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LARS Technical Report 081580

CONTEXTUAL CLASSIFICATION OF
MULTISPECTRAL IMAGE DATA:

APPROXIMATE ALGORITHM

James C. Tilton

School of Electrical Engineering
and

Laboratory for Applications of Remote Sensing

Purdue University
West Lafayette 47907. U.S.A.

ABSTRACT

Earlier reports[2,3] have introduced a classification algo-
rithm incorporating spatial context information in a general, sta-
tistical manner. Here an approximation to that algorithm is
presented which is computationally less intensive, yet produces
classifications that are nearly as accurate.

I. INTRODUCTION

The most widely used method for classifying remotely sensed data from

such sources as multispectral scanners on aircraft or satellite platforms is a

point-by-point classification technique in which data from each pixel in the

scene are classified individually and and independently[l]. The information nor-

mally used by this classifier is only spectral or. in some cases, spectral and tem-

poral. There is generally no provision for using spatial information.

In contrast, when scanner data are displayed in image form, a human

analyst routinely uses spatial context to help decide what is in the imagery.

Using context, he or she may be able to easily pick out roads, delineate boun-

daries of agricultural fields, and differentiate between grass in an urban setting
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(lawns) and grass in an; agricultural setting (pasture or forage crops) where a

poiritrby-point classifier '-would', have much difficulty in doing' so.

Earlier reports[2,3'J describe the development of a statistical classification

algorithm which incorporates- spatial context information in' a general manner.

This algorithm exploits the tendency alluded to above of certain ground-cover

classes to be more likely; to occur in some contexts than in: others.
\ • - -

This contextual classification algorithm is very computationally intensive,

typically requiring a large amount of computer time. To reduce execution time,

one could exploit the latest improvements in the raw speed of computer com-

ponents and/or one e.ould take advantage: of' special' computer architectures

involving multiple processing elements[2,4]L Art alternative tactic discussed

here is to look for a less computationally intensive algorithm, which approxi-

mates the original contextual classification algorithm. If-such an algorithm pro-

duces classifications that do not differ significantly in accuracy from the original

algorithm, the; approximate algorithm would be the preferred algorithm in prac-

tical applications using conventional (serial) computers'.

II. ORIGINAL ALGORITHM

In order to fully discuss the approximate algorithm, a brief description of

the original algorithm must be given. For a detailed derivation of the decision

function used in the original algorithm, see [2].

Consistent with the general characteristics of imaging systems for remote

sensing, we assume a two-dimensional array of N=NixNz random' observations

Xij having fixed but unknown classifications-iSjy,,: as shown in Figure 1. The obser-

vation X^ consists' of n measurements, .(usually containing spectral and/or tem-

poral information), while the classification i?^t can be any one of m spectral or
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information classes from the set Cl = \ui,u&...,um}.

Figure 1. A two-dimensional array pixels.

Let X denote a vector whose components are the ordered observations:

X =

Similarly, let i? be the vector of states (true classifications) associated with the

observations in X:

Let the action (classification) taken with respect to pixel (i.j) be denoted by

. We restrict the decision function Oy(-) to depend only on an arbitrary but

fixed subset of p observations in X. This subset includes, along with Ay, p-1

observations spatially near to, but not necessarily adjacent to. Ay. These p-1

observations serve as the spatial context for Ay and are taken from the same

spatial positions relative to pixel position (i.j) for all i and j. Call this arrange-

ment of pixels together with Ay the p-context array, several examples of which

are shown in Figure 2. Group the p observations in the p-context array into a

vector of observations Ay and let i?y be the vector of true but unknown
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classifications associated, with the observations in Jfy. Let •& tQP stand for p-

vectors; of classes. Each component of •#* is a variable which can* take on any

classification value. Note that i5fy is the particular instance.- of T^* associated with

pixel position (i,j). Correspondence of the components of"i?^, Xy and i?P to the

positions in-the p-context array is. fixed but arbitrary'except that the pixel to be

classified will always correspond to the p^1 component.

i.j

i-l.j+l

L . 1 ' * . - .. 1 .. ..
, i,j+2
i

ap=2 choice a.p=2« choice

i.j

a p=3 choice
a p=5 choice

Figure 2. Examples of p-cbritext arrays.

Our optimal decision rule now has the form

(1)

for a fixed function d(-) mapping p-vectors of observations to actions. In deriv-

ing the explicit decision function we assume that the distribution of X is such

that every Xi}- for which i?y=iJ* has the same marginal density, i.e. the marginal

densities depend only on the measurement values in Jf« and the set of
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classifications in 1?^ and not the location (i,j). Under this assumption the margi-

nal density becomes

(2)

Utilizing a "0-1 loss function", the decision rule becomes:

d(Xij) - the action a which maximizes

(3)

where 0(1^). the context distribution, is the relative frequency with which -<8P

occurs in the array D.

One way to satisfy the assumption resulting in the relation expressed by

equation (2) is to assume class-conditional independence for X. In this case, the

marginal density becomes

(4)
. — ~ *=1

where Xk and -Ok are the kth elements of Xy and -tiP , respectively. There may be

other densities for X with the necessary property, but it is not apparent how one

could construct a useful density without making possibly inconsistent assump-

tions. Invoking the class-conditional independence assumption, the decision

rule in equation (3) becomes:

= the action a which maximizes

(s)
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The optimal choice of d(-) cannot be implemented in practice since it

depends on C(iSp) and the f(Xt \~0jc) which are unknown. Methods for estimating

the f (Xk \<3k) are well established from considerable experience in using the

conventional no-context maximum likelihood decision rule[l]. Methods for

estimating C(T?P) from the Xy and the effectiveness of these estimations are dis-

cussed in the earlier repprts{2,3], and are the subject of ongoing research.

III. APPROXIMATE ALGORITHM

To come -up with a reasonable approximate algorithm, one must examine

the computer implementation of the original decision function*. Consider the

case where the set fi is defined over spectral .classes and the class-conditional

independence assumption is .taken. For this case it is reasonable to assume the

densities f (Xk |iV) in equation (5) to be multivariate normal with mean vector

M$ and covariance matrix £0 giving

/e**i«*>= 27r

where n is the dimensionality of the observation Xk (see [l] for the rationale

behind this assumption in the no-context case). Using the multivariate normal

assumption, equation (5) becomes

= the action a which maximizes

where

• For this study, the algorithm was in>plemented on a PDP-11/45 computer in the program-
ming language "C". Test runs were also-made on a PDP-1-1/70. computer.
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«.(*«)= S c<f)ft
=

SE.
2

Let di(Xij) = hatdtt(A
ry)x(27T) 2 ]. Maximizing

imizing da (Xy). Letting Q#t (Xk) =

is equivalent to max-

. we have

= In

= ln S exp

= In

where

In the simulated and real data sets studied (see the earlier reports[2,3]),

the term exp[/1(A"<J-.T?p)] ranges over a larger negative exponential range than

available on the PDP-11/45 (an exponential range of 10±37 is available). To cir-

cumvent this problem it was necessary to use the following procedure.

Let

-SPcflP. — —
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and rewrite d'a(Xy) as -follows:

I eCP.

*
(6)

Calculating da(Xy) in this way insures that at least one term .of the sum does not.

cause underflow because the exponent p.f the maximum term. Ma(Xy), is never

taken. This procedure also makes it less likely that other terms in the sum will

cause underflow (the F(Ary,iSp) tend to be large negative numbers).

In checking put this particular implementation of the decision function, it

was noted that Ma(Xij) was in most cases significantly larger than the loga-

rithmic term in equation (6). This observation suggested the following approxi-

mation of the decision function first given in equation (5):

= the action a which maximizes <7a)

or in the notation of equation (5):

- the action a which maximizes for all iS with $-

(7b)

Comparing equations (6) and (7a) one can see that the implementation of

equation (7a) requires less computation and storage than equation (6). In equa-

tion (7a), the logarithmic term in equation (B) need not be calculated and the

individual values of F (Xy ,-iJ?) for a particular action a need not be stored; only

the maximum value is needed. We would expect, then, that this approximate
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algorithm will take less computation time than the original algorithm for any

data set. The effect of the approximation on classification accuracy, however,

may be data dependent.

IV. EXPERIMENTAL RESULTS

It now remains to be tested empirically whether the lower computational

and storage requirements of the approximate algorithm result in a significant

savings in computer costs when compared to the original algorithm, and

whether the classifications produced by the approximate algorithm differ

significantly from the classifications produced by the original algorithm.

The approximate algorithm was compared for accuracy with the original

algorithm in tests using the simulated data set and the real data sets described

in [2]. (The real data sets will be subseqiientially referred to as the LACIE and

Bloomington data sets.) Included in the comparisons were algorithms that take

only the three or five maximum terms in the summation in equation (5). These

additional algorithms serve to give an indication of how many terms in the sum-

mation are needed to produce classifications equivalent to those produced by

the original algorithm. The results of this study are summarized.in Table 1. The

context distribution for the simulated data set test was estimated by tabulation

from the template classification from which the simulated data set was gen-

erated and the context distribution for the LACIE data set was tabulated from

the first 25 lines of a ground-truth-guided no-context classification* as described

in [2]. Both data sets were evaluated over the entire 50-pixel square area. The

• A ground-truth guided classification is performed just like the usual no-context
classification except that the classifier IB restricted to selecting spectral classes from the in-
formation class indicated by the ground truth data.
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context distribution for the Bloomington data set was tabulated from entire 50-

pixel square area of a grbunti-truth-guided no-context classification. Since the

Bloomington data set has o'hly 1317 grourid-truth pixels-, the ground-truth-

guided classification was allowed to degenerate to the usual unguided no-context

classification over the remaining il83 pixels. The Bloomington data set was

evaluated over the 1317 ground-truth pixels. Eight-nearest-neighb'or context

was used in all cases.

Table 1

PERFORMANCE OF 'APPROXlMAtlON ^ALGORITHM 'IN TERMS 'OF AGCURAC?
Context distribution estimated fr6m;gro'un'd-ttuth-guided'class'n.

Data Set

Overall •Accuracy, %

'Orig. Mg., 5 Largest Terms 3<Liarges't Terms Apprbx. Alg.,
Eq.-(5) . .of'Siim in Eq. {5l :6I '

Simulated

LACIE

Bloomington

96:8^ 96:88

•87.52 87.52

95.60 95.60

87^52

97.04

87.47

95:52

As can be-seen in'Table 1, the apprbxirriate'algorithm!perforhled very well

in terms of overall accuracy when compared'tbfthe original algorithm. The'table

also shows that in the'two real data sets,-the five largest terms of the sum in

equation (5) are all that are needed to produce'identical classifications to those

produced by' the full sum (the originalalgorithrn).

The accuracy'of the approximate algorithm"was "also tested .in two'cases

"where the "Power Metn'od"vwas 'Used in estimating the context distribution (see

['3]rfor a descriptibn-of the Power Method). 'Table 2'-displays the classification

'accuracies resuiting from;!applyirig the Power vMethb'dH'o'--the Bloomington data



-11-

set as described in [3]. Also displayed are the accuracy results from applying

the Power Method in a similar manner to the LACIE data set.

Table 2

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF ACCURACY
Context distribution estimated using Power Method.

Data Set

Overall Accuracy, %

Original Algorithm.
Equation (5)

Approximate Algorithm,
Equation (7a&b)

Bloomington

LACIE

88.46

86.70

88.38

86.66

Again the approximate algorithm produced overall accuracies that were

very close to those produced by the original algorithm. To put these minor

accuracy differences in proper perspective, it helps to note that a conventional

uniform-priors no-context classifier produced overall accuracies of 83.07% on

the Bloomington data set and 78.73% on the LACIE data set.

The approximate algorithm was compared in terms of computer timings

•with the original algorithm on the simulated data set and the two real Landsat

data sets. Highly optimized versions of each algorithm (written in the "C" pro-

gramming language) were run on PDP-11/45 and PDP-11/70 computers. Also

compared to these two algorithms was a highly optimized version of the original

algorithm that simply allowed the underflows to occur rather than attempting to

circumvent the underflows. This version allows comparison of the approximate

algorithm to a simulated implementation of the original algorithm on a com-

puter with adequate exponential range.
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Table 3

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square LACIE data set. two-nearest-neighbpr context,

480 nonzero elements in context distribution, PDP-11/45 computer)

Classifier
Time in Seconds

Real+ User+
Original Algorithm
with underflow protection

Original Algorithm
without underflow protection

Approximation Algorithm

2993

2498

1247

2636

2388

1185

The length of time the classifier took to process the 50-pixel square data

sets varied depending primarily on the number of nonzero elements of the con-

text distribution. (The number of terms that need to be evaluated in the sum in

equation (5) and the number of terms to be compared in the maximization of

equation (7b) are equal to the number of nonzero elements in the context distri-

bution.) The ratio of timings between the three programs remained fairly con-

sistent, however, across all data sets. Tables 3 and 4 display typical quiet sys-

tem* timings on a PDP-11/45 computer for cases of few nonzero elements of the

context distribution (480) and relatively large number of nonzero elements

(2193). Table 5 gives the timings for the case displayed in Table 4, but run on a

PDP-11/70 computer.

+ Real time is the time the program is running in the computer including the time the pro-
gram is swapped out for other tasks. User time is essentially time spent doing computa-
tions.
•• The runs were made during early morning hours when few other tasks were being per-
formed, by the computer.
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Table 4

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square simulated data set. two-nearest-neighbor context,

2193 nonzero elements in context distribution, PDP-11/45 computer)

Classifier
Time in Seconds

Real User
Original Algorithm
with underflow protection

Original Algorithm
without underflow protection

Approximation Algorithm

18596

15064

9079

14702

14290

8675

Table 5

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square simulated data set, two-nearest-neighbor context,

2193 nonzero elements in context distribution, PDP-11/70 computer)

Classifier
Time in Seconds

Real User
Original Algorithm
with underflow protection

Original Algorithm
without underflow protection

Approximation Algorithm

7240

6830

2747

5832

6573

2526

The three tables show that the approximate algorithm averaged less than

half the real and user time taken by either of the other two algorithms. This

amounts to a significant improvement in computation time.
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V. CONCLUDING REMARKS

The contextual classification algorithm developed in [2] is very computa-

tionally intensive, typically requiring a large amount of computer time. An ap-

proximation to this algorithm has been explored in this report. Experimental

results from one simulated and two real data sets show that on these data sets

the approximate algorithm takes significantly less computer time while produc-

ing classifications that do not differ significantly in accuracy from classifications

produced by the original algorithm.

By the nature of the approximate algorithm, it is expected that similar time

savings will occur when the approximate algorithm is used on other data sets.

Whether or not the accuracy results presented her? can be expected with other

data sets depends on the extent to which the data sets tested here are

representative of remotely sensed data in general. We expect that they are fair-

ly representative. Further tests are planned to. confirm that the approximation

does not significantly affect classification accuracy.
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