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SUMMARY 

An optimal  control  theory  is  presented  that  accounts  for  stochastic  and 
variable  time  sampling  in a distributed  microprocessor-based  flight  control 
system.  The  theory  is  developed  by  using a linear  process  model  for  the  air- 
plane  dynamics  where  the  information  distribution  process  is  modeled  as a 
variable  time  increment  process  for  which,  at  the  time  that  information  is 
supplied  to  the  control  effectors,  the  control  effectors  know  the  time  of  the 
next  information  update  only  in a stochastic  sense. A stochastic  optimal  con- 
trol  problem  is  formulated  and  solved  for  the  control  law  that  minimizes  the 
expected  value of a quadratic  cost  function. An example  is  presented  where  the 
theory  is  applied  to  the  control  system  design  of  the  longitudinal  motions  of 
the  F-8 DFBW (digital  fly-by-wire)  airplane.  Simulation  results  were  generated 
by  using a Monte  Carlo  simulation  in  which  one  of  three  possible  sample  times 
was  selected  with a Markov  process  for  each  sample  time  interval.  For  each 
sample,  the  control  system  did  not  know  what  the  sample  time  was  at  the  start 
of  the  sample  time  interval.  Theoretical  and  simulation  results  indicate  that, 
for  the  example  problem,  the  optimal  cost  obtained  by  using a variable  time 
increment  Markov  information  update  process  in  the  control  system is almost 
identical  to  that  obtained  with a known  and  uniform  information  update  interval. 

INTRODUCTION 

The  availability  of  microprocessors,  assembled  from a small  set  of  large- 
scale  integration (LSI) logic,  has  presented  the  control  system  designer  with 
new  opportunities  for  sophisticated  control  system  design.  Many  designers  of 
control  system  components  have  improved  their  products  through  the  use  of  micro- 
processors.  This  fact is substantiated  in  reference 1, where a design  of a 
microprocessor-controlled  rate  gyro is presented.  The  use  of  microprocessors 
in  the  rate gyro resulted  in  an  improved  performance  and a substantial  savings 
in  hardware.  The  trend  of  device  manufacturers  to  use  microprocessors  as 
integral  parts  of  their  equipment  is  expected  to  continue.  The  features  of a 
microprocessor - flexibility,  modularity,  good  hardware  communications,  and 
low  cost - have  made  distributed  control a suitable  answer  to  many  control 
problems. 

The  following  sketch  shows  an  example  of a distributed  flight  control 
system  with  minimal  module  requirements  from  the  airplane  flight  control  point 
of view: 
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Note  that a microcomputer  control  unit  (cu) is associated  with  each  physical 
device  in  the  system  and  that  each  controller  can  communicate  with  the  other 
physically  distributed  elements  by  using  an  information  exchange  bus. 
Operating  systems  for  distributed  flight  control  systems  will  necessarily  be 
complex  and  will  employ  various  techniques  for  reducing  data  flow  in  the 
information  exchange  buses  and  for  ordering  of  tasks.  The  need €or reducing 
the  data  flow  is  dictated  by  the  finite  bandwidth  of  the  information  exchange 
bus  whereas  the  need  for  task  ordering  is  dictated  by  the  finite  computational 
resources  of  the  system  and  by  reorganization  requirements  to  accommodate 
component  failures.  This  paper  addresses  one  aspect  of  the  data  flow  problem - 
specifically,  the  case  where  sensor  components  obtain  an  estimate  of  the  state 
of  the  airplane  and  transmit  the  estimate  to  the  airplane  flight  control 
effectors  by  using  the  information  exchange  bus. It is assumed  that  data  com- 
pression  techniques  are  used to reduce  the  bus  traffic  and  that  the  state  is 
updated  to  the  control  effectors  only  when  required  to  maintain  adequate  perfor- 
mance  of  the  system.  Thus,  there  will  be  variable  time  intervals  between  infor- 
mation  updates  to  the  control  effectors.  Accounting  for  the  variability  in  the 
information  update  time  intervals is an  important  consideration  in  the  design 
of  the  logic  of  the  controllers  for  the  flight  control  effectors.  This  paper 
presents a theory  for  accomplishing this.based  on a stochastic  modeling  of  the 
information  update  process. 

In spite  of  the  fact  that  the  optimal  control  theory  of  sampled  data 
stochastic  linear  system  has  advanced  rapidly  since  some  of  the  early  contri- 
butions  (refs. 2 and 3 ) ,  nearly  all  results  have  been  obtained  under  the 
assumption  of  the  existence  of a centralized  decision  maker  which  takes  all  the 
measurements  and  generates  all  control  inputs.  For  systems  with  multiple 
decision  makers, a general  computationally  feasible  theory  does  not  exist  at 
the  present  time.  Information  exchange  is a critical  issue  in a distributed- 
control  system  where  no  controller,  local or central,  possesses a complete 
description  of  the  system.  The  controllers,  therefore,  must  exchange  informa- 
tion  among  themselves  in  order to achieve  satisfactory  operation. 
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The  type  of  information  available  to a controller  for  its  decision  making 
is  called  its  information  pattern  (ref. 4 ) .  For a distributed  processing 
system,  information  patterns  differ  considerably  from  those  of a centralized 
control  system  in  which  the  central  controller is assumed  to  have  complete  and 
instantaneous  information  of  the  system.  Because  of  its  decentralized  nature, 
a distributed  control  system  may  have a stochastic  information  pattern  where 
the  data  are  sampled  at  random  times.  Modern  control  theory  has  only a limited 
amount  of  available work on  this  practical  aspect  of  control  problems,  the  past 
emphasis  being on  single  rate  control  and  filter  problems  which  are  well 
developed  (refs. 3 and 5 ) .  It has  been  assumed  that  the  information  pattern 
is  deterministic  and  control  systems  with  stochastic  information  patterns  have 
received  little  attention.  Accordingly,  the  primary  emphasis  of  this  report 
is  the  stochastic  nature  of  the  sampling  process. In this  research, a stochas- 
tic  model  of a sampling  process  is  developed  which  accounts  for (1  ) variable 
time  intervals  in  sampling  systems; (2) uncertainty  of  data  arrival  time  in 
multiplexed  communication  systems;  and (3) multirate  sampling  systems.  The 
first  suggestion  of  stochastic  sampling is believed  to be reference 6 where  an 
optimal  control  policy  was  obtained  for a system  with a discrete  Markov  sampling 
process.  However,  the  optimal  solution  was  restricted  to a process  in  which 
the  time  interval  between  each  information  update  was  known  to  the  system  at 
the  initiation  of  the  interval.  In  the  present  report,  an  optimal  policy  is 
obtained  for  virtually  all  Markov  sampling  processes.  The  restriction is 
further  relaxed to include  the  situation  where  the  control  unit  does  not  have 
to  know  the  duration  of  the  information  update  interval  at  its  initiation. 
Instead,  the  control  unit  only  has  knowledge  of  the  past  history  of  the  infor- 
mation  update  intervals. The  assumption  is  more  applicable  to a distributed 
control  system  because  its  control  units  ordinarily  will  not  know  how  long  they 
will  have  to  act  with  the  same  information. 

As an example,  the  theory  is  applied  to  the  control  of  the  longitudinal 
motion  of  the F-8 DFBW (F-8 digital  fly-by-wire)  airplane.  Both  theoretical 
and  simulation  results  indicate  that,  for  the  application  example,  the  optimal 
cost  obtained  by  using a variable  time  increment  Markov  information  update 
process  (where  the  controller  knows  only  the  past  information  update  intervals 
and  Markov  transition  mechanism) is almost  identical  to  the  cost  obtained  by 
using a known  uniform  update  interval.  This  result  is  significant  because  in 
the  stochastic  sampling  case  the  sampling  process is known  only  in  the  stochas- 
tic  sense;  that is, at  any  instant  the  system  controller  does  not  know  the  time 
of  the  next  sample,  only  its  statistics.  The  expected  performance  of  the  system 
is, however,  nearly  the  same  as  that  of  an  optimally  designed  system  that  has 
uniform  and  known  sampling. 

SYMBOLS 

A 

B 

n x n matrix  used  to  represent  airplane  dynamics 

n x m matrix  used  to  represent  influence  of  airplane  controls on air- 
plane  dynamics 

E expectation  operator 
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P 

Q 

q 

R 

S 

Si 

T 

Tk 

t 

tk 

U 

V 

V 

W 

X 

arbitrary  function 

identity  matrix 

cost  function 

gain  matrix 

index  indicating  information  update  interval 

number  of  admissible  information  update  intervals 

indices  indicating  information  update  intervals 

iniex  indicating  last  interval  of  an  N-stage  process 

number  of  Occurrences  of  sample  time Si in  simulation 

n x n matrix  which  is  sensitivity  of  cost J to initial  condition 
variations 

probability  density  function 

n x n matrix  weighting  state  in  cost  function J 

pitch  rate 

m x m matrix  weighting  control  in  cost  function 

n x n matrix  weighting  terminal  value  of  state  in  cost  function J 

element  in  space  of  update  intervals  which  is  discrete,  finite,  and 
stationary 

transition  matrix  for  stationary  Markov  process 

element  of Tk, tl, . . ., tk 
time 

element  of Tk 

m-dimensional  control  column  vector 

a i r speed 

m-dimensional  control  column  vector  after  transformation 

n x m matrix  weighting  x,u  cross-product  term  in  cost  function J 

n-dimensional  state  vector 
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a angle  of  attack 

r control  input matrix in difference  equation  representation of airplane 
dynamics 

Y16 

6e elevator  deflection 

dummy  variables of integration 

6, flap deflection 

8 pitch  angle 

ai time  at  which  ith  information  update  takes place 

Tk space of admissible  information  update  intervals at ak 

Tk set of k time  interval  sequences  which  are  admissible for  k-stage 
process,  that is, the  Cartesian  product TI x T2 x . . . x Tk 

4J state  transition matrix in difference  equation  representation  of  airplane 
dynamics 

Subscripts : 

iljlk indices  indicating  information  update  interval 

N last  stage of N stage process 

TklTk-1 space of admissible k sample  intervals  conditioned  on  the 
process Tk-1 

Tk operation  to be performed  over  space  of  information  update  process 

0 initial  value 

A dot  over a symbol  indicates  differentiation  with  respect  to time. The 
superscript T indicates  transpose  of  the  matrix. 

MODELING OF RANDOMLY SAMPLED SYSTEMS 

The purpose of this  section is to  present a model  which is useful in 
describing  the  stochastic  information  transfer  process in a multiple-processor 
control system. Consider  the continuous time  invariant  dynamical  system  repre- 
sented by the  linear  differential  equation 

2 = AX + Bu (1 1 

where x is  an n-dimensional  vector  representing  the  system  states, u is  an 
m-dimensional  vector  representing  the  control  inputs, A is  an n x n matrix 
describing  the  dynamics  of  the  system,  and B is  an n x m matrix describing 
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the  control  effectiveness.  The  state  information  is  assumed  to be updated in 
the  controller at discrete  points in time ak. The sequence ak is  defined 
as the  sum  of  a  stochastic  process  tk  in  the  following  sense 

where tk  is an  element  of  the  set Tk which  is  the  set  of  admissible  sample 
time  intervals.  Referring  to  the  sketch on the  right,  which  illustrates  the 
stochastic  sampling  nomenclature 
that is followed  throughout  this 
report,  one  finds  that 00 
denotes  the  starting time,  tk STATE, 
denotes  the kth  time  interval X 
between  two  consecutive  infor- 
mation  updates,  and ak is  the & 
time  that  the  kth  information 
update  takes  place.  Since  the Time, (J 

time  interval  between  two  con- 
secutive  information  updates 
cannot be negative,  the  sample  space  of  the  stochastic  process Ti for 
i = 1, 2, . . ., N  is  restricted  to  sets  of  positive  real  numbers.  There is, 
however,  no  restriction  on  the  statistical  nature  of  the  process. The set Tk 
of information  update  sequences  Tk  which  are  admissible for a  k-stage  process 
is the  Cartesian  product  of ~ i ,  that is, 

" -" " A  

ON 

Xk 7 

The  average  of  a  quadratic  integral in the  state  and  control is defined 
to be the  cost  functional  for  the  N-interval  process  to  achieve  the  desired 
system  performance. A cost  functional  is  assumed in the  following form: 

The  cost  functional  can be expressed  as  the  sum  of  N  integrals by  divid- 
ing  the  total  time  into  N  intervals,  namely, 
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If c o n t r o l   i n p u t s  are f u r t h e r   r e s t r i c t e d  to piecewise cons tan t   func t ions   o f  
time that change only a t  sampl ing   ins tan ts  a k r  t h a t  is, given  the  sequence 
Uk# k = 1 8  2, - 8  N, then  

u ( t )  = Uk 

1 
J = -  

2 ETN + k=O E i Q k x k  +'vTR k k V] k 

'k = ' ( tk+ l )  - (tk+l) Rk wk 
-1 T 

r k  = '(tk+l) 
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Equations ( 6 )  were  obtained  by  using  the  techniques  of  reference 7 with  the 
transformation 

vk = uk + Rk Wkxk -1 T 

employed  to  eliminate  the  cross-product  terms x  W u that  would  otherwise 
appear  in  the  cost  function  representation. 

T 
k k k  

OPTIMAL  CONTROL OF RANDOMLY SAMPLED SYSTEMS 

The  main  results  on  optimal  control  of  randomly  sampled  systems  can  be 
summarized  in  the  following  theorem. 

Theorem 1: For  an  N-stage  stochastic  process  model  described  in  equa- 
tions ( 6 ) ,  the  sequence  vk  (eq. (7)) which  minimizes J given  that  the 
distribution  of  the  stochastic  process  {tk)  is  governed  by  the  following 
recursive  relations: 

\ 

JN-k,N = “ N - k ’ k s - k  
T 

where  for  notational  simplification  equations ( 8 )  have  been  written  as 
pk PkITN-k  and KN-k P KN-kl T ~ - ~ .  For  the  proof,  see  the  appendix. 

Markov  Process  Assumption 

The  statistical  property  characterizing a Markov  process is that  the 
present  state of the  system  contains  all  relevant  statistics  pertaining  to  the 
future.  Mathematically, a process x], x2, . . . is  called a Markov  chain  if 

If Tk = {tl . . . tk}  with Tk as  its  sample  space  and  if Tk is the 
sample  space  of  tk,  then,  assuming a Markov  chain, 
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This  equation  states  that  the  present  sampling  interval  determines  the  proba- 
bility of the  next  sampling  interval  in  the  future. For such  a  process,  a 
transition  mechanism  can  be  defined  and  the  a  priori  joint  density 9 (T ) 
can  be  written  as  k k 

- - 
pT kl k-1  (tkl  k-1) 'T k-l (Tk-1) 

Hence,  for  a  Markov  process,  specification of the  a  priori  density  function 
pT  (to)  together  with  the  transition  probabilities p, 
0 kl k-1 (tkl tk-l) 

completely  determines  the  distribution  of  the  process. As a  result, 
equations ( 8 )  can  be  modified  to  replace  conditioning on TN-k  by  conditioning 
on  TN-k. 

Theorem 2: The  probabilistic  Riccati  equations  with  Markov  assumption  are 

Pk = ET 
N-k+l I 'N-k (%-k + <-k%-k%-k + P N - k  + 'N-k%-qT  'k-lPN-1 + ' N - k s - 4  I 

The  computation of a  solution  to  these  probabilistic  Riccati  equations 
is  simpler  than  that  for  equations ( 8 )  because  the  stochastic  process is more 
restricted.  However,  if  the  process  is  dependent on time  and  if  the  sample 
space  of {tk}  is  continuous,  integration  still  has  to  be  performed  at  each 
stage  of  the  recursive  Riccati  equation.  The  computational  time  for  the  Markov 
case  can  be  exhorbitant. On the  other  hand,  if  the  process is stationary 
(independent  of  time)  and  the  sample  space  of  {tk}  is  continuous,  integration 
for  the  expectation  operator  has  to  be  performed  only  once  before  solving  the 
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probabilistic  Riccati  equations. A simpler  case  in  which  the  process  is  sta- 
tionary  and  the  sample  space  is  discrete is discussed  next. 

Discrete  Stationary  Markov  Processes 

If  the  sample  space T is  discrete  and  finite  and  if  the  conditional 
probability  is  stationary, hen the  transition  mechanism  can  be  represented 
by  the  matrix 

for a given  sample  space Tk = {sl, s2, . . ., sMI for k = I ,  2, . . ., N. 
In  that  case,  the  optimal  solution  consists  of M gain  sensitivity  matrices 
at  each  stage so that 

and 

Also,  the  expectation  operators  can be replaced  by  finite  summations  such  as 

where f is  an  arbitrary  function. 

For  simplification,  the  following  notation is used: 

(i = 1 ,  2, . . , M) 

where ~ i ,   ~ i ,  $i, and ri are  defined  in  equations ( 6 ) .  The  probabilistic 
equations  can  naw  be  written  in  difference  equation  form. 



Theorem 3: The  recursive  relations  for  discrete  stationary  Markov  processes 
are 

The  recursive  computations  required  to  generate  the  optimal  control  for 
these  probabilistic  Riccati  equations  are  similar  to  that  for a deterministic 
Riccati  equation.  However,  the  probabilistic  Riccati  equation  also  requires 
the  prior  distribution  function  for  to,  namely  PTo(to),  to  initiate  the 
computation.  Furthermore,  at  each  stage  of  the  recursive  computation, M gain 
matrices  and M sensitivity  matrices  must  be  calculated.  The  computations 
required  to  generate  the  optimal  control  sequences  for  the  randomly  sampled 
system  is  equivalent  to  solving M Riccati  equations  coupled  by  transition 
probabilities.  If  the  transition  probability  matrix  is  an  identity  matrix, 
then  the  corresponding  Riccati  equations  are  decoupled.  This  case  corresponds 
to  uniform  sampling  with  probability  one  with  the  sampled  time  determined  by 
the  first  sample.  Each  decoupled  probabilistic  Riccati  equation  reduces  to a 
deterministic  Riccati  equation  with  uniform  sampling.  The  solution  with N 
and k infinite  is  called  the  quasi-steady-state  solution.  The  quasi-steady- 
state  solution  is  obtained  as  the M gain  matrices  approach  constant  values. 
In  general,  the M gain  matrices  have  different  quasi-steady-state  values.  For 
the  purpose  of  computing  quasi-steady-state  gains,  the a priori  distribution 
function  can  be  chosen  to  be 

PT0(t0'Si) = 1 

and 
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This  is equ iva len t  to s e l e c t i n g  an i n i t i a l   s a m p l i n g   i n t e r v a l  t o  = s i  to  s t a r t  
the  process. Hence, t he re  are gene ra l ly  M s imula t ions  of i n t e r e s t   i n   t h e  
class of d i s t r ibu t ions  considered,  one  for  each  element of the  discrete sample 
space T ~ .  The optimal cost is no t   gene ra l ly   a sympto t i ca l ly   s t a t iona ry ;   t ha t  
is, the  cost depends on t h e   i n i t i a l   s a m p l i n g   i n t e r v a l   c h o s e n ,  for example, 
the  case where T = I, because a l l  subsequent   sampling  intervals  are t h e  same 
as t h e   i n i t i a l   s a m p l i n g   i n t e r v a l .  Each s i m u l a t i o n   r e q u i r e s   t h a t   t h e   i n i t i a l  
c o n d i t i o n s   x ( 0 )   a n d   t h e   i n i t i a l   s a m p l e   i n t e r v a l  t o  c o n t a i n e d   i n  
T = { S I ,  . . ., sM} be g iven .   I f   the   quas i - s teady-s ta te   ga ins  are used and 
i f  t o  = si, then   the   cont ro l  u ( a 0 )  app l i ed   ove r   t he   i n t e rva l  (a0,ol) of 
unknown and s t o c h a s t i c   d u r a t i o n  t l  is given by u(a0) - K i X ( O 0 )  , where 
K i  = KN-k , i  as N and k become i n f i n i t e   w i t h  i = 1 , 2, . . . , M. Sub- 
sequent   cont ro l   ac t ions  are ccmputed according to Uk = Kixk i f  tk-1  = si. 
Figure 1 is a f low  char t  of the   c losed- loop   cont ro l   log ic   us ing   quas i - s teady-  
state feedback. The next   sec t ion  i l l u s t r a t e s  the   app l i ca t ion   o f  t h e  quasi- 
s teady-s ta te   theory  to f l i g h t   c o n t r o l  system  design. 

EXAMPLE APPLICATION OF OPTIMAL STOCHASTIC REGULATOR TO AIRPLANE 

The theory  developed  in   the  previous  sect ion  has   been  appl ied to  the  design 
of a cont ro l   sys tem  for   the   longi tudina l   cont ro l   o f   the  F-8 DFBW a i rp l ane .  The 
funct ion  of   the  control   system is to produce  elevator  and f lap  commands to  keep 
t h e   a i r p l a n e   i n   s t e a d y   l e v e l   f l i g h t   i n   t h e   p r e s e n c e   o f   d i s t u r b a n c e s .  A four- 
dimensional model is used to  design  and  evaluate   the  control   system. It  .is 
obta ined   f rom  l inear iz ing   the   longi tudina l   equa t ions  of motion  of   the  a i rplane 
a b o u t   t h e   e q u i l i b r i u m   f l i g h t   c o n d i t i o n  a t  an a l t i t ude  of 6100 m (20 000 f t )  and 
a 0.67 Mach number.  The state vector  is def ined  as xT = (V,a,q,e) and t h e  
con t ro l   vec to r  is UT = (6,,6,). Using these   de f in i t i ons ,   t he   equa t ion  of 
motion  of   the  a i rplane takes t h e  form  of  equation ( 1 )  where t h e  A and B matrices 
are shown i n   t a b l e  I. 

Figure 2 shows t h e  unaugmented response of t h e   a i r p l a n e  to i n i t i a l  con- 
d i t i o n s .  The motion is cha rac t e r i zed  by two o s c i l l a t o r y  modes, one  of  short- 
period o s c i l l a t i o n  and the   o ther  a long  per iod called the  phugoid. For t h i s  
example,  the  weighting matrices Q and R have  been selected so t h a t   o n l y  
e l e v a t o r   d e f l e c t i o n s  are used to  cont ro l   the   shor t -per iod  mode and so t h a t   o n l y  
the  short-per iod mode is regulated.   This  leads to high  weights on t h e  c1 and 
q error terms and  high  weights  on  the f lap  weight term. The V and 8 
weighting terms were small so as not  to  overcontrol   the   long-period mode. The 
spec i f i c   va lues   o f  Q and R for t h i s  example are Q = Diag (0.25, 3.0, 3.0, 
0.001)  and R = Diag (4 .0,  0 . 4 ) .  The sample space T was taken to  be 
T = (0.02, 0.03, 0.1 } and t h e   t r a n s i t i o n  mechanism was 

- 
0.05 0 

0.2 

0 0.3 

T = 0.8 

- 
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Hence,  if  the  sampling  intervals  at  tk-1  is s1 the  probability  that  tk = s1 
is 0.95, the  probability  that  tk = s2 is 0.05, and  the  probability  that 
tk = 53 is  zero.  Figure 3 is a graphical  representation  of  the  transition 
mechanism.  The  characteristic  of  this  transition  mechanism is that  it  leads  to 
a process  that  is  cyclic;  that is, it  tends  to  change  gradually  from  the  fastest 
sampling  interval  to  the  slowest  and  back  to  the  fastest. 

For  the  example,  the  stochastic  Ricatti  equations  (eqs. ( 1 1 ) )  have  been 
solved  iteratively  to  obtain  the  quasi-steady-state  gains  and  sensitivity 
matrices  shown  in  table  I.  The  optimal  stochastic  closed-loop  system  has  been 
simulated  using  stochastic  sequences.  Figure 4 shows  the  response  of  the 
system  using  the  optimal  stochastic  closed-loop  control  system  corresponding 
to  the  flaw  chart  of  figure 1 .  For  comparison,  the  optimal  deterministic 
solution  for a known  information  update  interval s1 = 0.02 sec  has  also  been 
simulated.  The  solution  corresponding  to  the  deterministic  and  known  update 
interval  was  obtained  by  using a transition  matrix T = I in  equations (11). 
Figure 5 shows  the  response  of  the  system  using  optimal  uniform  update 
intervals.  The  trajectories  differ  insignificantly;  this  indicates  that  little 
is  lost  in  the  stochastic  information  update  process  provided  the  stochastic 
nature  of  the  process is accounted  for  in  the  actuation  logic.  The  expected 
value of the  cost  of  the  process  can,  of  course,  be  evaluated  with  the  sensi- 

tivity  matrices  according  to  the  formula x Pa, x That  value is 0.5097 for 

uniform  sampling  and 0.5160 for  stochastic  sampling  assuming  to = SI = 0.02 
with  the  same  initial  conditions  used  in  figures 2, 4, and 5.  For  comparison 
the  cost  during a 10-sec  simulation  with  no  control  input  using  the  same  initial 
conditions  is 1.427. To study  the  stochastic  behavior  of  the  cost, 50 Monte 
Carlo  simulations  were  performed  for  the  optimal  feedback  system  and  each  non- 
optimal  feedback  system.  Table  I1  summarizes  the  statistics  of  the  simulations. 
The ij element  of  the  table  is  the  number  of  transitions  from si to s 
divided  by  the  total  number  of  si-intervals  in  the 50 simulations  Ni.  $ompare 
the  T-matrix  with  the  entries  of  table  11.  The  agreement is best  for  the  first 
row  (corresponding  to SI) because SI is  the  most  frequent  interval  used  in 
the 50 simulations.  The  optimization  results  are  summarized  in  table  111.  They 
are  consistent  with  the  theory;  that is, in  the  randomly  sampled  system,  the 
optimal  stochastic  gains  give  the  lowest  average  cost (0.5174) over  all  other 
gains  including  those  calculated  for  the  uniformly  sampled  system. 

T 
0 I 0' 

CONCLUDING REMARKS 

In this  paper  the  problem  of  accounting  for  variability  in  information 
update  time  intervals  to  actuator  type  control  units  for  microprocessor-based 
flight  control  systems  has  been  addressed.  The  problem  was  cast  as a stochastic 
sampling  regulator  wherein  the  information  update  process  was  random. In this 
way  variable  sample  time  systems  are  treated  as a stochastic  regulator  problem. 
The  optimal  control  policy  was  shown  to  satisfy a stochastic  Ricatti  equation. 
Its  use  has  been  illustrated  for  the  control  of  the  longitudinal  motions  of  the 
F-8  DFBW  airplane.  For  the 50 Monte  Carlo  simulations  conducted,  the  perfor- 
mance  of  the  system  using a stochastic  information  update  process  was  very  close 
to  that  obtained  by  using a Kalman  regulator  designed  for  and  using  the 
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deterministic and shortest  sample  time in  the  admissible  set of the  stochastic 
case. This  conclusion is supported  both by theoretical  computations  using  the 
cost  sensitivity  matrices  and by simulations. 

Langley  Research  Center 
National  Aeronautics and Space Administration 
Hampton, VA 23665 
September 1 2, 1980 
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APPENDIX 

STOCHASTIC  OPTIMIZATION - PROOF OF THEOREM 1 

The  proof  of  theorem 1 will be inductive  following  the  method  of 
reference 2 using  dynamic  programming.  Consider  the  problem of select- 
ing  the  sequence Vk to  optimize J if  the  distributions sf the  stochastic 
process  {tk}  are  given.  First a single-stage  optimization  over  the  interval 
t E (UN‘tN,uN)  is  considered  and  then  the  result  to  all N stages is gen- 
eralized.  The  following  sketch  may  assist  the  reader  in  understanding  the 
relationships  of  the  sequences Xk, Vkr tk, ak for the  N-stage  optimization 
problem;  the  sequences  of  the  sketch  correspond  to  equations (6) and (7) 
where J = Jo,N. 

State, x 

C o s t ,  J 

T i m e ,  a 

Single-Stage  Process 

Referring  to  the  system  described  by  equations (6 )  and (71, consider  the 
last  stage  of  the  process  which  makes a transition  from  ON-1  to UN with  an 
interval  tN.  The  optimal  control  of  the  stage  produces a cost 

1 5  



APPENDIX 

where PO 4 S. The control vN-l is s ta t is t ical ly  independent of the 
tN-process. The minimum of JN-~ ,N w i t h  respect  to VN-1 is obtained by 

setting .+ = 0. Thus, since XN-1 is a lso  s ta t is t ical ly  independent 

of the tN-process, 

aJN-l N 
V N- 1 

so that 

The cost  resulting from application of the  optimal control can be evaluated  as 

= -  ' E  
TNl   TN-~ (<-1 QN-l %-I + ('N-15-1) %I-1 5 - 1  5 - 1  

where for  notational  simplification 
the form %-I ' %-I lTN-l . Hence the cost  takes 

JN-l ,N,- 2 5 - 1  1%-1 
- I T P  

where 
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k-Stage Process 

The final two intervals of the  process have an optimal cost of 

N- 1 
1 JN-2,N = -  2 VN-l'VN-2 min [% T IT ks% + x xTkQkxk + vTR VI} 

N'  N-1 N-2  k=N-2 k k k  

+ min (.. N-1 Q N-1 x N-1 + VT N-1 R N-1 v N-1 + xTP X]] 
vN-l  NI  N-1 - 

N O N  

The later equation  follows from the  property of distributions 

PT - PT 
- 

N"IN-1 I TN-2 NI  TN-l  ITN-2  N-1 I N-2 'T T 

from  which 

Hence, 
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P2 = E, 
N-1 I T N-2 b N - 2  

where P2 B P2 I T N - ~  and s - 2  = KN-2 1 T N - ~ '  Hence for a  k-stage process, mathe- 

matical  induction  leads  to  equations ( 8 )  and completes the proof of  theorem 1 .  
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N 
0 

Table I. - SYSTEM MATRICES AND SOLUTION  MATRICES 

I 

- 
-9.5293-3 

-1.1 753-4 

3.3243-7 

0 - 

- 
1.1 973-4 

1 .108E-3 

-2.4543-4 

-9.4063-3 - 

- 
1.1  993-4 

1.0953-4 

-3.0393-4 

-9.4373-3 - 
- 

1.1  983-4 

1.0973-3 

-2.7463-4 

-9.41  93-3 - 

-1 .2833+1 

-9.7823-1 

-4.723E+O 

0 

1 .1083-3 

1.4323+0 

1.8043-3 

-4.01 13-1 

1.0953-3 

1.4343+0 

6.261  3-3 

-3.991 3-1 

1 .0973-3 

1.433E+O 

5.4783-3 

-3.9943-2 

0 

1 

-4.7293-1 

1 

-2.4543-4 

1.8043-3 

8.501  3-2 

4.31 1E-2 

-3.21 7E+1 

0 

0 

0 

- 

-9.4063-3 
- 

-4.01 1 E-1 

4.3113-2 

1.7693+0 - 

6.261 3-3 -3.991 E-1 

1.040E-1 5.2773-2 

-2.746E-4  -9.41  93-3 
- 

5.4783-3 -3.9943-1 

9.6073-2  4.7933-2 

4.7933-2  1.771 E+O 
- 

- 
-6.554E+O 

-2.2533-1 

-1.5393+0 

- 0 0  

" 

1.9223-4 

1  .888E-2 

2.2273-2 

-2.61 4E-2 - 

- 
2.1 973-4 

7.3OOE-2 

1.41 33-2 

-3.0983-2 - 
- 

2.2573-4 

7.4433-2 

1.1  343-2 

-3.1 863-2 - 

- 
0 

-1 .5133-1 

-1.3333+1 

0 - 

-5.3793-3 
- 

3.046E-1 

1 .941 E+O 

8.9283-1 - 

-2.991 E-3 
- 

1.200E-1 

1.2043+0 

4.991 E-1 

-5.9383-2 

9.441 E-1 

4.31  43-1 



TABLE 11.- RELATIVE FREQUENCY OF TRANSITIONS FOR 

T =  

50 MONTE CARIB SIMULATIONS 

- 
0.91 58  0.0482 O 1  N1 

= 14 661 

0 0.7990 0.201 0 

0.6888 0 0.31 12 - 
N2 

N3 

= 3 513 

= 1 025 

ENi = 19  199 

TABLE 111.- RESULTS OF MINTE CARLO SIMULATIONS 

EO random  runs of 10-sec duratiod 

.~ ~. 

Gain -JT Average 
" - "- .~ 

Optimal gain for  0.02-sec 
uniformly  sampled  system . . . 0.61 58 

Optimal gain for  0.03-sec 
uniformly  sampled  system . . . 0.5526 

Optimal gain  for 0.1 0-sec 
uniformly  sampled  system . . . 0.5372 

Unaugmented  system . . . . . . . 
0.51 74 Optimal  stochastic  gains . . . . 
1.427 
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ic - AX + BU 

t k-1 - 

Figure 1.- Closed-loop  system  using  quasi-steady-state  feedback. 
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Figure 2.- Unaugmented response of airplane. 
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Figure 3.- Probabilistic transition graph. 
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Figure 4.- Response of randomly  sampled  system  using 
optimal stochastic gains. 
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Optimal  response of airplane with 0.02 
uniform  sampling. 
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