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LARS Technical Report 081580

CONTEXTUAL CLASSIFICATION OF
MULTISPECTRAL IMAGE DATA:
APPROXIMATE ALGORITHM

James C. Tilton

School of Electrical Engineering
and
Laboratory for Applications of Remote Sensmg

Purdue University
West Lafayette 47907, U.S.A.

ABSTRACT

Earlier reports[2,3] have introduced a classification algo-
rithm incorporating spatial context information in a general, sta-
tistical manner. Here an approximation to that algorithm is
presented which is computationally less intensive, yet produces
classifications that are nearly as accurate.

1. INTRODUCTION

The host widely used method for clas;sifying remotely sensed data from"
such sources as multispectral scanners on aircraft or satellite platforms is a
point-by-point classification technique in which data from each pixel in the
scene are classified individually and and independently[1]. The information nor-
mally used by this classifier is only spectral or, in some cases, spectral and tem-
poral. There is generally no provision for using spatial information.

In contrast, when scanner data are displayed in image for;m, a human
analyst routinely uses spatial context to help decide what is in the imagery.
Using context, he or she may be able to easily. pick out roads, delineate boun-

daries of agricultural fields, and differentiate between grass in an urban setting
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(lawns) and grass in 'a‘uni agricultural setting (pest;ure or forage crops) where a
pointirb,y-poini classifier' would: have much difficulty in doing so. -

Earlier fepor_ts[2.3‘~]7 describe the d’evelopment of a statistical classification
algorithm which incorporates: spatial contekt" information ina genefal manner.
This algorithm. exploits the tend‘ency,.alluded‘ to abov_e of certain ground-eover |
. classes to be more 1i’kel’y‘ to occur in s.ome»cont'exts than in:others. |

This contextual classxﬁcatlen algorithm is very computatlonellf 1nten51ve.
typlcally requiring a'large amount of computer time. To reduce execution txme._
one could exploit the latest 1mprovem-ents« in the raw speed of computer com-
ponents and=/or. one could: take advantage of s’.:pﬂeei:atlé computer architectures
involving multip-l‘e proc’:essiing' elementst2.4i]?. An alternative tactic discussed
o here is to look for a less computatibonal'ly' intensive al’g,onithm_ which: approxi-

mates the .original' contextuali ciessiﬁeation algorithm. ‘1f-such an algorithm pro-
duces cl-assi-ﬁcatiidns that d‘o» not difﬁer signiﬁ’ean»tly inaccuracy from t‘;he' eriginal
- algorithm,. the: apprommate algonthm would be the preferred algorithm in prac-

' . tical applications usmg conventlonal (serlal) computers*

" 1. ORIGINAL ALGORITHM

In order to fully discuss the approxirﬁaﬁe _a'lgerithm. a brief description of
the original algorithm must be given. Fer a detailed <.1e--riv'ation of the decision
function used in the original aLgoritﬁrxi, see [2]. |

Consis{ent with the- genefal: char.acterist;ics of imaging systems for remote
sensing, we assume a two- dlmensmnal array of N' -N xNi; random observat.xons
'X;; having fixed but unknown classnﬁcatmns ¥y;.- as shown in Figure 1. The obser-
vation X;; consists of n me_asur_ements {usually cor;_t-@‘[m.r-,gx spectra-l- and/ or tem-

poral information), while the classification Uy can be any one of m spectral or
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information classes from the set {1 = {wy,wp,..., 0 3.

V11 P12 0 T,
V21 B2z -+ Vaw,
Tvg " Oww,

Figure 1. A two-dimensional array of N=NxN, i)ixéls.

Let X denote a vector whose components are the ordered observations:
X =[X;;]i=1.2,...Ny;j=1,2,....N2]".

Similarly, let ¥ be the vector of states (true classifications) associated with the

observations in X:
9= [9y]i=1,2.. . Nyuj=1,2... NI .

Let the action (classification) taken with respect to pixel (i,j) be denoted by
ay£€). We restrict the decision function a;;(-) to depend only on an arbitrary but
fixed subset of p observations in f This subset includes, along with Xi;, p-1
observations spatially near to, but not necessarily adjacent to, Xy. These p-1
observations serve as the spatial context for X;; and are taken from the same
spatial positions relative to pixel position (i,j) for all i and j. Call this arrange-
ment of pixels together with X;; the p-context array, several examples of which
are shown in Figure 2. Group the p observations in the p-context array into a

vector of observations X;; and let ¥; be the vector of true but unknown
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classifications associated with the observations iﬁ { T Letﬁ 19”’80? stand for é-
veci’.o’vé‘; of classes. Each ¢ofiponent ;‘)fl?” is a variable v‘vh:ich can: take on any
élaﬁ_siﬁcatidn value. Note Eha'ﬁéij is the particular instagne"e;‘ of 9P '-asspciated- with
~ pixel position (i.j). Cox;responcience of the .c'om-p.onent.'sv 6f7‘l?’t-j. Xy and %P to the
positions in. the p-coﬁt;ext array i"s: ﬁxed but arbit_rary-exciépﬁ that)ut.h_é piiél« to be

classified will always co?tespon&- to the p** component. -

it |
L | | | i+ |
; ]I - L. J‘.» Qo ki _‘Ii 0
a p=2 chdice . a p=2 choice
iLj | - o
Bjr | Lo N A T R TS

i+1,j

a p=3.choice
‘a p=5 choice

Figure 2. Examples of p-cornitext arrays.

Our optimal decision rule now has the form
a5 (X) = d‘({ij._)' _ ' o (D)

-for a fixed funétion d() rﬁapping p-vectors of observations to actions. In deriv-

ing the explicit decision function we assume that the dis-tiri'fi;iitiori of X is such
_that every X;; for which ¥;=3R has the same marginal demnsity, i.e. the marginal

densities depend only omn the measurement values m Xﬁ- and the set of
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classifications in ¥ and not the location (i.i)- Under this assumption the margi-

nal density becomes
fyl18g=0P) = £(|97). | (2)

Utilizing a "0-1 loss function”, the decision rule becomes:
d(Xi;) = the action a which maximizes.

o 0P,

ﬂp =a

Y C()f (Xyl5) (3)

where C(;l_?”) the context distribution, is the relative frequency with which ¥
occurs in the arrayg. |

One way to satisfy the assumption resulting in the relation exp‘ressed by
equétion (2) is to assume class-conditional ihdependence for X. In this case, the

marginal density becomes
7 19 = [17 06 l92) (4)

» Where X, and ¥, are the k%" elements qf _)_(_‘J'. and ¥, respectively. There may be
other densities for)_{ with the necessary property, but it is not 'apparent how one
could construct a ﬁseful density without making possibly inconsistent assuinp-
tions. Invoking the ciass-conditional independence assumption, the decision

rule in equation (3) becomes:

d(Xy) = the action a which maximizes

Y ¢ T1F (X |0). 5)
Feli?, - k=1

'Bp =a
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The optimal choice of d{:) cannot be,_impiernented in practice since it
depends on G(_‘t_YP) and the f (X, |¥,) which are unknown. Methods for estimating
the f(X,|¥,) are well established from considerable experience in using the
coﬂventional no-context maximum likelihood decision rule[1]. Methods for
estimating G (.191’) from the .‘_)9,- and the eﬁecti?eness of these estimations are dis-

~ cussed in the earlier rep,ort,s_[z-.s_], and are the subject of ongoing research.

1

1II. APPROXIMATE ALGORITHM

To come up with a reasonable approximate algorithm, one must examine
the computer_' irnplementation of the original decision function®. Cdnsider the
case ﬁhere the set (] is defined pve‘r‘ spectral classes and the class-conditional -
independence assumption is taken. qu this case it is tegsonable to"ass_ume the

. densities f(X; |9,) in equation (5) to be multivariate normal with mean vector

M, and covariance matrix %y, giving

) r _1 '
£ 19x) = [2%,] 120, | Zexp[-BXe - Mo, T EGH(Xe - Ma,)

where n is the diménéionality of the observation X, (see {1] for the rationale
behind this assumption in the no-context case). Using the multivariate normal

assumption, equation (5) becomes
d(Xy) = the action a which maximizes dq (Xy)

where |

* For this study, the algorithm was implemented on a P—DP—'l, 1/45 computer in the program-
ming language "C". Test runs were also-made on a PDP-11/70.computet.
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| m
Y |
da(Xg)= D 6 | ® 120, Zexp|-HiXe My, ) 55} (X~ Mo,)
- Pew, k=l
Vy3e

) am
Let do(Xis) = In[da (Xi5)x(2n) 2 |. Maximizing d,(X;;) is equivalent to max-

imizing da(:\_’,-,). Letting @y, (X,) = (Xi —M,,k)TE,;:(Xk -Ms,), we have

. ) _1 .
di(Xy) = | B G() T IZs, | Zexp[-¥Qs, (X:)]|
- e, k=1

19p=a.

P 0P,

"’p=°

=1In| ) exp[lnC@p)—%é:i[lnIE-a,|+Q~o,,(Xlé)]]

=in| % explF(Xy,9)]

where
FXg5) 210G (P)-%3 n|s, 1425, (10)]

In the simulated and real data sets studied {see the earlier reports[2,3)),
the term exp[F({‘-,-ﬁV)] ranges over a larger negative exponential range than
available on the PDP-11/45 (an exponential range of 10*% is available). To cir-
cumvent this problem it was necessary to use the following procedure.

Let

— ?tm. —— —

17}, =a



and rewrite dg(Xy;).as follows:

a.(th)—ln eXP[M Xl 3 eXP[F(Xq OP)=M, (Xu)]
PP, |

'Op—a

= M.a(_)ftj) +1n| 3} exP[F(fij-_if.’);Ma({ij)] . (6)
. P eqP, " ' :

_19},_:-70.

,Calculaﬁr;g du (é' ,5,-) in this way insures that at least one term of the sum does not
céuse undegﬁqﬁ because the exponent of fhg maximum term, Ma;(:\:q’), is never
taken. This procedure also makes it less likely tha't other terms in f.he sum will
cause underﬂow (the F (X Xz 19" ) tend to be large negative numbers)

In checking out thlS particular 1mplementat10n of the de01s1on function, 1vt
was noted that Ma({.‘j), was in most cases ski‘g.ni_ﬁggr;‘tvl;y larger than the loga-
rithmic term in ggp%x_.tio_n (8). This observation sgggestgg. fhe fp}low'}n'g gpﬁroii— ‘

mation of the decision function first given in equation (5)
d(Xi;) = the action a which maximizes Mo (Xy). - (7a)
or in the no,}tatAion of equation (5):

d(Xi;) = the action ¢ which maximizes for all ¥ £QIf {rit_h Vp=a
G171 (i 15,). (7b)

Comparing equations (6) and (7a) one can see that the implementation of

tion (7a), the logarithmic term in equation (6) need not be calculated and the

individual values of F(Xg,' J92) for a particular action a need not be stored; only
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algorithm will take less cemputation time than the original algorithm for any
data set. The effect of the approximation on classification accuracy, however,

may be data dependent.

IV. EXPERIMENTAL RESULTS

It now remains to be tes@ed empirically whether the lower computational
and storage requirements of the approximate algorithm reeult ina significant
savings in computer costs when compared to the original algofithm. and
whether 'theA classifications produced by the approximate algorithm differ
significantly from the claesiﬁcations produced by the original algorithm.

The approximate algorithm was compared for accqracy'with the original
algorithm 1n tests using the simulated data set and the real data sets described
in [2]. (The real data sets will be subsequentially referred to as the LACIE and
Bloomington data sets.) Included in the comparisons were algorithms that take.
only t.he three or five maximum terms in the summation in equation (5). These
additional algorithms serve to give an indication of bow many terms in th‘e sum-

mation are needed to preduce classifications equivalent to those produced by
the ‘original algorithm. The results of this study'are summarized in Table' 1. The
context distribution for the simulated data set test was estimated-by tabulation
frc;m the template classification from which the simulated data set was gen-
erated and the context distribution for the LACIE data set was tabulated from
the first 25 lines of a ground-truth-guided no-context classiﬁcation". as described

in [2]. Both data sets were evaluated over the entire 50-pixel square area. The

* A ground-truth guided classification is performed just like the usual no-context
classification except that the classifier is restricted to selecting spectral classes from the in-
formation class indicated by the ground truth data.
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context distribution fof the -Elooi’niqgton data set was tabulated froin entire 50-
pixel square area of a é‘"r’d’ii-nii-‘truth-g\iided no-context cﬂla§§'iﬁceti6ﬁ.- Since the
Bloomington data set has only 1317 ground-truth pixéels; the ground-truth-
guided classification was allowed to degenerate to the usual unguided no- context
classification over the remaining 1183 pixels. The Bloomington data set was
evaluated over the 1317 ground-truth pixels. Eight=neafes£-neighb‘or context

was used in all cases.’

Table 1

PERFORMANCE OF ‘APPROXIMATION ALGORITHM IN TERMS ‘OF ACCURACY
Context ‘distribltion estimated from: :ground-truth-guided class'n.

Overall Accuracy, %

Data Set : ‘Orig. Mg., 5 Largest Terms 3 Largest Terms Approx. Alg.,
| Eq.45) ..of Sum in Eq.{5). of Sirn'in Eq L‘S) _Eq. (7a&b)
Simulated | 9664 96.88 97i0a 97.04
LACIE ‘87.52 87.52 8752 | 87.:47
|| Bicomington 1 95560 ~ 95.80 Er 95:52

L

As can be'seen'in 3'Ta'ele 1, -f.he'."é.ppi*t)')&iﬁi'e'te~alg'dfi€hi;n3§effdrmeﬂ very ‘well
in terms of overall accuracy when COmp'aréd"~'tb‘€he origiﬁal algorithm. The-able
also shows that in the‘two real data sets, 'the ﬁve largest terms of the sum in
equatmn (5) are all that are needed to produce’ identical classifications to those
‘produced by the full sum (the original ‘algorithm).

The 'accﬁr‘acy of ‘the aperbximate algorithm “was "also tested in two’cases
"where the "Power ‘Méthod” ‘was used in estifnating the context distribution (s‘ee
['3]‘;for a description of the Péwer ‘Method). ‘Table 2-displays the cla’ssiﬁca_tior-l

‘acéuracies résuiting fromvapplying the Powér ‘Méthod' tothe Bloomington data
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set as described in [3]. Also displayed are the accuracy results from applying

the Power Method in a similar manner to the LACIE data set.

Table 2

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF ACCURACY
Context distribution estimated using Power Method.

‘Overall Accuracy, %

Data Set Original Algorithm, Approximate Algorithm,
A Equation (5) Equation (7a&b)

Bloomington 88.46 ‘ 88.38

LACIE 86.70 86.68

- Again the approximate algorithm produced overall accuracies that wefe
very close to those produced by the original algorithm. To put these minor
accuracy differences in proper perspective, it helps to note that a conventional
uniform-priors no-context classifier produced overall accuracies of 83.07% on
the Bloonﬁngton data set and 78.73% on the LACIE data set.

The approxim#te algorithm was compared in tef'ms of computer timings
with the original algorithm on the simulated data set and the two real Léndsat
data sets. Highly optimized versions of each algorithm (wfitten in the "C" pro-
gramnﬁng language) were run on PDP-11/45 and PDP-11/70 computers. Also
compared to these two algorithms was a highly optimized version of the original
algorithm that simply allowed the underflows to occur rather than-attempting to
circumvent the underflows. This version allows comparison of the approximate
algorithm to a simulated implementation of the original algorithm on a com-

puter with adequate exponential range.
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Table 3

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square LACIE data set, two-nearest-neighbor context,
480 nonzero elements in context distribution, PDP-11/45 computer)

Time in Seconds
Classifier

Real+ _ User+
Original Algorithm :
with underflow protection : 2993 ' <2636
Original Algorithm _
without underflow protection 2498 : 2388
Approximation Algorithm _ 1247 '1185

The length of time the classifier took to process the 60-pixe1 square data

sets varied dépending primarily on the number of nonzero eléments of the con-
text distribut-ion. (The number of terms that need to be. evaluated in t;he sum in
equation (5) and the number of terms to be compared in the maximization of
equation (7b) afe equal to the number of nonzero elements in the context distri-
bution.) The ratio of timings between the three programs remained fairly con-
sistent, however, across all data sets. Tables 3 and 4 display typical quiet sys-
tem* timings on a PDP-11/45 computer for cases of few nonzero elements of the
context distribution (480) and relatively large number of nonzero elements
(2193). Table 5 gives the timings for the case displayed in Table 4, but run on. a

PDP-11/70 computer.

+ Real time is the time the program is running in the computer including the time the pro-
gram is swapped out for other tasks. User time is essentlally time spent doing computa-
tions.

*. The runs were made dl..u'ing, early morning hours when few other tasks were being per-
formed. by the computer.



-13 -~

Table 4

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square simulated data set, two-nearest-neighbor context,
2193 nonzero elements in context distribution, PDP-11/45 computer)

Time in Seconds’
Classifier
Real User
Original Algorithm : ' '
with underflow protection 18596 . 14702
Original Algorithm :
without underfiow protection 15064 14290
Approximation Algorithm ' : 9079 8675
Table 5

PERFORMANCE OF APPROXIMATION ALGORITHM IN TERMS OF TIMINGS
(50-pixel square simulated data set, two-nearest-neighbor context,
2193 nonzero elements in context distribution, PDP-11/70 computer)

Time in Seconds
Classifier
Real . User
Original Algorithm
with underfiow protection 7240 o832
Original Algorithm
without underfiow protection 6830 6573
Approximation Algorithm 2747 2526

The three tables show that the approximate algorithm averaged less than
" half the real and user time taken by either of the other two algorithms. This

amounts to a significant improvement in computation time.



-14 -

V. CONCLUDING REM_ARKS

The contextual classification algorithm developed in [2] is very computa-
tionally intensive, tjfpically requiring a large am'ount of computer ti_me. An ap-
proximation to this algorithm has been explored in this réport. Experimental
' results from one simulate_d and two real data getrg show tl__:at on these datt—_x sets
the approximate algqrithm takes significantly less computer time wbilé produc-
ing c_:(l_,a,ssiﬁcatiér;_,s that do not differ significantly in accuracy from classifications

produced by the original algorithm.

By the nature of the approximate algorithm, it is expected that similar time
savings will occur when the approximate alggrithm is used on other data sets.
Whether or not the accuracy resu-lts presgptgq here can be gxpected wi@h other
data sevts depends on the extent to which the data set; tested he_fe are
repi‘esentative of remotelg s‘eh§ed data in general. We expect that they are fair-
'ly representative. Further tests are planned to confirm that the approximation

does not signiﬁcaritiy affect classification accuracy.
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