ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

81-10008. UR-163528

"Made available under NASA sponsorship In the later, of one by and vide dissemination of The Record cos Survey Program approaction and without liability for any use made thereof."

TROPHIC CLASSIFICATION OF TENNESSEE VALLEY AREA RESERVOIRS

DERIVED FROM LANDSAT MULTISPECTRAL SCANNER DATA

Вy

Dennis L. Meinert Division of Environmental Planning Water Quality and Ecology Branch Tennessee Valley Authority

Donald L. Malone Alan W. Voss Division of Water Management Mapping Services Branch Tennessee Valley Authority

Frank L. Scarpace Department of Civil and Environmental Engineering and Institute for Environmental Studies University of Wisconsin - Madison

N81-12485

TROPHIC CLASSIFICATION OF (E81-10008) TENNESSEE VALLEY AREA RESERVOIRS DERIVED FROM LANDSAT MULTISPECTRAL SCANNER DATA (Tennessee Valley Authority, Chattanooga.) Unclas CSCL 08H G3/43 00008 73 p HC A04/MF A01

Omginal pflotography may be Burchased from: EROS Data Center Sicux Falls, SD 57198

ABSTRACT

This study evaluated the application of Landsat multispectral scanner (MSS) imagery for assessing the trophic status of the major lakes and reservoirs in the Tennessee Valley.

Ground truth water quality data collected by the Environmental Protection Agency during the 1973 National Eutrophication Survey (NES) at 35 reservoirs in the greater Tennessee Valley region were subjected to cluster and principal component data analyses to develop a trophic state index for the reservoirs. Each reservoir's trophic state index was defined by its relative position on a first principal component axis. Water quality characteristics selected as trophic indicators used in the cluster analysis and principal component analysis were chlorophyll a, conductivity, total phosphorus, total organic nitrogen, the inverse of the Secchi disc depth, and the yield of an algal assay procedure.

Landsat MSS data from four different dates were extracted from computer tapes using a semi-automated digital data handling and analysis system at the University of Wisconsin - Madison. Reservoirs were extracted from the surrounding land matrix by using a Band 7 density level slice of 3; and descriptive statistics to include mean, variance, and ratio between bands for each of the four bands were calculated.

Significant correlations (>0,80) between the MSS statistics and many trophic indicators were identified. Regression models were developed to predict reservoir eutrophication using MSS statistics as the independent variables and the trophic state index, developed from ground truth, as the dependent variable in each frame. Regression models were also developed to predict Secchi disc depth, conductivity, and total phosphorus. The models gave significant estimates of each reservoir's trophic state as defined by its trophic state index and explained in all four Landsat trames at least 85 percent (\mathbb{R}^2) of the variability in the data. Each handsat trame had its own unique models which were not practically applicable on other dates.

To illustrate the spatial variations within reservoirs as well as the relative variations between reservoirs, a table-look-up elliptical classification was used in conjunction with each reservoir's trophic state index to classify each reservoir on a pixel-by-pixel basis and produce color-coded thematic representations.

Although the need for ground truth information on water quality places a restriction on the use of Landsat MSS data for the prediction of trophic state, such data still has value in regions where there are many lakes or reservoirs within a single MSS frame. Under such circumstances the collection of ground truth from a small number of "bench mark" lakes for the development of regression models would result in considerable cost savings.

111

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

	rage
Abstract List of F List of T Abbreviat Acknowled	igures,
Sections	
t 🔬	INTRODUCTION
11	LANDSAT SATELLITE BACKGROUND
111	DESCRIPTION OF GREATER TENNESSEE VALLEY REGION STUDY AREA
17	GROUND TRUTH WATER QUALITY DATA COLLECTION
ν	EUTROPHICATION AND TROPHIC STATE INDICATORS
VI	WATER QUALITY DATA ANALYSIS
	A. Cluster Analysis,
117	LANDSAT DATA EXTRACTION
	A. Imagery Selection and Manipulation
VIII	RELATIONSHIPS BETWEEN TROPHIC STATE INDICATORS AND LANDSAT IMAGERY
	 A. Secchi Disc Depth Estimation. B. Conductivity Estimation C. Total Phosphorus Estimation D. Trophic State Index Estimation
IX	GENERATION OF THEMATIC REPRESENTATION
X	CONCLUSIONS
X1	RECOMMENDATIONS
XII	REFERENCES
XIII	APPENDICES

LIST OF FIGURES

¢

v i i i

Figure		Page
1	Landsat orbital tracks for one day of coverage	4
2	Landsat configuration	5
3	Scanning arrangement of MSS. , , , ,	6
4	Scanning pattern of MSS on the earth's surface	6
5	Nominal scenes for Landsat imagery	8
6	Tennessee Valley Region (with overlay of Landsat scenes, path 20, row 35 & 36),	10
7	Dendrogram of reservoirs in the Tennessee Valley	20
8-12	Landsat scenes used in study	26
13	Computer printout of band 7 density slice	34
14	Observed vs. predicted trophic state index	42
15-16	Thematic maps of Landsat classified lakes	44

LIST OF TABLES

Table		Page
1	Characteristics of the Landsat orbit	3
2	Spectral wave lengths (bands) of Landsat multispectral scanner	3
3	Morphometry and hydrology of reservoirs sampled during National Eutrophication Study of 1973 , , , ,	11
4	Trophic indicators used to assess eutrophication	15
5	Trophic indicator data for reservoirs sampled during National Eutrophication Study of 1973	17
6	Correlation coefficient matrix of six trophic state indicators	18
7	Normalized eigenvalues and eigenvectors	21
8	Correlation coefficients of trophic state indicators and principal components	22
9	Principal component value and normalized mean rank index for NES-sampled reservoirs	24
10	Landsat MSS frames	31
11	Dates of Landsat data for NES-sampled reservoirs	32
12	Dates of Landsat data for nonNES-sampled reservoirs	33
13	Correlations between ground truth water quality data and Landsat data,	37
14	Analysis of variance Secchi disc depth	38
15	Secchi disc depth residuals	38
16	Analysis of variance conductivity	34
17	Conductivity residuals	30
18	Analysis of variance total phosphorus	40
19	Total phosphorus residuals	41
20	Analysis of variance of regression model	41

ABBREVIATIONS

1 <u>8e</u>	bpi CCT DCS	bit-per-inch computer compatible tapes data collection system
3	deg	degrees
	DN	digital number
	EPA	Environmental Protection Agency
	EKU5	Earth Resources Observation System
· · ·	ERTS	Larth Resources lechnology satellite
11	IFUV	instantaneous field of view
	KM Xanada a tu	Kilometer Tand Satollito
15	Landsat	
n e ₩	ni MD	meters
	^{rib} i	mean faw felfectance value for band 1
17	mg/1	milligrams per liter
	MSS	multispectral scanner
	NASA	National Aeronautics and Space Administration
18	nm	nanometers
	NMR	normalized mean rank
21	NT-SYS	numerical taxonomy system
	PC1	principal component, trophic state index
	pixel	picture element
22	RB	ratio of reflectance values between band i and band i + 1
	RRV	return beam vidicon
	revs	revolutions
24	SAS	statistical analysis system
	Seasat	Sea Satellite
31	STORET	water quality data storage and retrieval system of the
		Environmental Protection Agency
32	TVA	Tennessee Valley Authority
	umhos/cm	micro mhos per centimeter
33	VB,	variance of reflectance values for band i
		variance of the ratio of the reflectance values between
	^{vnb} i	hand i and hand i + 1
· 37		
AA		
38		
0.0		
50		
20		
22		

vii

ACKNOWLEDGEMENTS

This project was funded by the Tennessee Valley Authority (TVA), Division of Environmental Planning, Water Quality and Ecology Branch, Regional Water Quality Management Program, and by the Division of Water Management, Mapping Services Branch, Remote Sensing Program. Dr. John S. Crossman, Regional Water Quality Management Program Manager, provided much direction and support in this project. The authors also wish to thank Thomas W. Toole for his help with the cluster and principal component data analyses, and Jeff Fox and Bruce Quick who performed the data extraction and classification of Landsat data.

INTRODUCTION

The science of remote sensing, that is the collection of information about an object from a distance, is a rapidly developing water quality monitoring tool that is expected to complement in situ sampling and analysis. Remote sensing has rapidly progressed from a purely qualitative water quality monitoring tool to one which permits quantitative prediction of certain water quality characteristics over large areas based on limited ground observations. Some rather obvious benefits of remote sensing are the ability to present a synoptic pictorial representation of an extensive area as opposed to a specific location, to survey vast areas in a very short time, and to observe at a later time information that was not fully realized or being sought at the time the data were collected.

Most past Landsat eutrophication studies (Boland, 1976; Scarpace et al., 1978) have focused on natural lakes. In this study, reservoirs were investigated. The relatively short hydraulic retention times of most reservoirs ensure that responses to changes in waste loads will be detected in a matter of years rather than the decades required for most naturally formed lakes. Most nutrient loading trophic state models have been developed using data from natural lakes in the northeastern United States and Europe (Vallenweider, 1968; Rast and Lee, 1978). Reservoirs have relatively high flushing rates and respond differently to nutrient inputs than do natural lakes with relatively lower flushing rates.

In this study we have investigated the application of Landsat multispectral scanner imagery to assess water quality conditions in the Tennessee Valley region, with particular emphasis on the determination of the trophic status of the major reservoirs in the Valley. The purpose of this project was to develop and demonstrate technologies which improve the effectiveness and efficiency of water quality monitoring programs.

LANDSAT SATELLITE CHARACTERISTICS

-2-

The Landsat system was developed by the National Aeronautics and Space Administration (NASA) to help meet the increasing demand for man to manage the earth's limited natural resources. Data gathered by the Landsat has been applied to studies in the fields of geology, cartography, geography, land management, forestry, hydrology, and many others.

This series of satellites began with the launch of Earth Resources Technology Satellite 1 (ERTS) in July 1972. This experimental satellite proved the applicability of monitoring the earth's surface from space, and led to the launch of ERTS 2 in January 1975. It was after the successful launch of ERTS 2 that the new name Land Satellite (Landsat) was adopted. The new name distinguishes these satellites from the Seasat series of earth observation satellites.

Landsat 1 was turned off in January 1978. Landsat 2 continues to operate and Landsat 3 was launched in March of 1978. Plans are currently being developed for the fourth Landsat with a scheduled 1981 launch. Imagery used in this study was obtained by Landsat 1 or Landsat 2.

Landsat satellites arc launched into sun-synchronous near-polar orbits at an altitude of approximately 900 km (540 mi) (table 1). This type of orbit ensures repeatable sun-illumination conditions for any particular date from year to year.

The satellites cross the equator every 103 minutes thus completing 14 orbits in 24 hours. Therefore, the next westward track of data for any orbit is acquired at the same sun time the following day (figure 1). The earth rotates 2,760 km (1,650 mi) under the satellite at the equator during each orbit. The coverage width of each orbit pass is 185 km (115 mi) and the distance between adjacent orbits at the equator is 159 km (95 mi). Complete earth coverage is, therefore, completed by each satellite every 18 days. Landsat 2 was launched so that its orbit follows Landsat 1 by 9 days. Landsat 2 and 3 also provide 9-day coverage.

The instrumentation of Landsats 1 and 2 consists of two imaging systems, the multispectral scanner (MSS) and the return beam vidicon (RBV). Also on board are the data collection system (DCS) receiver and transmitter, and two wide band video tape recorders (figure 2). Only data from the MSS system was used in this study and need be considered.

The MSS is a line-scanning radiometer which collects data by creating images of the earth's surface in four spectral bands simultaneously. Radiation coming from the surface of the earth and its atmosphere is recorded as an analog signal which is converted to values of from 0-63. The numbers represent brightness values (BV), the amount of electromagnetienergy reflected from an area on the earth's surface in one wave length band.

The MSS scans the earth's surface from west to east (figure 3). Twenty-four detectors are used to record six lines of data (figure 4) in each of the four wave length bands (table 2).

> ORIGINAL PAGE IS OF POOR QUALITY

Table 1: Characteristics of the Landsat orbit

Orbital Parameter	Actual O	rbit
Semi-major axis	7285.82	len
Inclination	99.114	deg
Period	103.267	min
Eccentricity	.000	6
Time of equatorial crossing	9:42	a.m.
Coverage cycle	18	days
Duration of cycle	251	revs
Distance between adjacent tracks at the equator	159.38	km
Distance between successive tracks at the equator	2,760	km
Altitude	880 - 940	km

ig r 1). stor

ģ.

shy,

l Le

sat

tly

it vrage,	Table	2:	Spe sca	ectral wave lengths (bands) of	Landsat multispectral
		Band	4	Visible green		0.5 - 0.6µт
ind		Band	5	Visible red		0.6 - 0.71m
³ d.	7. ⁹ - 1.9	Band	6	Invisible reflected IR		0.7 - 0.8µm
eating		Band	7	Invisible reflected IR		0.8 - 1.1µm
ó3. menetic						

agne agth

. 1) in

Figure 1: Landsat orbital tracks for one day of coverage. From NASA Landsat Data Users Handbook.

ORIGINAL PAGE IS OF POOR QUALITY

#**

Figure 2: Landsat configuration. From NASA Landsat Data Users Handbook.

Figure 3: Scanning arrangement of MSS. From NASA Landsat Data Users Handbook.

1

6

34

Γ.

During a scan, the signal is sampled every 9.95 microseconds. For each band, approximately 3,300 samples are taken along a 185 km line (figure 4). Thus, the instantaneous field of view (1FOV) of 79 m by 79 m moves about 56 m on the ground between each sample. The individual radiation measurements must be arranged on an image in a manner that preserves spatial relationships. Thus, the measurements are assigned dimensions of 56 m by 79 m so that geometric distortions are not introduced. The 56 m by 79 m area is called a Landsat picture element or pixel.

Landsat MSS imagery is placed in the public domain and is available as either photographic products or computer compatible magnetic tape.

For the user to locate the area of his interest, the continuous image of the MSS has been divided along the orbit path (north to south) into sections equal to the east-west width of the MSS scan, 185 km (115 mi). This division is always made as near to the same location as possible, thus creating nominal scenes of Landsat data. These scenes are assigned a unique identifying number corresponding to the orbit path and the east-to-west row of scenes (figure 5).

Photographic products available include black and white prints of individual Landsat bands. These products cover one nominal scene of imagery 185 km by 185 km and are available in a variety of scales. Also available are false color infrared composites of selected scenes. These products utilize band 4, 5, and 7 to create photographically the false color image.

Landsat computer compatible tapes (CCT) are available in one-tape, 1,600 bit-per-inch (bpi) or in two-tape 800 bpi format.

DESCRIPTION OF THE GREATER TENNESSEE VALLEY REGION STUDY AREA

This study focuses on the greater Tennessee Valley region of the southeastern United States. The drainage basin of the Tennessee River encompasses a land-locked area of about 106,000 sq. km (40,910 sq. mi) in the southeastern United States, including parts of Tennessee, Alabama, North Carolina, Virginia, Georgia, Kentucky, and Mississippi.

The Tennessee River system has almost 61,200 km (38,000 mi) of streams and rivers. Lakes and reservoirs have over 2,600 sq. km (1,015 sq. mi) of surface water and more than 17,700 km (11,000 mi) of shoreline. The watershed is characterized by rugged mountains and green forests in the eastern portion of the Valley and rolling hills, open fields, and woodlands in the west. From Mount Mitchell, North Carolina, in the east, to Paducah, Kentucky, in the west, the topography ranges from 2,037 m (6,684 ft) to 90 m (300 ft) above sea level.

The Tennessee River Valley, one of the wettest regions of the United States, receives about 132 cm (52 in) of rainfall a year. March is usually the wettest month, and September or October, the driest. The climate is mild and humid with an average mean air temperature of about 15°C (59°F) and an average monthly humidity of 66 to 84 percent.

About 59 percent of the Tennessee River basin is forested; about 38 percent is open land and pasture; and 2 percent is covered by water. Approximately 4 million people live in the Tennessee River watershed. Over 85 percent of this population resides in towns and cities or in the nonfarm rural areas surrounding population centers; fewer than 15 percent now live on farms. About 40 percent of the population lives in six population centers: Asheville, North Carolina; Bristol-Johnson City-Kingston, Tennessee; Knoxville-Oak Ridge, Tennessee; Chattanooga, Tennessee; Huntsville-Decatur, Alabama; and Florence-Sheffield-Tuscumbia, Alabama.

The reservoirs examined in this study are located in parts of Tennessee, Alabama, Georgia, Kentucky, and North Carolina (figure 6). Superimposed on this figure of the greater Tennessee Valley region are the approximate ground area coverages of Landsat scenes corresponding to Path 20, Row 35 & 36 (figure 5) from which information relating to reservoir trophic status was extracted. This region was selected because of the many reservoirs and the availability of ground truth water quality data and Landsat imagery.

Ground truth data for the reservoirs incorporated in this study were collected by the U.S. Environmental Protection Agency (EPA) during their National Eutrophication Survey (NES) of 1973. The study reservoirs are listed in table 3 with information of the morphometry and hydrology of selected reservoirs. NES-sampled reservoirs are the first 35 listed; the last 14 listed reservoirs were outside the scope of the NES, but are included because they are of interest in using Landsat to assess their trophic state.

Table 3

MORPHOMETRY AND HYDROLOGY OF 35 RESERVOIRS IN THE GREATER TENNESSEE VALLEY REGION SAMPLED DURING THE NATIONAL EUTROPHICATION SURVEY OF 1973

			Mean	Max.		Retention
Reservoir	Identification	Area	Depth	Depth	Volume	Time
Name	Number	(im ²)	(m)	(m)	(m ³) × 10 ⁶	(days)
Allatoona	GA 1	87	7-6	45.1	451	103
Barklev	TN 2	64	4.6	21.0	296	e
Barren	KY 3	82	12.3	>18.6	1005	342
Blue Ridge	GA 4	13	18.4	>43.0	247	176
Boone	TN 5	18	13.3	39.6	239	1 5
Burton	GA 6	11	11.9	>30.05	134	161
Chatuge	GA 7	29	10.6	36.9	307	269
Cheatham	TN 8	30	4.3	13.1	130	7
Cherokee	6 NL	123	14.9	49.7	1001	178
Chickznauga	TN 10	143	5.4	20.0	912	
Cumberland	KY 11	203	24.2	>56.7	4928	226
Dale Hollow	KY 12	109	14.4	>36.0	1569	438
Douglas	EI NI	123	14.1	38.7	1819	108
Fontana	NC 14	43	41.3	134.1	1782	179
Fort Loudoun	TN 15	29	7.6	25.3	485	13
Great Falls	11 16	12	5.1	21.9	63	8
Guntersville	AL 17	275	4.6	20.8	1256	12
Hivassee	NC 18	25	21.3	>67,4	541	116
Junaluska	NC 15	81	5.6	>7.0	4-5	13
Kentucky	KY 20	679	5.2	26.9	7560	22
Nickajack	TN 21	42	7.1	39.3	311	m
Kottley	GA 22	17	13.1	>36.6	227	231
Old Hickory	TN 23	16	5.6	17.6	510	11
Percy Priest	TN 24	57	8.5	30.5	488	139
Pickvick	AL 25	174	6.5	26.5	1140	*0
Reelfoot	TN 26	36	1.4	4.9	20	•
Santeetlah	NC 27	12	16.8	65.0	195	161
Sidney Lanier	GA 28	167	19.5	54.9	3149	584
South Holston	TN 29	31	26.4	74.4	942	388

11

-11-

Table 3

1

7

The state of the s

į.

MORPHOMETRY AND HYDROLOGY OF 35 RESERVOIRS IN THE GREATER TENNESSEE VALLEY REGION SAMPLED DURING THE NATIONAL EUTROPHICATION SURVEY OF 1973 (Continued)

Reservoir Name	Identification Number	Area (km ²)	Mean Depth (m)	Max. Depth (m)	Volume (m ³) x 10 ⁶	Retention Time ^a (days)
Timoc Ford	TN 30	67	15.2	43.6	750	300
Waterville	NC 31	1.4	22.7	54.0	31	15
Watts Bar	TN 32	158	5.7	32.0	1449	18
Weiss	TN 33	122	2.8	15.2	342	16
Wilson	AL 34	63	12.5	34.3	783	9
Woods	TN 35	16	5.1	•	92	82
				ş		
Carters						
Chilhowee	2					1
Hartwell	e					336
Laurel	4					
Melton Hill	5	6	6.4	21.7	148	12
Nantahala	9	0.6	26.4	>39.0	171	
Nolichucky	2	0.3	а. С.	19.0	ø	75
Norris	8	14	18.2	>30.0	2525	
Parksville	6	0.8	13.9		107	30
Rabun	10	-13 -				
Thorpe		0.6	14.8	>22.0	87	
Toxaway	12 N					
Tuckasegee	13					
Tugaloo	14					

^aRatio of reservoir volume to average discharge

-12-

12

GROUND TRUTH WATER QUALITY DATA COLLECTION

All the 35 NES reservoirs were sampled three times (spring, summer, and fall) during the 1973 calendar year by pontoon-equipped helicopterborne sampling teams. The helicopters were equipped with in situ sensors for the measurement of conductivity, temperature, optical transmissivity, dissolved oxygen, pH, and water depth. Samples for algal identification, chlorophyll <u>a</u>, and nutrients were collected using a submersible pump. Additional equipment included an echo sounder, 30 cm Secchi disc, and water sampling equipment. Specific details of sample collection and methods of laboratory analyses are found in National Eutrophication Survey Methods (1975).

Most of the reservoirs surveyed were chosen on the basis of actual or potential eutrophication problems, with the result that this investigation does not universally represent the normal distribution of reservoirs in the Tennessee Valley, with respect to trophic state, and is biased or weighted toward reservoirs that are often referred to as "eutrophic." In general only reservoirs of one km² or larger and mean hydraulic retention times of at least two weeks were considered; however, these selection criteria were waived for reservoirs of particular interest. Sampling sites in each reservoir were selected primarily to attempt to define the character of the reservoir as a whole rather than specific areas or embayments of the reservoirs and chosen to reflect the deepest portion of each major basin in a reservoir. The number of sampling sites varied for different reservoirs, ranging from one (Junaluska Reservoir) to seventeen (Kentucky Reservoir).

Data More made available through the Environmental Protection Agency's water quality data storage and retrieval system (STORET).

13

-13-

EUTROPHICATION AND TROPHIC STATE INDICATORS

Vollenweider (1968) has defined eutrophication of water bodies as ". . .their enrichment in nutrients and the ensuing progressive deterioration of their quality, especially lakes, due to the luxuriant growth of plants with its repercussions on the overall metabolism of the waters affected. . ."

Most lakes and reservoirs originate as water bodies possessing relatively low concentrations of nutrients and generally low levels of productivity. As the water body ages, inflows carry sediment which decreases a water body's depth, and nutrients, which stimulate productivity and further increase the sedimentation rate. Floral and faunal changes occur. Algal blooms become more common, rooted aquatic species increase, and desirable game fish may be replaced by rough fish.

Naturally, this eutrophication process is very slow with the normal life span of a lake being on the order of several hundred years. However, man's practices relating to the disposition of municipal sewage, industrial wastes, and land use cause large nutrient loads on many water bodies. This results in a rapid aging of the lakes and reservoirs and makes the water bodies less attractive to users and, more importantly, shortening the life of the lake or reservoir.

Many different physical, biological, and chemical characteristics are needed to adequately describe a water body's trophic state. There are many indicators of trophic state, each with its merits and shortcomings and many opinions regarding which indicator(s) should be used in classifying lakes and reservoirs. Table 4 lists some of these common indicators or indices. These many indicators of trophic state reflect the multidimensional problem of classifying water bodies and defining its trophic state condition.

The historical aspects and sematics associated with the words "eutrophication," "oligotrophic," "mesotrophic," and "eutrophic" are found in Weber (1907), Naumann (1919, 1931), Thienemann (1918), Rodhe (1969), Hutchinson (1967, 1973), Beeton and Edmondson (1972) and Edmondso (1974).

.

adson

.

non t

41

h

1

ıł

er

Table 4

į

Trophic Indicators Used to Assess Eutrophication^a

년 (-) (-)	Chemical Chlorophyll a (+) Conductivity (+)	Biological <u>Algal Blocm frequency</u> (+) Algal species diversity (-)
	Epilimnetic oxygen supersaturation (+) Hypolimnetic oxygen	bottom fauna (+) Bottom fauna diversity (-) Fish (+)
	Nutrient concentrations (+)	Littoral vegetation (+) Primary production (+)
	Pearsall cation ratio (-)	Photosynthesis (+)
	Sediment type	

changes (1.e., species changes occur as well as quantitative (biomass) changes as eutrophication proceeds). Adapted from Brezonik (1969) Boland (1976), Pearsall (1932), and Wezernak and Palcyn ^aA (+) after an indicator signifies the value increases with eutrophication; a (-) signifies the value decreases with eutrophication. The biological indicators all have associated qualitative Remotely sensed individors are underlined. (1972).

WATER QUALITY DATA ANALYSIS

From the very beginning of this study it was apparent that there was a need to provide a more realistic assignment of a water body's trophic condition than the nebulous and overlapping categorizations of oligotrophic, mesotrophic, eutrophic, or hypereutrophic. In a large group of lakes, trophic condition is a continuum with no sharp classes as suggested by these classical groupings.

A relative, numerical trophic state index, based on ground truth survey data was needed to better define trophic condition (i.e., quantitative rather than qualitative).

Description of a lake or reservoir's trophic state requires consideration of several difficult physical, biological, and chemical characteristics, and as such trophic state cannot be directly measured in the field.

Because of the very nature of the multidimensional concept of trophic state, trophic classification lends itself well to two multivariate statistical techniques, cluster analysis and principal component analysis. Brezonik and Shannon (1971) were among the first to apply multivariate techniques in their classification of 55 lakes in Florida.

Thirty-five reservoirs, sampled by the NES in 1973 in the greater Tennessee Valley region, were selected for water quality data analysis. A careful examination of the water quality characteristics measured by the NES and a review of pertinent literature (Boland, 1976; Brezonik and Shannon, 1971; Shannon and Brezonik 1972a, 1972b; Carlson, 1977; Hooper, 1969; Lueschow, 1970; EPA, 1974; and Rast and Lee, 1978) resulted in the selection of six indicators of trophic state: conductivity, µmhos/cm; chlorophyll a, µg/l; total phosphorous, mg/l, total organic nitrogen, mg/1; algal assay yield, dry-weight in mg/1; and Secchi disc transparency, inches. So that all indicators would contribute to the trophic state in a positive sense (i.e., increasing value of indicator being associated with increasing eutrophication) inverse values for Secchi disc depth were used in the data analyses and in development of the trophic state indices for each reservoir. Annual mean values were used in the analyses. A lack of normality in the data necessitated a natural log transformation of the mean values prior to the data analyses. The annual mean values for the six trophic state indicators for each of the 35 reservoirs are given in table 5 with descriptive statistics. Table 6 is a correlation matrix of these six trophic indicators in which the coefficients were determined using natural log transformed data for the 35 NES sampled reservoirs.

Cluster Analysis

Cluster analysis was used to find groupings of reservoirs with similar trophic states, based on the six indicators given in table 5. This study employed the NT-SYS program for complete linkage clustering

ind ·r, he * ency, in d

÷. on

s e on

١

15

f ted

1-

nt

*

ій. .

aller tempter better ŝ \$ Valley Trepois Judicated Jois Poe The Batlenal Lotrophicati The Batlenal Lotrophication were

Active Matter in the factor Carbon in the factor </th <th>Masses Masses Masses Masses Masses Masses Mass</th> <th></th> <th>0.251 0.252 0.255 0.252 0.255</th> <th>6.125 6.1326 6.1326 6.1326 0.0059 0.0059 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012</th> <th></th> <th>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</th>	Masses Masses Masses Mass		0.251 0.252 0.255 0.252 0.255	6.125 6.1326 6.1326 6.1326 0.0059 0.0059 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Interest (A) 1 (A) 1 <th(a) 1<="" th=""> (A) 1 (A) 1 <</th(a)>	llatcous GA 1 56.8 rKily Transmission GA 1 56.8 internation GA 2 55.5 internation GA 5 55.5 internation GA 5 15.5 internation GA 5 15.5 internation GA 5 15.5 internation GA 5 15.5 internation GA 6 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.370 0.263 0.255 0.253 0.255	6.026 6.136 6.136 0.012 0.012 0.012 0.026 0.026 0.026 0.027 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021	ッパー・ シング・ シンク・オンゴンス・	0.15 2,227 2,227 2,28 2,28 2,28 2,28 2,28 2,
All State	riactona internet intern	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.263 0.258 0.259 0.259 0.251 0.255	6.136 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.011 0.011 0.011	5.8.5.5.8.5.5.5.5. 7.0.1.4.7.1.5.6.6.4 7.0.1.4.7.1.5.6.6.4	
Matrix No. Open to the second	lee kidge G. k 7 3 9,6 1051 1051 1051 1051 1051 1051 1051 105	28 277758855737758893939	0,252 0,250 1,252 1,252 1,252 1,252 1,552	0.022 0.012 0.015 0.015 0.015 0.015 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012		2 8 9 9 9 9 9 7 7 7 9 9 9 9 9 9 7 7 9 9 9 9
Me Nick G. (*) US.1 16 0.200 0.002 U.1 Market T. (*) 13.1 17.2 17.1 0.220 0.002 11.1 Market T. (*) 13.1 17.2 17.1 0.220 0.002 11.1 Market T. (*) 17.2 17.1 0.210 0.003 11.1 Market T. (*) 17.2 17.1 0.210 0.003 11.1 Market T. (*) 17.2 17.1 0.211 0.013 11.1 Market	New Nicke GA 4 105.1 Mer Nicke GA 7 57.5 Martine GA 7 57.2 Martine GA 7 57.2 Martine GA 7 57.2 Martine GA 7 57.2 Martine Martine 57.4 Martine Martine 57.4 Martine Martine 57.3 Martine Martine 57.3 Martine Martine 57.3 Martine Martine 57.3 Martest Martest Ma	87722588559725888559 252588553253253253	02.0 222.0 222.0 222.0 210.0 20.0 2	0.012 0.005 0.005 0.175 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	ᆈᄺᅺᆹᄵᇔᅎᅸᅭᄠᇿᇾᇉ ᆆᆦᄼᆑᅿᄸᅿᇔᇾᇂᆀ	9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90
Mark Tri No Outside No Outside No	 Martine IX 5 Martine IX 10 Martine IX 5 Martine I	7175888555875888879 717588855888879	0,22,0 200,0 20,0 200,000,0	0.035 0.036 0.145 0.145 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9-10 9-10 9-10 9-10 9-10 9-10 9-10 9-10
mercan G. 6 136.1 11 0.220 0.006 23 maxima TA 7 137.2 11 0.21 0.006 23 maxima TA 7 137.2 11 0.23 0.006 23 maxima TA 7 137.2 13 0.23 0.006 23 maxima TA 1 0.23 0.03 0.036 0.036 0.036 maxima TA 1 0.03 0.03 0.036 0.036 0.036 maxima TA 1 0.01 0.01 0.03 0.036 0.036 maxima TA 1 0.02 11 0.03 0.036 0.036 maxima TA 1 0.02 11 0.03 0.036 0.036 maxima TA 1 0.02 0.03 0.036 0.036 0.036 maxima TA 1 0.02 0.03 0.036 0.036 0.036 maxima TA 1 0.03 0.03 0	urron GA 6 115-1 brucke FN 6 7 117-2 brokee FN 6 7 117-2 brokee FN 10 56-2 brokee FN 10 56-2 brokee FN 10 56-2 mailar FN 11 100-0 mailar FN 11 100-0 mailar FN 12 10-0 mailar FN 13 55-6 FN 13 55-6 Maler FN 13 55-6 for for 13 55-6 for for 13 55-6 for 13 55-6 mailar FN 12 10-0 mailar FN 12 10-0 for 12 10-0 mailar FN 12 10-0 for 12 10-0 mailar FN 12 10-0 for 13 10-0 f	1111128851111812889129139	0.230 221 2.230 2.25 2.23 2.25 2.25 2.25 2.25 2.25 2.25	0.005 0.155 0.155 0.155 0.155 0.012 0.012 0.012 0.012 0.012 0.012	ក្នុងស្ពឺម្នាប់ក្នុ ក្រុកក្នុងស្តីតំ	9 9 8 9 9 8 8 9 9 8 8 9
marge 0.7 111.2 2 0.233 0.005 0.23 service 73 31.2 31.3 3	<pre>hauge GA 7 117.2 having GA 7 117.2 having TX 8 26.2 hereican TX 9 35.2 covellard TX 11 9 35.2 covellard TX 11 9 35.6 maglar TX 13 37.6 maglar TX 13 37.2 err Londoun TX 13 37.6 reat Falls AT 3 33.6 reat Falls AL 3 33.6 reat Falls AL 3 35.6 malusia NC 19 35.0 error Trist AL 3 35.6 malusia AL 3 35.6 reat Falls AL 3 35.6 reat Falls AL 3 35.6 reat Falls AL 3 35.6 reat Falls AL 3 35.6 reat Control TX 23 35.0 malusia AL 3 35.0 error Trist AL 3 35.0 malusia AL 3 35.0 reat Control TX 23 35.0 reat Control TX 24 35.0 reat Control TX 25.0 reat Control TX 25.0</pre>	122885123258895889335	0.22 2.25 2.25 2.25 2.25 2.25 2.25 2.25	0.015 0.125 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.031 0.031	ᅌᇏᅜᆞᇞᆹᆹᇪᇉ ᆈᇧᅝᆑᇔᄻᄻᆀ	e.59 2,26 26
meaning Tri 1 3.6.2 10.7 0.251 0.153 12.7 reconstruct Tri 1 3.7.2 113 0.211 0.013 11.1 reconstruct Tri 1 3.7.2 113 0.211 0.013 11.1 reconstruct Tri 1 10.0 5.5 113 0.211 0.033 11.1 reconstruct Tri 1 10.0 5.5 113 0.211 0.033 11.1 reconstruct Tri 1 10.0 5.5 113 0.211 0.033 11.4 reconstruct Tri 1 10.7.4 210 0.213 0.033 11.4 reconstruct Tri 1 10.7.4 210 0.213 0.033 11.4 reconstruct Tri 1 10.7.4 210 0.213 0.033 11.4 reconstruct Tri 1 11.1 11.1 11.1 0.033 11.4 reconstruct Tri 1 11.1 11.1 11.1 0.033	<pre>kating kerokee herokee reveluga TN 10 5.2 herokanga TN 10 5.5 herokan at Ellow TN 11 65.6 at Ellow TN 11 10.0 backer wer badom TN 13 10.0 at 10.0 at 13.5 herokan TN 15 10.0 herokan TN 15 35.6 herokan TN 15 35.6 herokan TN 15 35.6 herokan TN 18 35.0 herokan TN 18 35.0 herokan TN 20 35.0 heroka</pre>	173 285 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	0, 221 0, 212 0, 212 0, 225 0, 225 0, 225 0, 255 0,	0.175 0.022 0.022 0.022 0.022 0.022 0.022 0.025 0.025 0.021 0.021	ตรี่แยนงเ หนึ่นสังจัง	2.20
Receive TI 9 9.1.1 256 0.2156 0.005 11.2 Location TT 11 17.0 17.1 17.0 0.211 0.003 11.1 Location TT 11 17.0 0.211 0.012 0.012 11.1 Location TT 11 17.1 0.211 0.012 0.013 11.1 Location TT 11 17.1 0.211 0.013 0.013 11.1 Location TT 11 17.1 0.211 0.013 0.013 11.1 Location TT 11 17.1 0.211 0.213 0.013 11.1 Location TT 11 17.1 0.213 0.213 0.013 11.1 Location TT 11 17.1 0.213 0.213 0.013 11.1 Location TT 11 17.3 0.213 0.213 0.013 11.1 Location TT 11 17.3 0.213 0.213 0.213 11.1 Location	Brokee TX 9 51.1 Brokee TX 9 5.2 Brokee TX 10 9.5.2 Brokee TX 11 6.7.6 Brokee TX 12 170.0 Brokee TX 13 9.5.2 Brokee TX 13 170.0 Brokee TX 13 170.0 Brokee TX 13 17.2 Brokee TX 14 10.7.4 Brokee TX 15 17.2 Brokee TX 15 17.2 Brokee TX 15 17.4 Brokee TX 16 35.0 Brokee TX 20 35.0 Brokee TX 20 35.0 Brokee TX 20 35.0 Brokee TX 22 36.2 Brokee TX 22 36.2 Brokee <td< td=""><td>22 23 23 23 24 25 29 29 29 29 29 29 29 29 29 29 29 29 29</td><td>0,455 0,2312 0,2312 1,252 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,25</td><td>0.055 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012</td><td>1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2.20</td></td<>	22 23 23 23 24 25 29 29 29 29 29 29 29 29 29 29 29 29 29	0,455 0,2312 0,2312 1,252 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,235 0,25	0.055 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.20
Michanya N° 10 S.2 US O.211 O.022 U.022 U.022 <thu.02< th=""> <thu.02< td=""><td>Inclusting TN 10 36.2 als Exiles NY 11 6.46 als Exiles NY 11 10.0 als Exiles NY 12 10.0 als Exiles NY 13 10.1 als Exiles NY 13 10.1 als Exiles NY 13 10.1 ett Loadom NY 15 35.6 ett Loadom NY 15 36.0 ett Loadom NY 15 36.0 ettuck NY 20 38.9 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.1 ettuck NY 20 36.2 ettuck NY 20 36.1</td><td>22 23 23 23 23 23 24 25 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25</td><td>0,2212 0,2212 0,2212 122.0 122.0 125.0 0,215 0,2</td><td>0.032 0.020 0.032 0.032 0.032 0.032 0.032 0.032 0.032</td><td></td><td></td></thu.02<></thu.02<>	Inclusting TN 10 36.2 als Exiles NY 11 6.46 als Exiles NY 11 10.0 als Exiles NY 12 10.0 als Exiles NY 13 10.1 als Exiles NY 13 10.1 als Exiles NY 13 10.1 ett Loadom NY 15 35.6 ett Loadom NY 15 36.0 ett Loadom NY 15 36.0 ettuck NY 20 38.9 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.0 ettuck NY 20 36.1 ettuck NY 20 36.2 ettuck NY 20 36.1	22 23 23 23 23 23 24 25 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0,2212 0,2212 0,2212 122.0 122.0 125.0 0,215 0,2	0.032 0.020 0.032 0.032 0.032 0.032 0.032 0.032 0.032		
Constraind No.11 6.4 111 0.211 0.000 14 outs No.11 17.2 17.2 17 0.012 14 outs No.11 17.2 17 17 0.012 14 outs No.11 17 17 17 0.012 14 outs No.11 17 17 17 0.012 14 outs No.11 17 17 0.012 0.012 14 outs No.11 17 16 0.13 0.012 14 outs No.11 17 16 0.13 0.13 14 outs No.11 17 16 17 0.012 14 text No.11 17 16 16 0.013 14 text No.11 17 16 0.013 0.013 14 text No.11 16 0.224 0.013 0.013 14	Constraind Nr 11 67.6 alse Excloue Nr 12 120.0 alse Excloue Nr 12 100.0 art Loadoun Nr 13 57.2 art Loadoun Nr 13 57.2 art Loadoun Nr 13 57.2 art Loadoun Nr 55 55.6 artuckv Nr 20 35.0 cellock Nr 20 35.0 artuckv Nr 20 35.0 artuckv Nr 20 35.0 artuckv Nr 20 36.0 artuckv Nr 20 36.0 artuckv Nr 20 36.0 artuckv Nr 20 36.	22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	212.0 222.0 222.0 252.0	0.020 0.012 0.012 0.025 0.025 0.025 0.021	19 19 19 19 19 19 19 19 19 19 19 19	0.45
Le Rellou TT1 100.0 171 0.221 0.012 14 act lactor TT1 10.0 171 10.1 10.1 14 act lactor TT1 10.1 10.1 10.1 14 14 act lactor TT1 10.1 10.1 10.1 10.1 14 act lactor TT1 10.1 10.1 10.1 10.1 14 act lactor TT1 10.1 10.1 10.1 10.1 14 act lactor TT1 10.1 10.1 10.1 14 14 act lactor TT1 10.1 10.1 10.1 14 14 istate 10.1 10.1 10.1 14 14 14 istate 10.1 10.1 10.1 10.1 14 14 istate 10.1 10.1 10.1 14 10.1 14 14 14 istate 10.1 10.1 10	a.z. Eller N 12 170.0 a.zla N 13 57.2 a.zla N 13 57.2 ert Loudon N 15 55.6 ert Loudon N 15 55.6 unterswitte N 13 38.9 unterswitte N 12 38.0 unterswitte N 12 38.0 unterswitte N 12 36.0 unterswitte N 12 30.2 uttersv N 12 30.2 uttersv N 12 30.2 uttersv N 12 30.2 uttersv N 25 30.2 uttersv N 25 30.2 uttersv N 25	173 210 210 210 210 210 210 210 210 210 210	0.221 0.225 0.235 0.135 0.135 0.132 0.152	0.012 0.0200 0.0200 0.0200 0.0200000000	49 49 41 15 47 17	0.10
magin TX 11 57.2 118 0.224 0.036 1.4 mediat TX 11 57.2 184 0.234 0.033 0.032 1.4 mean TX 13 57.6 189 0.234 0.033 0.032 1.4 means TX 13 57.6 189 0.234 0.033 0.033 1.4 means TX 13 57.6 189 0.234 0.033 0.033 1.4 means TX 13 55.0 169 0.234 0.033 1.4 means TX 14 38.9 169 0.234 0.033 1.4 means TX 14 38.0 166 0.234 0.033 2.7 means TX 20 56.1 133 0.233 0.033 2.7 means TX 21 20.2 133 0.233 0.033 2.7 means TX 23 50.2 133 0.233 0.033 2.7 means<	uglation TX 13 S1.2 certain TX 13 S1.4 untersylle TX 13 S1.6 fixassee XC 18 33.0 mutcks XC 18 33.0 fixassee XC 19 35.0 entuck TX 20 36.0 entuck TX 20 36.0 fit B15.0 TX 20 36.0 etcy Friest TX 22 56.3 etcy Friest TX 25 57.3 etcy Friest TX 25 59.6	185 27 189 189 189 188 188 188 188 188 188 188	0.224 0.355 915-0 915-0 915-0 915-0	0.036 0.032 0.032 0.032 0.032 0.032	19 11 17 17	0,16
Terran NC12 107.4 27 0251 0022 2.45 ert Loadonn TX 15 55.4 110 0335 0023 <t< td=""><td>ertana NC 14 107.4 ert Loudom NC 14 107.4 rest Faits NC 14 35.6 matersythe NC 19 38.9 fuestie NC 19 38.0 entuciv NC 19 35.0 entuciv NC 19 36.0 entuciv NC 19 56.0 entuciv NC 21 40.2 etcor NC 22 55.0 entuciv NC 22 56.0 entuciv NC 25 56.0 entuciv</td><td>22 129 169 169 166 166</td><td>125-0 916-0 920-0 9200-0 920000000000</td><td>0.022 0.555 0.02 0.02 1.50 0.02</td><td>۰! ۳</td><td>2.29</td></t<>	ertana NC 14 107.4 ert Loudom NC 14 107.4 rest Faits NC 14 35.6 matersythe NC 19 38.9 fuestie NC 19 38.0 entuciv NC 19 35.0 entuciv NC 19 36.0 entuciv NC 19 56.0 entuciv NC 21 40.2 etcor NC 22 55.0 entuciv NC 22 56.0 entuciv NC 25 56.0 entuciv	22 129 169 169 166 166	125-0 916-0 920-0 9200-0 920000000000	0.022 0.555 0.02 0.02 1.50 0.02	۰! ۳	2.29
art London Trist Tris Trist Trist T	ert Loudon TN FS 54.6 rear Falts IN FS 55.6 Marcressille NN FS 55.6 Lancerseille NC 19 33.0 entucy NT 20 35.0 entucy TN 20 35.0 etceljeck TN 20 35.0 atteljeck TN 21 60.2 etcy Priest M 25 59.6 etcy Priest M 25 59.6 etcor TN 22 69.8	210 189 165 166 148	0.350 0.319 0.152 0.226	0.550 0.626 0.745 0.021	1 • • •	9.10
rest Faits TS 5 55.6 189 0.319 0.026 4.0 matersville XC 18 73.4 15.9 165 0.336 0.015 5.7 matersville XC 18 73.4 165 0.236 0.015 5.7 matersville XC 18 73.4 165 0.236 0.015 5.7 matuck XY 20 35.0 166 0.236 0.015 5.7 matuck XY 20 36.1 166 0.236 0.015 5.7 attack XY 20 20.2 5.1 23 0.236 0.035 7.7 attack XY 20 20.2 5.1 23 0.255 0.013 5.7 attack XY 21 20.2 22.1 20.3 0.255 0.013 5.4 attack XY 22 11.1 205 0.237 0.255 0.013 5.4 attack XY 23 10.15 17 0.255 0.203 0	reat Faits IN 55 55.6 mattersville NL 339.4 haustee NC 19 35.0 matucky NY 20 35.0 entucky NY 20 35.0 entucky TY 21 40.2 stealyck TY 22 56.3 id Hickory TX 22 56.3 id Hickory TX 22 56.3 it entick NI 25 59.6 entroice TX 26 59.6 entroice TX 26 59.6	189 169 168 148 148	0.316 6.152 6.152	0.026 0.745 0.021	5°5	7. 70
All 31.9 169 0.336 0.455 0.45	unterswith M. 2. 38.9 unterswith M. 2. 38.9 unterswith NC 19 35.0 untersk NY 20 35.0 Echaptick TN 21 60.2 Strely CA 22 50.2 ercy Priest M. 25 69.8 ercy Priest M. 25 69.8 ercy Priest M. 25 69.8	169 32 106 148	0.326 6.152 0	0.145		0-10
Masses NG 18 79.4 32 6.192 0.001 5.7 malukis NY 20 35.0 166 0.236 0.001 5.7 malukis NY 20 35.0 166 0.236 0.001 5.7 stutcky NY 20 35.0 166 0.236 0.001 5.7 stutcky NY 20 36.2 133 0.235 0.003 5.7 stutcky NY 21 30.2 133 0.235 0.003 5.7 stutcky NY 23 30.2 133 0.233 0.035 0.033 stutcky NY 25 22.1 13 0.233 0.035 0.035 stutcky NY 25 22.1 13 0.233 0.235 0.035 stutcky NY 25 22.1 13 0.233 0.025 0.035 stutck NY 25 13.1 13 0.233 0.235 0.035 stutck NY 3 32.2 13.3<	Interview 30.4 Interview 30.4 malusia 30.4 entucky 31.0 entucky 31.1 entucky 31.2	32 106 148	6.152	0.021	8.6	3.70
Matrix N: 19 35.0 106 0.299 0.005 3.1 stellyck NY 20 35.0 146 0.293 0.005 3.1 stellyck NY 20 35.0 146 0.293 0.005 3.1 stellyck NY 20 30.2 13.0 106 0.293 0.005 3.1 stellyck NY 20 30.2 13.0 106 0.251 0.013 0.025 2.1 stellyck NY 20 30.2 13.9 0.251 0.018 0.005 3.1 stery Na 20 13.1 205 1.1 205 0.253 0.005 3.5 stery Na 20 13.1 205 1.1 205 0.253 0.005 3.5 stery Na 20 101.8 13.1 205 0.255 0.013 3.5 stery Na 20 101.8 13.1 0.255 0.013 3.5 sterotic Na 30 101.8 <td>Manusca NC 19 35.0 entucky NY 20 35.0 entucky NY 20 35.0 entucky TN 21 60.2 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 22 56.2 erry Priest TN 25 59.6 erry Priest TN 25 59.6</td> <td>106</td> <td>000 0</td> <td></td> <td>2.2</td> <td>0.15</td>	Manusca NC 19 35.0 entucky NY 20 35.0 entucky NY 20 35.0 entucky TN 21 60.2 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 21 56.0 attablych TN 22 56.2 erry Priest TN 25 59.6 erry Priest TN 25 59.6	106	000 0		2.2	0.15
multicative NY 20 35.0 146 0.273 0.071 0.071 stelly YY 20 36.0 146 0.273 0.071 5.7 stelly YY 20 36.0 146 0.273 0.071 5.7 stelly YY 20 36.1 25.2 105 0.273 0.071 5.6 stelly YX 20 36.2 25.7 0.273 0.076 5.6 stelly YX 20 39.6 13.5 0.273 0.076 5.6 stelly YX 20 39.6 13.5 0.273 0.076 5.6 stelly YX 20 0.37 0.273 0.076 0.076 5.6 stelloot YX 20 0.13 17 0.223 0.076 5.6 stelloot YX 20 0.16 17 0.223 0.076 5.6 stelloot YX 20 0.13 17 0.223 0.018 7.7 stelloot YX 20 0	entucky NY 20 35.0 febajeck TK 21 60.2 attely GA 22 95.1 1d Hickory TK 23 30.2 iterates NI 25 99.6 fearce NI 25 99.6 erffoot TX 26 29.6	165	0.42	0.035	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3.50
Rebuilt TX 21 G.12 D.278 0.372 Z.2 attely CA 22 S.4.1 Z 3 0.180 0.032 Z 2 attely CA 22 S.4.1 Z 3 0.180 0.032 Z 2 attely CA 22 S.4.1 Z 3 0.180 0.036 E 6 eff Witcory TX 22 S.4 0.223 0.095 D.95 travicit M 25 22.1 205 0.457 0.253 0.056 E 6 travicit M 25 22.1 205 0.253 0.056 E 9 eff foot TA 0.156 0.253 0.056 E 9 eff foot TA 0.157 0.167 0.253 0.056 E 9 eff foot TA 0.157 0.253 0.056 E 9 E 9 eff foot TA 0.157 0.157 0.056 E 9 E 9 filesy tanter TA TA 0.156 TA	The second sec	164	0.255	0.074		6.50
Treely Co.180 C.0.180 C.0.18 C.0.19 C.0.18 C.0.19 C.0.18 C.0.18 C.0.18 C.0.118 C.1.19 C.0.111 C.0.111 C.0.111 C.0.111 C.0.113 C.1.19	attelytic GA 22 attelytic GA 22 erry Priest TX 23 90.2 erry Priest AI 25 59.6 erifoot TX 26 22.1		0.278	0.672	2.7	5.10
Mill Hickory TX Z1 30.2 133 0251 0.064 6.9 ercy Friest TX Z2 69.6 133 0251 0.064 6.9 ercy Friest TX Z2 69.6 133.6 0251 0.064 6.9 ercy Friest TX Z2 69.6 133.6 0.169 0257 0.064 6.9 error Friest TX Z2 69.6 133.6 0.233 0.0013 3.5 arteria XZ Z2 133.6 17 208 0257 0.0013 5.6 arterville TX Z3 101.6 3 0.233 0.013 5.6 firs Frad TX 20 101.8 137 0.255 0.013 5.6 firs Frad TX 20 101.8 127 0.255 0.013 5.6 firs Frad TX 20 101.8 127 0.255 0.013 5.6 firs Frad TX 20 0.255 0.213 0.213 2.14 2.4	id HEGory TN 23 erey Friest TN 24 69.8 Ecorics AL 25 69.6 Ecorics AL 25 29.6	2	0.180	0.018	6.6	0.10
Construct Tit 7: G.0.95 D.0.95 D.0.95 <thd.0.95< th=""> <thd.0.95< th=""> <thd.0.95<< td=""><td>ercy Priest IN 24 69.8 icaritz AL 25 69.6 eelfoot IN 26 22.3</td><td>601</td><td>162.0</td><td>0.054</td><td>6-3</td><td>3.80</td></thd.0.95<<></thd.0.95<></thd.0.95<>	ercy Priest IN 24 69.8 icaritz AL 25 69.6 eelfoot IN 26 22.3	601	162.0	0.054	6-3	3.80
Firstic MI 25 49.6 169 0.223 0.096 3.5 mervicia MI 25 49.6 169 0.223 0.096 3.5 mervicia MI 25 22.1 205 11.694 0.023 1.6 mervician MI 25 22.1 205 11.6 0.233 0.237 1.0 mervician MI 26 35.2 101.6 117 0.233 0.013 5.4 met Moleton MI 30 011.8 117 0.233 0.013 5.4 met Moleton MI 30 011.8 117 0.233 0.013 5.4 met Moleton MI 30 011.8 117 0.233 0.013 5.4 met Multe MI 31 57.3 176 0.233 0.163 5.4 met Multe MI 31 57.3 0.256 0.005 5.4 met Multe MI 31 7.7 0.163 5.4 7.4 met Multe MI 31 <t< td=""><td>rearies AL 25 49-6.</td><td>247</td><td>0.455</td><td>760-0</td><td>10-01</td><td>3.51</td></t<>	rearies AL 25 49-6.	247	0.455	760-0	10-01	3.51
effoot TX 25 1.654 0.257 0.10 accentah XX 27 113.6 17 205 0.257 0.013 accentah XX 27 113.6 17 205 0.257 0.013 5.4 accentah XX 27 103.6 35 0.253 0.013 5.4 account TX 29 101.6 35 0.253 0.013 5.4 account TX 29 101.8 137 0.555 0.013 5.4 accountle TX 29 101.8 137 0.555 0.013 5.4 accountle TX 29 117 0.255 0.0105 3.8 accountle TX 32 21.5 177 0.255 0.005 3.4 accountle TX 32 21.5 0.255 0.005 3.4 account TX 32 21.5 0.255 0.005 3.4 account TX 32 21.5 0.256 0.005 3.4	eelfoot TN 26 22.1	169	6.223	0.056	3.5	8°.60
Accellah XC 27 133.6 17 0.200 0.013 5.4 Mary Tanfer GA 28 100.6 3 0.252 0.025 5.4 Mary Tanfer GA 28 100.6 3 0.253 0.025 5.4 Mary Tanfer GA 28 100.6 3 0.253 0.025 5.4 Mary Tanfer GA 28 11.7 6.57 0.255 0.013 5.5 Mary Tanfer NX 30 11.1 6.57 0.255 0.013 5.5 Mary Tanfer NX 31 31.7 0.255 0.013 5.5 Mary Tanta NX 32 37.8 175 0.255 0.013 5.5 Mary Tanta NX 32 37.8 0.255 0.023 1.1 Mary Tanta NX 32 7.4 0.255 0.023 1.1 Mary Tanta NX 32 7.4 0.255 0.023 1.1 Mary Tanta NX 32 7.4 0.156 0.255 0.023 <td></td> <td>205</td> <td>1.694</td> <td>0.257</td> <td>81.0</td> <td>6</td>		205	1.694	0.257	81. 0	6
Mary Larler GA 28 103.6 35 0.252 0.025 5.5 auth Holaron TX 29 95.2 133 0.253 0.018 7.7 filey Larler GA 28 95.2 133 0.253 0.018 7.7 files Har TX 30 11.7 657 0.256 0.013 5.6 files Har TX 30 31.7 657 0.256 0.013 5.6 atts har TX 31 37.8 176 0.256 0.013 5.6 atts har TX 31 37.8 0.256 0.033 5.6 atts har TX 32 21.5 176 0.256 0.033 5.6 atts har TX 3 52.1 177 0.139 0.023 7.4 atts har TX 3 52.1 0.131 0.257 0.023 7.4 atts har TX 3 7.7 0.131 0.254 0.023 7.4 atts har TX 3 7.2 0.15	arcertah SC 27 133.6	13	0.200	0.013	ې د د	0,10
much Molaton TX 29 95.2 153 0.233 0.018 7.7 file Ford TX 30 101.8 117 0.537 0.233 0.013 7.7 file Ford TX 30 101.8 117 6.57 0.233 0.013 5.6 atts Mar TX 30 117 6.57 0.235 0.013 5.6 atts Mar TX 32 37.8 176 0.235 0.003 5.6 atts Mar TX 32 21.6 124 0.427 0.005 5.6 atts Mar TX 33 52.3 172 0.191 0.023 5.6 atts Mar TX 37 52.3 172 0.191 0.021 5.6 atts Mar TX 37 7.4 0.131 0.021 7.4 atts Mar TX 37 7.17 0.136 0.023 7.4 atts Mar TX 37 7.17 0.136 0.234 0.021 7.4 atts Mar TX 37 0.15	Mare 1 and a 26 101.6	35	0.252	0.026	5.4	1.30
Tert TN 30 101.8 137 0.232 0.645 6.7 atterville NC 31 31.7 657 0.565 0.106 3.6 atterville NC 31 31.7 176 0.235 0.106 3.6 atterville NC 31 31.7 176 0.235 0.003 5.6 atterville NC 31 31.7 176 0.235 0.003 5.6 atterville NL 33 21.6 172 0.427 0.003 5.6 atterville NL 33 52.3 172 0.477 0.023 7.4 atterville NL 34 52.3 172 0.191 0.021 7.4 atterville NL 34 52.6 0.136 0.023 7.4 atterville NL 35 1.47 0.136 0.257 0.100 atterville 1.47.9 0.136 0.136 0.053 2.100 atterville 55.5 1.47.9 0.126 0.053 <td>much Halarda TN 29 95.2</td> <td>153</td> <td>0.23</td> <td>0.013</td> <td>1.7</td> <td>0.10</td>	much Halarda TN 29 95.2	153	0.23	0.013	1.7	0.10
activitie NC 31 31.7 657 0.565 0.106 3.8 atts har TX 32 37.8 176 0.255 0.003 5.6 atts har TX 32 37.8 176 0.255 0.003 5.6 atts har TX 32 37.8 172 0.255 0.033 5.6 atts har TX 32 37.4 172 0.257 0.033 5.6 atts har TX 35 71.6 172 0.151 0.033 7.4 atts har TX 35 70.9 147 0.151 0.021 7.4 attriant TX 35 70.9 147 0.156 0.156 7.4 attriant 55.5 176.0 6.703 1.47.9 0.053 8.67 attriant 55.5 173.6 0.126 0.053 8.67 attriant 55.5 0.126 0.053 8.67 attriant 55.5 0.156 0.053 8.67	101 SO 101 8	127	0.232	0.013	6.7	0.10
atts har TN 32 37.8 176 0.256 0.033 5.6 4.2 4.2 0.6 0.033 5.6 4.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	SC 31 31.7	657	0.565	0.106	3.8	6.40
eis AI 31 21.6 124 0.427 0.095 11.1 filson AI 34 52.3 172 0.191 0.023 7.4 ands TN 35 70.9 177 0.191 0.023 7.4 ands TN 35 70.9 177 0.191 0.023 7.4 ands TN 35 70.9 177 0.131 0.023 7.4 antimus 170.0 657.0 1.694 0.257 0.021 7.5 antimus 51.6 167.0 1.695 0.256 0.033 2.70 antimus 65.3 147.9 0.256 0.033 2.50 0.030 1.255	TX 32 37.8	176	0.236	0.033	5.6	0.15
AL 34 52.3 172 0.151 0.043 7.4 ands TN 35 52.3 147 0.351 0.021 7.4 ands TN 35 70.9 147 0.351 0.021 7.4 anthras 170.0 657.0 1.694 0.257 01.00 2.70 anthras 21.6 16.0 0.120 0.003 2.70 0.003 2.70 anthras 51.6 16.0 0.120 0.003 2.70 0.003 2.70 anthras 65.5 147.9 0.126 0.003 2.70 0.254 0.005 2.45 andat2 Deviation 37.2 113.6 0.254 0.005 12.55 0.555	41.33 21.6	124	0.427	0.095	11.3	600
Adds TN 35 70.9 147 9.351 0.021 7.4 Animation 176.0 657.0 1.694 0.257 81.00 Animation 21.6 16.0 0.1201 0.003 2.70 Internation 55.5 147.9 0.1261 0.053 8.67 Animatic Deviation 37.2 113.6 0.254 0.050 12.55	AL 34 52.3	172	0.191	0.043	7.4	8.4
atimus [70.0 657.0 1.694 0.257 81.00 atimus 21.6 16.0 0.120 0.003 2.70 atimus 65.5 147.9 0.126 0.053 2.70 atimus 65.5 147.9 0.126 0.053 2.55 1.57 atimus 21.5 0.050 12.55	20.9 Z	147	0.351	0.621	7.4	0.10
aritats 170.0 657.0 1.694 0.257 81.00 Interna 21.6 16.0 0.120 0.008 2.70 Ean 65.5 147.9 0.326 0.053 8.67 Fandari Devlation 37.2 113.6 0.354 0.059 12.65						
Interva 21.6 16.0 0.12d 0.608 2.70 Ean 65.5 147.9 0.126 0.053 8.67 Ean 53.5 147.9 0.126 0.053 8.67 Ean 53.5 113.6 0.256 0.050 12.65	170.0	657.0	1.694	0.257	8.18	
Ean 65.5 147.9 0.126 0.053 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67	21.6	16.0	0.130	0.008	2.70	0.10
randart Deviation 37.2 113.6 0.254 0.050 12.65	65.5	5-251	0.326	0.053	8. 67	2.72
	37.2	113.6	0.254	0.050	12.45	2.92
56.2 133.3 U. (00 U. (0	26.2	155.5	0.260	0.036	6.45	1.75
1.0 2.2 4.650 2.217 5.24		2-6	6.650	716.2	5.24	0.66

ORIGINAL PAGE IS OF POOR QUALITY

Them values based on three carping periods (apring, summer, and fall). Traines based on composite spring samples.

17

-17-

* ng Table 6

Correlation Coefficient Matrix of Six Trophic State Indicators.

			li J	í.		
			Total 🐇			
	Inverse Secchi ^D	Conductivity	Organic <u>Nitrogen</u>	Total Phosphorus	Chlorophy11 a	Algel
Inverse Secchi	1.000	0.634	0.540	0.838	0.456	0.765
Conductivity		1.000	0.481	0.690	0.271	0_600
Total Organic Nitrogen			1.000	0.646	573 U	
Total Phosphorus				a *** : } }		0.433
- LTtrovela			ч 	1.000	0.613	0.849
					1.000	0.412
Algel Assay						1.000

^aThe coefficients were calculated using natural log transformations of the mean data for the 35 Kational Eutrophication Survey reservoirs sampled in 1973 in the greater Tennessee Valley Region.

^bThe inverse of the Secchi disc depth was used so that all values would increase as the trophic status

 e^{-i}

18

-18-

(Rohlf, Kishpaugh, and Kirk, 1971) using the Euclidian distance to examine the 35 reservoirs sampled during the 1973 NES for natural groupings. The method is also known as the furthest neighbor method. An excellent review of the method is given in Sneath and Sokal (1973).

The results of the cluster analysis are shown as a dendogram in figure 7. The abscissa is the Euclidian distance. On the ordinate axis, the authors have attempted to rank the reservoirs according to trophic state by using stem rotation. In general, the trophic status increases along the ordinate in a upward direction.

What we have attempted to illustrate with figure 7 is that, depending upon the criteria used to define "a cluster," there are certainly more than the three classic states (eutrophic, mesotrophic, and oligotrophic) of reservoir eutrophication and that as the number of reservoirs being considered increases a trophic "continuum" develops. There is some difficulty in reconciling the eight clusters (A, B, C, D, E, F, G, H) with the three classic trophic states. Using NES assessments as a guide: Cluster A may be considered as a very hypereutrophic lake; clusters B, C, and D may be considered as a mixture of hypereutrophic and eutrophic reservoirs; clusters E, F, and G may be considered as a mixture of eutrophic and mesotrophic reservoirs; and cluster H consists of reservoirs characterized as both mesotrophic and oligotrophic.

Principal Component Analysis

Principal component analysis is an ordination technique which in effect reduces the concept of trophic state from six indicators to a single index. In general terms, principal component analysis reduces the dimensions of a concept (eutrophication) by expressing the original observations (six trophic state indicators) in fewer terms (trophic state index). The first principal component (PC1) of a set of variables is the linear combination of the variables which explains the maximum variance in the original data. No absolute physical meaning can be placed on the trophic state index (PC1) values, but the values are felt to have relative meaning and are a quantitative expression of the trophic condition of the 35 reservoirs sampled by the 1973 NES in the greater Tennessee Valley region. The NT-SYS system was used to perform the principal component analysis, (Rohlf, Kishpaugh, and Kirk, 1971). Detailed descriptions of the theoretical and computational aspects of principal components are found in Hotelling (1933a, 1933b, 1936), Anderson (1958), and Morrison (1967).

The normalized eigenvalues and eigenvector numbers are given in table 7. The first component (eigenvector 1) accounts for about 67 percent of the variation in the data. Correlation coefficients between the principal components and the six natural log transformed trophic indicators (table 8) show that the first principal component (PC1) is highly correlated with each of the trophic indicators. From the results shown in tables 7 and 8 it was concluded that the first principal component is indeed indicative of each reservoir's relative position on a multivariate trophic scale.

INCREASING EUROPHICATION

Table 7

Normalized Eigenvalues and Eigenvectors^A

Eigenvector Number	Eigenvalue	Variance (%)	Cummulative Variance (%)
1	4.012	66.87	66.87
2	0.921	15.35	82.22
3	0.493	8.21	90.43
4	0.270	4.50	94.93
5	0.218	3.63	98.56
6	0.086	1.44	100.00

^aThe principal component analysis was performed using natural log transformations of mean data for six trophic state indicators (Inverse Secchi, chlorophyll a, algal assay, conductivity, total organic nitrogen, and total phosphorus) for the 35 reservoirs sampled during the 1973 NES in the greater Tennessee Valley region.

21

13

Table 8

Correlation Coefficients of Trophic State Indicators and Principal Components^a

	Principal Componant.							
	1	2	3	4	5	6		
Inverse Secchi	0.879	0.214	-0.141	-0.248	0.312	-0.061		
Conductivity	0.755	0.366	0.488	0.231	0.051	-0.040		
Total Organic Nitrogen	0.758	-0.472	0.313	Q. 277	-0.166	-0.022		
Total Phosphorus	0.957	0.075	-0.114	0.033	-0.037	0.251		
Chlorophyll <u>a</u>	0.682	-0.645	-0.161	0.275	0.117	-0.056		
Algal Ausay	0,845	0,310	-0.312	0.041	-0.274	-0.121		

^aCorrelation coefficients were calculated using the six principal component values and the natural log transformations of the mean values for the six trophic state indicators for each of the 35 NES reservoirs sampled in 1973 in the greater Tennessae Valley region.

[[A]]

The reservoir with the lowest PC1 value, Burton, is rated as having the lowest trophic state of those studied. Trophic state increases in the positive direction with Reelfoot exhibiting the highest trophic state of the 35 water bodies studied. As further evidence that the PC1 values have real meaning, normalized mean composite rank (NMR) indices were calculated and compared as shown in table 9. The NMR's were calculated by ranking each of the six indicators for each reservoir from 1

through 35 and then calculating the average rank for the six indicators at each reservoir. Finally, these averages were normalized. It is quite evident that the NMR and PC1 values results in essentially identical rankings for the 35 reservoirs. This ranking approach has been used in other similar studies (EPA, 1974; Lueschow, 1970; and Piwoni and Lee, 1975).

61

40

22

51

зő

 $\underline{21}$

In conclusion, the PC1's presented in table 9 represent an assessment of each reservoir's relative trophic state and were used as trophic state indices to evaluate Landsat-reservoir eutrophication relationships.

Table 9

Principal Component Value and Normalized Mean Rank Index for 35 Reservoirs Sampled During the National Eutrophication Survey of 1973 in the Greater Tennessee Valley Region

Reservoir	Identification	PC 1	NMR	Positio	
Name	Number	Value	Index	PC1/NMR	
Burton	GA 6	-1.441	-1.720	1/1	
Rino Ridoa	GA 4	-1.274	-1.679	2/2	
Santootlah	NC 27	-1.216	-1.516	3/3	
Charupa	65. 7	-1.051	-1.354	4/4	
Dala Nallau	KY 12	-0.970	-1.130	5/7	
Fontana	NC 14	-0.960	-1.231	6/6	
Notrolv	GA 22	-0.957	-1.242	7/5	
Niwassen	NC 18	-0.767	-0.967	8/9	
Cumberland	KY 11	-0.612	-1.058	9/8	
Sidney Lanier	GA 28	-0.524	-0.702	10/10	
South Holston	T'N 29	-0.503	-0.590	11/11	
Time Ford	TN 30	-0.368	-0.570	12/12	
Allatoona	GA 1	-0.266	-0.041	13/16	
Vonde	TN 35	-0.264	-0.315	14/14	
Croot Folle	TN 16	-0.264	-0.132	15/15	
Chiekamanaa	TN 10	-0.153	-0.397	16/13	
Untre Ray	דיא 3 ⁹	-0.036	-0.163	17/21	
	TN 13	0.075	0.051	18/17	
Wilcon	AL 34	0.187	0.092	19/18	
Diebuick	Δ1. 25	0.191	0.122	20/19	
Turnur	NO 19	0.258	0.153	21/20	
Makada	TN 21	0.201	0.214	22/22	
Bankan	KY 3	0.390	0.743	23/25	
Boone	TN 5	0.441	0.712	24/24	
Guntersville	AT. 17	0.478	0.641	25/23	
Fort Loudoun	TN 15	0,530	0.855	26/27	
Old Hickory	TN 23	0.581	0.753	27/26	
Kentucky	KY 20	0.612	0.967	28/28	
Percy Priest	TN 24	0.694	1.109	29/24	
Cherokee	TN 9	0.714	1.160	30/30	
Cheatham	TN 8	0.908	1.333	31/34	
Barkley	TN 2	0.929	1.252	32/32	
Weis	AL 33	1.004	1.201	33/31	
Waterville	NC 31	1.067	1,252	34/3	
Realfunt	TN 26	2.278	1.873	35/3	

24

LANDSAT DATA EXTRACTION

-25-

Imagery Selection and Manipulation

tion

MMR

11

÷2

3

14

17

16

15

19

18

/10

/11 /12

/16

/14

/15//13

/21

/17

/18

/19

./20

/22

:/25

124

·/23 ·/27

1/26

3/28

1/29

0/30

1/34

2/32

3/31

4/33 5/35 The extraction of Landsat data for each reservoir required the selection of appropriate dates of imagery, defining the reservoir location on each scene, and then computing the necessary statistics of the raw Landsat data for each reservoir. The computerized data processing portion of this work was performed at the University of Wisconsin, by the Environmental Monitoring and Data Acquisition Group.

Landsat scenes were selected to meet the following criteria: maximum number of reservoirs on the minimum number of scenes; minimum cloud cover; date close to time of sampling; and good quality imagery (figures 8-12). These criteria were difficult to meet and led to poor correlation between dates of Landsat coverage and NES water sampling as no acceptable scenes were found for 1973. On the majority of dates, cloud cover was excessive (greater than 10 percent). Even using scenes with up to 50 percent cloud cover did not provide adequate coverage in 1973. This problem is shared with others, but the Smokey Mountains are in fact deserving of their name.

With the launching of Landsat 2 and the resultant 9-day coverage pattern, adequate Landsat coverage has been received each year since 1975.

The search for Landsat imagery was performed at the EROS Browse File, operated by the TVA Mapping Services Branch, from 16mm microfilm. Computer compatible magnetic tape and black and white photographic products were obtained for the selected scenes. Four sets of tapes were obtained through the courtesy of Oak Ridge National Laboratory and one was obtained directly from the EROS Data Center in Sioux Falls, South Dakota. The scenes selected and used in this study are listed in table 10. The reservoirs which were examined in this study are listed in tables 11 and 12.

The first step in locating each reservoir on a Landsat scene was to construct a grid overlay which could be used to read the Landsat coordinates of any point on the scene. This grid overlay or "pixel counter" was drawn on mylar to fit each frame of Landsat data. It was then possible to find each reservoir on the photographic image and obtain the range of scan lines and elements that would cover that reservoir. This method of determining Landsat coordinates was accurate to approximately 50 pixels.

These Landsat coordinates were used to generate a line printer character plot for each reservoir (figure 13). These plots were for band 7 raw reflectance values. Values of 0-7 were left blank and were used to refine the polygon describing each reservoir, eliminate shadow effects, and to verify the reflectance level for that reservoir.

Figure 8 Reproduction of LANDSAT Multispectral Scanner data, Band 7 (0.8-1.1 micrometers) Frame 1084-15431 (15 October 1972)

Identified are classified lakes. Lakes underlined were sampled as part of National Eutrophication Study in 1973.

ORIGINAL PAGE IS OF POOR QUALLITY

26

Figure 9 Reproduction of LANDSAT Multispectral Scanner data, Band 7 (0.8-1.1 micrometers) Frame 1822-15315 (23 October 1974) Identified are classified lakes. Lakes underlined were sampled as part of National Eutrophication Study in 1973.

> ORIGINAL PAGE IS OF POOR QUALITY

Figure 10 Reproduction of LANDSAT Multispectral Scanner data, Band 7 (0.8-1.1 micrometers) Frame 1822-15322 (23 October 1974) Identified are classified lakes. Lakes underlined were sampled as part of National Eutrophication Study in 1973.

Figure 11 Reproduction of LANDSAT Multispectral Scanner data, Band 7 (0.8-1.1 micrometers) Frame 1948-15264 (26 February 1975) Identified are classified lakes. Lakes underlined were sampled as part of National Eutrophication Study in 1973.

29

Figure 12 Reproduction of LANDSAT Multispectral Scanner data, Band 7 (0.8-1.1 micrometers) Frame 2224-15303 (3 September 1975) Identified are classified lakes. Lakes underlined were sampled as part of National Eutrophication Study in 1973.

Table 10

LANDSAT MSS FRAMES

Frame Number	Dàte	Area	Number of Lakes	
1084-15431	15 October 1972	Northeastern Tennessee Western North Carolina	12 ^b	
1822-15315	23 October 1974	Northeastern Tennessee Western North Carolina	14 ^b	
1822-15322	23 October 1974	Southeastern Tennessee Western North Carolina North Georgia	15 ₁ 7	
1948-15264	26 February 1975	Northeastern Tennessee Western North Carolina	15 ^b	
2224=15303 ^a	3 September 1975	Northeastern Tennessee Western North Carolina	15 ^b	

ŗ

^aLANDSAT 2 ^b10 reservoirs are common to all four scenes. EPA data was collected on 6 of these reservoirs.

31

OY

Table 11

DATES OF LANDSAT DATA FOR SAMPLED RESERVOIRS

Reservoir Name ⁷ and State	4	e 400 de a mbridador	5 Oct. 1972	3 Oct. 1974	6 ⁻ eb. 1975	: Sept- 1975
	· .) (m)	N	N.	.ന
Allufasta	ĊΔ	1		x		
Riua Ridoa	GA	4		X		
Roope	TN	5	x			' X
Burton	GA	6	~*	х		
Chatuge	GA	7		x		
Cherokee	TN	9	X	X	X	X
Chickamauga	TN	10		X		
Douglas	TN	13	X	X	X	. X
Fontana	NC	14	Х	X	X	X
Fort Loudoun	TN	15	X	X	X	X
Hiwassee	NC	18		X		
Junaluska	NC	19		Х	X	
Nottely	GA	22		X		
Santeetlah	NC	27	Х	X	X	X
Sidney Lanier	GA	28		X		
Waterville	NC	31			X	
Watts Bar	TN	32	Х	X	Х	X

*Reservoirs sampled by the Environmental Protection Agency in 1973.

Ta	b	1	Q	1	2	

DATES OF LANDSAT DATA FOR NONSAMPLED RESERVOIRS

	ternet in the second second second			en internet ministerier	-	
Reservoir Name* and State			15 Oct. 1972	23 Oct. 1974	26 Feb. 1975	3 Sept. 1975
Carters	GA	1		x		
Chilhowee	TN	2	X	X	X	X
Hartwell	GA	3		X		
Laurel	KY	4		X	X	X
Melton Hill	TN	5	X	X	X	X
Nantahala	ŃC	6	X			
Nolichucky	TN	7		Х	X	X
Norris	TN	8	X	X	X	X
Parksville	TN	9		X		
Rabun	GA	10		X		
Thorpe	NC	11	X	X	Х	X
Toxaway	NC	12		X		X
Tuckasegee	NC	13		X	X	X
Tugaloo	GA	14		X		

*Reservoirs included in this study which were not sampled by the Environmental Protection Agency in 1973.

OF POOR QUALITI

34

To determine which picture elements were actually in the water a band 7 density slice was made. Only those picture elements with band 7 values of 0-3 were used as representative of water. This relatively low value as compared with those used in other studies (Scarpace 1978, Boland 1976) was necessary for several reasons. This region of the southeast is very rugged with ridges and valleys, which cause significant shadows. These prominent shadows exhibit low reflectance readings that may be confused with water. This effect is reduced using a 0-3 density slice. Another advantage to using the 0-3 band 7 density slice was the elimination of shallow water bottom and shoreline effects. This also resulted in improved correlation between the ground truth water quality data and the MSS data because all NES water samples were collected in deeper water. From inspection of the character plots, all pure water pixels showed reflectance values of 3 or less in band 7.

Generation of Statistics

All picture elements falling within the polygon which generally outlined each lake were extracted from the raw data tape. Of these picture elements, only those with band 7 values between 0-3 were considered in the statistical analysis. Fourteen statistics were determined for each reservoir. These are the mean raw reflectance values for each band (MB4, MB5, MB6, MB7), the variance in each band (VB4, VB5, VB6, VB7), the ratio between band 4 and 5 (RB4), band 5 and 6 (RB5) and band 6 and 7 (RB6), and the variance of these three ratios (VRB4, VRB5, VRB6). The ratios were computed using the following formula:

RBi =
$$\frac{255}{\pi/2}$$
 ARCTAN (Bi/Bi+1)

where

RBi = ratio between band i and i+1 Bi = raw reflectance of band i Bi+1 = raw reflectance of band i+1

This produces a range in the value of each ratio from 0 to 255 where a change of one unit is always equivalent to the same change in direction in spectral space.

Estimates of three trophic state indicators (Secchi disc depth, conductivity, and total phosphorus) and trophic state indices (PC1) using Lands t and NES ground truth data are demonstrated in the remainder of this report.

In an effort to reduce the amount of data presented in the text, attention has been focused on frames 1822-15315 and 15322. Prior to processing, these two scenes were in actuality one continuous frame recorded on the same orbit. For this reason scenes 1822-15315 and 15322 are treated as one. Regression models and data for frames 2224-15303, 1948-15264 and 1084-15431 are presented in Appendix A.

RELATIONSHIPS BETWEEN TROPHIC STATE INDICATOR AND LANDSAT IMAGERY

Landsat cannot directly measure chemical indicators of water quality but its areal and spectral resolution permit the detection of phenomena indirectly related to eutrophication. In each frame data were extracted for each of the four bands for the NES-sampled reservoirs. The mean and the variance of the reflectance values for each band, and the ratio and the variance of the ratio between bands were calculated. A correlation analysis was performed using this Landsat data and the 15 NES reservoirs in frames 1822-15315 and 15322. Correlations between the Landsat data and trophic state index (PC1), Secchi disc depth, conductivity, and total phosphorus are found in table 13. Several correlation coefficient pairs (e.g., band 6 and Secchi disc depth) exhibit high correlations inferring that relationships do exist between Landsat reflectance values and water quality characteristics.

Data analysis and regression models were developed using the Statistical Analysis System (SAS) (Barr, Goodnight, Sall, and Helwig, 1976); the maximum R^2 improvement technique of the stepwise multiple regression procedure was used to develop multilinear regression models. As such numerous models were developed in this investigation. Criteria used in the selection of the "best" models included R^2 (the magnitude of the square of the multiple correlation coefficient) and the F-statistic. All regression coefficients were required to be significant at the 0.05 level.

Secchi Disc Depth Estimation

The best regression model, as measured by the square of the multiple correlation coefficient (R^2) and the F-statistic, for estimating Secchi disc depth is:

log_ (Secchi) = 6.282 + 0.142 MB5 - 0.598 MB6 + 0.006 VRB4

The model accounts for about 96 percent of the variance about the mean, table 14. The observed and predicted Secchi disc depth values for the 15 reservoirs are given in table 15.

Although the models presented here are purported to estimate Seechi disc depth, conductivity, and total phosphorus, it must be remembered that the ground truth data collected and Landsat overflight are not concurrent, being separated in time by about one year. This "nonconcurrence" limits the reliability of the models and precludes more precise estimates. Caution must be exercised in assuming that the models are applicable to other reservoirs or even to the same 15 reservoirs on a different date. Reservoirs are by their very nature dynamic. In a period of a few days or weeks, their appearance can change significantly due to algal blooms, turbidity plumes caused by heavy rains, and man induced changes in reservoir volume. In addition to/reservoir dynamics are variations caused by atmospheric conditions and solar angle. As such the models should be treated as "ball park" rather than accurate estimators. In fact it is remarkable that estimates are as good as they are and further emphasizes the fact that relationships do indeed exist between water quality characteristics and Landsat imagery.

OF POOR QUALITY

lable 13

Correlations Between Ground Truth Water Quality Data and LANDSAT Data for 15 Reservoirs in Frames 1822-15315 and 15322

a and a substantial second	**************************************	nantan ang ang ang ang ang ang ang ang ang a	loge	*****
· · · · · · · · · · · · · · · · · · ·	<u>PC 1</u>	Secchi	Conductivity	Phosphorus
Band 4 (MB4)	0.401	-0.547	0.557	0.483
Band 5 (MB5)	0.618	-0.698	0.717	0.643
Band 6 (MB6)	0.808	-0.918	0.863	0.783
Band 7 (MB7)	0.724	-0.853	0.697	0.646
Band 4/Band 5 (RB4)	-0.818	0.831	-0.858	-0.821
Band 5/Band 6 (RB5)	-0.066	0.124	0.028	0.043
Band 6/Band 7 (RB6)	0.386	-0.313	0.408	0.406
Variance Band 4 (VB4)	0.130	-0.366	0.287	0.131
Variance Band 5 (VB5)	0.128	-0.364	0.283	0.128
Variance Band 6 (VB6)	0.118	-0.355	0.273	0,118
Variance Band 7 (VB7)	-0.774	0.794	-0.849	-0.732
Variance Band 4/Band 5 (VRB4)	-0.573	0.582	-0.595	-0.534
Variance Band 5/Band 6 (VRB5)	-0.686	0.705	-0.722	-0.727
Varlance Band 6/Band 7 (VRB6)	-0,730	0.771	-0.763	-0.768

0

37

- 37-

Table 14

ANALYSIS OF VARIANCE-SECCHI DISC DEPTH^a

MANUTATION OF A MANAGEMENT OF AND AND AND PROPERTY OF	1943 - 1955 - 19 59 - 1959 - 1956 - 1965 -	Anal	vsis of Variance	ang d hallanda kana s ang dalam sa sang dalam sa kana kana kana kana kana kana kana k
Source	DF	Sum of Squares	Nean Square	F
Regression	3	3,481	1.160	103.98
Residual	11	0.123	0.011	
Total	14	3.604	($R^2 = 0.966)$

^aThis analysis was performed using Landsat data from frames 1822-15315 and 15322.

Table 15

SECCHI DISC DEPTH RESIDUALS^a

Reservoir Name	Identification Number	Observed Secchi Disc Depth (inches)	Predicted Secchi Disc Depth (inches)	Residual Observed-Predicted (inches)
Allatoona	GA 1	56.8	53.1	3.7
Blue Ridge	GA 4	105.1	109.2	-4.1
Burton	GA 6	136.1	127.0	9.1
Chatuge	GA 7	117.2	109.2	8.0
Cherokee	TN 9	51.3	48.1	3.2
Chickamauga	TN 10	36.2	35.8	0,4
Douglas	TN 13	57.2	62.8	-5.6
Fontana	NC 14	107.4	104.6	2.8
Fort Loudoun	TN 15	34.4	31.8	2.6
Hiwassee	NC 18	79.4	90.5	-11.1
Junaluska	NC 19	38.0	39.1	-1.1
Nottely	GA 22	94.3	96.7	-2,4
Santeetlah	NC 27	133.6	111.0	22.6
Sidney Lanier	GA 28	103.6	120.0	-16,4
Watts Bar	TN 32	37.8	42.2	-4,4

^aThis analysis was performed using Landsat data from frames 1822+15315 and 15322.

D

 $\left(\int_{-\infty}^{\infty} dx \right)$

Conductivity Estimation

The best regression model found for prediction of conductivity is:

 \log_{e} (conductivity) = 6.418 + 1.580 MB7 - 6.848 VB7

The model accounts for about 85 percent of the variance about the mean, table 16. The observed and predicted conductivity values for the 15 reservoirs are given in table 17.

Table 16

		Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F		
Regression	2	13.115	6.557	33.14		
Residual	12	2.374	0.198			
Total	14	15.489	(Let-	$(R^2 = 0.847)$		

ANALYSIS OF VARIANCE - CONDUCTIVITY^a

^aThis analysis was performed using Landsat data from frames 1822-15315 and 15322,

TABLE 17

Reservoir Name	Identification Number	Observed Conductivity (µmhos/cm)	Predicted Conductivity (µmhos/cm)	Residual Observed-Predicted (µmhos/cm)
Allatoona	GA 1	40	65	-25
Blue Ridge	GA 4	16	31	-15
Burton	GA 6	17	21	-4
Chatuge	GA 7	21	33	-12
Cherokee	TN 9	260	124	136
Chickamauga	TN 10	158	213	-55
Douglas	TN 13	184	93	91
Fontana	NC 14	27	27	O O
Fort Loudoun	TN 15	210	203	7
Hiwassec	NC 18	32	24	8
Junaluska	NC 19	106	137	-31
Nottely	GA 22	25	17	8
Santeetlah	NC 27	17	13	4
Sidney Lanier	OA 28	35	35	in the second second
Watts Bar	TN 32	176	179	

CONDUCTIVITY RESIDUALS^a

^aThis analysis was performed using Landsat data from frames 1822-15315 and 15322.

Total Phosphorus Estimation

The multiple regression analysis yielded the model:

\log_e (total phosphorus) = 6.889 - 0.060 RB4

The model explains about 67 percent of the variance about the mean, table 18. The observed and predicted total phosphorus values, along with their residuals, are found in table 19.

Table 18

ANALYSIS OF VARIANCE - TOTAL PHOSPHORUS^a

		Anal	•	
Source	DF	Sum of Squares	Mean Square	F
Regression	1	3.239	3.239	26.86
Residual	13	1.568	0.121	
Total	14	4,807		$(R^2 = 0.674)$

^aThis analysis was performed using Landsat data from frames 1822-15315 and 15322.

Table 19

TOTAL PHOSPHORUS RESIDUALS^a

Reservoir Name	Identification Number	Observed Total Phosphorus (mg/1)	Predicted Total Phosphorus (mg/l)	Residual Observed-Predicted (mg/l)
Allatoona	GA 1	0.026	0.034	-0.008
Blue Ridge	GA 4	0,012	0.015	-0.003
Burton	GA 6	0.008	0.010	-0.002
Chatuge	GA 7	0.016	0.025	-0.009
Cherokee	TN 9	0.068	0.044	0.024
Chickamauga	TN 10	0.032	0.042	-0.010
Douglas	TN 13	0.038	0.042	-0.004
Fontana	NC 14	0.022	0.017	0.005
Fort Loudoun	TN 15	0,060	0.043	0.017
Hiwassee	NC 18	0.021	0.021	0.000
Junaluska	NC 19	0.035	0.023	0.012
Nottely	GA 22	0.018	0.022	-0.004
Santeetlah	NC 27	0.013	0.016	-0.003
Sidney Lanier	GA 28	0.026	0.013	0.013
Watts Bar	TN 32	0.033	0.038	-0.005

^aThis analysis was performed using Landsat data from frames 1822-15315 and 15322.

Trophic State Index Estimation

The best regression model for the prediction of trophic state index (PC1) values of the 15 NES sampled reservoirs using Landsat data from frames 1822-15315 and 15322 is:

$$PC1 = 4.344 - 0.539 MB4 + 0.633 MB5 - 2.511 VB7$$

The model explains about 88 percent of the variance about the mean, table 20.

Table 20

ANALYSIS OF VARIANCE OF REGRESSION MODEL FOR THE PREDICTION OF THE TROPHIC STATUS OF 15 RESERVOIRS FOUND IN LANDSAT FRAMES 1822-15315 AND 15322

	nai an	Ana	Cê	
Source	DF	Sum of Squares	Mean Square	F
Regression	3	5.826	1.942	27.23
Residual	11	0.785	0.071	
Total	14	6.611		$(R^2 = 0.8813)$

Keep in mind in examining the above model that the trophic state index (PC1), as well as values for Secchi disc depth, conductivity, and total phosphorus, was developed using mean values of the ground truth measurements taken on three occasions during 1973 while the Landsat data were collected within a few seconds on October 23, 1974.

Figure 14 presents a plot of the observed versus the predicted PC1 values. Those reservoirs plotted to the upper left of the diagonal have been predicted to be more eutrophic than their PC1 values indicate. Reservoirs plotted to the lower right of the diagonal are estimated to be in better condition and less eutrophic than their PC1 values suggest.

When the model was used to predict trophic state index values of reservoirs using Landsat data from another date it produced poor results. However, it is not unreasonable to expect that over a period of time a reservoir would present average reflectance values, which would be more representative of its trophic status. This is one area in which it is recommended that further investigation be performed. The use of reflectance values averaged over several times of the year and corrected for atmospheric differences and solar angle effects, may result in models which could be applied to any reservoir on any given date.

42

Ú

i.

GENERATION OF THEMATIC REPRESENTATION

In order to visually represent the relative trophic state of the reservoirs, a pixel-by-pixel classification of the Landsat imagery was performed. A table-look-up elliptical classifier with a minimum distance to mean option was chosen as the algorithm to perform the classification.

Subsets of Landsat scenes 1822-15315 and 1822-15322 were extracted from the computer tapes which included data from each reservoir to be classified. In all, 28 subsets were extracted and copied onto another tape. A statistics file was generated from the data used in the regression models used to predict the trophic classes. From this statistics file a table was generated to be used by the classifier. Fourteen different classes were represented in the table.

Each of the subsets of the Landsat data were separately classified and files with the results stored on tape. To more easily produce the thematic representation of the reservoirs, the classified data from each scene was combined into two large files. Color separations of each file were produced on an Optronics P-1700 photowrite unit. Some classes were combined to produce a final thematic representation is six colors (figures 15 and 16).

As can be seen in figures 15 and 16, there are variations in the color, representing trophic state, within some reservoirs. These variations do exist, but may be partially due to nonuniformity in the calibration among detectors on the Landsat satellite. The thematic representations are not as good a representation of the trophic state of the reservoirs as the output from the regression models.

Figure 15. Color coded thematic representation of the trophic status of selected reservoirs. (Landsat scene 1822-15322, 23 October, 1974)

44

CONCLUSIONS

This study has shown that there is a definite correlation between Landsat reflectance values and reservoir water quality. Correlations between MSS imagery and trophic indicators of reservoirs were often found to exceed 0.95 in thereal Landsat scenes. This correlation has been demonstrated without the best experimental conditions (no Landsat data within one year of ground samples), further indicating the validity of this technique.

It has been shown that a generalized model can be defined to predict whole lake trophic status (PC1 value) from Landsat MSS reflectance values. Models developed for each of the four Landsat scenes to predict trophic status were all significant at the 0.05 level and in all cases had \mathbb{R}^2 values equal to or greater than 0.85. Models were also defined to predict specific water quality parameters of Secchi disc depth, conductivity, and phosphorus content. Finally, color-coded thematic maps were produced showing some of the spatial water quality variance within and between reservoirs.

Å.

RECOMMENDATIONS

It is recommended this study be continued so that the following concerns can be further evaluated.

- 1. Techniques for correcting Landsat data for the effects of atmospheric absorption, scattering, and sun angle changes should be evaluated. If adequate corrections can be made, models may be developed for more than one date or scene, or the same model may be applicable to other dates or scenes. Data has been received to make this evaluation for seven scenes using the ground samples and models presented herein.
- 2. It is anticipated that much of the variance in these models could be eliminated if ground samples are taken concurrently with Landsat overpasses. This would require a well coordinated sampling program but it should be tried on a demonstration basis.
- 3. Multiple observations during the growing season have been valuable in other studies (Scarpace et al., 1978) to predict lake trophic status and type of water quality problem. It is recommended that a predictive model which uses multiple Plata of Landsat imagery during one growing season be evaluated.
- 4. The primary objective of this study has been to predict whole reservoir trophic status. Further studies should also be made to name and present the water quality changes within particular reservoir areas.
- 5. In future studies the design of a ground sampling program should strive to produce a more normal distribution. This study was biased toward eutrophic reservoirs.
- 6. The relationship between landcover and water quality should be investigated using Landsat data.
- Reservoir data extraction techniques that include geometric overlays based on actually known reservoir configurations should be investigated.

REFERENCES

Anderson, T. W. 1958. An introduction to multivariate statistical analysis. New York: John Wiley and Sons. 374 pp.

- Barr, A. J., J. H. Goodnight, J. P. Sall, J. T. Helwig. 1976. A User's Guide to SAS76, SAS Institute, Inc., Raleigh, North Carolina.
- Beeton, A. M. and W. T. Edmondson. 1972. The eutrophication problem. Journal Fisheries Research Board of Canada 29(6):673-682.
- Boland, D.H.P. 1976. Trophic Classification of Lakes Using Landsat-1 (ERTS-1) Multispectral Scanner Data. U.S. Environmental Protection Agency. Office of Research and Development. Corvallis Environmental Research Laboratory. 245 pp.
- Brezonik, P. L. 1969. Eutrophication: the process and its modeling potential. In: Proceedings Workshop Modeling the Eutrophication Process. Gainsville: University of Florida. 120 pp.
- Brezonik, P. L. and E. E. Shannon. 1971. Trophic states of lakes in north central Florida. Publication 13. Florida Water Resources Research Center. Gainsville: University of Florida. 102 pp.
- Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography. 22(2):361-369.
- Edmondson, W. T. 1974. Review of: Environmental phosphorus handbook, Edited by E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell. New York: Wiley-Interscience. 1973. 718 pp. In: Limnology and Oceanography. 19(2):369-375.
- Fisher, L. T., F. L. Scarpace, R. G. Thomsen. 1978. Multidate Data Extraction Procedures for a Statewide Landsat Lake Quality Monitoring Program. Proceedings ASP-ACSM Spring Convention, February 1978.
- Hooper, F. F. 1969. Eutrophication indices and their relation to other indices of ecosystem change. In: Eutrophication: Causes, Consequences, Correctives. Proceedings of a Symposium. 11-15 June 1967. University of Wisconsin. Washington, D.C.: National Academy of Science. pp. 225-235.
- Hotelling, H. 1933a. Analysis of a complex of statistical variables into principal components (I. Introduction). The Journal of Educational Psychology. 24:417-441.
- Hotelling, H. 1933b. Analysis of a complex of statistical variables into principal components (II). The Journal of Educational Psychology 24:498-520.
- Notelling, H. 1936. Simplified calculation of principal components. Psychometrika, 1(1):27-35.

Hutchinson, G. E. 1967. A treatise on limnology. Volume II. Introduction to lake biology and the limnoplankton. New York: John Wiley. 1115 pp.

i d

- Hutchinson, G. E. 1973. Eutrophication. The scientific background of a contemporary practical problem. American Scientist. 61:269-279.
- Lueschow, L. W., J. M. Helm, D. R. Winter, and G. W. Karl. 1970. Trophic Nature of Selected Wisconsin Lakes. Wisconsin Academy of Sciences, Arts and Letters. 58:237-264.
- Morrison, D. F. 1967. Multivariate statistical methods. New York: McGraw-Hill. 338 pp.
- National Eutrophication Survey. 1975. National Eutrophication Survey Methods, 1973-1976. U.S. Environmental Protection Agency National Eutrophication Survey Working Paper Number 175. PNERL (NERC-Corvallis) and NERC-Las Vegas. 91 pp.
- Naumann, E. 1919. Nagra synpunkte angaende planktons okologi. Med. sarskild hansyn till fytoplankton. Svensk Botanisk Tidskrift. 13:129-158.
- Naumann, E. 1931. Limnologische terminologic. Urban and Schwarzenberg, Berline-Wein. (pp. 153 and 413). 776 pp.
- Pearsall, W. H. 1932. Phytoplankton in the English lakes. II. The composition of the phytoplankton in relation to dissolved substances. Journal of Ecology. 20(2):241-262.
- Piwoni, M. D. and G. F. Lee. 1975. Report on Nutrient Load-Eutrophication Response of Selected South-Central Wisconsin Impoundments. Report to U.S. EPA, Environmental Research Laboratory, Corvallis. 31 pp.
- Rast, W. and G. F. Lee. 1978. Summary Analysis of the North American (U.S. portion) OECD Eutrophication Project: Nutrient Loading-Lake Response Relationships and Trophic State Indices. U.S. Environmental Protection Agency. Office Research and Development. Corvallis Environmental Research Laboratory. 455 pp.
- Rodhe, W. 1969. Crystallization of eutrophication concepts in northern Europe. In: Eutrophication: Causes, Consequences, Correctives.
 Proceedings of a Symposium. 11-15 June 1967. University of Wisconsin. Washington, D.C.: National Academy of Science. pp. 50-64.
- Rohlf, F. J., J. Kishpaugh, and D. Kirk. 1971. NT-SYS. Numerical Taxonomy System of Multivariate Statistical Programs. Tech. Rep. State University of New York, Stony Brook, New York.
- Scarpace, F. L., K. Holmquist, and L. T. Fisher. 1978. Landsat Analysis of Lake Quality for Statewide Lake Classification. Proceedings ASP-ACSM Spring Convention, February, 1978.

- Shannon, E. E. and P. L. Brezonik. 1972a. Eutrophication Analysis: A multivariate approach. Journal of Sanitary Engineering Division. Proceedings American Society Civil Engineers. 98 (SA1, 8735):37-57.
- Shannon, E. E. and P. L. Brezonik. 1972b. Relationships between trophic state and nitrogen and phosphorus loading rates. Environmental Science and Technology, 6(8):719-725.
- Sneath, P.H.A. and R. R. Sokal. 1973. Numerical taxonomy: The principles and practice of numerical classification. San Francisco: F. H. Freeman. 573 pp.
- Thienemann, A. 1918. Untersuchungen uber die Beziechungen zwischen dem Sauerst offgehalt der Wassers und der Zusammen - setzung der Fauna in norddeutchen Seen. Archiu Fuer Hydrobiologic. 12:1-65.
- U.S. Environmental Protection Agency, 1974. An Approach to a Relative Frophic Index System for Classifying Lakes and Reservoirs. Working Paper No. 24. National Eutrophication Survey. Pacific Northwest Environmental Research Laboratory. Corvallis. 44 pp.
- U.S. National Aeronautics and Space Administration. 1976. Goddard Space Flight Center. Landsat Data User's Handbook, Document 76SDS4258. September 2, 1976.
- Vollenweider, R. A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical report prepared for the Organization for Economic Cooperation and Development. Paris, France. 159 pp.
- Weber, C. A. 1907. Aufbau und vegetation der Moore Norddeutschlands. Beiblatter Botanische fur Systematik, Pflanzengeschichte und Pflanzengeographic. 90:19-34, Supplement to Bot. Jahrb. 40.
- Wezernak, C. T. and F. C. Palcyn. 1972. Eutrohpication assessment using remote sensing techniques. Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 2-6 October 1972. Ann Arbor: University of Michigan. 1:541-551.

APPENDIX A

Ð

51

Correlation Coefficients and Regression Models for Landsat Scenes:

1084-15431 (Oct. 15, 1972), Section 1 1948-15264 (Feb. 26, 1975), Section 2 2224-15303 (Sep. 3, 1975), Section 3 Section 1. Scene 1084-15431 (October 15, 1972)

(

ŀ

Seven reservoirs were extracted from the frame: Boone (TN5) Cherokee (TN9) Douglas (TN13) Fontana (NC14) Fort Loudoun (TN15) Santeetlah (NC27) Watts Bar (TN32)

Table 1.1. Correlation between Ground Truth Water Quality Data and Landsat Data for Seven Reservoirs in Frame 1084-15431

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	PC1	Secchi	Conductivity	Phosphorus
Band 4 (MB4)	0.558	-0.812	0.705	0,458
Band 5 (MB5)	0.519	-0.844	0,631	0.441
Band 6 (MB6)	0.263	-0.602	0.354	0.178
Band 7 (MB7)	-0.405	0.229	-0.409	-0.447
Band 4/Band 5 (RB4)	-0,441	0.806	-0.519	-0.389
Band 5/Band 6 (RB5)	0.807	-0.960	0,908	0.767
Band 6/Band 7 (RB6)	0.813	-0.986	0.896	0.737
Variance Band 4 (VB4)	0.030	-0.435	0.229	-0.064
Variance Band 5 (VB5)	0.044	-0.454	0.237	-0.048
Variance Band 6 (VB6)	0.034	-0.423	0.222	-0.051
Variance Band 7 (VB7)	-0.156	0.238	-0,196	-0.102
Variance Band 4/Band 5				
(VRB4)	0.188	-0.356	0.181	0.280
Variance Band 5/Band 6				
(VRB5)	-0.843	0.897	-0.898	-0.804
Variance Band 6/Band 7				
(VRB6)	-0.522	0.764	-0.630	-0.425

52

ш.<u>†</u> л

The best regression model for the prediction of trophic state (PC1) is:

PC1 = 4.420 - 0.286MB6 - 0.012VRB5

Table 1.2. Analysis of Variance of Regression Model For the Prediction of the Trophic Status of Seven Reservoirs Found in Landsit Frame 1084-15431

•		An	alysis of Varian	Cè
Source	DF	Sum of Squares	Mean Square	F
Regression	2	2.898	1,449	12.44
Residual	4	0.466	0.116	n
Total	6	3.363		$(R^2 = 0.861)$

Table 1.3. PC1 Residuals of Seven Reservoirs Found in Landsat Frame 1084-15431

Reservoir Name	Identification Number	Observed Predicted		Residual Observed-Predicte	
Boone	TN5	0.441	0.167	0.274	
Cherokee	TN9	0.714	0.558	0.156	
Douglas	TN13	0.075	0.507	-0.432	
Fontana	NC14	-0.960	-0.600	-0.360	
Fort Loudoun	TN15	0.530	0.362	0.168	
Santeetlah	NC27	-1.216	-1.353	-0.137	
Watts Bar	TN32	-0.036	-0.093	0.057	

The best regression model for the prediction of Secchi disc depth is:

 $\|$

54

\log_{e} (Secchi) = 25.854 - 0.094RB6

Table 1.4. Analysis of Variance of Regression Model for the Prediction of Secchi Disc Depth of Seven Reservoirs Found in Landsat Frame 1084-15431

		A	nalysis of Varianc	e
Source	DF	Sum of Squares	Mean Square	F
Regression	1	1.487	1.487	180.50
Residual	5	0.041	0.008	•
Total	6	1.529		$(R^2 = 0.973)$

Table 1.5. Secchi Disc Depth Residuals of Seven Reservoirs Found in Landsat Frame 1084-15431

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
boone	TN5	57.9	67.2	- 9.3	
Cherokee	TN9	51.3	48.9	2.4	
Douglas	TN13	57.2	54.4	2.8	
Fontana	NC14	107.4	112.4	- 5.0	
Fort Loudoun	TN15	34.4	35.8	- 1.4	
Santeetlah	NC27	133.6	122.1	11.5	
Watts Bar	TN32	37.8	36.0	1.8	

The best regression model for the prediction of conductivity is:

\log_{e} (conductivity) = -11.119 + 0.092RB5

Table 1.6. Analysis of Variance of Regression Model For the Prediction of Conductivity of Seven Reservoirs Found in Landsat Frame 1084-15431

			Analysis of Variance		
Source	DF	Sum of Squares	Mean Square	E	
Regression	1	6,019	6.019	23.5	
Residual	5	1,280	0,256	ň	
Total	6	7.300		$(R^2 = 0.825)$	

Table 1.7. Conductivity Residuals of Seven Reservoirs Found in Landsat Frame 1084-15431

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
		artantananantikistaniineksiiniisisii deestaa 			
Boone	INS	174	91	83	
Cherokee	TN9	260	175	85	
Douglas	TN13	184	151	33	
Fontana	NC14	27	48	- 21	
Fort Loudoun	TN15	210	227	- 17	
Santeetlah	NC27	17	17	0	
Watts Bar	TN32	176	309	-133	

55

F

The best regression model for the prediction of total phosphorus is:

\log_{e} (Total Phosphorus) = 3.490 - 0.188MB4 - 0.014VRB5

Table 1.8. Analysis of Variance of Regression Model for the Prediction of Total Phosphorus of Seven Reservoirs Found in Landsat Frame 1084-15431

		An	Analysis of Variance			
Source	DF	Sum of Squares	Mean Square	F		
		0 0 0 0	1 011	22 84		
Residual	4	0.177	0.044	22.04		
Total	6	2.200		$(R^2 = 0.919)$		

Table 1.9. Total Phosphorus Residuals of Seven Reservoirs Found in Landsat Frame 1084-15431

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
Boone	TN5	0.059	0.053	0.006	
Cherokee	TN9	0.068	0.059	0.009	
Douglas	TN13	0.038	0.046	-0.008	
Fontana	NC14	0.022	0.026	-0.004	
Fort Loudoun	TN15	0.060	0.067	-0.007	
Santeetlah	NC27	0.013	0.013	0.000	
Watts Bar	TN32	0.033	0.026	0.007	

56

()

ł

Section 2. Scene 1948-15264 (February 26, 1975)

Eight reservoirs were extracted from the frame: Cherokee (TN9) Douglas (TN13) Fontana (NC14) Fort Loudoun (TN15) Junaluska (NC19) Santeetlah (NC27) Waterville (NC31) Watts Bar (TN32)

Table	2.1. C	orrelat	ion	between	Groun	d Truth	Water
	Quality	Data a	nd L	andsat	Data f	or Eight	t
	Res	ervoirs	in	Frame 1	948-15	264	

	ins tables		log	ti (paki di (paki ini (paki ini panga di kini ini panga di kini ini panga di kini panga di kini panga di kini p
	PC1	Secchi	Conductivity	Phosphorus
Band 4 (MB4)	-0.070	0.013	0.026	-0.088
Band 5 (MB5)	0.017	-0.068	0.108	-0.017
Band 6 (MB6)	0.298	-0.339	0,386	0.241
Band 7 (MB7)	0.607	-0.572	0.644	07616
Band 4/Band 5 (RB4)	-0.098	0.187	-0.141	-0.013
Band 5/Band 6 (RB5)	-0.532	0.449	-0.494	-0.541
Band 6/Band 7 (RB6)	-0.357	0.276	-0.342	-0.423
Variance Band 4 (VB4)	-0,549	0.637	-0.521	-0.394
Variance Band 5 (VB5)	-0.526	0.563	-0.499	-0.368
Variance Band 6 (VB6)	-0.485	0.547	-0,414	-0.333
Variance Band 7 (VB7)	-0.671	0.761	-0.746	-0.570
Variance Band 4/Band 5				
(VRB4)	-0.556	0.580	-0.567	-0.393
Variance Band 5/Band 6		· · · · ·		
(VRB5)	-0.516	0.595	-0.657	-0.510
Variance Band 6/Band 7		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	
(VRB6)	-0.671	0.580	-0,591	-0.434

ľ,

The best regression model for the prediction of trophic state (PC1) is:

PC1 = 5.859 - 0.186MB4 - 0.008VRB5

Table 2.2. Analysis of Variance of Regression Model for the Prediction of the Trophic Status of Eight Reservoirs Found in Landsat Frame 1948-15264

Source		٨	nalysis of Varianc	6
	DF	Sum of Squares	Mean Square	F
Regression	2	3.716	1.858	14.00
Residual	5	0.663	0.133	
Total	7	4.379		$(R^2 = 0.849)$

Table 2.3. PC1 Residuals of Eight Reservoirs Found in Landsat Frame 1948-15264

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted
Cherokee	TN9	0.714	0.292	0.422
Douglas	TN13	0.075	0.086	-0.011
Fontana	NC14	-0.960	-1.145	0.185
Fort Loudoun	TN15	0.530	0.414	0,116
Junaluska	NC19	0.258	0.041	0.217
Santeetlah	NC27	-1.216	-0.835	-0.381
Waterville	NC31	1.067	1.122	-0.055
Watts Bar	TN32	-0.036	0.456	-0.492
			1917 - مالي المركز ا	فالشار والبشير وموانية ستسويد والورجين والمتواف فالمتوا

The best regression model for the prediction of Secchi disc depth is:

 \log_e (Secchi) = -1.844 + 0.126MB4 + 0.125MB6 + 0.011VRB6

Table 2.4. Analysis of Variance of Regression Model for the Prediction of Secchi Disc Depth of Eight Reservoirs Found in Landsat Frame 1948-15264

		An	alysis of Variance	9
Source	DF	Sum of Squares	Mean Square	F
Regression	3	1,896	0.632	18.07
Residual	4	0.140	0.035)
Total	7	2.036		$(R^2 = 0.931)$

Table 2.5. Secchi Disc Depth Residuals of Eight Reservoirs Found in Landsat Frame 1948-15264

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted
Cherokee	TN9	51.3	41.6	9.7
Douglas	TN13	57.2	51.5	5.7
Fontana	NC14	107.4	125.0	-17.6
Fort Loudoun	TN15	34.4	41.8	- 7.4
Junaluska	NC19	38.0	37.2	0.8
Santeetlah	NC27	133.6	117.3	16.3
Waterville	NC31	31.7	33.4	- 157-
Watts Bar	TN32	37.8	40.4	- 2.6

The best regression model for the prediction of conductivity is:

 $_{h}[\theta],$

\log_{10} (Conductivity) = 13.808 - 0.041RB5 - 0.008VRB5

Table 2.6. Analysis of Variance of Regression Model for thePrediction of Conductivity of Eight ReservoirsFound in Landsat Frame 1948-15264

		A	malysis of Variance	:e
Source	DF	Sum of Squares	Mean Square	F
Regression	2	9.584	4.792	40.12
Residual	5	0.597	0.119	2
Total	7	10.181		$(R^2 = 0.941)$

Table 2.7.Conductivity Residuals of Eight ReservoirsFound in Landsat Frame 1948-15264

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
Cherokee	TN9	260	149	111	
Douglas	TN13	184	287	-103	
Fontana	NC14	27	23	4	
Fort Loudoun	TN15	210	211	- 1	
Junaluska	NC19	106	114	- 8	
Santeetlah	NC27	17	22	- 5	
Waterville	NC31	657	616	41	
Watts Bar	TN32	176	178	- 2	

The best regression model for the prediction of total phosphorus is:

log_e (Total Phosphorus) = 3.521 - 0.238MB4 + 0.091VB4 - 0.009VRB5

Table 2.8. Analysis of Variance of Regression Model for the Prediction of Total Phosphorus of Eight Reservoirs Found in Landsat Frame 1948-15264

))))		Ar	alysis of Varianc	e
Source	DF	Sum of Squares	Mean Square	F
Regression	3	2.790	0.930	11.75
Residua!	4	0.317	0.079	9
Total	7	3.107		$(R^2 = 0.898)$

Table 2.9.Total Phosphorus Residuals of dight ReservoirsFound in Landsat Frame 1948-15264

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted
Cherokee	TN9	0.068	0.055	0.013
Douglas	TN13	0.038	0.038	0.000
Fontana	NC14	0.022	0.023	-0.001
Fort Loudoun	TN15	0.060	0.048	0.012
Junaluska	NC19	0.035	0.031	0.004
Santeetlah	NC27	0.013	0.014	-0,001
Waterville	NC31	0.108	0.113	-0.005
Watts Bar	TN32	0.033	0.051	-0,018

61

P

ŗ

Section 3. Scene 2224-15303 (September 3, 1975)

Seven reservoirs were extracted from the frame: Boone (TN5) Cherokee (TN9) Douglas (TN13) Fontana (NC14) Fort Loudoun (TN15) Santeetlah (NC27) Watts Bar (TN32)

Table 3.1, Correlation between Ground Truth Water Quality Data and Landsat Data for Seven Reservoirs in Frame 2224-15303

anni fili anni filinna na marairte a sun ann a filina ann ann ann ann ann ann ann ann ann		*****	loge		
	PC1	Secchi	Conductivity	Phosphorus	
Band 4 (MB4)	0.328	-0.619	0.512	0.215	
Band 5 (MB5)	0.886	-0.816	0.895	0.826	
Band 6 (MB6)	0.596	-0.793	0.746	0.492	
Band 7 (MB7)	0.631	-0.4	0.582	0.627	
Band 4/Band 5 (RB4)	-0.788	0.941	-0.891	-0.728	
Band 5/Band 6 (RB5)	0.349	-0.557	0.520	0.230	
Band 6/Band 7 (RB6)	-0.160	-0.080	-0.048	-0.220	
Variance Band 4 (VB4)	0.018	-0.420	0.208	-0.072	
Variance Band 5 (VB5)	0.018	-0.11	0.209	-0.073	
Variance Band 6 (VB6)	0.015	-0.418	0.206	-0.075	
Variance Band 7 (VB7)	-0,896	0.669	-0.872	-0.872	
(VRB4)	-0.219	-0.223	0.006	-0,310	
Variance Band 5/B(1 d 6 (VRB5)	-0.646	0,256	-0.548	-0.672	
Variance Band 6/Band 7	-0 674	0 640	-0.749	-0.585	

្ទ

62

-12-

The best regression model for the prediction of trophic state (PC1) is:

$$PC1 = 6.127 + 0.006VRB5 - 11.127VB7$$

Table 3.2. Analysis of Variance of Regression Model for the Prediction of the Trophic Status of Seven Reservoirs Found in Landsat Frame 2224-15303

		An	alysis of Varianc	e
Source	DF	Sum of Squares	Mean Square	F
Regression	2	2.972	1.486	15.20
Residual	4	0.391	0.098	$(R^2 = 0.884)$
local	0.	2.203		(K - 0.004)

Table 3.3.PCI Residuals of Seven ReservoirsFound in Landsat Frame 2224-15303

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted
Boone	TN5	0.441	0.254	0.187
Cherokee	TN9	0.714	6.425	0.289
Douglas	TN13	0.075	0.562	-0.487
Fontana	NC14	-0.960	-1.045	0.085
Fort Loudoun	TN15	0.530	0.453	0.077
Santeetlah	NC27	-1.216	-1.069	-0.147
Watts Bar	TN32	-0.036	-0.031	-0.005

The best regression model for the prediction of Secchi disc depth is:

 \log_{e} (Secchi) = -8.959 + 0,083RB4

Table 3.4. Analysis of Variance of Regression Model for the Reduction of Secchi Disc Depth of Seven Reservoi:s Found in Landsat Frame 2224-15303

		At	nalysis of Varianc	:e
Source	DF	Sum of Squares	Mean Square	F
Regression	1	1.354	1,354	38.80
Residual	5	0.175	0.035	$(n^2 - 0.896)$
TOCAL	D	1.529		(R = 0.886)

Table 3.5.	Secchi	Disc Depth	Residuals of Seven	Reservoirs
	Found	in Landsat	Frame 2224-15303	

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted
Boone	TN5	57.9	68.5	-10.6
Cherokee	TN9	51.3	55.6	- 4.3
Douglas	TN13	57.2	41.0	16,2
Fontana	NC14	107.4	99.9	7.5
Fort Loudoun	TN15	34.4	36.5	- 2.1
Santeetlah	NC27	133.6	128.2	5.4
Watts Bar	TN32	37.8	43.4	- 5.6
	urise animest solid \$22.3 and gover some and discriming the second solution of the second solution of the second	an a se a		a de la companya de l

The best regression model for the prediction of conductivity is:

 \log_{e} (Conductivity) = 12.002 - 0.001/PA - 11.561/B7

Table 3.6. Analysis of Variance of Regression Model for the Prediction of Conductivity of Seven Reservoirs Found in Landsat Frame 2224-15303

Source	9 - 29 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	Analysis of Variance		
	DF	Sum of Squares	Mean Square	F
Regression	1	7.028	3.514	51.84
Residual	4	0.271	0.058	$(R^2 = 0.963)$
TOPUT	<i>₿</i> Ŭ	6 x 4 3 3		(10 - 01000)

Table 3.7. Conductivity Residuals of Seven Reservoirs Found in Landsat Frame 2224-15303

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
Boone	TN5	174	143	31	
Cherokee	TN9	260	241	19	
Douglas	TN13	184	268	-84	
Fontana	NC14	27	24	3	
Fort Loudoun	TN15	210	176	34	
Santeetlah	NC27	17	21	- 4	
Watts Bar	TN32	176	176	0	

65

The best regression model for the prediction of total phosphorus is:

\log_{e} (Total Phosphorus) = 0.324 - 5.569VB7

Ł

Table 3.8. Analysis of Variance of Regression Model for the Prediction of Total Phosphorus of Seven Reservoirs Found in Landsat Frame 2224-15303

Source		Analysis of Variance		
	DF	Sum of Squares	Mean Square	F
Regression	1	1.671	1.671	15.84
Residual	5	0.528	0.106	0
Total	6	2.199		$(R^2 = 0.760)$

Table 3.9.Total Phosphorus Residuals of Seven ReservoirsFound in Landsat Frame 2224-15303

Reservoir Name	Identification Number	Observed	Predicted	Residual Observed-Predicted	
Boone	TN5	0.059	0.047	0.012	
Cherokee	TN9	0.068	0.060	0.008	
Douglas	TN13	0.038	0.063	-0.025	
Fontana	NC14	0.022	0.020	0.002	
Fort Loudoun	TN15	0.060	0.051	0.009	
Santeetlah	NC27	0.013	0.018	-0.005	
Watts Bar	TN32	9,033	0'.027	0.006	

66