k)) - 1 	 (4-37)
k-1

A sequential decision problem using such a rule is said to be truncated at

time K. Then, the optimal stopping rule for the non-truncated problem can

be obtained from the optimal truncated rule by letting Kam. The optimal

truncated rule can be determined via a straightforward application of the
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principle of optimality 1331, and we will state the result (which is

	

contained in 1221 and [31), for example) in the following. 	 -

Let us define J(k) to be the total expected cost of stopping at time k

and applying the optimal terminal decision rule d* (k), given that

r (1) , ... , r (k) have been observed:

M k
J(k) - I	 E q(ksi,Tlk) [c(i) (k-T)+L(i,T),d*)l

i-1 T-1
+ q(kt0,-Ik)Lp	

(4-38)

where

S* - d* (k=r(1) .... ,r(k)) 	 (4-39)

q(ksi,Tlk) -	 u
M '(

kk;i,T)p(r(1),...,r(k)ji,T)	
(4-40)

E	 E p'(k:j,t)p(r(1), ... ,r(k)lj,t)
J-1 t-1

The minimum expected cost-to-go at time k, J K(k), for the dwision problem

truncated at K is given by

JK(k-1) - min[J(k-1),E(J(k)lr(1),•..,r(k)):, k-1,...,K-1 	 (4-41a)

JK (K) - J(K)	 (4-41b)

Note that both J(k) and JK(k) are functions of r(1),...,r(k).

* The principal of optimality: "An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting frcm the
first decision."
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The optimal stopping rule for the truncated problem, is

Ok	 (^ (lord))•... • ^k(kir(1) .... ,r(k%...)

where

	

1 1	 if J(k )< g(3(k+l) jr(1),..,r(k))

	0 	 otherwise	 (4-41a)

ok(KYr(1),...,r M ) - 1
	

(4-4Zb)

That is, sampling is terminated at time k if the total conditional expected

cost Wk)) of stopping at k to use the optimum terminal decision rule, given

that r(1) .... ,r(k) have been observed, is lower than that

(E{Jk(k+1)jr(1),...,r(k)))of taking an additional sample and using the optimum

sequential rule from them on. The term 3X(k) is the total expected cost of

using the optimal stopping rule (for the problem truncated at x) and the

optimum terminal decision rule at times k, k+l,..., and k, given that

r(1),...,r(k) have been observed. Hence, it is called the optimal expected-

cost-to-go at k. The sequential Dayes risk Ua (#X,D* ) for the truncated

problem is simply

Ua (4*R,D* ) - 3R (0), k=0,1.•.,	 (4-43)

r
and we will let 3a (0) denote the (finite) Sayes risk U s (4* ,D*) that is

associated with the optimal non-truncated sequential rule (Q* ,D* ), i.e. the

SSDR.
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The set of all stopping rules that terminate sampling at cc before

time k contains the set c: all stopping rules that terminal.: sampling at or

before time k-1. Therefore, we have 	 sequence of inequalities

so (0) > ... > Jk(0)> Jk+l(0)> ... 	 (4-44)

Due to the fact that the terminal aecision cost function L is bounded, it

can be shown that it(0) ♦ 3.(0) as K-M (see Appendix A). Consequently, the

optimal sequential rule (4 * ,D*) for the non-truncated problem is the limit of

('P
* ,D*) as K-w, and the former can be approximated by the latter for a suf-

ficiently large K.

Note that the determination of the optimal truncated stopping rule

requires solving (4-41) backwards in time. In fact, (4-41) and (4-41) des-

cribe a dynamic programming problem for which the solution Ji extremely dif-

ficult to calculate due to the immense storage and computation required 1171.

Conseq.aently, the optimal stopping rule is generally impossible to compute,

and suboptimal rules must be used.

Despite the impractical nature of its solution, the SSD! provides a

useful framework for designing suboptimal decision rules for the !DI problem

because of its inherent characteristic of explicitly weighing the tradeoffs

between detection speed and accuracy (in terms of the cost structure). In

the previous section we saw that a sequential decision rule defines a set of

sequential decision regions S(k,d)* and the decision regions corresponding to

* since the posterior probabilities q, the likelihood ratios A, and the log
likelihood ratios r are alternative sets of sufficient statistics, it is easy
to see that a sequential rule also defines sequential decision regions in the
space of each of these set of decision statistics.

9
E

E
t
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the SM yield the sinimm risk. Pros this vantage point, the design of a

suboptimal rule can be viewed as the problem of choosing a set of recision

regions that would yield a reasonably small risk. This is the *ON=* of

the approach to suboptimal rule design that we will describe in Chapter S.

1
P	 .
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CHAPTER 5

SMOPTIMAL SEQUENTIAL DECISION WiLLWs

From the previous chapter we see that the Bayes formulation of the

FDI decision problem is a suitabl ,3 one because of its built-in performance

tradeoff structure. Although the optimal rule (the BSDR) is cowpatationally

intractable, practical, suboptimal rules with good performance may be de-

termined using the Bayes framework. This chapter is devoted to the discus-

sion of our approach to the design of such suboptimal rules for FDI. While

it covers a wide range of issues, this discussion, by far, does not exhaust

all possibilities. RAther, it will serve to demonstrate how this framework

can be useful for the systematic approach to decision rule designs.

In Section S.J we will first examine an approximation scheme for the

BSDR that is directed at alleviating its overVielminq computational require-

menu. The resulting simplified decision rule will provide the basic form

for a range of suboptiW rule3 of varying degrees of complexity. As we

describe these rules we will also examine their computational structure so as

to assess their practicality. In Section 5.2 we will consider the risk

evaluation for some simple suboptimal rules. An algorithm for approximating

the risk will also be described. The choice of design parameters and the

risk-minimisation procedure will be discussed in Section 5.3, and a sumary of

the design methodology described in Section 5.1 - 5.3 is included in Section

5.4. Our experience with this decision rule design methodology through the

study of numerical examples and simulations is reported in the next chapter.
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5.1 Suboptimal Rules Based on the BSDR

5.1.1 The Sliding Window Approximation

The immense computation associated with the BSDR is partly due to

the increasing number of failure hypotheses as time progresses. In fact,

this phenomenon (often called the "growing-bank-of-filters") is common to

detection schemes, such as the GLR [5 ], where the failure time is ex-

plicitly taken into account in the failure hypotheses. The remedy for

the problem studied here, as in [ 5 j for instance, is the use of a

sliding window to limit the number of failure hypotheses to be considered

at each time. The application of the sliding window approximation to the

BSDR for the infinite time horizon problem yields a sequential decision rule

that uses only a sliding window of a fixed number of residual samples. This

brings a saving in the storage of residual samples, as the BSDR, in contrast

requires all past samples. Furthermore, such a sequential rule is indepen-

dent of time after a window-full of residual samples has been gathered,

while the BSDR is a time-dependent rule. Because of these desirable simpli-

fications, the sliding window scheme 	 has become the backbone of our study

Of the design of suboptimal rules. We now proceed to describe this approxi-

mation scheme.

The only assumption made under the sliding window approximation is

that essentially all failures can be detected within W time steps after they

have occurred, or that if a failure is not detected within this time it will

not be detected in the future. Thus, when we have progressed to time k we
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can be quite confident that no failure has occurred before time k-W+1,

and we only need to consider the possibility of a failure occurring at

some T>k-W+l. Consequently we have modified the nature set and terminal

decision set at time k to be 0W(k) and DW(k), respectively:

()W (k) = {(i,T), i=1,...,M, T>kW+1 1, and DW (k) contains all the elements

of DM that .3.-.her specify failure times in the interval [k-W+l,k), or

do not specify any time at all. The prior probability mass function

11(k;i,T) defined over 0 (k) may be regarded as the conditional probability

that a type i failure will occur at time T>k-W+1, given that no failure has

occurred before k-W+1. Using the memoryless nature of U (see Section 4.2),Ii

can be easily shown to be

( 0	 T<k-W+1
Li (k;i,T)	 1

to (i) 
A ( l

-Q) T-k+W-1	
T>k W+1

For kl , k2 > W, the triplet {O- W(k), u (k), D (k)} for k=k1 is clearly a

time-shifted version of that for k=k 2 . It is convenient to define a new

time variable T that is related to the failure time T by T = k-T; T has the

interpretation as the failure time relative to the decision time k, i.e.

a positive (negative) T indicates a failure time that is ITj step before

(after) k. Using this notation, at each time k, we have the nature set,

prior probability mass function, and the terminal decision set in the

following forms:
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OW = {(i,t), i=1,.. ,M, T=W-l,W-2,.. ,}	 (5-1)

0

U (i,T) _	 _	 T^W	 (5-2)

a(i) P (1-P) W-T-1
	

T<W

W
D = (swith time specifications relative to k that	

(5-3)
are not earlier than k-W+11

Let us recall three useful properties of the BSDP under investigation:

i) the only time dependence of the failure signatures is manifested

through the dependence on the elapsed times since the onset of failures,

ii) the cost of incorrect failure time identification is a function of

the difference between the true and declared times, and iii) the decision

delay cost is proportional to the delay. It is now clear that the terminal

decision problem at different times beyond W are tins:-shifted versions of

the problem defined by {pW , u , DW , L, g}. Consequently the terminal de-

cision rule d  mapping the sliding window of residuals [r(k-W+1),..,r(k)]

into D  is a W-sample (Bayes) rule that is the same for all k>W. Similarly,

the stopping problems encountered at different stages of the sequential

decision process are defined by the same six elements: {OW , 11W , DW , L, W, g},

and the stopping rule ^W defined over the sample space of the sliding window

of residuals [r(k-W+1),... , r(k)] is the same for all k>W. Therefore, the

sequential rule (^W , dW) is much simpler than the BSDR which consists of a
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infinite sequence of time dependent rules. In addition, only a finite

storage is required by (0W,dW) for the window of data as opposed to the

growing storage needed by the BSDR. Because of these desirable features,

the sliding window approximation will be the basis of our suboptimal rule

designs.

Since the sequential rule (0W ,dW) uses a sliding window of residuals

(hence called a "sliding window sequential decision rule"), it requires

mandatory sampling through the initial W steps in order to fill up the data

window. one minor drawback of such a feature is increased delays in detec-

ting failures occurring within the first W time steps. Fortunately, all

practical window sizes are reasonably small so that the probability of a failure

occurring within the first W time steps is negligible, and the above mentioned

detection delays will not have any significant impact on the overall perfor-

mance of the sliding window rule.

A more important design aspect introduced by the use of a window rule

is the tradeoff between detection performance and computational complexity.

A window rule with a long window is more likely to deliver good detection

accuracy than one with a short window, because with a long window, more data

is used and more possible failure times can be considered. But on the other

hand, a long window rule requires more computations for both the off-line

performance evaluation during the design process and the on-line processing

of the window of data to generate the decisions. From our vantage point, the

window size W is considered along with the prior probability µ and the cost

functions L and w as design parameters within the Bayes formulation that may
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be adjusted to achieve a satisfactory sliding window decision rule. This

will be discussed further in subsection (5.3.2.) The Bayes design problem

now becomes: for a set of 11, W, L and c, find a (^W ,dW) that minimizes

the sequential risk u.4 
W 

d W ). As it stands, the solution of this problem

still requires a tremendous amount of computation, albeit much less than

that required for the BSDR. In the next subsection we will examine the

computational structure associated with the risk evaluation for sliding

window rules in order to indicate now how further simplifications may be

introduced.

I
	

5.1.2 Sliding Window Sequential Decision Rules

Similar to the BSDR, the window rule (0W ,dW) divides the sample space

of the sliding window of residuals, or equivalently, the space of vectors

of posterior probabilities (q), likelihood ratios (A), or log likelihood

ratios (L) of the sliding window of failure hypotheses into disjoint

sequential decision regions {SO ,S 1 , ... ,SN}. Because the residuals are

assumed to be Gaussian variables, the iog likelihood ratios are simpler to

work with than the 1 ,.kelihood ratios or the posterior probabilities. We

will only use the log likelihood ratios as the decision statistics. Now

suppose there are N elements in VW and these elements are indexed such that

D  {Si, ... , SN }. In terms of the sequential decision regions defined in

the L-space, the sliding window rule states: At each time k>W, we form the

decision statistics L(k) from the window of residual samples. If L(k)eSi,

for i=1,.., or N, we will stop sampling to declare d i ; otherwise, L(k)eS©,

and we will proceed to take one more observation of the residual. The
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Sayes design problem in to determine a set of regions { S* , S 1 .... IsN}

that minimizes the sequential risk Ug({Si}), i.e.

{S * } - arg min UW({S i })
i IS.} s 1

Expression (5-4) represents a functional minimization problem for which a

solution is generally very difficult to determine. A simpler alternative

to this problem is to constrain the decision regions to take on special

shapes, {S i (f)} , that are parameterized by a fixed dimensional vector, f,

of design variables. Then the resulting design problem involves the

'	 determination of a set of parameter values f * that minimizes the risk

U W ({Si (f) })

f* = arg min U WUS. (f) })	 (5-5)
f	 s	 i

In this study, we will focus our attention on a special set of para-

metrized sequential decision regions, because they are simple and they

serve well to illustrate that the Bayes formulation can be exploited, in a

systematic fashion, to obtain p imple suboptimal rules that are capable of

delivering good performance. Next, we shall describe this set of simple

decision regions.

The window of failure hypotheses consists of

E) - {ti,r), i-0,1,...,M, TAW-1,W-2,...}, where (0,-) denotes the hypothesis

of no failure in the window.	 Suppose the terminal decision set is of the

Wform V - {(j,t), j=1,...,M, t=o,...,w-1} with (j,t) corresponding to

(5-4)
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declaring a type j failure occurring at time k-t. The sequential decision

regions we will study are of the form:

S(j,t) - {L(k) :

L(k; j,t)>f(j,t)

8 1 (j,t) [L(k;j.t)-!(j,t?]>2 1 (i•T) IL(k;i,T)-!(i,T)l,

(i,T) #(j,t) }	 (5-6a)

S(0,-) - {L(k): L(i,T)<f{i,T), i-1,...,M, T=0,...,W-11	 (5-6b)

where L(k) : [L(k;1,0), ... ,L(k;M,W-1)]'; S(j,t) is the stop-to-declare-

region, and S(0,-) is the continue region (see Figure 5-1 for an

illustration in two dimensions). Note that this set of decision regions

may be easily modified to accomodate the case where e has some of its

elements replaced by a composite decision, e.g., if {(j,0),..,(j,W+1)}

is replaced by d = U1 (j,t) (i.e. declaring a type j failure without
t-0

regard of the failure time), we have the stop-to-declare-6 region
W-1	 _

SO) _ _U S(j,t).	 In (5-6) the !'s are known as the decision thresholds,
t=0

and the e's are the normalization constants. (As shown in Figure 5-1 for

the 2-dimensional case, the e's determine the slope of the boundary between

two stopping regions). Generally, the e's may be regarded as design para-

meters along with the f's. In this study e(i,T) is simply taken to be the

standard deviation of L(k;i,T).

Recall that the residual samples are Gaussian variables, Then the log

likelihood ratio L(k;i,T) is given by:
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.1.-	 . -.

FIGURE 5-1: Sequential Decision Regions in Two Dimensions.
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T	 T
L(kti , T) - 810 gi(s)v lr ( k-T+s) - Z	 gi (s)V l91 (s)	 (5-7)

s-0	 s-0

Since the second term in (5-7) is a function of i and T and is constant

for all L(k;i,T), k=W, W+1,..., it may be absorbed into f(i,T) in the

definition of the decision regions. As a result, the decision region may

be re-defined in terms of a set of new decision statistics, L(k)-

S(j.t) - {L(k)

L(j,t)>f(j,t)

e-1 
(J,T)  (L(k; j,t)— f(j,t) ) >E 1 (i,T) (L(k;i,T)-f(i,T),

(i,T)(j,t) }	 ( 5-8a)

	

S(o,—) - {L(k): L(k;i,T)<f(i,T), i-1,...,M, T-0,...,W-11 	 (5-8b)

where

L(ksi.T) -	 gs(s)V 1r(k-T+s)	 (5-9)
s-O

and f(i,T) has absorbed the constant term in (5-7). The decision statis-

tics L(k) can be viewed as the state of a linear time invariant system

driven by the residual. To see this, we will define the following

notations:

L,^( k) CL( k;l.,T),..., L (k;M, T))' T=o,...,w-1

L(k)	 = CL0 ( k) .... ,LW-1 (k) )'

(5-10a)

(5-10b)



I
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gl (T)v 1

GT
	 (5-11a)

qM(^ v-1

GO

G

W-1

0

•	 0

J=	 I •,	 '

0	 I	 0

(5-11b)

( 5-12)

Then, from the definition of L(k), we have

L(k+l) - AM + Gr(kal)	 k=0,1,...	 (5-13a)

L(0) - 0	 ( 5-13b)

Note that L(k) is of dimension MW, and it is also a Markov process

under any failure hypothesis.

With the sequential decirion regions defined, we are now ready to

examine their associated risk. First, it is convenient to define $0(k)
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to be the event that no failure declaration has been made up to and

including time k, i.e.

so 
(k)- {L(k)e SO,-), L(k-1)e S(0,-),...,L(W)e so,-)) 	 ( 5-14)

Since sampling through the first W time steps is mandatory, it is not

necessary for (5-13) to include S(k)e a(0,-) for k<W. Using the sequential

rule defined by (5-8) in the risk expression (4-26), we get

	

M
c
	 00	 T-1 M W-1	 _

	

Us(t) - LF t	 E u	
c

(i,T) I 	 L	 E Pr{L(k)e s(j,t), S0 (k-1) 10,-!
i-1 TN1+1	 k-W j-1 -o

	

M	 ^o	 M W-1

	

+ E	 Wt,T)	 I _I Ic(i) (k-T) + L(i, j, ( k-t-T) I
i-1 T-1	 k-	 j-1 t-0

max [W,T ]

x Pr{L(k)e S(j,t), S0 M-1) 1 i,T) (5-15)

where we have used
W

U s (f) to denote the sequential risk due to a set of

sequential decision regions with window size W and parameterized by f.

Note that the mandatory continuation of the sampling process through the

first W steps is reflected in the lower summation lixits for T and k.

To evaluate U$ (f), we need to determine the set of probabilities,

{Pr{L(k)e S(j,t), S 0 (k)yi,T},k>W, j-0,1,...,M, t-0,...,W-1), 	 which, indeed,

is the goal of many research efforts in the so- called level-crossing problem

1341. Unfortunately, useful results (bounds and approximations of such

probabilities) are only available for the scalar case [351,[361,1371, i.e.

in terms of our problem, L(k) is a scalar and the decision regions become



-134-

intervals on the real line, and thus are not applicable to our problem.

For the general multidimensional problem, we presently have to resort to

numerical methods. As it stands, each of the probabilities is an integral

of a MW-dimensional Gaussian density over the compound region S(0,-)x...

xS(0,-)xS(j,t), which, for large kMW, becomes extremely unwieldy and dif-

ficult to evaluate. However, the common structure of the probability

events --the S 0 (k-1) of the event {L (k) e s (j , t) , S 0 (k-1)) , may be exploited

to obtain a more tractable compu`ation structure for the probabilities. 7b

accomplish this, we can use Bayes rule to arrive at an recursive expression

for the probabilities:

E ►
P(L(k+l)'SO(k),i,T) - L f	 P(L(k) iS0(k-1),i,T)dL(k)^-1

S(0,-)

x 3 	 P(L(k+1) jL(k) ,S0 (k-1) ,i,T)P(L(k) jS 0 (k-1) ,i,T)dL(k)
S(0,-)

k>W (5-16)

Pr{L(k)e S(j,t) ,S0 (k-1) ji',T)

1Pris0M-1) ji,T) 	 _
s(j,t)

p(L(k) iS0 ( k-1) ,i,T ) dL(k) ,

j-0,i,...,M, t-o,...,w-1

with

Pr{L(w)e s(j,t) ji,T)- f _ p(L(w) ji,T)dL(w),
o,t)

j=0,10...,M, t-A,...,w-1

(5-17)

(5-18)

where p(L(k+l) jS0 (k),i,T) denotes the conditional probability density of
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L(k+l), given S0 (k) and that a typ: i failure has occurred at time Tr

p(L(k+l) (L(k) , S0 (k-1) ,i,T) is the density for the transition from L(k)

to L(k+l), given S0M-1) and (i,T)j p(L(W)'i,T) is the (Gaussian) density

for L(W) under a hypothesis (i,T). Using (5-16)-(5-18), we have to contend

with W-dimensional integrals instead of integrals with increasing dimensions

as required by the straightforward evaluation of the probabilities.

Nevertheless, this problem is still difficult, since even for M-2 and W-10

the integrals are 20-dimensional.

In the remainder of this section we will examine the computational

complexity associated with t„a evaluation of (5-16)-(5-18). First, we will

consider the transition density in (5-16). Noting that L(k) is a Markov

process we have

p(L(k+l) IL(k) ,S0 (k-1) ,i,T) - p(L(k+l) JL(k) ,i,T) 	 (5-19)

From (5-19), we have

L(k+1) - AM - Gr(k+l)
	

(5-20)

The dimension of L(k), MN, is generally greater the rank of G, which is

assumed to be m>M (m is the dimension of r). The increment L(k+l) - AM is

due to r(k+l) and can only lie in, at best, m-dimensional subspace of

R
MW

. That is, the one-step transition density in (5-19) is degenerate.

Then, using the fact that r(k+l) and L(k) are independent of each other,

it can be easily shown that

p(L (k+l) I L (k) , i, T)

- u0 (1111-G(G'G) -1G)[L(k+l)-JL(k)) l)lG'GI-1

x p(r(k+l)-(G'G)-1G' (L(k+l)-IL(k! 1 ji,T) (5-21)
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where u0 is the impulse function, jG'Gj is the determinant of G I G, and

p(r(k+l) li,T) denotes the Gaussian density of rWrl) under (i,T). As

expected, the transition density ( 5-21) for a given L(k) is zero for some

L(k+l;, namely those values such that (L(k+l)-JL(k)) cannot be accounted for

with any r(k+l), i.e. when (I -G(G'G) - IG') [L(k+l) -A(k)1y10.

Finally, the recursive equation ( 5-16) for the conditional density of

L can be re-written as:

r1P(L(k+l) SO (k) ,i,t)	 J	 p(L(k) jS0M-1) ,i,'9)dL(k)1-
lll S((^,-)	 3

x r]G'G'-ip(r(k+l)d(G'G)-IG' [L(k+l)-1L(k)) j i,T)p(L(k) jS 0 (k-1) ,i,T)dL(k)

S(0,-)n F(L(k+l))	 k>W	 (5-22)

where

F(L(k+l)) . {L(k) : [I-G(G'G)-1G') [L(k +l)-JL(k) ) - 0)	 (5-23)

The set F(L(k+l) ) is the set of all L M 's that together with sos:e

r(k+l) will produce the given L(k+l) . If rank G0 < M (see ( 5-11)) , the

pair (7,G) representing the system ( 5-1.3) is uncontro l lable, and there are

some values of L that cannot be generated by (5-13). This corresponds to

the case, for example, when two failure hypotheses represent different rag-

nitudos of the same failure mode. The set L' s satisfying the above condition

can be determined from (J IG), and the probability density for such L's will

not have to be calculated, as it will always be zero. More generally,

F(L(k+l)) is a linear variety in P
MW 

and becomes the empty set only for
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certain values of L(k+l). Hence the region of integration needs to be

determined as a function of !(k+l). Although the scalar version of (5-22),

where regions are intervals on the real line and are independent of L(k+l),

has been successfully evaluated using numerical quadrature methods [381,

there is presently no efficient method available for solving the general

Multi-dimensional problem. The difficulties are due to the large dimension

of L and the complex regions of integration, S(0,-)n F(L(k+l)), as indicated

above. However, when the rank of G is the same as the dimension of L, the

re r- ..rn of integration will simplify to S(0,-). This is because when rank G-MW,

tranjitica;.s from and L(k) to any L(k+l) are possible and F(L(k+l)) -RM.

An algorithm has been developed to perform the integration for this special

case in low dimensions, and it will be described in Section 5.2. The condition

that rank G = M is not as restrictive as it :appears, and we will see that

the algorithm based on this assumption is useful in determining the risks

associated with some simplified decisions rules to be discussed in the next

two subsections.

In this subsection we have examined the problem of designing sliding

window sequential decision rules. Several simplifications directed towards

practical solutions have been discussed. In addition, we have identified

the structure of the computations required for evaluating the risk and per-

formance associated with a sliding window rule. Based on these insights we

will propose two simple decision rules (a simplified sliding window rule

and a non-window rule) in Subsections 5.1.3 and 5.1.4 for which the risks

can be evaluated or approximated by existing numerical techniques.
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5.1.3 A Simplified Sliding Window Decision Rule

The multi-dimensional integrals (5-16)-(5-18) encountered in the

calculation of the risk are due to the MW-dimensional vector of decision

statistics L(k). These statistics correspond to the MW failure hypotheses,

and they provide the information necessary for the simultaneous identifica-

tion of both failure type and failure time. In most applications, such as

the aircraft sensor FDI problem (111 and the detection of freeway traffic

incidents (5 I, the failure time need not be explicitly identified. In

such cases, the terminal decision set reduces to D  = {}: j=1,...,M},

where the index j denotes the declaration of a type j failure. Since the

decision does not directly concern the onset of failures, the failure time

resolution power provided by the full window of decision statistics is not

needed. Instead, decision rules that employ a few components of L(k) may

be used. The decision rule of this type considered here consists of se-

quential decision regions that are similar to (5-8) but are only defined in

terms of M components of L(k):

S
j = iLW-1(k) .

L(k; j,W-1) >fj

e 1(j,W-1) (L(k;j,W-l)-fj]>e-1(i,W-1) (L(k,i,W-l)-fj1, V19ij	 (5-21.a)

SD = {LW-1(k): L(k,j,W-1)< f,3
	(5-24b)
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where S  is the stop-to-declare-j- region and S 0 is the continue region.

At each point `.n time, the set of decision regions specified by (5-24)

may be regarded as a decision rule for determining if a failure has

occurred at the earliest point in the sliding window (i.e. at k-W+1), and

it is similar to a W-sample decision rule for testing M+1 hypotheses. This

vantage point readily provides a rough guideline for choosing the window

size W, namely, W should be sufficiently long so that enough residual sam-

ples ,an be used to achieve acceptable detection accuracy in the non-

sequential testing of M+1 hypotheses (M hypotheses indicating the possibility

of cae of M different failures occurring at k-W+1 plus the hypothesis of no

failure at k-W+1). Because the actual decision problem is a sequential

one, rather than a static one this guideline will only serve to provide an

initial choice of W that may be later adjusted to achieve a better perfor-

mance. (We will discuss the choice of W along with other design parameters

of the Bayesian approach in Subsection 5.3.1). It should be noted that the

use of (5-24) is effective if cross-correlations of signatures among hypo-

theses of the same failure type at different times are smaller than those

among hypotheses of different failure types.

Next, we will examine the risk associated with the sequential rule

(5-24). The following equations for the risk computation are specializations

of those of the previous Section to the simplified sliding window rule.

We have

r	 Co	
T-1 M

US(f) 	 = LF L	 L JJU,T) I	 L pr{LW-1(k)eSj, SO (k-1) 10,-}
i=1 T=W+1	 k-W j=1

M W
C	

00	 M

I	 L+ L 	 u(i,T)	 I	 I [c(i)(k-T)+L(i,j))
i=1 T=1	 k=	 j=1

max[W,T)	

rx PrlLW-l(k)PSj, S0 (k-l) li,T} (5-25)
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where

S
o 
(k) = {LW-i(k)e So,...,Lw-1(W)e So l
	

(5-26)

The probabilities required for calculating the risk (5-25) are given by

p(LW-
1(k+l) IS0M ,i,T) = 

Ifs 
P(LW-1 { k ) IS0(k-1) ,i,T)dLW-1(k) l-1

x f p(LW-1(k+l) ILW-1(k) ,So (k-1) ,i,T)r(LW-1(k) IS0(k-1) ,i,T)dLW-1(k)
o

k>W	 (5-27)

Pr
{LW-

1(k)eSj, S0 (k-1) Ii,T}

= Pr{S0 (k-1) Ii,T }1 P(LW-1(k) ISo(k-1) ,i,T)dLW-1(k) j=o,l,...,M 	 (5-28)
S.
i

with

Pr{LW-1
(W)es j li,T} = f p(LW-1 (W)Ii,T)dLW-1 (W)	 (5-29)

S.

In contrast to the MW-dimensional integrals associated with the sliding

window rule discussed in the previous subsection, the integrals in (5-27)-

(5-29) are M-dimensional. For M small, say less than 4, numerical inte-

gration of (5-27)-(5-29) becomes manageable.

Unfortunately, the transition density, p( LW- 1(k+l)!LW-1(k),S0(k-1),i,T),

required in (5-27) is difficult to calculate, because L W-1 (k) is not a

Markov process. As an alternative, the Markov nature of L(k) can be exploited
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M 

once again to determine the required conditional density and probabilities

as follows:

p(L(k+l) IS0 (k) ,i,T) _	 f p(L(k) IS 0 (k-1) ,i,T)dL(k)1-1
S0

x J (G'Gl -1p(r(k+l )=( G'G)-1G' [ L(k+l)-JL(k)) li,T)p ( L(k) IS0 (k-1) ,i,T)dL(k)

S0(1F ( L(k+l))	 (5-30)

Pr{ W_l(k)eSj, 
S0 ( k-1) li, T}

= Pr{S (k-1) Ii,T} f p(L(k) IS (k-1) ,i,T)dL(k)	 (5-31)
0	 S.	

0

where S.
3
	 the extension of S.

1
	 the L(k)-space, i.e. Rte , i.e.

S  = {L(k):LW-1(k)eSj}, j=0,1,...,M. The obvious drawback in using (5-30)

and (5-31) is that we have to deal with Ind-dimensional integrals again.

Therefore, in order to exploit the low dimensionality of (5-27) and (5-28),

we will have to use an approximation for the transition density in ( 5-27).

In the remainder of this subsection we will describe a simple approximation

of p(LW-1 ( k+l) 
ILW-1(k) , S 0 ( k-1) ,i,T) .

It is useful to note that in approximating the required transition

density for LW-1 (k) we are, in fact, approximating the behavior of LW-

1-A simple approximation is a Gauss -Markov process 1(k) that is defined by

M+l) = AL M + &(k+l)
	

( 5-32)

E {&( k) ^' ( t) } = BB'u0(k.-t)
	

(5-33)
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where A and B are MxM constant matrices and & is a white Gaussian sequence

with covariance equal to the (MxM) matrix BB'. The reason for choosing

the model (5-32) and (5-33) is twofold. 	 Firstly, just as LW-1 (k), 1(k)

is Gaussian. Secondly, P.M) is Markov so that its transition density can

be readily determined. In order to have k(k) behave like LW_1 (k), we set

the matrices A and B and the mean of Z such that

Ei,TUM I = Ei,T{LW-1(k) } 	 (.5-34)

E0,-{X(k) k' (k) } = E0,-{LW-1(k) Lr-1(k) }	 (5-35)

E0,_{Z(k)t'(k+l)} = E0,-{LW-1(k)LW-1(k+l)} 	 (5-36)

That is, we have matched the.marginal density and the one-step cross-

covariance of X(k) to those of LW-1 (k). It can be shown that (5-34)-

(5-36) uniquely specify

A = ^^ E-1	 (5-37)
1 0

BB' = E - E ,	 r 1 E	 (5-38)
0	 1	 0	 1

Ei,T(^(k+l) = Ei,T{LW-1(k+l) } - A E(LW -1(k) }	 (5-39)
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where

t	
W-1

^0'^ E{ -1(k)Lw-1(k)} _
	 GtV 1Gt	 (5-40)
t=0

W 2	 1E1= E{LW-1(k)-iJ-1(k+l) } =	 ^ Gt-1 V Gt	 (5-41)
two

0	 T>k

k-T

Ei,T{LW-1(k)} =
	

I Gt-k V 1Gt	
k0=k-W+1-T<0

t o	 0 

W-1

I
t0 GtV 1Gt+k0	 kJ k-W+1-T>0

Moreover, the matrix A is stable, i.e. the magnitudes of all of the

eigenvalues of A are less than unity, and B is invertible if GO or GW-1

is of rank M. Because ^ is an artificial process ( i.e. & is aot a A+rect

function of the residuals r), L(k) can never be implemented for use in

(5-24).

It should be noted that the model specified by (5-34)-(5-36) does

not provide the only Markov approximation of L W-1 (k). We may, indeed,

choose to match the n-step cross-covariance (1<n V) instead of matching

the one-step cross-covariance as in ( 5-36), or we may just approximate

the cross-covariance function. Such a variety of possible models is the

result of the relatively small number of free parameters available in the

Markov model to be adjusted in order to describe the more complex LW-1(k)

process. The suitability of a criterion for choosing the matrices A and B,
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such as (5-35) and (5-36), depends directly on the failure signatures under

consideration and may be examined as an issue separate from the decision

rule design problem. Since our main goal is to demonstrate how the Bayes

approach can be used in designing sequential decision rules, we will not

pursue this issue further. Rather, we will proceed with the design problem

assuming an appropriate Markov approximation ( 5-32) of LW-1 (k) is available.

Now we can approximate the required probabilities in the risk

calculation as

Pr{LW-1(k)eSj, S 0 (k-1) Ii,T}-Pr{Z(k)eS j , S 0 (k-1) i,T}

j=0,10...,M k>W
	

(5-43)

and

Pr{k(k) eS j , S0 (k-1)li,T}

= Pr{S 0 (k- l) li,T} JS.
7

p(M) IS 0 (k-1) ,i,T)d!6(k) (5-44)

where we have applied the same decision rule to k(k) as LW-1 M. Therefore,

S,
1
	 S 0 (k-1)denote the decision regions and the event of continued

sampling up to time k for both LW-1 and R. Assuming 8 -1 exists, we have

P(Vk+l) IS0 (k) ,i, T) - IfS O 	 JJ

p(M) IS 0 ( k-1) ,i,T)dt(k)1
1

xr p(E(k+l)=1k(k+l)-AVk)IIi,T)p(l(k) IS 0 (k-1),i,T)dt(k)	 (5-45)
s^	

k>W

where p(^(k)Ii,T) is the Gaussian density of ^(k) under the failure (i,T).
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If k(k) satisfies (5-34) and (5-35)

Pr UM es j ji,T} - Pr{ LW-1
(W)es i ji,T}	 (5-46)

In contrast to (5-30) and (5-31), the evaluation of (5-44) and (5-45)

requires only M-dimensional. integrations over the decision regions. The

complication in the region of integration due to F(L(k+l)) (in 5-30) is

absent. An algorithm exploiting existing numerical techniques for computing

(5-44)-(5-45) has been developed and it will be discussed in Section 5.2.

In the event that B is not invertible, the region of integration in (5-45)

will take the form similar to that of (5-22) in lower dimension (M instead

of MW). Such an integral is very difficult to evaluate, and it represents

an area for future research. Very often this problem can be circumvented

by batch processing the residuals. That is, we may consider the modified

residual sequence: r(k) - [r'( vk-v+l),r'(vk-v+2),...,rl(vk)]I for some

batch size v>0 with k-1,2,... as the new time index. In using i(k)

we have to augment the signatures as: [g'(0),..,g'(v-1)]', i-1,..,M.

By a proper choice of v, the rank of G0 can be increased to M and B will be in-

vertible. An example of the batch process is included in the next subsection.

Therefore, we direct our attention to cases where B-1 exists. Under this

condition, the algorithm in Section 5.2 can be used to obtain approximations

of the sequential risk and the detection performance (i.e. the expected

decision delays, probability of false alarm, etc.) of the simplified sliding

window decision rule. Simulation aimed at assessing the accuracy of the

probability approximations (5-43) resulting from the use of the Markov
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model R(k) described by (5-32)-(5-42) are reported in Chapter 6 together

with the actual design of decision regions of the form (5-24) for a two-

failure-mode problem.

in concluding this subsection, we note that increased accuracy may

be obtained by using a higher order approximation, i.e. when Z(k) it given

by

I 	 a C ft.(k)
	

(5-47)

1(k+l) : A R(k) + B E,(k+l) 	 (5-48)

where A and B are nxn and C is Mxn with n>M. The increase in accuracy

is achieved at the expense of increased computational complexity, since we

have to contend with n-dimensional probability integrals over regions of

the form in (5-30). When n=MW, (5-47) and (5-48) will provide an exact

description of LW-1 (k) and we are, once again, confronted with (5-30) and

(5-31). Due to the lack of an efficient algorithm for calculating the

requixPd integrals, this subject of higher order approximation is not

purs=ued any further in this thesis.

5.1.4 Mon-Window Sequential Decision Rules

in the previous subsection we have discussed the simplified sliding

window rule in which the M decision statistics are formed from a window

of residual samples. Here we will describe another simple decision rule

that has the same decision regions as the simplified sliding window rule
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(5-24), but the vector (z) of M decision statistics is obtained

differently as follows;

s (k+l)	 A Z (k) + B
N

 r (k+l)	 (S-49)

N

where A is a constant stable MxM matrix, and a is a Mm constant matrix

of rank M. Unlike the Markov model Mk) that approximates iW-l(k),

z(k) is a realizable Markov process driven by the residual. The obvious

advantages of using s as the decision statistic are: 1) less storage is

required, because residual samples need not be stored as necessary in the

sliding window scheme, and 2) since s is Markov, the required probability

A I	 integrals are of the form (5-44) and (5-45), and the algorithm to be

described in section 5.2 can be directly applied to evaluate such integrals.

In order to form the statistics s, we need to choose the matrices A

and 8. When the failure signatures under consideration are constant biases;
N	 M 

B can simply be set to equal G0 , and A can be chosen to be aI, where

0<a<1. Then, the term Br in (5-49) resembles Gr of (5-19), and it provides

the correlation of the residual with the signatures. The time constant

( lla) of a characterizes the memory span of Z just as W characterizes that of

the sliding window rules. When a is close to one, residual samples from

long ago are remembered, and when a is zero, Z(k) is just ir(k). Therefore,

a (or A in general) can be regarded as a design parameter playing a role

similar to that of W in the sliding window scheme.

More generally, if we consider failure signatures that are not constant

biases. Then the choice of A may still be handled in the same way as in the
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2

(5-52)
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as in the constant-bias case, but the selection of a 8 matrix is more involved.

Qualitatively, the role of 8 (just as 0 in (5-19)) is to bring out the failure

signature contained in the residual. Thorefore the rows of H should represent

amts characteristic directions of the failure signatures in question, e.g.

in the .constant-bias case, the rows of a are simply the signatures of the

failures. As the signatures are not constants the choice of such characteris-

tic directions is not straightforward and is very :ouch problem dependent.

With some insights into the nature of the signatures, a reasonable choice of 8

can often be made. To illustrate how this may be accomplished, we will con-

sider an example with two failure modes and an m-dimensional residual vector.

Let

91(k-T) - 81	 (5-50)

92 (k-t) - 02 (k-Y+l)	 (5-51)

That is, gl is a constant bias, and 92 is a ramp. if 01 and 82 are not
4

multiples of each other a simple choice of 8 is availables

if 01No10 and 02not2 02 0 whexe a1 and a2 are scalar constants, the above

choice of 8 has rank one and is not ver y useful for identifying either

signature. Suppose we batch process every two residual samples together,

1.e we use the residual sequences ?M - (r'(2k-1),r'(2R)1',



-1A9-

Then we can set B to be

B	 (5-53)

$1 200

Thus, the first and second rows of B capture the constant-bias and rm p

nature of g  and g2 , respectively (and this B has rank two). The use of

the modified residual i(k) in this cas:, causes no adverse effect, since it

only lengthens slightly the interval between times when terminal decisions

may be made. A big increase in such intervals i.e., the batch processing

of r(k),...,r(k+v) simultaneously for large v,may however, be undesirable.

The above simple example servesto show that the ap.3licability of the

decision statistic z is not as restrictive as it first appears to be. In

any event, the matrices A and B may be regarded as design parameters just

as the cost funeticns and prior probability mass function. The merit of

any choice of A and B may be assessed by determining if the decision rule

based on such choices yieldsgood performance. The algorithm of Section 5.2

will aid in evaluating the risk associated with using a in the decision rule,

and the risk-minimization algorithm to be discussed in Section 5.3 can be

used in obtaining a decision rule that has as small a risk as is pomsible for

a particular choice of A and B. The design of a decision rule using z as the

decision statistic for a two failure-mode problem is reported in Mipter 6.
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While the statistic s is potentially useful for a wide range of

Problems, we expect its effectiveness to diminish for problems where the

signatures vary drastically as a function of the elapsed time, or the dis-

tinguishability among failures depends eventually on these variations. This

•
is due to the fact that a constant B is not adequate to capture the essence

of rapidly varying signatures. In such cases the sliding window decision

rule should provide better performance because of its inherent nature to look

for a full window's worth of signature. However, this still leaves nany

applications for which s is a useful statistics.

It is possible to use a higher order z (similar to T of the last
subsection). it is not considered here, because in fact, it is mimicking

the sliding window statistic Lw-1 . In addition, the increased order complicates

both implementation and the computation of the required probability integrals,

now having the form (5-30) and (5-31). Such added complexity will negate

the advantages of using z.

5.2 Evaluation of the Risk and Performance Probabilities

In this section we will examine the problem of computing the risk

associated with the decision rules discussed in the last two subsections.

An algorithm based on standard numerical quadrative techniques has been de-

veloped for calculating the conditional density (5-45) and probabilities

(5-44) recursively. Since the decision statistic z of subsection 5.1.4 arid

the approximation M of the sliding window statistic LW-1 of subsection
5.1.3 are both Markov processes with the required calculations in the form

a 
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of (5-44) and (5-45), this algorithm is directly applicable to both cases.

We will only describe the algorithm for the two failure-mode problem,

although it may be easily generalized to an arbitrary number of failure

modes. It will become clear, however, that due to the exponential increase

in computational requirement as a function of the number of failure modes

the algorithm is only practical for decision rules dealing with a few failure

modes. This problem is intrinsic to the numerical evaluation of multi-

dimensional integrals and, in general, cannot be avoided. The approach to

the design of a robust residual generation process undertaken in Chapters 2

and 3 will aid in limiting the number of failure modes to be considered

simultaneously by a decision rule. Since each residual generation process is

based on a part of the system, namely the most relevant and parameter-insen-

sitive part, it will include only a subset of all the possible failure types

of the whole system. Then, it is likely that a decision rule employing the

residual from such a process will have to deal with only a small number of

failure modes.

A brief review of the quadroture technique employed ;n this study is

included in subsection 5.2.1, while the actual algorithm for calculating

the conditional density and the required probabilities is described in

subsection 5.2.2. In subsection 5.2.3, we will discuss the risk evaluation

problem.

5.2.1 Gaussian Quadrature Formulas

Numerical integration generally involves the approximation of a definite

integral by a finite sum. The most widely studied method is of the form
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8	 n
fw (x) P (x) dx  =

s 
vaF(xs )	 (5-54)

a al

where s is an index for the points used in the formula, x is a scalar

variable, and w (x) is a function for which the integrals

w(x)xkdx, k=0,1,2,... are defined and finite; vs and xs are known as
Ja

the weights and nodes, respectively. When w (x) is nonnegative in [a,$], a

set of weights and nodes can be found so that the approximation (5-54)

becomes exact for F when it is a polynomial of degree less than 2n. Such an

approximation is known as a n-point Gaussian quadrature formula, or Gaussian

formula [ 391. Based on the theory of orthogonal polynomials, efficient

Gaussian formulas have been determined for the 1-dimensional integral for a

variety of w and intervals (a,^). Attempts to develop similar formulas for

several dimensions has met with little success. The most comon approach to

M-dimensional integration is to regard the integral as a M-fold iterated

integral and apply a 1-dimensional formula to each variable separately. The

resulting formula is called a product formula, e.g. in two dimensions.

02	 O1

ff F(xl4lx2) dxIdx2
a2	al

_	 02	 81	
w (x )W (x ) (w 1 (x )W 2 1 (x  ) F (x. ,x ) ) dx dx1 1 2 2	 1	 1	 2	 t 2	 1 2

Ia -2	 1

n2	
n 

v1 2 w1 (x 1)w2 1 (x2)F(x1,x2)	 (5-55)

t=1 s=1
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Ii

where we have assumed Yl (x) exists for 'y-1,2, and vY, 
S 

are the weights

and nodes of the n-point Gaussian formulas:

Ry	 ny

J wy (x)F(x)dx =	 vYF(xY), y= 1, 2,	 (5--36)

Y	 sal

This approach is the basis of our algorithm for evaluating the integrals of

(5-44) and (5-45). The two 1-dimensional Gaussian quadrature formulas

employed in the algorithm are

n
e 

xF 
(x)	 vL F (xL)	 (5-57)

0	 s=1

CO	 2	 n
fe x F (x)dx = E vH F (xH)	 (5-58)

_W	
sal

Now, vL a nd xL are the weights and nodes of the n-point Laguerre-Gauss
formula (5-57), and vH and xH are the weights and nodes of the n-point
Hermite-Gauss formula. The weights and nodes for both of these formulas are

tabulated for a wide range of n( 40 j. (in fact, the nodes xL and xH are the
roots of the n-th order Laguerre and Hermite polynomials, respectively.)

Provided the integrals exist and are finite, we have the following formulas:

00

n
f F (x)dx r S vL F (xL)	 (5-59)
0	 s=1

n
F(x)dx = I vH F(xH)	 (5-60)f	 SMI

-CO
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where

xs
vL vL e L	 (5-61)

(xe ) 2

vH w vH e H	 (5-62)

For some finite regions of integration, such as a sphere, a cube,

etc., estimate of the error associated with the product formula (5-55) are

available [39 J. These results are not useful for our problem, because

they are dependent on the (higher order) derivative of the integr&nd function.

The integra,&ds of (5-44) and (5-45) involve the conditional density for

which derivative information is very difficult to obtain. The fact that we

are dealing with probability integrals, however, will provide us with some

handle on the error magnitude. We will discuss this when we describe the

a►lgorithn in the next subsection. in closing, we note that further references

on numerical integration may be found in the survey paper by Haber 141].

5.2.2 An AlQorithsa for Calculating the Conditional Density and
Associated Probabilities

The computational procedure described here will be applicable to both

k(k) of subsection 5.1.3 and z(k) of subsection 5.1.4, since by setting

Hr(k+l) to be E(k+l) we can see that both (5-32) and (5-49) have the same

form. To facilitate discussion., we will use the simplifying notations:

hjt(k)) - p(,M) ISO M-1),i,T)	 k>W	 (5-63)

hw (R(W)) - p(R(W)10,-)
	

(5-64)
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pk(!t,(k+l)-Ak(k)) = p(t(k+l) _ M+l)-AL(k)) k>W (5-65)

Pk (j) = PrilWesi is0 (k-1),i,T)}	 j=0,...,M k>W (5-66)

where p(1c(W))is taken to be the steady no-fail density of 1, i.e. we

assume that we begin in the steady state at W. Note that the dependence on

(i,T) is suppressed. It is understood that the above quantities have to be

interpreted in context with same (i,T) pair.

For M=2, the decision regions have the form (see Figure 5-1):

SO	{k: k1 < fl , z2 < f2}
	

(5-67a)

S1	{t: e11 (1 1 f1)> e21(!Z2-f2)}
	

(5-67b)

S2	{k: e21 (- f2 ) > ell (k2 f1 ) }
	

(5-67c)

Then the propagation of the conditional density is governed by

f1 f2

	

hk+lMk+1)) s Pkl(0) J
	 f pkMk+l)-A£(k))hk(L(k))dRl(k)dR2(k)

	

-00	 -IM	 (5-68)

Substituting k(k) = f-y, we get

	

ao	 00

hh k+1(k(k+1)) = Pk1(0) f J 00 pk(L(k+l)-A[f-yl)hk(f-y)dyldy2 	(5-69)

0 0
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Similarly, we can write

ao	 Go

Pk (0) -f 
f 

h, (f-y) dyldy2
0	 0

oa	 CO	 (al (1t,2(k))-yl 1
Pk (1)	 1 hk	

2
1	 k (k)	 / dy1di2 (k)1 

-^ 0

ao	 ao	

(	

JC l (k )

Pk (2)h
k \ a l (k))-y	

dy2Ul(k)

1. f2 1	 2

where

fl	 k2(k)< f2

al ( k2 (k) ) _

	

1 (X -f2 )+f1	Q2 ('^) f2
62

(5-70)

(5-71)

(5-72)

(5-73)

6

E21
(.it1-fl)+f2 11(k)> fl

a2 (kl (k) )	 = f2 kl (k) < f2

(5-74)

The integrals (5-69)-(5-72) are in the forms that are suitable for the

application of the product formula employing Laguerre and Hermite formulas

Using for the integral from 0 to - (5-59) and (5-60) for the integral from

-- to -, the above integrals can be approximated as
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s	 s

h	 nrrL

	 rnL	 fl - xL 

)hkr 

fl - xL

+l (k
(k+l)) Pk(0) L	 L vLvLpk{k(k+1) -A{ 	 t 	 1	 t)t=1 s=1	 f2 - xL	 f2 - xL

(5-75)

nL	
nL	

f - xs
P (0) =	 •SVthk 1 1	 L	 (5-76)k	 t-1 s=1 L L 1^If. - xt

2	 L

nH 
n 	 a (xt) - x 

C	 C s	 1 H	 L

Pk (1) = t11 s11 
vLvHhk	 t	 (5-77)

xH

n 
	 nL	 xt

Pk (2) =	 vLvHhk (	 H	
1	

(5-78)
`	 t=1 s=1	 1 a {xtD - xs
	2 H	 L

where an nL point Laguerre formula and an nH point Herm,ite formula are used.

The above approximations may be set to be equalities while keeping in mind

that the quantities on the left hand sidee become approximations of the true

ones. Thus, (5-75) and (5-76) describe the propagation of the approximate

conditional density. The probabilities of {5-44) can be approximated by

using (5-76)-(5-78) in

k-1
Pr{k(k)P-S j , S0(k-1)'i,T} - Pk U) n Ps (0)

s=W
(5-79)

Due to the fact that only approximate values of Pk (j), j=0,1,2 are used in

(5-79), the errors may accumate as k increases. Some feel for this
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cumulative error is obtained by means of comparisons with simulation results,

and it is reported in Chapter 6.

Since the probabilities in (5-76)-(5-78) should sum to one, i.e.
2r
L Pk (j) should equal one, hk (R(k)) and Pk (j), j-0,1,2 are normalized

J-0

for all k>W. This insures that Pk Q) are valid probabilities and hk(1(k))

will always be close to being a density function. The un-normalized sum,

2
Pk (j), can serve as a coarse indicator of the accuracy of the approxi-

j-o

mations. That is, if it is not close to one, we know that the approximations

are poor and more points will have to be used in the quadrature. Although

the fact that the sum is close to one does not necessarily imply the quadrative

is indeed accurate, we would be more confident in the approximations if this

is in fact the case.

Upon examining (5-75)-(5-78), we note that for every k, there are only

a fixed number of points in the k-plane for which hk will have to determined,

namely, nL points in So and nLx% point in S1 and S2 each. Moreover, these

points do not vary with k. In order to calculate hk+l for any point L, all

nL points in S0 will have to be used. An estinute of the computational

requirement can be obtained as follows. For simplicity, let us assume

y	 summation-n. Suppose we call the evaluation of each term in the summation in

(5-75) a step. Then we need to perform n 2 steps to obtain a new points.

Since there are a total of 3n 2 points (due to three decision regions), 3n4

steps wi l ' .ave to be carried out at each iteration. Table 5-1 shows the
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n 3n4 time/iter
(steps/iter) (sec)

8 12288 .61

10 30000 1.50

12 62208 3.11

14 115248 5.76

16 196608 9.83

18 314928 15.74

20 480000 24.00

22 702768 35.14

24 995328 49.77

26 1370928 68.55

28 1843968 92.20

30 2430000 121.50

Assuming SX10-5 sec/step

TABLE 5-1: Computation Requirements
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total number of steps and the corresponding computation time for iteration

as a function of n. (For this table we have assumed a time of 5x10-5/sea/step,

while using an un-optimized code on an IBM 370/168 computer we have experienced

roughly 7x10 5sec/step.) For n-16, sa:• , almost 10 seconds are required per

iteration. Typically, a minimum of 30 iterations are required to calculate

the risk approximately (see Section 5.2.3 for a discussion of risk evaluation).

This gives 5 minutes per risk evaluation. In searching for a not of risk-

minimizing decision regions (see Section 5.3.1), quite a few risk evaluations

are usually needed. Therefore, even for the simple two-failure mode case,

the computational burden is not insignificant. In general, the M-mode problem

/	 will require (M+1)nM steps/iteration. It is obvious that M does not have to

be very large before the amount of computation becomes too much to handle.

In order to construct a Laguerre or Hermite formula that gives good

results we need to choose two design parameters carefully - the number of

points to be used in the quadrative and the scale factor of the variable of

integration. Although we will use the Laguerre formula to illustrate the

importance of these two parameters, the following discussion will apply to the

Hermite case as well as to product formulas composed of Hermits and Laguerre

quadrature rules. Figure 5-2 shows the location of the nodes of a 8-point

and a 16-point Laguerre formula. It is evident that for a larger n, the nodes

cover a larger range as well as providing a more dense covering for small

values of x. Thus, a large n is suitable for integrands that ere "spread-out".

When more points are used, more computation is required. The choice of an

appropriate n is based on the tradeoff between accuracy and computational
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8 point	
10	 20	 30	 40	 50

16-point
10	 20	 30	 40	 50

FIGURE 5-2: Nodes of Laguerre Formulas.

FIGURE 5-3: Effects of Different Scale Factors.
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load. The import ice of an appropriate scaling of the integrand can be

illustrated by considering a simpl. 1-dimensional integral 	 F(x)dx.

With a simple scale change of the variable of integration, we can obtain

eo
i

F(x)dx - J .1 F( a)dy, where y-ax aril a is positive. The situation of
0	 0

applying the same Laguerre formula to the integral with different scale fac-

tors a is shown in Figure 5-3. The dots on the y-axis mark the nodes. A

small a has the effect of compressing the integrand while a large a tends to

spread it out. For an excessively large a, the range of the nodes does not

span the integrand sufficiently. On the other hand, for an excessively small

a, the nodes do not capture sufficient details of F. In both of these cases,

the approximation of the integral is expected to be poor. A good choice of a

can only be made with some insights into the nature of the integrand.

For the pr4sent problem, these two parameters are chosen heuristically

according to the above guidelines. Important considerations include the

spread of the integrands of (5-75)-(5-78) and the thresholds M. The spreads

of the integrands of interest are generally difficult to calculate. Consider

the integrand of (5-75). It is the product of 
Pk 

and hk. Therefore, its

spread is roughly the spread of the minimum of the spreads of 
Pk 

and hw.

Since the covariance of p  is much smaller than that of h w, the scaling of the

variable of integration is chosen to minimize the advers e -ffect (of

Figure 5-3) on pk . For simplicity, the same scaling is used for all integrals,

although different ones may be applied for more accurate results. Algorithms

F
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using different scaling for each of the integrands in (5-75)-(5-78) should

be investigated in the future.

Depending on their sizes, the thresholds may also be the source of

error for the quadrative. 7o see this, let us consider the 1-dimensional

analog of (5-75), i.e. integrating over the continue region, as pictured

in Figure 5-4. According to the formula (5-75), the :codes of the Leguerre

formula are located relative to the threshold. For the larger threshold

fl ,,many of the nodes span the insignificant part of the integrand, while

for f2 , the nodes of the Laguerre formula (with the same number of points)

cover the integrand well. (Note that scaling will not improve the situation).

1.	 Ideally, n, the number of points in the quadrature formula, should be chosen

as large as is practical so that sufficient number of nodes will cover the

significant part of the integrand. In this study n is roughly chosen so that

the span of the nodes (the distance between the minimum and maximum nodes) is

a few times the sum of the magnitude of the maximum threshold and the scaled

spread (the square root of the largest diagonal element of the covariance

matrix) of hw. As the spread of h  is an approximation of that of hk , this

choice of n will provide sufficient covering for the integrands of (3-76)-

(5-78) as well as that of (5-75). (The spread of the former is larger than

that of the latter).

It is noted that the span of the Hermite nodes are very small even for

n  large (see the table of Hermits roots and weights in [40 ]). The Hermite

formula is used in computing the stopping probabilities P k (1) and Pk(2).

In (5-77) and (5-78), the Hermits nodes are centered at the axes. Under the
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fI	 f2

FIGURE 5-4: Effect of the Threshold.
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no-fail hypothesis this will provide a sufficient covering of P k in Sl and

S2 . Under a failure nypothesis, pk will shift into the stopping region.

Thus, the short span of the Hermite roots together with the centering at

the axes may not cover p  in S 1 and S2 well enough. To compensate for this,

v i will shift the Hermite nodes into S 1 and S2 . This is accomplished by

modifying (5-77) and (5-78) as

nH	 nL	
/ 

al (xH) - xL

Pk (1) = I	 E vLvA 1	 )	 (5-77)'

a1 S=l

nH nL	xH + a2(k;i,T)

P (2)v 	 (5-78)'
k	 t=1 s=1 L H	

a (xt ) - xs	 )
2 H	 L

`	 where

a j (k;i,T) = min[f3-j .E(R,3-j (k) ^,T)], j=1,2

That is, as Pk shifts into S 1 and S2 (under a failure), the Hermite nodes

are also shifted into S 1 and S2 by means of X, and X 2 . Note that )'1 
and a2

are clipped at the threshold values. This prevents the Hermite nodes to

move too far away from the thzeaholds into the stopping regions in the events

that the expected value of ZW under a failure grows indefinitely. Thus,

we have constructed a moving grid to cover the conditional density p  in

order to obtain better accuracy in the quadrature. (Comparisons among tie

results from using (5-77) and (5-78), (5-77)' and (5-781, and Monte Carlo
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simulations have shown the mowing-grid approach to be more accurate that the

static method). The technique of using a moving grid should be further

studied in future efforts in developing algorithms for computing the Cletec-

tion probabilities.

In summary, we have described an algorithm for calculating (approximately'

the conditional density and the probabilities required for the risk evaluation,

and we have provided an assessment of its practicality. Effective choice of

design parameters, the scale factor of the variable of integration and the

number of points used in the Laguerre and Hermite formulas, has been discussed.

The performance is assessed via comparisons with Monte Carlo simulations for

various types of signatures and thresholds, and the result is reported in

Chapter 6. In addition to aiding the design of decision rules, the present

algorithm provides a simple framework for exploring finer issues of computing

the probab-lities so that the design of more effective and efficient algorithms

can be facilitated. Finally, we note that integration algorithms based on

other 1-dimensional formulas 139) may be constructed for our problem, although

they are not examined in this stud;.

5.2.3 Risk and Performance Probabilities

In this section we will discuss the computation of the risk and

performance probabilities for a sequential decision rule in the form of

(5-67) for the detection and identification of the various failure modes

(but not failure time). Before we proceed with the calculation, we will

examine the behavior of the conditional density p(EWIS0 (k-1),i,T) as a
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function of k. Recall that R is described by

i(k+l) - At 	 + E(k+l)	 (5,-32)

where A is a constant stable matrix, and E is a white Gaussian sequence

with constant covariance BB'. In the absence of a failure, t is zero mean,

and thus, is a stationary process. Based or, the fact that A is constant,

^ is stationary and the decision regions (in particular, the continue region)

are time independent, we conjecture that the conditional density under (0,-)

will approach a limiting density function as time progresses, i.e.

lim p(Z(k) ISO(k-1),0-) = p(JEW)	 (5-80)
k-m

Qualitatively, the propagation of the conditional density consists of the

following process. After the density at k outside the continue region is

set to zero, it is normalized to become the density at k conditioned or

continuing. Then it is compressed (by the effect of A with eigenvalues of

magnitudes smaller than one) and convolved with the density of C. The

convolution has the effect of spreading the density out again ov3r into the

continue region. Since the matrix A, the density of C, and the continue

region are all time-invariant, a steady state density is most likely to be

reached. In fact, convergence is evident in all propagations of the con-

ditional density, by means of the algorithm described in the last subsection,

for various values of A, BB' and f (the thresholds defining S j ). Following

similar reasoning, we also conjecture that the actual conditional density of

E I
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the sliding window rule, i.e. p(GW-1(k){SO(k-1),O-), behaves similarly.

Unfortunately, we have not been able to prove such convergence behavior

using elementary techniques. More advanced function-theoretic methods may

be necessary, but they are beyond the scope of this thesis. Assuning that

this behavior holds, however, we will be able to obtain a simple approximate

expression for the sequential risk. We will discuss this next.

Assuming no failure has occurred, the conditional density will essen-

tially reach a steady state at some finite time T>W. Then, for k>T we have

Pr{i(k)eSj ISO (k-1),0-} - bj	(5-81)

Pr{i(k)eSjJ(k-1)eSO. ... ,k(T)eSO,S(T-1),i,t') - bj(k-Tji)	 k>T>T

(5-82)

That is; once steady state is reached, only tie relative time (elatpsed time)

is important. Generally, failures occur infrequently, and decision rule

with low false alarm probabilities are employed. Thus, it is reasonable to

assume 1) p«1 ((1-P) T = 1), i.e. the failure rate is low (see Sec. 4.2),

and 2) Pr{S0(T)10,-}t--1, i.e. nearly no false alarm before steady state is

reached. Using (4-3), the sequential risk (5-25) for M-2 can be approximated

by

	

22r	 Go	

-1
	 2

	

US (f) = LF G	 G
 a(i)p(1-P)T-1	

[bj 0-TPr{SO(T),0.-}l
i-1 T-T+1	 k-T j=1

2
+	 o(i)p(1-P)T-1 r	 [c(i)(k-T)+L(i,j))bj(k-T) 0-TPr{SO(T)10,-}

i-1 T-T+1	 k=T j=1

(1-P) (1-b )	 2	 2 4

0	 LF, +	 p	 I c(i) E I [c(i)t+L(i,j))bj(tIi)I
1-FO -P)	 1-b0(1-0 	i-1	 j-1 t-0

(5-83)
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Next, we will seek to replace the infinite semi over t in (5-83) by the

finite sum up to t-A plus a term approximating the remainder of the infinite

sum. Suppose we have been sampling for A steps since the failure occurred.

Recall the notation (5-66):

Pt(j) - Pr{1(t)eSjIs0(t-1),i3O} 	 j-0,1,2	 (5-84)

If we stop computing the probabilities after A, we may approximate

Pt (j) = PA M	 j=0,1,2,	 t>A	 (5-85)

and consequently

bj (tIi) = b0 ^(A^ Pt- lO) PAM	 t>A	 (5-86)

Under the no-fail hypothesis, (5-81) implies that (5-85) is good for A >T.
E

When the signature of the failure modei is a constant, the same reasoning

behind (5-81) may be applied, and we can see that Pt (j)under failure mode i

lilt

	

	

will reach a steady state value as t (the elapsed time) increases. In this

case, (5-85) is also a valid approximation for a large A. Generally, the

failure signatures of interest are not necessarily constant. However, for

sufficiently large A, the probability of continuing after A ti:ae steps

(since the failure occurred) may be arbitrarily small. The error introduced

by (5-85) in the risk (and performance probability) calculation is, conse-

quently, small. Thus, we see that the approximation (5-85) is a reasonable

one for a sufficiently large A.
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Substituting (5-86) in (5-83), we get

2	 _	 2

U (f) = PFLF + ( 1-PF )	 a (i) a(i)ti +	 L(i,j)P(i,j)^	 (5-87)

where

(1-p)(1-1 )

PF	 0	 (5-88)

1-50 (1-p)

ti	 I	 I t b  (t ai) + b0 (e i) e + 
11P 

(0)	 (5-89)
j=1 t=0	 e

e	 PAU)
P (i, j )

tL0 b
j (t I i) + b0 c& 1) 1-P,&(0) 	

(5-90)

P  is the unconditional false alarm probability, i.e. the probability of

one false alarm over all time, t i is the conditional expected delay to

decision, given tha4 a type i failure has occurred, and P (i,j) is the

conditional probability of declaring a type j failure, given that failure i

has occurred. From the assumption that Pr{$0(T)!0,-)°31 and the steady

condition (5-811, it can be shown that the mean time between false alarms

is simply (1-b0) -l . Now all the probabilities in (5-88)- (5-90) can be com-

puted by using the algorithm of Subsection 5.2.2. Note that the risk ex-

pression (5-87) consists only of finite sums. In contrast to the original

risk expression (5-25) for the simplified sliding window rule, (5-87) can be

evaluated with a reasonable amount of computational effort. With such an

4
F
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approximation of the sequential risk, we will be able to consider the

problem of determining the decision regions (the thresholds f) that

minimize the risk. We will discuss the risk-minimization problem in the

next section.

It should be noted that we are not limited to only consider the risk

as the objective function in the decision rule design problem. For example,

we could consider choosing a set of thresholds that minimize a wcighted

combination of certain detection probabilities (P(i,j)), the expected detec-

tion delay (ti), and the mean time between false alarms ((1-bo)

Although such an objective function will not result in a Bayesian design in

general, it is a valid design criterion that may be useful for some applica-

tion. Since these non-Bayesian objective functions are also functions of

the performance indices (expected delay, etc.), they can be evaluated using

the approach described in this subsection and the previous one. Although we

will not directly consider the non-Bayesian design problems, the risk-minization

algorithm and the choice of design parameters discussed in the next subsection

are also applicable for these problems.

5.3 Design of Decision Rule - Choice of Design Parameters and
Minimization of the Risk

For a given set of cost functions, prior PMF, and other design parameters,

such as the window length W, and the matrices A and B used in forming the

decision statistic z, the design of a suboptimal rule essentially amounts to

determining a set of decision regions (characterized by the thresholds f)
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which minimizes the sequential risk. An algorithm, which is especially

suitable for this minimization problem, is describel in subsection 5.?.1.

The effectiveness of the resulting decision rule depends heavily on the

choice of the above mentioned design parameters. For example, an improperly

chosen cost function that overly penalizes false alarms will result in

prolonged decision delays under failures. A window that is too short may

not utilize sufficient data to achieve good detection performance regardless

of any choice of cost functions. This aspect of the decision rule design

problem will be discussed in subsection 5.3.2.

5.3.1 The Sequence-of-Ouadratic-Programs (SQP) Algorithm
for Minimizing the Risk

The risk minimization problem has two features that deserve special

attention. Firstly, the sequential risk is not a simple function of the

threshold f, and the derivative with respect to f is not readily available.

Secondly, calculating the risk is a costly task. Therefore, the minimum-

seeking procedure to be used must require few function (risk) evaluations,

and it must not require derivatives. The sequence-of-quadratic-programs

(SOP) algorithm studied by Winfield 1421 has been chosen to solve this

problem, because it does not need any derivative information and it appears

to require fewer function evaluations than other well-known a l gorithms 1 421.

Furthermore, the SOP is simple, and it has quadratic convergence. We will

describe the SOP for the 2-dimensional case, but the generalization to higher

3imensions is straightforward.

(

a
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Applications of the SQP to the risk minimization involves iterating

through the following strsps:

1) Initially, six different sets of thresholds are picked, and the

corresponding sequential risks are calculated. The threshold set having the

smallest risk is called the base point (denoted by fa), and the remaining

five sets are indexed according to increasing distance from f 0
, i.e. fl

is the closest and f5 is the farthest from f0.

2) A quadratic function described by

u(x) Z x'HX + c'x + US

where

(5-91)

x - f - f0	(5-92)

H is a 2x2 symmetric matrix, and c is a 2-vector, is fitted through the

six threshold-risk pairs (with the base point as the origin). That is, H

and c are determined from the equations

US(f j ) - US(f
0

)	 2 (fj -fO )'H(fj -f O ) + C'(f3-fo ),	 j=1,...,5 (5-93)

Note that H does not have to be positive definite. The quadratic function

u approximates the risk in a region spanned by {fo,...,f5).

3) The constraint region, K, is defined to be the square region centered

at the base point with sides parallel to the axes. It is over R that the

minimization of u(x) will be performed in Step 4. The length of the sides,

y, is given by

y a 2 x .99 x 2	 ( 5-94)
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where e is the distance between f0 and f5 , and Y is limited by some aa-

propriate Yom, which has the connotation as the maximum step size; K is a

constraint region reduction factor that is initially set to one but as we

will see, it may be modified in subsequent steps according to the outcome

of the minimization effort at each step. In other words, R is a square

inscribed in a circle centered at f 0 with radius .99 a K.

4) The quadratic function u(x) obtained in Step 2 is minimized over the

constraint region - this is a quadratic program. The square R, in fact,

has been specified to make the quadratic programming solution procedure simple_.

Let XM denote the solution. From (5-92), x corresponds to a threshold set

fM = xM + f0 . Since u(x) is quadratic, a solution lying in the interior of R

has to be a global minimum. Therefore, x  is such a solution if i) x  is

in the interior of R, ii) H is positive definite, and iii) grad u(39M)=0.

Otherwise, the solution lies on the sides of the square. Along each side of

the square one component of X is fixed and u(x) is a quadratic function of the

romaini na free caw= nent.:erefore, this is a 1-dimensional analog of the

previous condition, and similar reasoning can be applied to determine if a

minimum of the 1-dimensional quadratic lies on the side but not at the corners.

There may be a maximum of four such minima. The smallest of these will be

the solution. If no such minimum exists, the four corners of the square will

be examined. The corner giving the smallest u will be the solution.

5) If IUW (f) < S( f0 ), fM is used as the new base point (and re-labelled

as f0). Five points that are closest to the new base point are selected and

r- --
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labelled as f 1 ,...,f5 according to increasing distance from f 0 . The cons-

traint region reduction faster K is set to one, and the procedure is

repeated starting at Step 2.

6) If U s
W 
(fM)< U s

W
(fU ), the old base point is kept. Five points closest

to f  are selected and labelled as f l ,.. " f5 according to increasing distance

from f
0
. Since R excludes the old f 5 (see (5-94)), fM will always be closer

to f0 than the old f 5 is, and f  will be included in the five new point.

This is the mechanism that provides the algorithm with the learning from

mistakes. The reduction factor K is set to be smaller than one (say .95),

so as to limit the searching a little closer to f
0. The procedure is repeated

at Step 2.

As convergence is approached, the minimum of the quadratic program will

occur inside the square. The procedure is terminated when it is evident that

a local minimum has been approached. This algorithm prescribes a sequence

of quadratic programs, hence the name SQP. Finally, we note that in theory

all the thresholds and the associated risks may be kept so that they will

be available as candidates for the 5 closest points in Steps 5 or 6. In prac-

tice, however, it is sufficient to store only a few more in addition to the

active six.

5.3.2 The Choice of Design Parameters

There are basically two types of design parameters in the present

methodology: those affecting the information content of the decision sta-

tistics and those that play the role of weights in the risk expression.
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e

ti	 ti

The former type includes the window length W and the matrices A and 8 of

subsection 5.1.4. The latter type includes the cost functions and the

prior PMF. We will discuss them separately.

The window length determines how much data is to be used in forming

the decision statistics. If the signatures do not vanish, an increased

window length will impiave the signal to noise ratio, and hence will also

improve detection pzrformance. For ;ne simplified sliding window rule

(that uses only LW_l (k)), a long window will cause the decision statistics

to remember the past too well so that then became sluggish in responding to

failures. However, such an increase in detection delay is absent when a

full window of decision statistics (i.e. the complete LM) is used as in

the original sliding window rule (5-8).

Viewing the decision problem as a W-sample, non-sequential problem, as

we have mentioned previously, may cast some light on how to choose W for

the simplified sliding window rule. From this view point, the choice of W

becomes determining how many samples should be used. A more simplified

situation may be obtained by considering each of the M failure modes seplirately,

i.e. we now have M W-sample binary hypotheses testing problems at hand. Then,

it is clear that W should be chosen such that it is not excessively long but

still give a high signal (signature) to noise ratio for each mode. In addition,

W must be large enough so that all failure signatures over the window are

sufficiently different from one another. A reasonable choice for the window

length is soLe val-ae somewhat greatcr than all the W's for the binary hypotheses

testing problems. With some assumed value of probabilities of false alarm

and detection for the binary hypotheses test, reasonable choices of thresholds
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can be made. A-hose thresholds may, in turn, be used as initial guesses of

the thresholds required for the SQP algorithm for the risk-minimization.

A refinement of the choice of W can always be made after evaluating the

performance probabilities of the window rule using the initial chctce.

Recall that the matrix A used in forming the Markov decision statistics

z also plays the role of a memory parameter, and it may be chosen with the

same considerations. We will lot i be a bit more general here than in

subsection 5.1.4., i.e. i is now a diagonal matrix with elements between 0

and 1, and the diagonal elements of j may be different from one another. A

diagonal i is used to provide a separate memory for each component of z.

W I
	

Consider the i-th component of z

z 
i 
(k+l) - Ot 

i 
z 
i 
W + bjr(k+l)
	

(5-95)

wherts a is the ith diagonal element of i and b' is the ith row of
i	 i

The signal to noise ratio of z is its mean under the ith failure divided by

ady state standard deviation. Since an 01 1 close to one gives z a

longer me ry, a 
i 

should bp chosen ao that it in not extremely close to one

and that the signal u, noise ratio roaches a good level in a reasonable time

i.e. not sluggish (the same issue as using LW_ l). For choosing i, however,

there is not a simple general guideline as we have pointed out in subsection

5.1.4. we may, for exa le, employ the batch processing techniques and take

the augmented vector jgj(0),...,g'(v)j (where v is the batch size) to be the

i-th row of i as in the ex le of subsection 5.1.4. Generally, each individual

case will have to be examined heparately. Just as in the choice of W, the

a
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w
values of A and H may be adjusted should the detection performance be

not acceptable.

.he prior PMF may be chosen according to the reliability of componeniw.,

for instance. In such cases the inverse of the Bernoulli parameter has the

signiticanee as the mean time to failure. In ether cases it may be regarded

as a design parameter that is used to aid in specifying the tradeoff between

false alarm and other (expected delay and cross-detection) costs.

The cost functions are chosen to reflect how undesirable false alarms,

delays in detection, and incorrect detections are relative to one another.

Unlike W. A, and B, which affect the information content of the decision

statistics and the risk in a complex manner, the cost functions enters the

risk linearly. Hence a change in the cost functions can be accommodated

easily without having to re-compute all the performance indices (false alarm

probabilities, conditional expected delays in decision, and conditional

incorrect detection probabilities), provided they have been stored. In order

to arrive at an acceptable design, very often a few sets of cost functions

may have to be tried.

5.4 SH!!ea

In this chapter we have described a Bayesian methodology for designing

sequential decision rules for MI. We have examined in detail the three

stop of the design process: 1) the definition of the decision rule structure,

2) the evaluation of the sequential risk and detection performance, and

3) the choice of design parameters and risk-minimization.
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The suboptimal rules studied are time-invariant rules that partition

the sample space of the decision statistics into decision regions. The two

major types of decision rule examined are the sliding window rule and those

that use the decision statistics z. The computational requirement for deter-

mining different forns of these decision, males has been assessed. A numerical

algorithm based on 1-dimensional quadrature formulas was developed to provide

an approximate evaluation of the risk associated with two simple sequential

decision rules. The SQP algorithm has been chosen to determine the set of

thresholds that minimizes the risk. Finally, the issues involved in choosing

the design parameters such as the cost functions, prior PMF, window size W,

and the matrices A and B used to generate the statistic z, were discussed.

. _.

t -
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CHAPTER 6

SEQUENTIAL DECISION RULE DESIGN - A NUMERICAL EXAMPLE

6.1 Introduction

In Chapter 5 we described a methodology for designing sequential

decision rules for MI. Here, we will apply this design approach to a

numerical example in order to gain, some insights into the nature of this

methodology.

In the previous en:ipter we discussed the design of simplified sliding

window rules, i.e. decision rules that use the log likelihood ratios (Lw-1)

corresponding to the earliest point in the window (Section 5.3..3). Because

the computation of probabilities associated with such decision rules is

very difficult, we proposed to approximate L w-1 by a Markov process Z for

the ;purpose of d-sign and performance analysis only,as this does not re-

present an implementable algorith,'n (see Section 5.1.3). A quadrature

algorithm based on Russian quadratureformulas was developed for computing

the probabilities associated with decision rules using Markov statisti.s.

(Section 5.2.1). Thus, this algorithm can be used to calculate the pro-

babilities, and hence, the risk associated with the statistic 1. Such a

risk provides en approximation to the risk associated with a slid.inq

window rule (using `w-1). As a practical alternative, we proposed the use

of animplementable Markov statistic z in place of L w-1 in the decision rule

(Section 5.1.4). The advantages of using such rules are that the statistic

z is easier to compute than Lw-1 and the quadrature algorithm can be applied

directly ;^3ir^e z is Markov).	 Finally, the design of decision rules was

formulated as the choice of a _yet c.f threshol3s that minimiz ' F the risk,

and the SQP algorithm (section 5.3.1) was pro posed as a means for performing

the risk. minimization.
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Through an exercise of these design concepts and simulation studies,

we can 1) assess the accuracy of the quadrature algorithm for computing

(detection) probabilities, 2) determine if the approximation of the sliding

window decision statistic w-1 by the Markov statistic l is reasonable,

3) gain some experience with the SQP algorithm for minimizing the risk func-

tion, and 4) compare the performance of decision rules using the sliding

window statistic w-1 with that using the simpler Markav statistic z. These are

the goals of studying a numerical example. we will describe the set-up of

the numerical problem in Section 6.2, and we will discuss the results in

Section 6.3.

To facilitate discussions, we will introduce the following terminology.

We will refer to a simulation of the sliding window rule by SW, a simulation

of the rule using the Markov statistic z as Markov implementation (MI), and

a simulation of the noninplementable decision process using the approximation

Z as Markov approximation (MA).

6.2 The Numerical Example

In the numerical example, we will consider the detection and idantifi-

cation of two possible failure modes (without identifying the failure times).

We assume that the residual is a 2-dimensional vector, and the vector failure

signatures, g i (t), i =1,2, as functions of the elapsed time t are shown in

Table 6-1. The signature of the first failure mode is simply a constant

vector. Tiie first component of g2 (t) is a constant, while the second
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component is a ramp. We have chosen to examine these two types of sig-

nature behavior (constant bias and ramp) because they are simple and

describe a large variety of failure signatures that are commonly seen in

practice (see, for example [91). A constant bias represents a constant

failure effect on the residuals and such a signature often occurs in

practice (e.g. in the detection of biases in sensors). Also, constant

signatures can be used to approximate a slowly changing signature, while

a ramp can be used to model failure effects that become more noticeable

as time progresses. For simplicity, we have chosen V, the covariance of

r, to be the identity matrix.

We will design both a simplified sliding window rule (that uses l W_ l ) and

a rule using the Markov statistic a. In the remainder of this section we

will discuss the choice of design parameters such as W, L, etc.

1

gl (t)	 _ . 5

.5
92 (t) _ 1.25+	 .25t.

1 0

0 1

TABS 6-1: Failure signatures.
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Recall in Section 5.3 that the window size W of a sliding window rule

should be chosen so that a reasonably high signature-to-noise ratio

(denoted by ni) Eor each failure mode is attained. That is, ni is the

ratio between the expected value of Lw-1 (k), given that a type i failure has

occurred at k-W+1, and the standard deviation of the i-th caaponent of w-l.

From the expressions for w -1 given in (5-9)(5-10), it is easy to see that

ni	 ED (i,i)	 (6-1)

where E (i,i) is the (i,i) element of E , the covariance of Lw-1 . For our
0	 0

problem, an n of better than 3 can be attained for each failure mode by

us-Ing a window size of 8, and we will consider simplified sliding window

rules with W--$. The approximation U) of Lw-1 is given by (5-32)

R(k+l) = A k(k) + B C(k)

The values of A, BB', and 
Z  

can be directly determined using (5-33)-

(5-41), and they are shown in Table 6-2.

The Markov statistic z is given by (5-49)

Z (k+l) = A z (k) + B r(k+l)

In order to achieve roughly the same memory span for Lw-1 and z for this

problem, we have chosen A to be a diagonal matrix with both diagonal

elements equal to .875 (which roughly gives a time constant of 8 steps for

z). The first raw of B is set to be [1,.5), i.e. gi, because to detect a
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type 1 failure we have to look for g  in the residual. The first component

of g2 is a constant (s.5). Therefore, the (2,1) element of B is set to be

.5. The second component of 
92 

grows with the elapsed time. In order to

exploit this behavior the (2,2) element of B has to be a relatively large

number. In this example, we choose it to be 2, the value of the second

component of 
92 

at a elapsed time of ;*. The values of A, B, and the steady

state covariance (E ) of z are summarized in Table 6.3.
z

Recall from Section 5.1.3, the decision regions we have chosen take

the form (5-24)

S j - {Lw-1(k) :

L(k;j,W-1)>fj

e -1(j, W-1)1 L(k;j,W-1)-fj)>E-1(i,w-1)(L(k fi,w-1)-fi 11

i¢j}

so	 iLW_
I
 (k): L(k;j,W-1)<fj, j=1,2}

where a (j,W-1) is the standard deviation of the j-th component of the

statistic LW-1 , i.e. a (j,W-1) = E 
2 

(j,j). For the decision rule using

Z, we only need to substitute z for LW-1 and the standard deviation

Ez' Q ,j) for E(j,W-1), Using the data contained in Table 6-2 and 6-3,

* By choosing a large value for this component we are, in some sense looking
or a large bias. This weans that in using the resulting static we will have
difficulty in detecting this failure at nr shortly after the onset, because
the ramp component will he small. A good k:hoice of B will depend on the sig-
natures of all the failure nodes ex,-.mined as a whole as well as the performance
tradeoff prescribed by tht^ use functions. As we have pointed out in Chapter 5
the design of A and P represents an interesting open problem.
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W 8

	

[.826	 .058
A =

	

.116	 .837

c _	 10	 8.5
Q

	

18.5	 14.75

BB'

	 [

2.32	 2.01

	2.01	 4.58

TABLE 6-2:	 Parameters for LW_ 1 and Z.

.875	 0
A =

0	 .875

B 1 .5a

.5 2

	

5.33	 6.40

^z =
	16.40	 18.13

	

1.25	 1.5Q
Alts	 -

	11.50	 4.25

TABLE 6-3: Parameters for z.
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the decision regions corresponding to rules using L W-1 and a are depicted

in Figures 6-1 and 6-2 respectively. The decision rule design problem

consists of choosing a set of thresholds ( fl and f2 ) that minimizes the

risk.

The cost functions and prior probability mass function used in this

exampl^ are shown in Table: 6-4. All incorrect identification of failures

modes are penalized with 10 units, while correct failure mode identifications

are not penalized. False alarm cost is 9 units -false alarms and incorrect fail-

ure mode identifications are nearly equally undesirable. The delay cost for both

failure modes is chosen to be one. Both failure modes are assumed to be

equally likely, and the mean time to failure is 5000 steps. The prior pro-

bability u is fixed by this a priori information. Although it is not

done in this study, we note that if the decision rules resulting from the

present values of the parameters L, C, u, W, A, and B are unsatisfactory,

these parameters may be adjusted to get a new design.

Recall that the risk is an infinite sum over t, the elapsed time

.5-83). In Section 5.2.3 we proposed to approximate it as a finite sum

(i.e. the original infinite sum truncated at t=d) ,Aus a remainder term.

For all decision thresholds considered in the present example, the value of

A is chosen to be 8, which is large enough so that the remainder tern. is

small, but small enough so that the computational load (:due to the propa-

gation of the conditional density) remain manageable.

The steady state conditional density, given that no failure has

occurred and no false alarm has been declared, is appro-^imated by the
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FIGURE 6-1: Decision Regions for Sliding Window Rule.

FZGM 6-2: Decision Regions for a Rule Using z.
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LF = 9

L(1,2) - L(2,1) = 10

L(1,1) = L(2,2) - 0

C1=C2=1

u(i,T) _ .Sp(1-0)T-1, 1=1,2

0 = .0002

TABLE 6-4 : Cost Functions and Prior Probability.
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conditional density propagated 8 steps. That is, we assume T •8 (see

Section 5.2.3). Experimentation with larger values of T indicated that

the detection probabilities are not significantly changed and this ap-

proximation is a reasonable one. Zb maintain consistency, T is kept at 8

for all thresholds examined.

In order to obtain accurate resuiltb, we have to use as large an %

and n  (the number of points in the _ guerre and Hermite formulas) as is

practical in the quadrature algorithm. In designing decision rules for

this example, we will use n  = n  = 20. Wit: 6=8 and T=8, the evaluation

of the risk for each threshold pair takes approximately 6 minutes of CPU

time on IBM370/168 computer.

Recall (Section 5.3.1) that the six threshold pairs required to start

the SQP algorithm may be chosen arbitrarily. No set rule is the best for

all applications. Here, we will arbitrarily choose these thresholds to

take on values within a range of threshold values. They are limited to be

positive and within 2 to 4 standard deviations of the decision statistics.

N--'t, we will discuss the results of applying our design method to

this example.

6.3 Results aid Discussion

In this section, we will describe our experience with the decision rule

design methodology through its application to the example introduced in the

preceding section. we indicated that there are four main aspects of the

design approach (see Section 6.1) that need to be examined. We will discuss

them in the following.
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Accuracy of the quadrature algorithm

The quadraturu algor: = for computing probabilities is based on

Markov decision statistics. In ordor to determine its accuracy, we have

to compare the probabilities associated with a decision rule using Markov

statistics (e.g. z ) as computed by this algorithm to those obtained via

Monte Carlo simulation of the same decision process.

A convenient set of probabilities to be examined include bj(t1i)

(5-82) and 0
1
(t1i) defined by

b j (t1i) - Pr{z(t)esj , z(t-1)es,,...,z(0)es0ji}, i,j-0,1,2 (6-2)
,

t
S (t1i) . S b(sli), i-0,1,2, j-1,2,	 (6-3)

ij	 s-0 

That is, b j (t1i) is the probability of continuing sampling up to elapsed

time t and choosing decision j at t, given i is the true failure mode,

and Sj (t1i) is the probability of stop ping to declare a j-th failure at or

before elapsed time t, given i is the true failure mode. Another in Ucator

of the accuracy of the quadrature algorithm as discussed in Section 5.2.2 is

PT:

2
PT -Pt(j)

j-a

where

Pt (j) - Pr{z(t)CS j ,z(t- 1)eS0 1 .... z(o)es0 ,i} 	(6-5)

(6-4)

s
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Pt (j) is the conditional probability of choosing j at t, given we have

been sampling through elapsed time t-1 and the true failure mode is i.

Therefore, if the algorithm is valid, P T will be close to 1.

In Figures 6-3 to 6-7 we have shown b0 (tJ0), b0 (til), b0(t12),

01 (t1l), and 02 (t12), respectively for a decision rule using the statistic

z (as described in Section 6.2) with thresholds f - [6.287, 11.8671'.

Plotted against the elapsed time t, b 0 (t[0) shows the failure characteristics

of the decision rule - a slowly decreasing b0 (ti0) indicates that a low

false alarm rate is achieved. The rate of decrease of b 0 (t1i), 1-1,2,

indicates the speed of response of the decision process to failures, and

'	 Bi(t1i), 1-1,2, shows the ability of the decision rule to identify the

failure correctly.

The results obtained via Monte Carlo simulation using 10,000 trajec-

tories an marked as MI (see terminology defined in Section 6.1). The

quadrature results using n  = n  = 20 are marked as Q20. The quadrature

results using n  = n  = 14 is also shown in the above figures and they

are marked as Q14.

Generally, the quadrature results Q20 are quite close to the simulation

results MI, while the quadrature results Qi14 are not. This shows that the

quadrature algorithm may be used to provide a reasonable approximation of

the probabilities, and the accuracy of the approximation can be impr--%Ied

by increasing the nusaber of grid points used in the algorithm. The value

of PT for Q20 ranges from .998 to 1.05, while that for Q14 ranges from

.994 to 1.2. Therefore, the value of P T also indicates that Q20 will

provide a dose estimate of MI and that Q14 will not.
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FIGURE 6-3: bU (t'0) - Usinq z.
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FIGURE 6-4: b0 (tll) - Using z.
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'FIGURE 6-5: b0 (tj2) - Using z.
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v

FIGURE 6-6: 0 1 (tll) - Using z.
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FIGURE 6- 7 : 0 2 (tj2) - Using z.
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Now we compare Q20 with M.T. From the trend of b 0 (ti0) shown in

Figure 6-3, it is evident that Q20 will under-estimate the false alarm

raise of the decision rule. Both b 0 (t1l) and b0 (t,2) indicate that the

quadrature results under-estimate the speed of detection. Q20 also slightly

under-estimates the correct detection probabilities 0i (t1i). On the whole

Q20 has provided a reasonably good estimate of the true probabilities

associated with the decision rule using ti:e Markov statistic z and threshold

[6.287, 11.8671.

Finally we note that if we use the quadrature calculations for

comparisons between different rules (e.g. fc: optimization purpose, or

Just to assess the effect of increasing W, adding a sensor, etc.), then

small quadrature errorswill probably have a small effect on the result.

When the quadrature errors are consistently in the same direction, e.g. if the

quadrat-are approximation consistently under-estimates false alarm probability

and over-estimates detection delay, the relative performance of two decision

rules (i.e. which is better than the other) will probably be correctly

determined by the approximation method.

The Markov N&roximation Z

Here we will describe a conclusion drawn from a simulation (SW) of

the sliding window rule with f = 18.849, 12.0471' and a simulation (MA)

of the nonimplementable decision rule based on X and using the same

thresholds. r'Each smulation consists of 10,000 trajectories.) The

resulting probabilities are shown in Figures 6-8 to 6-12. In addition,

the probabilities associated with the Markov approximation (k) !re
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FIGURE 6-8:	 b0 (tI0) - Sliding window Rule and Approximation.
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FT.G= 6-9s bi (til) - Sliding Window Rule and Approximation,
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FIGURE 6-10: b0 (t12) - Sliding window Rule and AWroximation.
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FIG= 6-12: b2 (t12) - Sli3ing Window Rule and /Approximation.
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computed via the quadrature method using n L a n  t 20, and these are in-

cluded in the above figures. (These probabilities are also marked Q20).

SW may be compared with MA to determine the validity of the Markov ap-

proximation I, and MA may be compared with Q20 to further assess the ac-

curacy of the quadrature algorithm.

From the simulation results (Figure 6-8) it is evident that the Markov

approximation (MA) slightly under-estimates the false alarm rate of the

sliding window rule (SW). However, Coe response of the Markov approximation

to failures is very close to that of the sliding window rule (see Figure 6-8

to 6-12). In the present example, L.-1 is a 7-th order process, while its

approximation k is only of first order. In view of this fact, we can cen-

clude that k provides a very reasonable anA useful approximation of 
LW-1'

The quadrature results Q20 are very close to MA. The value of PT

ranges between .998 and 1.03. This is further evidence that the quadrature

algorithm is useful for obtaining estimates of probabilities. Furthermore,

this indicates that the results of applying quadrature to the Markov ap-

proximation provides a good approximation of SW. Thus one overall conclusion

is that the quadrsture technique for calculating approximate performance

using the Markov approximation to the sliding window test represents an

useful and accurate method for determining the performance of failure detec-

tion rules and for comparing and optimizing such rules. We now turn to the

last of these possibilities.

The SQP algorithm

•	 The SQP algorithm is used in conjunction with the quadrature al-c.rithm

(n,, M n  = 20) to find the risk-minimizing threshold for both the sliding
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window rule and the rule using s. Tha successive choices of thresholds by

SQP for the two decision rules are plotted in Figures 6-13 and 6-14. The

performance indices, such as the estimated mean time between false alarms

(MTSFA), the detection delays (t i), and the correct detection probabilities

(P(ili)), along with the risks associated with these choitam cf thresholds

for both decision rules are shown in Tables 6-5 and 6-6.

Note that we have not carried the SQP algorithm far enough so that

the successive choices of thresholds are, say, within .001 of each other.

In Tables 6-5 and 6-6, it is evident that towards later iterations the per-

formance indices become relatively insensitive to small changes of the V z.

This together with the fact that wc , are only computing an approximate Bayes

i	 risk (see Subsection 5.2.3) weans that fine scale optimization is not

worthwhile. Therefore, with the approximate risk,the SQP is most effeciently

used to locate the zone where the minimum lies. That is, the SQP algorithm

is to be terminated when it is evident that it has converged into a reason-

ably small region, such as in the present example (see Figure 6-13 and 6-14).

Then we may choose the thresholds that give the smallest risk as the

approximate solution of the minimization.

In the event that thresholds that yield the smallest risk do not pro-

vide the desired detection performance, the design parameters, L, as µ, and

W may be adjusted and the SQP may be repeated to get a new design. A prac-

tical alternative method is to make use of the list of performance indices

(Tables 6-5 and 6-6), that are the by-product of SQP, and choose a pair of
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•	 ITER fl f2 RISK MMA P(2.11)
t 

P(212) t2

8.0 11,0 8.9029 359 .868 6.29 .821 5.71
9.5 11.5 8.9282 963 .793 8.24 .930 6.10
9.0 1:11.5 8.8056 976 .917 7.75 .841 6.43
8.5 13.5 8.§418 744 .973 7.16 .699 6.65
9.75 13.0 8.9742 2014 .909 9.05 .888 6.74
8.75 11.75 8.8818 676 .879 7.28 .858 6.10

1 7.563 12.654 8.9433 330 .971 6.00 .620 6.11)
2 8.840 10.729 8.9091 510 .768 7.14 .914 5.72
3 8.616 12.110 8.8842 671 .912 7.17 .821 6.2.1
4 8.748 11.902 8.8809 703 .891 7.30 .849 6.16
5 8.801 11.978 8.8803 743 .893 7.39 .850 6.20
6 8.825 12.028 8.8802 766 .895 7.43 .850 6.22
7 9.180 12.740 8.8871 994 .875 7.93 .882 6.29
8 8.849 12.047 8.8801 783 .895 7.46 .951 6.23

8.867 12.039

TABLE 6-5 z Performance of Sliding Window Rule with Thresholds
Chosen by SQP.
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ITEM fl f2 KISK MTBF'A P(111) tl P(2 2) E2

6.4 12.5 8.9389 761 .922 7.60 .772 6.41
7.2 13.25 9.1026 1786 .890 9.55 .869 6.82

6.0 11.8 8.9290 443 .914 6.74 .739 6.04

= 7.0 12.0 8.9947 951 .838 8.74 .883 6.40

5.5 11.0 8.9389 252 .907 5.83 .691 5.61

5.7 12.2 8.9406 384 .947 6.29 .651 6.03

1 5.462 12.940 8.9643 344 .975 5.97 .541 6.09

2 5.975 10.996 8.9311 340 .869 6.56 .781 5.78

-	 3 5.951 11.528 8.9289 395 .903 6.62 .746 5.94

4 5.776 10.771 8.9337 284 .872 6.21 .759 5.64

5 6.089 11.667 8.9279 454 .901 6.88 .763 6.03

6 6.117 11.545 8.9279 445 .891 6.90 .775 6.04

7 6.287 11.867 8.9289 563 .897 7.27 .787 6.16

6.158 11.635

TABLE 6-6: Performance of Decision Rule Using z with Thresholds
Chosen by SQP.
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FIGURE 6-13: Thresholds of Sliding Window Rule Chosen by SQP.
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FIGURE 6-14: Thresholds Chosen by SQP for the Decision Rule Using z.
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thresholds that yields the desired performance. Usually the list of

performance indices provides sufficient information for deducing such a

pair of thresholds heuristically. This choice of thresholds may be

refined after its performance is determined via the quadrature algorithm.

This approach will save the computations required to apply the SQP the

second time (i.e. after we have adjusted the design parameters L, a, and 4).

Sliding window rule vs decision rule using z

Here, we will compare the performance of a sliding window rule with

that of a rule using z. We will consider these rules with thresholds de-

termined with SQP based on the same cost functions and prior probability

as described in Section 6.1. The thresholds for the sliding window rule

are (8.849, 12.0471 (the 8-th iteration of SQP, Table 6-5), and the thres-

holds of the other rule are (6.287, 11.6871 (the 7-th iteration of SQP,

Table 6-6).

Probabilities for these two decision rules based on simulations of

10,000 trajectories are shown in Figures 6-15 to 6-19. In fact, these are

the same results listed in Figures 6-3 to 6-12. Here, SW and MI are plotted

on the same graph to facilitate the comparison. We note that MI has a

`	 higher false alarm rate than SW. The speed of detection for the two rules

is similar. While MI has a slightly higher type-1 correct detection

probability than SW, SW has a consistently higher $2 (t12) (type -2 correct

detection probabi l ity) than MI. (Also see Tables 6-5 and 6-6).

Based on the results (Table 6-5 and 6-6) we can make the following de-

duction. By raising the thresholds of the rule using z appropriately, we
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can decrease the false alarm rate of MI down to that of SW with an increase

in detection delay and slightly improved correct detection probability for

the type-` failure (with ramp signature). Thus, the sliding window rule is

slightly superior to the rule using z in the sense that when both are designed

to yield a comparable false alarm rate, the latter will have longer detec-

tion delays and slightly lower correct detection probability (for type-2

failure). In view of the fact that a decision rule using z is much simpler

to implement, it is worthy of being considered as an alternative to the

sliding window rule.

In summary, the result of applying our decision rule design method to

the present example is very good. The quadrature algorithm has been shown

to be useful, and the Markov aF?roximation of L W-1 by R is a valid one.

The SQP algorithm has demonstrated its simplicity and usefulness through

the numerical example. Finally, the Markov decision statistic z has been

shown to be a worthy alternative to the sliding window statistic LW-1.
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CHAPTER 7

SUMMARY AND RECOMMENDATIONS

7.1 SummaEX

The goal of the research reported in this thesis is to develop a

methodology for designing FDI systems that deliver good performance and

are robust in the presence of modelling uncertainties. We have viewed

the FDI process as consisting of two stages: a residual -generation process

followed by a decision process. Since modelling errors affect residual—

generation directly, th y? robustness issue is most effectively tackled in

the design of this process. Naturally, the issue of detection performance

is the main concern in designing a decision rule. Therefore, the FDI

design problem is decomposed into two tasks: the design of a robust

residual -generation process and the design of a high performance decision

rule.

Analytical redundancy is the basis for residual -generation. In

Chapter 2, we presented a general formulation of the concept of anal,-A.cal

redundancy for LTI systems in terms cf a parity space. A redundancy relation

is simply a parity relation, which has to hold in the absence of a failure

and noise. When such a relation is violated, a failure is evident. The use

of parity functions (or parity vectors) as residuals for FDI was also

extensively discussed.

In the presence of modelling uncertainties and noise, the parity

relations of the system also become uncertain. Chapter 3 was devoted to the

development of an approach for determininq useful parity relations for FDI.

The crucial proii^?n of determining a set of appropriate coefficients for a
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parity relation was formulated as a minimax problem, the objective of

which was to minimize the worst case effect of noise and modelling error

on the parity relation. Therefore, residual-generation baud on such

parity relations is robust for as robust as any relation can be for the

particular system under consideration). The notion of signature-to-parity-

error ratio was also introduced to aid in the choice of parity functions

for residual-generation.

The contribution of Chapters 2 and 3 rents on the precise charac-

terization of analytical redundancy as parity relations and the formulation

of the parity coefficient design problem as a minimax optimization. These

concepts haae formed the basis of a new approach to the design of robust

residual-generation processes. Further development of this design method

is possible, and we will discuss some of the future research directions in

Section 7.2.

The design of a decision rule involves resolving the tradeoff among

the various detection performance issues. In this research we followed

the Bayesian approach. In Chapter 4, we formulated the FDI decision

process as a Bayes seq+aential decision problem. The cost functions and the

prior probability mass function of the Bayes method could be regarded as

parameters prescribing the tradeoff among the various performance issues.

Although the optimal Bayes rule cannot be implemented, this formulation

provides a structure from which simple suboptimal rules can be constructed.

In Chapter S, we discussed some suboptimal decision rules that are

based on the Bayes rule as well as other suboptimal rules. Just as in the
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design of a Sayes rule, the design of a suboptimal rule was also formulated

as a r4sk-minimizing problem. A quadrtature algorithm was developed to

compute the detection probabilities and the risks associated with low dimen-

sional problems. Thus, with a minimization algorithm that does not require

derivative information, such as the SQp , the suboptimal rule design problem

may be solved numerically.

This 3esi.7n methodology was applied in a numerical example. The

results (discussed in Chapter 6) indicate that this approach is a valid

and useful one. We also note that the limitations on the dimensionality

imposed by computational considerations need not lead to a corresponding

F 1

severe limitation in the applicability of our technique. Specifically,

our work in Chapter 2 and 3 was aimed at breaking up the dynamics of a

system into low-dimensional pieces in order to isolate robust parity

relations. Thus we see that using low-dimensional decision statistics

serves two purposes: it allows us to address the issue of robustness and

it allows us to apply our decision rule algorithm.

7.2 Future Research Directions

In the course of this study, a number of open problems have been

encountered, and they were mentioned in the text of this thesis. Some

directions for f:+t.ure research based on these problems are outlined in

the following:

1) Ir aec,_a.:.n 3.5, we described the solution to a special

case of the minimax parity coefficient design problem. A volution

procedure for more general cases is needed.
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2) In Section 3.3 we indicated that if we postulate a pDF

over ", the parity coefficient design problem can be re-formulated

as a minimisation problem, which is much simpler to solve. This Ap-

proach should be examined in the future.

3) Because a parity relation with a large signature-to-parity-

error ratio (R) is desirable for FDI, we may re-define the oojective

of the parity coefficient design problem so that we ccasider

max min n(a,S,Y,xp,up,i)
a,$ Ye"

s.t. aa'-1

where i denotes the failure of interest. This problem is generally more

difficult than the minimax problem, because the ob3ective function R is

more compl sx.
e

4) The parity coefficient design procedure examined in Chapter 3

yields parity relations tnat are most suitable for robust open-loop

residual-generation. The problem of determining parity coefficients

(relations) for robust closed-loop residual-generation should be addressed.

5) In the present study, we did not consider in detail how to

choose a set of "best" parity functions as measured by n or e * (the parity

error) for the FDI of a given set of failures. A systematic method for

selecting this set of parity relations is a useful tool to be developed in

the future.

The detection performance indices (such as correct detection

probabilities), associated with the decision rules of Chapter 5 are based
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on exact characterization of failure signatures. The effect of modelling

error is not accounted for. It will be useful to make use of information

such as n to couple the effect of modelling uncertainties into the detec-

tion performance indices. Then we can consider designing decision rules

that minin,.ize the risks based on the modified performance indices.

7) The quadrature algorithm developed in Chapter 5 provides reason-

able estimates of the probabilities. however, it consumes too much com-

putation time. An improvement of this algorithm aimed at reducing

computations is desirable. For example, we may consider a better placement

of the grid points of the quadrature su that fewer points will be needed.

With reduced computational requirement, the quadrature algorithm may be

used for higher dimensional problems. In addition, the utilization of other

1-dimensional quadrature formulas in place of the Laguerre and Hermite	 -

formulas used in the present quadrature algorithm should be explored in an

effort to arrive at a more efficient integration formula that is applicable

to higher-dimensional problems as well as the 2-dimensional case considered

here.

8) In Chapter 6, the (implementable) Markov decision statistic z

was shown to be simple and useful. In order to generate such a statistic, a

N
choice of the matrices A and B is needed. A procedure for selecting theae

matrices for high detection performance is needed.

9) More experimentation is needed to confirm the general conclusions

of our study of the decision rule optimization algorithm.
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APPENDIX A: Solution Procedure for the Minimax Problem (3-51)

Consider the optimization problem

min max [f1(x),f2(x)]	 (A-1)

xex

where 3hn. Both fl and f2 are continous over X which is a connected

subset of e. For each f., there is a subset T. of X such that for any

point x0eTi and any point xex, f i (x0)< f  W. That is, Ti contains the

global minima of f  over X. We will assume that f  has no other local

minima.

We can show that the solution to (A-1) can be determined as follows:

1) By defining

h(x) = max[fi(x),f2(x)]

we can re-write (A-1) as

min h (x)
	

(A-2)
xex

Let Q be the set

Q = {x: xeTi and fi (x)> f 3-i (x), i=1,21

It is clear that when Q is not empty, it contains the minimum of h over X.

Assuming 0 is not empty, the solution of (A-2) is simply the element

X*eil such that

h(x")	 min h(x)	 (A-3)
XEQ

r
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Note that X* may not be unique. The solution of (A-3) is easy to compute

if each f  has a single global minimum, because Q will contain at most

two points and the search required in (A-3) is extremely simple. When

Q is empty, the minimax solution can be found using the next step.

2) Define

A = {x: xeX and f1 W = f2 (x)}	 (A-4)

and let Ac denote the complement of A in X. Consider an element x e Ac.

Because fl and f2 are continuous and X is connected, we can find a neighborhood

N around x in Ac such that either f 1 (x) >f2 (x) or f2 (x)>f1 W for all xeN.

without loss of generality, we can assume f l (x)>f2 (x) in N.	 If a solution

is not found by using step 1, we only need to consider x + Ti . In this case,

there is some other point x0 in N(hence in Ac ) such that fl(x0)<fl(x)

(since f l has no local minima). Therefore, x cannot be a solution of (A-2)

and Ac does not contain the solution. The solution must lie in A.	 In this

case, (A-1) becomes

min f1 W
	

(A-5)

s.t xeX

fl (x) -f2 (x) =0

and we have a constrained minimization problem. Note that the objective

Uinction of (A-5) may be replaced by f2 W.
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t

Now we will apply the above result to the minimax problems considered

in Section 3.5. First, consider (3-51), where f l , f2 and X are

fi ((%') = as(Y1 )a' ,	 i=1, 2,

X = {a , : aa'=1}

where S('yi) is an ram symmetric positive definite matrix and a is a (row)

n-vector. It is well-known that S(y i ) has a complete set of orthonormal

eigenvectors. The minimum value of f, is clearly the smallest eigenvalue
i

of S(Yl). Now we will show that f.i 
has no local minimum other than the

global ones. It is clear that the eigenvectors y 1' ...,yn of S(-Y represent

all possible local minima of f  over X. Let y  correspond to the eigenvalue

Q1 of S(Yi) which is greater than the smallest eigenvalue 
min 

(which

associated eigenvector 
Ymin
	 taking a' = ay  + bymin with bO and

22=1, we have fi W ) = a2 a1 + b2a +b 	min < al' Thus, y  cannot be a local

minimum and f l has no local minimum other than Ymin' 
Consequently, the two-

step solution technique is applicable to (3-51).

When the smallest eigenvalue of S(y i) is not repeated, f  has one global

minimum at 
Ymin' 

(Due to symmetry, we can consider Ymin 
only and not - Ymin')

If this is true for fl and f2 , Q has at most two points and the solution

of (A-3) (i.e. in step 1) can be readily determined. When amin of S(Y1)

is repeated, we can also show that we only need to consider at most two points
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of 9 in step 1. Suppose 
amin 

is of multiplicity m, and we let Y be the

matrix of the m eigenvectors associated with min . (Note that Y is not

unique, but it has rank m.) Then

T1 = [(%,: a' - Y z, where z£Rn and z' z=1 }

To determine if we can find an a' E T, such that f1(a')>f2(a.), it is

only necessary to check if f  W)> f 2 (a') where a' is the solution of

min aS('y2)a
a
s.t.	 a' = Yz

z'z' =1

Equivalently, a' = Yz, where z solves

min z' (Y' S ('y2 ) Y) z	 (A-6)

z'z=1

The solution to (A-6) is, of course, the Pigenvector of Y'S(y 2 )Y (which is

mxm, symmetric, positive-definite) associated with the smallest eigenvalue.

Note that z may not be uri.que (due to repeated eigenvalues of Y'S('y2)Y),

and hence, a' may not be unique. Since all such a' are equivalent

(give the same value f(a')), we only have to consider one of them. As a

result, there will be at most two points in iI (which may be empty) in step 1.

Next, we will apply the above solution procedure to the case where the

parity structure contains actuator inputs. The minimax problem is of the

form
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min	 max
	 [a a] S(Y) fax],

a ' X Ye[Y1.Y2I
	 (A-7)

s. t.	 cc! '=1

where S is the symmetric positive definite matrix given by (3-30) and 71

is a scalar. Assuming S is quadratic in Y (a scalar parameter), (A-7)

is equivalent to

min max [aa] S (Y1 ) [aA] ' , [ax Is (Y2 ) [aW
	

(A-8)
a,A

s. t.	 aa'=1

with X = QaXl': aa'=1}. Therefore, the 2-step solution procedure described

above applies if we can show that [aa]5(y iHaW has no local minima other

than the global one over X. According to multiplier theory [iq ], the

necessary condition for a local minimum of [aa]S(yi)[aa]' to exist over X is

511 S12
[a l]	 = 0 [a 01	 (A-9)

S21 S22

where we have shown S in the partitional form, and 0 is a non-zero scalar.

Since S is positive-definite, (A-9) can be re-stated as

(A-10)

(A-11)

a[S11 - 512 S 522 21]	 0 a

-1
_ -S a 5

22	 12

w

r



-226-

Therefore, in studying the minima of [aa]S(yi
 
HOAP we only need to consider

a of the form (A-11). Using (A-11), we have

[aals(y Haal' = a[S11-S12S-221S21]a

Then, we can readily deduce that the global minimum is given by [a, a(a)l,

where a is the eigenvector of [S -5 S-1
11 12 22 21

S ] ( symmetric, positive-definite)

corresponding to the minimum eigenvalue and a(a) is given. by (A-11). Moreover,

[aals(yi Haal' has no local minima, because a[S11-S12S22S21]a has no local

minima.

u
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APPENDIX B: The Convergence of Jk (0) to JGO(0)

Let 0* 	t *tl;r(1))....,^*(k;r(1),...,r(k)),...) be the optimal stopping

rule for the non-truncated sequential problem. Define

0*,K 
= W 'K(1,r(1)),..., 0*'k(k;r(1),...,r(k)) .... ) such that

0*1K(k;r(1),...,r(k))= ^ (k;r(1),...,r(k)), k=1,...,k-1

0* ' K(K,r (1) , ...,r (k) ) - 1

That is, 0* ' K is the same as 0* , except the f -.)rmer imposes mandatory stopping

•
at time K, and 

* K 
(k;r(1),...,r(k)), k>K is arbitrary. Since (0

*
 ,D ) is

optimal for the non-truncated problem, we have the difference A:

A = Us($*'K,D*) - US ($* ,D* )> 0
	

(B-1)

Furthermore, from (4-16), we have

M k
c	

CO
I G

JAI :j 

L 	 W (k;i,T) I Ei,T^*(k;r(1),...,r(k ))IL((i.T),d*(K;r(1),...,r(K)))
i=0 T=1	 k-K

+ c (i) (k- T)

M	 CO

+ I	 I 
Ei,Tly

*(k:r(1),...,r(k) )[L((i,C),d*(k;r(1),...,r(k))))
i=0 T-1	 k=K

m
+	 Ei,T**(k; r(1),...,r(k))c(i) (k-T)	 (B-2)
k=

mrx[T,k]

Note that in order for a sequential risk to be finite (as is true with

OD

U (^* ,D*)j, Y E	 *(k;r(1),...,r(k)) -* 0 as X-w and
s	

k-K 
i,T

t

s



s
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k K1, TES tks r t l) , ... , r (k)) must be finite. (Note that in (9-2), c(0)-0 	
r

k=1

because there is no delay cost if no failure has occwra;*d..) Since 4 aid c(i)

are bounded, the two terms. in W2) that are due to L sad the tows 4" to

C(i) (1-T) vanish an 14Q Now amsider the remaining term ilk (2-2):

4 mec
	 CO

4	 L u'tm;i, T) 	 L	 Ki, T** (k ;r(1),...,r(k))c(i)(k-T),
i-0 T-0	 k-

max[T,k3

x ^	 •
<	 T) COT ^ Ei.T^►'(k;r (1).....rtk))

i-cr T-t?	 k=K

+	 u'tm:i,T)c(i)	 k 31,T^*(kirtl),,..,rtk>)	 t8-3)
1=0 T=1	 k-K

From the prior discussion both terms an the right hand side of (A-3) vitAish

as k-,-. Therefore A♦0 as k-Ow. The fact that 0 * ' K belongs to the class of

stopping rules that terminate sampling at or before K implies

Us(m*'K,D*) > Jk (0). Using (4-44) and (H-1) we can deduce

Jac (0)< JK ( 0)< Us(t4*' K,D*)	 WO) + Q

As k-+w, A-+0 so that JK(0) -► J. (0).



-229-

REFERENCES

[1 1 A.H. Jazwinski, Stochastic Processes and Filtering Theory, Academic
Press, New York. (1970)

(2 1 F.A. Evans and J.C. Wilcox, "Experimental Strapdown Redundant Sensor
Inertial Navigation System," J. of Spacecraft and Rockets, Vol. 7,
No. 9, pp. 1070-1074, Sept. (1970).

13 1 J.P. Gilmore and R.A. McKern, "A Redundant Strapdown Inertial
Reference Unit (SIRU)," J. of Spacecraft and Rockets, Vol. 9,
No. 1, pp. 39-47, Jan., (1972).

[4 1 A.S. Willsky and H.L. Jones, "A Generalized Likelihood Ratio Approach
to the Detection and Estimation of Jumps in Linear Systems," IEEE
Trans. Aut. Control, AC-21, 108-112, Feb.	 (1976).

[5	 1 A.S. Willsky, E.Y. Chow, S.B. Gershwin, C.S. Greene, P.K. Houpt,
and A.L. Kurkjian, "Dynamic Model-Based Techniques for the Detection
of Incidents on Freeways," IEEE Trans. Auto. Control, Vol. AC-25,
No. 3, pp. 347-360, Jun. 	 (1980).

[6	 1 D.E. Gustafson, A.S. Willsky and J.Y. Wang, Final Report:	 Cardiac
Arrhythmia Detection and Classification Through Signal Analysis,
The Charles Stark Draper Lab., Cambridge, MA, Report No. R-920,
July (1975).

[7	 1 R.V. Beard, Failure Accommodation in Linear Systems Through Self -
Reorganization, Man Vehicle Lab., M.I.T., Cambridge, MA, Report
MVT-71-1, Feb.	 (1971).

[8	 1 H.L. Jones, Failure Detection in Linear Systems, Ph.D. Thesis, Dept.
of Aeronautics and Astronautics, M.I.T., Cambridge, MA., Sept. (1973).

19	 1 A.S. Willsky, "A Survey of Design Methods for Failure Detection in
Dynamic Systems," Automatica, Vol. 12, pp. 601-611,	 (1976).

1101 A. Wald, Sequential Analysis, Wiley, New York,	 (1947).

[111 J.C. Deckert, M.N. Desai, J.J. Deyst and A.S. Willsky, "F-8 DFBW
Sensor Failure Identification Using Analytic Redundancy," IEEE Trans.
Auto. Control, Vol. AC-22, No. 5, pp. 795-803, Oct.	 (1977).

[121 J.E. Potter and J.C. Deckert, "Minimax Failure Detection and Identi-
fication in Redundant Gyro and Accelerometer Systems," J. of Spacecraft
and Rockets, Vol. 10, No. 4, pp. 236-243, April 	 (1973).

Y



-230-

[13) J.E. Potter and M.C. Suman, "Thresholdless Redundancy Managment
with Arrays of Skewed Instruments," AGARDOGRAPH-224, Integrity in
Electronic Flight Control Systems, pp. 15-1 - 15-25, (1977).

[141 D.P. Bertsekas, Notes on Nonlinear Programming and Discrete-Time
Optimal Control, M.I.T. Lab. for Inform. and Dec. Sys., Report 919,
Cambridge, MA, July (1979).

1151 R.W. Brackett, Finite Dimensional Linear Systems, Wiley, New York, (1970).

1161 K.C. Daly, E. Gai and J.V. Harrison, "Generalized Likelihood Test for
FDI in Redundant Sensor Configurations," J. Guida,ice and Control,
Vol. 2, No. 1, pp. 9-17, Jan. - Feb. (1979).

(171 D.P. Bertsekas, Dynamic Programming and Stochastic Control, Academic
Press, New York, (1976).

1181 A. Wald and J. Wolfowitz, "Op-imum Character of the Sequential Pro-
bability Ratio Test," Annals Maths. Stat., Vol. 19, pp. 581-586.
(1948).

ti

[191 A.H. E1-Sawy and V.D. vandelinde, "Robust Sequential Detection of
Signals in Noise," IEEE Trans. Information Theory, Vol. IT-25,
No. 3, pp. 346-353, May (1979).

[201 T.W. Anderson, "A Modification of the Sequential Probability Ratio
Test to Reduce the Sample Size," Annals. Math. Stat., Vol. 31,
pp. 165-197, (1960).

1211 T.T. Chien and M.B. Adams, "A Sequential Failure Detection Technique
and Its Applications," IEEE Trans, Aut. Control, Vol. AC-21, pp. 750-
757, Oct. (1976).

[221 D. Blackwell and M.A. Girshick, Theory of Games and Statistical Decisions,
Wiley, New York (1951).

1231 R.A. Roberts and C.T. Mullis, "A Bayes Sequential Test of M Hypothesis,"
IEEE Trans. Information Theory, pp. 91-94, Jan. (1970).

1241 G. Schwarz, "Asymptotic Shapes of Bayes Sequential Testing Regions,"
Annals Maths. Stat., Vol. 33, pp. 225-t65, (1962).

[251 A.N. Shiryaev, "On the Detection of Disorder in a Manufacturing Process,
I.," Theory of Prob. and hMl. Vol. 8, No. 3, pp. 247-265, (1963).

1261 A.N. Shiryaev, "On the Detection of Lisorder in a Manufacturing Process,
II," Theory of Prob. and Appl., Vol. 8, No. 4, pp. 402-413, (1963).

a



W

-231-

.

1271 I.B. MacNeill, "Test for Change of Parameter at unknown Time and
Distributions of Some Related Functions on Brownian !lotion," An_ nals
Haths. Stat., Vol. 2, No. 5, pp. 950-962, (1974).

1281 H. Cheroff and S. Zacks, "Estimating the Current Mean of a Normal
Distribution Which is Subjected to Changes in Time," Annals Haths.
Stat., Vol. 35, No. 3, pp. 999-1018, Sept. (1964).

1291 A.N. Shiryaev, "On Optimum Methods in Quickest Detection Problems,"
Theory of Prob. and Appl., Vol. 8, No. 1, pp. 22-46, (1963).

1301 I. Shimi, "The Bayssian and Nonparametric Approach to Reliability
Studies: A Survey of Recent Work," Conference on the Theory and
Applications of Reliability with Enwhasis on eayesian and Nonpara-
uric methods, Academic-Press, pp. 5-47, (1977).

1311 T.S. Ferguson, mathematical Statistics, Academic Press, New York, (1967).

1321 H.L. Van Trees, Detection, Estimation and Modulation Theory, Vol. I, Wiley,
New York (1968).

(331 R. Bellman, Dynamic Programming, Princeton Univ.	 Press, (1956).

1341 I.F. Blake and W.C. Lindsey, "Leval-Crossing Problems for Random
Processes," IEEE Trans. Information Theory, Vol. IT-19, No. 3,

" pp. 295-315, May (1973).

1351 R.G. Gallager and C.W. Helstrom, "A Bound on tho Probability that a
Gaussian Process Exceeds a Given Function," IEEE Trans. information
TheOrY, Vol. IT-15, No. 1, pp. 163-166, Jan. (1969).

1361 D.H. Bhati, "Approximations to the Distribution of Sample Size for
Sequential Tests, I. Tests of Simple Hypotheses," Bi ^ ,
Vol. 46, pp. 130-138,	 (1973).

(37) B.K. Ghosh, "moment of the Distribution of Sample Size in a SPRT,"
American Statistical Association Journal, Vol. 64, pp. 1560-1574, (1969).

1381 B.K. Walker, A Semi-Markov Approach to Quantifying Fault-Tolerant
System Performance, Sc.D. Thesis, Dept. of Aero. and Astro., M.Z.T.,
Jul.	 (1980).

[391 P.J. Davis and P. RaLinowitz, Numerical Integration, Blaisdell
Publishing Company, Waltham, Hass., (1967).

. v

W 1



-232-

(40) A.H. Stroud and D. Secrest, Gaussian Qsadrature Formulas, Prentice
Hall, Enqlewood Cliffs, H.J., (1956).

(411 S. Haber, "Numerical Evaluation of Multiple Integrals," SIAM Review,
Vol. 12, No. 4, pp. 481-526, Oct. (1970).

(421 D.K. Winfield, Function Minimisation Without Derivatives by a
Sequence of Quadratic Programing Problems, Harvard Univ., Division
of Enqineerinq and Applied Physics, Technical Report No. 537,
Cambridge, Mass., Auq. (1967).

R


	1981003928.pdf
	0014A02.TIF
	0014A03.TIF
	0014A04.TIF
	0014A05.TIF
	0014A06.TIF
	0014A07.TIF
	0014A08.TIF
	0014A09.TIF
	0014A10.TIF
	0014A11.TIF
	0014A12.TIF
	0014A13.TIF
	0014A14.TIF
	0014B01.TIF
	0014B02.TIF
	0014B03.TIF
	0014B04.TIF
	0014B05.TIF
	0014B06.TIF
	0014B07.TIF
	0014B08.TIF
	0014B09.TIF
	0014B10.TIF
	0014B11.TIF
	0014B12.TIF
	0014B13.TIF
	0014B14.TIF
	0014C01.TIF
	0014C02.TIF
	0014C03.TIF
	0014C04.TIF
	0014C05.TIF
	0014C06.TIF
	0014C07.TIF
	0014C08.TIF
	0014C09.TIF
	0014C10.TIF
	0014C11.TIF
	0014C12.TIF
	0014C13.TIF
	0014C14.TIF
	0014D01.TIF
	0014D02.TIF
	0014D03.TIF
	0014D04.TIF
	0014D05.TIF
	0014D06.TIF
	0014D07.TIF
	0014D08.TIF
	0014D09.TIF
	0014D10.TIF
	0014D11.TIF
	0014D12.TIF
	0014D13.TIF
	0014D14.TIF
	0014E01.TIF
	0014E02.TIF
	0014E03.TIF
	0014E04.TIF
	0014E05.TIF
	0014E06.TIF
	0014E07.TIF
	0014E08.TIF
	0014E09.TIF
	0014E10.TIF
	0014E11.TIF
	0014E12.TIF
	0014E13.TIF
	0014E14.TIF
	0014F01.TIF
	0014F02.TIF
	0014F03.TIF
	0014F04.TIF
	0014F05.TIF
	0014F06.TIF
	0014F07.TIF
	0014F08.TIF
	0014F09.TIF
	0014F10.TIF
	0014F11.TIF
	0014F12.TIF
	0014F13.TIF
	0014F14.TIF
	0014G01.TIF
	0014G02.TIF
	0014G03.TIF
	0014G04.TIF
	0014G05.TIF
	0014G06.TIF
	0014G07.TIF
	0014G08.TIF
	0014G09.TIF
	0014G10.TIF
	0014G11.TIF
	0014G12.TIF
	0014G13.TIF
	0014G14.TIF
	0015A02.TIF
	0015A03.TIF
	0015A04.TIF
	0015A05.TIF
	0015A06.TIF
	0015A07.TIF
	0015A08.TIF
	0015A09.TIF
	0015A10.TIF
	0015A11.TIF
	0015A12.TIF
	0015A13.TIF
	0015A14.TIF
	0015B01.TIF
	0015B02.TIF
	0015B03.TIF
	0015B04.TIF
	0015B05.TIF
	0015B06.TIF
	0015B07.TIF
	0015B08.TIF
	0015B09.TIF
	0015B10.TIF
	0015B11.TIF
	0015B12.TIF
	0015B13.TIF
	0015B14.TIF
	0015C01.TIF
	0015C02.TIF
	0015C03.TIF
	0015C04.TIF
	0015C05.TIF
	0015C06.TIF
	0015C07.TIF
	0015C08.TIF
	0015C09.TIF
	0015C10.TIF
	0015C11.TIF
	0015C12.TIF
	0015C13.TIF
	0015C14.TIF
	0015D01.TIF
	0015D02.TIF
	0015D03.TIF
	0015D04.TIF
	0015D05.TIF
	0015D06.TIF
	0015D07.TIF
	0015D08.TIF
	0015D09.TIF
	0015D10.TIF
	0015D11.TIF
	0015D12.TIF
	0015D13.TIF
	0015D14.TIF
	0015E01.TIF
	0015E02.TIF
	0015E03.TIF
	0015E04.TIF
	0015E05.TIF
	0015E06.TIF
	0015E07.TIF
	0015E08.TIF
	0015E09.TIF
	0015E10.TIF
	0015E11.TIF
	0015E12.TIF
	0015E13.TIF
	0015E14.TIF
	0015F01.TIF
	0015F02.TIF
	0015F03.TIF
	0015F04.TIF
	0015F05.TIF
	0015F06.TIF
	0015F07.TIF
	0015F08.TIF
	0015F09.TIF
	0015F10.TIF
	0015F11.TIF
	0015F12.TIF
	0015F13.TIF
	0015F14.TIF
	0015G01.TIF
	0015G02.TIF
	0015G03.TIF
	0015G04.TIF
	0015G05.TIF
	0015G06.TIF
	0015G07.TIF
	0015G08.TIF
	0015G09.TIF
	0015G10.TIF
	0015G11.TIF
	0015G12.TIF
	0015G13.TIF
	0015G14.TIF
	0016A02.TIF
	0016A03.TIF
	0016A04.TIF
	0016A05.TIF
	0016A06.TIF
	0016A07.TIF
	0016A08.TIF
	0016A09.TIF
	0016A10.TIF
	0016A11.TIF
	0016A12.TIF
	0016A13.TIF
	0016A14.TIF
	0016B01.TIF
	0016B02.TIF
	0016B03.TIF
	0016B04.TIF
	0016B05.TIF
	0016B06.TIF
	0016B07.TIF
	0016B08.TIF
	0016B09.TIF
	0016B10.TIF
	0016B11.TIF
	0016B12.TIF
	0016B13.TIF
	0016B14.TIF
	0016C01.TIF
	0016C02.TIF
	0016C03.TIF
	0016C04.TIF
	0016C05.TIF
	0016C06.TIF
	0016C07.TIF
	0016C08.TIF
	0016C09.TIF
	0016C10.TIF
	0016C11.TIF
	0016C12.TIF
	0016C13.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




