NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

```
NASA-TM-81614) ACOUSTIC TRANSMISSION
N81-12821
Ma. IIX OF A VARIABLE AREA DUCT OR NOZZLE
\because!"LYING A COMPRESSIBLE SUBSONIC FLOW (NASA)
S4 p HC AO3/MF N01 CSCL 20A

\title{
Acoustic Transmission Matrix of a Variable Area Duct or Nozzle Carrying a Compressible Subsonic Flow
}

\author{
J. H. Miles \\ Lewis Research Center \\ Cleveland, Ohio
}

Prepared for the
One-hundredth Meeting of the Acoustical Society of America
Los Angeles, California, November 17-21, 1980

aCOUSTIC TRANSMISSION MATRIX OF A VARI ABLE AREA DUCT OR NOZZLE CARRYING A COMPRESSIBLE SUBSONIC FLOW

\author{
by J. H. Miles
}

National Aerondutics and Space Administration
Lewis Research Center
Cleveland, Ohio
ABSTRACT
The differential equations governing the propagation of sound in a variable area duct or nozzle carrying a one-dimensional subsonic compressible fluid flow are derived and put in state variable form using acoustic pressure and particle velocity as the state variables. The duct or nozzle is divided into a number of regions. The region size is selected so that in each region the Mach number can be assumed constant and the area variation can be approximated by an exponential area variation. Consequently, the state variable equation in each region has constant coefficients. The transmission matrix for each region is obtained by solving the constant coefficient acoustic state variable differential equation. The transmission matrix for the duct or nozzle is the product of the individual transmission matrices of each region. Solutions are presented for several geometries with and without mean flow.

NOME NCLATAURE
\begin{tabular}{ll} 
A & matrix \\
A & area \\
B,C,D & matrix \\
b, C & constants \\
C & isentropic speed of sound \\
f & frequency, Hz
\end{tabular}
\begin{tabular}{|c|c|}
\hline I & unit matrix \\
\hline i & \((-1)^{1 / 2}\) \\
\hline \(k_{0}\) & propagation wave number, \(\omega / \mathrm{c}_{0}\) \\
\hline \(M_{0}\) & Mach number, \(u_{0} / c_{0}\) \\
\hline (MW) & molecular weight \\
\hline m & \(\mathrm{d} \ln (\mathrm{A}) / \mathrm{dx}\) \\
\hline p & transformation matrix \\
\hline p & pressure \\
\hline R & gas constant \\
\hline s & entropy of gas \\
\hline T & transmission matrix \\
\hline t & time \\
\hline \(u\) & fluid velocity \\
\hline W & mass flow \\
\hline \(x\) & Cartesian coordinate \\
\hline \(\overrightarrow{\mathrm{Y}}\) & acoustic state vector \\
\hline z & acoustic impedance \\
\hline \(\Delta x\) & region length \\
\hline \(\gamma\) & specific heat ratio of gas \\
\hline \(\varepsilon\) & \(\mathrm{m} / 2 \mathrm{ik}\) 。 \\
\hline \(\zeta\) & \(k_{0} /\left(1-M_{0}^{2}\right)\) \\
\hline \(\lambda\) & eigenvalue \\
\hline \(\theta\) & temperature \\
\hline \(\rho_{0}\) & gas density \\
\hline \(\omega\) & angular frequency, radians/sec \\
\hline \multicolumn{2}{|l|}{Superscripts and subscripts:} \\
\hline \((\overrightarrow{)}\) & vector quantity \\
\hline
\end{tabular}
```

(-) instantaneous quartity
()
() 1 perturbed quantity

```

\section*{INTRUDUCTION}

The use of the transmission matrix approach provides considerable simplification to the algebraic complexities involved in the analysis of acoustic systems which can be modeled as a series of simple regions. The elements of a region transmission matrix are a set of coefficients which depend only on the properties of the region. Furthermore, this set of coefficients relate the acoustic pressure and particle velocity at the inlet of the region to those quantities at the exit of the region. The algebraic complexities are reduced in this case because the transmission matrix of the entire system is the product of the constituent transmission matrices. Consequently, the properties of a system can be calculated by straightforward multiplication using a building block approach based on defining the input-output relationship of each of the regions of a system.

As part of a combustion noise research program conducted at the NASA Lewis Research Center, internal pressure measurements are made in aircraft engines. Because the frequency spectrum of the combustion noise peaks below 1000 Hz and the combustion noise generally propagates in a small area annulus, the plane wave mode of propagation is extremely important. Plane Wave combustion noise propagation is a ducted combustion system with flow has been studied by Miles and Raftopoulos (refs. 1 and 2). Miles and Raftopoulos constructed a system model using a transmission matrix approach to the relate acoustic pressure and particle velocity at one point in the system to those quantities at another point In constructing the mode 1, it was assumed that the duct system consisted of constant area duct regions
which could be matched at area discontinuities. Then transmission matrices were calculated for both the constant area duct regions and the area discontinuities using the systems acoustic differential equations.

This approach of using transformation matrices should also be applicable to the study of the propagation of plane wave combustion noise in aircraft engine ducts and nozzles. However, aircraft engines do not have only constant area ducts. Also, by definition nozzles have varying area. Thus, as a first step in constructing an aircraft engine nozzle or duct system model for combustion noise propagation, this paper derives the input-output relationship in the form of a transmission matrix for the propagation of sound in a variable area duct or nozzle carrying a one-dimensional subsonic compressible fluid flow.

BACKGROUND
Many studies of acoustic problems related to the acoustics of aircraft engine-duct systems have been made. Much of the previous work was related to fan noise and this type of work is reviewed in reference 3. While the acoustics of variable area ducts is among the topics reviewed in reference 3, the transmission matrix approach is not discussed in reference 3. This topic was probably omitted because the transmission matrix approach is used to study the plane wave propagation of low frequency noise and is not used for fan noise. However, the application of transmission matrices to ducts without flow is discussed in references 4 to 11. Among these references, note that a brief but comprehensive introduction to the fundamentals of the transmission matrix representation is given by Lampton (ref. 9). As mentioned previously, transmission matrices can be used to model duct systems with flow if the systems consist of different diameter constant area ducts by taking into account the area
discontinuities. Methods for dealing with area discontinuities are discussed in references 1 and 12 to 10.

To the author's knowledge, transmission matrices have not been used to model systems containing variable area regions with mean flow. However, if there is no mean flow in a variable area duct, the acoustic equations reduce to the Webster Horn equation for which solutions may de obtained for some specific duct shapes (refs. 27 to 21). Consequently, it is possible to determine exact transmission matrices for these cases.

With a mean flow in a variable area duct, the problem of finding a transmission matrix becomes more complex, since the velocity, density, and Mach number are then dependent on the duct area. Consequently, the acoustic differential equations have variable coefficients. An exact solution to the differential equations governing the propagation of sound in a variable area duct with one-dimensional flow was obtained by Eisenberg and Kao (ref. 22). However, this solution is not applicable to the present problem since it was for specific duct shapes which are semininf inite and diverge from a sonic throat. Furthennore, the equations are not in transmission matrix form. For ducts having more general shapes, numerical methods can be used to solve the variable-coefficient equations. Solutions of the one-dimensional acoustic differential equations with variable coefficients have been obtained by Davis and Johnson (ref. 23), King and Karamcheti (ref. 24), and Lumsdaine and Ragab (ref. 25) using numerical methods. Again none of these solutions is in transmission matrix form.

Another numerical technique for calculating the behavior of sound is an approximate technique developed by Alfredson (ref. 26) which uses many small discontinuities to define the duct shape. Each discontinuity is then treated using the procedure described in reference 12 . The technique
described herein also uses many small discontinufties to describe the duct shape. However, the method is based on the infinite exponential horn solution (descrived in refs. 17 and 18) and includes mean flow effects.

The governing equations used herein have been used by H. S. Tsien (ref. 27), L. Crocco and S. Cheng (ref. 28) to study oscillations in rocket nozzles, and S. Candel (ref. 29) to study entropy noise produced by a nozzle.

In this paper, first, the goversing equations are derived by linearization and put into state variable form using acoustic pressure and particle velocity as the state variables. Next, in order to solve the resulting differential equation, the duct or nozzie is divided into regions so that the coefficients of the differential equation can me made constant. The transmission matrix is obtained for each region by solving the acoustic state variable differeritial equation using methods described by Ogata (ref. 30). The transmission matrix for the variable area duct or nozzle is the product of the transmission matrices for each segment. Last, solutions are presented for several geometries with and without mean flow.

DERIVATION OF STATE VARI ABLE EQUATION
The following assumptions are made. The duct or nozzle has an area profile \(A(x)\). The flow in the duct or nozzle of an ideal nonviscous, nonconducting perfect gas is described by the following equations of continuity, momentum, energy, and state:
\[
\begin{gather*}
\partial(\bar{\rho} A) / \partial t+\partial(\bar{\rho} \bar{u} A) / \partial x=0  \tag{1}\\
\bar{\rho}(\partial \bar{u} / \partial t+\bar{u} \partial \bar{u} / \partial x)+\partial \bar{p} / \partial x=0  \tag{2}\\
(\partial / \partial t+\bar{u} \partial / \partial x) \bar{s}=0  \tag{3}\\
\bar{s}-s_{0}=c_{v} \ln (\bar{\rho} / \rho r) \tag{4}
\end{gather*}
\]
where \(\bar{p}, \bar{\rho}, \bar{u}\), and \(\overline{\mathrm{s}}\) are, respectively, the instantaneous pressure, density, velocity, and entropy.

The fluctuations in the duct are assumed so small that the flow in the duct is only slightly perturbed. Consequently, the instantaneous quantities can be write in terms of a unperturbed stationary flow quantity designated by 0 and a small perturbed quantity designated by 1 as follows:
\[
\begin{align*}
& \bar{p}=p_{0}(x)+p_{1}(t, x)  \tag{5}\\
& \bar{p}=p_{0}(x)+p_{1}(t, x)  \tag{6}\\
& \bar{u}=u_{0}(x)+u_{1}(t, x)  \tag{7}\\
& \bar{s}=s_{0}(x)+s_{1}(t, x) \tag{8}
\end{align*}
\]

Substituting equations (5) to (8) into equations (1) to (4) yields the following zeroth order system of equations:
\[
\begin{gather*}
d\left(\rho_{0} U_{0} A\right) / d x=0  \tag{9}\\
\rho_{0} u_{0} d u_{0} d x+d p_{0} / d x=0  \tag{10}\\
s_{0}=c_{v} \ln \left(p_{0} / \rho_{0}^{\gamma}\right)=\text { constant } \tag{I1}
\end{gather*}
\]
and the first order system of equations:
\[
\begin{array}{r}
A \partial \rho_{1} / \partial t+u_{0} A \partial \rho_{1} / \partial x+A \rho_{0} \partial u_{1} / \partial x+\rho_{1}\left(u_{0} d A / d x+A d u_{0} / d x\right) \\
+u_{1}\left(\rho_{0} d A / d x+A d \rho_{0} / d x\right)=0 \\
\rho_{0} \partial \partial_{1} / \partial t+\rho_{0} u_{1} \partial u_{0} / \partial x+\rho_{0} u_{0} \partial u_{1} / \partial x+\rho_{1} u_{0} d u_{0} / d x+\partial \rho_{1} / \partial x=0 \\
\left(\partial / \partial t+u_{0} \partial / \partial x\right) s_{1} / c v=\left(\partial / \partial t+u_{0} \partial / \partial x\right)\left(p_{1} / p_{0}-\gamma \rho_{1} / \rho_{0}\right)=0 \tag{14}
\end{array}
\]

For the system under consideration the gas equation is
\[
\begin{equation*}
\overline{\mathrm{p}}=\bar{\rho} \mathscr{G} \bar{\theta} /(\mathrm{MW}) \tag{15}
\end{equation*}
\]
and the isentropic speed of sound is
\[
\begin{equation*}
c_{0}^{2}=r \mathbb{T} \theta_{0} /(M W)=r p_{0} / \rho_{0} \tag{16}
\end{equation*}
\]

From equation (14) the density perturbation is related to a pressure perturbation by
\[
\begin{equation*}
\rho_{1}=\rho_{0} p_{1} / \gamma p_{0}=p_{1} / c_{0}^{2} \tag{17}
\end{equation*}
\]

Substituting equation (17) into equations (12) and (13) yielas the following equations in matrix form:
\[
\begin{array}{r}
{\left[\begin{array}{cc}
1 / \rho_{0} c_{0}^{2} & 0 \\
0 & 1
\end{array}\right]\binom{\partial p_{1} / \partial t}{\partial u_{1} / \partial t}+\left[\begin{array}{ll}
u_{0} / \rho_{0} c_{0}^{2} & 1 \\
1 / \rho_{0} & u_{0}
\end{array}\right]\binom{\partial p_{1} / \partial x}{\partial u_{1} / \partial x}} \\
{\left[\begin{array}{ll}
\frac{u_{0}}{\rho_{0} c_{0}^{2}}\left(\frac{d \ln (A)}{d x}+\frac{d \ln \left(u_{0}\right)}{d x}\right)\left(\frac{d \ln (A)}{d x}+\frac{d \ln \left(\rho_{0}\right)}{d x}\right) \\
{\left[\begin{array}{ll}
u_{0}^{2} & d \ln \left(u_{0}\right) \\
\rho_{0} c_{0}^{2} & d x
\end{array}\right.} & \frac{d u_{0}}{d x}
\end{array}\right]\binom{p_{1}}{u_{1}}} \tag{18}
\end{array}
\]

Taking the Fourier transform of equation (18) and solving for \(\mathrm{dy} / \mathrm{dx}\) yields
\[
\begin{equation*}
\overrightarrow{d \vec{Y}} / d x=B \vec{Y} \tag{19}
\end{equation*}
\]

Using the zerotn order system of equations (9) to (11) and equation (16) to relate the gradients of the logarithmical variation of velocity and density to the gradient of the logaritnmical variation of area yields
\[
\begin{align*}
& \frac{d \ln \left(u_{0}\right)}{d x}=-\frac{1}{\left(1-M_{0}^{2}\right)} \frac{d \ln (A)}{d x}  \tag{20}\\
& \frac{d \ln \left(0_{0}\right)}{d x}=\frac{M_{0}^{2}}{\left(1-M_{0}^{2}\right)} \frac{d \ln (A)}{d x} \tag{21}
\end{align*}
\]

Using equations (20) and (21) the elements of the \(B\) matrix in equation (19) are
\[
\begin{gather*}
B_{11}=\frac{M_{0}^{2}}{\left(1-M_{0}^{2}\right)} \frac{d \ln (A)}{d x}+\frac{M_{0}\left(-i k_{0}\right)}{\left(1-M_{0}^{2}\right)}  \tag{22}\\
B_{12}=\frac{\rho_{0} c_{0}\left(i k_{0}\right)}{\left(1-M_{0}^{2}\right)}+\frac{\rho_{0} c_{0} M_{0}^{2}}{\left(1-M_{0}^{2}\right)^{2}} \frac{d \ln (A)}{d x}  \tag{23}\\
B_{21}=\frac{i k_{0}}{\rho_{0} c_{0}\left(1-M_{0}^{2}\right)}  \tag{24}\\
B_{22}=-\frac{\left(1+M_{0}^{2}\right)}{\left(1-M_{0}^{2}\right)^{2}} \frac{d \ln (A)}{d x}+\frac{M_{0}\left(-i k_{0}\right)}{\left(1-M_{0}^{2}\right)} \tag{25}
\end{gather*}
\]

The acoustic state variable differential equation is given by equation (19). This equation will now be solved to obtain the duct transmission matrix.

METHOD OF SOLUTION
In the previous section a general acoustic state variable differential equation was derived (eq. (19)). In this section an aproximate solution to equation (19) is obtained. The first step in solving equation (19) is to divide the duct or nozzle into a number of regions or subsections. The region size is selected so that the Mach number can be assumed constant in each region and the area variation in each region can be approximated by an exponential area variation. Consequently, in any given region
\[
\begin{align*}
M_{0} & =\text { constant }  \tag{26}\\
A & =A_{0} e^{m x} \tag{27}
\end{align*}
\]

With the se assumptions the Mach number factors in the \(B\) matrix in this region are constant. Also, the value of \(d(\ln A) / d x\) is given by
\[
\begin{equation*}
\frac{d(\ln (A))}{d x}=m \tag{28}
\end{equation*}
\]

The \(B\) matrix is now independent of \(x\) in the regton where it is to be evaluated. Thus, the solution to equation (19) for the \(j^{\text {th }}\) region is
\[
\begin{equation*}
\vec{Y}\left(x_{j}+\Delta x\right)=\left(e^{B \Delta x}\right)_{j} Y\left(x_{j}\right) \tag{29}
\end{equation*}
\]
where \(\Delta x\) is the length of the \(j^{\text {th }}\) region and \(\exp (B \Delta x)\) is known as the matrix exponential. The value of \(\exp (B \Delta x)\) is defined by
\[
\begin{equation*}
e^{B \Delta x}=1+(B \Delta x)+\frac{(B \Delta x)^{2}}{2!}+\frac{(B \Delta x)^{3}}{3!}+\cdots \tag{30a}
\end{equation*}
\]

The matrix \(\exp (B \Delta x)\) is the transmisslon matrix of the \(j^{\text {th }}\) region, (T) \(j\), so that
\[
(T)_{j}=e^{(B \Delta x)_{j}}=\sum_{\ell=0}^{\infty} \frac{(B \Delta x)_{j}^{\ell}}{\ell!}=\left[\begin{array}{lr}
T_{11} & T_{12}  \tag{30b}\\
T_{21} & \left.T_{22}\right]_{j}, ~
\end{array}\right.
\]

Consequently, the transmission matrix, \(T\), for the variable area duct is found from
\[
\left.\vec{Y}(x)\right|_{x=L}=\left.\left.\prod_{j=1}^{N}\left(e^{B \Delta x}\right)_{j} \vec{Y}(x)\right|_{x=0}\left[\begin{array}{cc}
T_{11} & T_{12}  \tag{31}\\
T_{21} & T_{22}
\end{array}\right] \vec{Y}(x)\right|_{x=0}=\left.\vec{Y}(x)\right|_{x=0}
\]
where
\[
\begin{equation*}
L=\sum_{j=1}^{N}(\Delta x)_{j} \tag{32}
\end{equation*}
\]
and \(N\) is the number of duct regions.
In this section an approximate solution to the state differential equation was obtained, In the next section computational techniques useful for obtaining analytical and numerical solutions will be discussed.

EVALUTION OF MATRIX EXPONENTIAL.
The solution of the matrix space differential equation thus involves the matrix exponential \(\exp (B \Delta x)\). It is necessary to express \(\exp (B \Delta x)\) as a matrix in order to obtain numerical values for the transmission matrix. Methods for evaluating a matrix exponential are discussed by Ogata in chapter 6 of reference 30. These same methods can be used for evaluating \(\exp (B \Delta x)\). The first method discussed produces a solution which can be evaluated on a digital computer using the built-in complex exponential function. It is also useful in generating analytical solutions in terms of exponential and trigonometric functions. The second method that will be discussed uses equation (30) to numerically obtain a value of ( \(T\) ) by evaluating the exponential power series in ( \(B \Delta x\) ).

The first method is to transform the \(B\) matrix into a diagonal matrix \(D\) using a transformation matrix \(P\). If the eigenvectors of the \(B\) matrix are distinct, then
\[
\begin{equation*}
e^{B \Delta x}=c^{-1} P e^{\left(P^{-1} C B C^{-1} P\right) \Delta x_{P}-1} C \tag{33}
\end{equation*}
\]
where
\[
c=\left[\begin{array}{cc}
1 & 0  \tag{34}\\
0 & \rho_{0} c_{0}
\end{array}\right]
\]

This method is implemented by first calculating
\[
\begin{equation*}
\mathscr{m}=\mathrm{CBC}^{-1} \tag{3b}
\end{equation*}
\]
so that
\[
\begin{gather*}
\mathscr{A}_{11}=B_{11} \\
\mathscr{A}_{12}=B_{12} / \rho_{0} C_{0}  \tag{30}\\
\mathscr{O}_{21}=B_{21} p_{0} C_{0} \\
\mathscr{A}_{22}=B_{22}
\end{gather*}
\]

Next, the eigenvalues of the matrix, \(\lambda\), are found by setting the determinant of the matrix ( \(\mathcal{A}-\lambda I\) ) equal to zero. Consequently, the eigenvalues are the roots of the equation
\[
\begin{equation*}
\lambda^{2}+b \lambda+c=0 \tag{37}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{b}=-\left(\mathscr{N}_{11}+\mathscr{S}_{22}\right) \tag{38}
\end{equation*}
\]
and
\[
\begin{equation*}
c=s_{11} s_{22}-s_{12} s_{21} \tag{39}
\end{equation*}
\]

Next, the \(P\) transformation matrix is calculated using
\[
P=\left[\begin{array}{cc}
\mathscr{A}_{22}-\lambda_{1} & \mathscr{A}_{2<}-\lambda_{2}  \tag{40}\\
-\mathscr{s}_{21} & -\mathscr{\alpha}_{21}
\end{array}\right]
\]
or
\[
P=\left[\begin{array}{cc}
-\alpha_{21} & -\alpha_{21}  \tag{41}\\
\alpha_{11}-\lambda_{1} & \mathscr{N}_{11}-\lambda_{2}
\end{array}\right]
\]

Note that if the \(P\) matrix defined by either equation (40) or (41) is multipied by a constant the result is also a \(P\) matrix. Consequently, it is possible to significantly simplify the \(P\) matrix generated by equation (40) or (44). The diagonal \(D\) matrix is then
\[
D=\left[\begin{array}{ll}
\lambda_{1} & 0  \tag{42}\\
0 & \lambda_{2}
\end{array}\right]=p^{-1} \mathscr{A}
\]

Consequently, the square matrix, \(\exp (D \Delta x)\) is given by
\[
e^{D \Delta x}=\left[\begin{array}{cc}
e^{\lambda_{1} \Delta x} & 0  \tag{43}\\
0 & e^{\lambda_{2} \Delta x}
\end{array}\right]
\]

The value of the stinare matrix \(\exp (B \Delta x)\) is then given by
\[
T=e^{B \Delta x}=C^{-1} P e^{D \Delta x_{p}-1} C=\left[\begin{array}{ll}
T_{11} & T_{12}  \tag{44}\\
T_{21} & T_{22}
\end{array}\right]
\]

Note that the elements of the matrix contains only complex exponential functions from equation (43).

As mentioned previously, the second method for evaluating \(\exp (B \Delta x)\) is based on expanding \(\exp (B \Delta x)\) in the exponential power series in \((B \Delta x)\) given by equation (30). Equation (30) is also important in obtaining analytical
solutions. For instance, using equation (30) it is possible to prove equation (43). The virtue of equation (30) is its simplicity. However, in writing a digital computer program based on equation (30) convergence requirements must be specified and this may increase the running time of a computer program evaluating \(\exp (B \Delta x)\).

In this section two procedures for implementing the solution were presented. Some analytical solutions will be presented next. These solutions are presented to clarify the computational techniques and to provide some insight into the numerical results.

ANALYTICAI SOLUTIONS
In this section analytical solutions for the input-output relationship of the acoustic pressure and the particle velocity in the form of a transmission matrix will be obtained using the methods described in the previous section. The solutions are exact since only cases where the Mach number is zero or constant are considered. The geometries considered are a duct with constant area and a duct with an exponential area variation. These solutions are presented to clarify the numerical results presented in the next section and the methods used to obtain them.

\section*{Constant Area Duct Without Flow}

First, consider a constant area duct of length \(L\) with no flow. For this case \(M=0\) and \(d \ln (A) / d x=0\). Consequently, substituting the se values of \(M\) and \(d \ln (A) / a x\) into equations (22) to (25) yields the following \(B\) matrix
\[
B=\left[\begin{array}{cc}
0 & \rho_{0} c_{0} i k_{0}  \tag{45}\\
i k_{0} / \rho_{0} c_{0} & 0
\end{array}\right]
\]

Substituting equations (45) and (32) into equation (31) yields
\[
T=\prod_{J}\left(e^{B \Delta x}\right)_{j}=e^{B \sum_{J}(\Delta x)_{J}}=e^{B L}=\left[\begin{array}{ll}
T_{11} & T_{12}  \tag{46}\\
T_{21} & T_{22}
\end{array}\right]
\]
since the \(B\) matrix is independent of the Mach number. Using equation (30) to evaluate equation (46) yields
\(\left[\begin{array}{c}T=\left[\begin{array}{c}\left\{1-\frac{\left(k_{0} L\right)^{2}}{2!}+\frac{\left(k_{0} L\right)^{4}}{4!} \cdots\right\} \quad i_{0_{0} c_{0}}\left\{\left(k_{0} L\right)-\frac{\left(k_{0} L\right)^{3}}{3!}+\frac{\left(k_{0} L\right)^{5}}{5!} \cdots\right\} \\ \frac{1}{\rho_{0} c_{0}}\left\{\left(k_{0} L\right)-\frac{\left(k_{0} L\right)^{3}}{3!}+\frac{\left(k_{0} L\right)^{5}}{5!} \cdots\right\}\end{array}\right] \\ \left\{1-\frac{\left(k_{0} L\right)^{2}}{2!}+\frac{\left(k_{0} L\right)^{4}}{4!} \cdots\right\}\end{array}\right]\)

Substituting the series definitions of the trigonometric functions, it follows that
\[
T=\left[\begin{array}{cc}
\cos \left(k_{0} L\right) & i \rho_{0} c_{0} \sin \left(k_{0} L\right)  \tag{48}\\
\frac{1 \sin \left(k_{0} L\right)}{\rho_{0} c_{0}} & \cos \left(k_{0} L\right)
\end{array}\right]
\]

Constant Area Duct With Mean Flow
Next, consider a constant area duct of length \(L\) with mean flow.
Since the duct area is constant again \(d \ln (A) / d x=0\). Using equations (22) to (25) the B matrix is given by
\[
B=\left[\begin{array}{cc}
\frac{M_{0}}{1-M_{0}^{2}}\left(-i k_{0}\right) & \frac{\rho_{0} c_{0}\left(i k_{0}\right.}{1-M_{0}^{2}}  \tag{49}\\
\frac{\left(i k_{0}\right)}{\rho_{0} c_{0}\left(1-M_{0}^{2}\right)} & \frac{M_{0}\left(-i k_{0}\right)}{1-M_{0}^{2}}
\end{array}\right]
\]

Substituting equation (49) into equation (31) shows that the transmission matrix is again given by equation (46). For this case the value for \(\exp (B L)\) will be evaluated using equation (33).

First, the matrix is calculated from equation (35). Next, the eigenvalues are found using equations (37) to (39). Thus,
\[
\left.\begin{array}{l}
\lambda_{1}=\left(i k_{0}\right) /\left(1+M_{0}\right)  \tag{50}\\
\lambda_{2}=\left(-i k_{0}\right) /\left(1-M_{0}\right)
\end{array}\right\}
\]

Based on equation (40) a satisfactory \(p\) matrix is
\[
P=\left[\begin{array}{rr}
1 & -1  \tag{51}\\
1 & 1
\end{array}\right]
\]

The diagonal D matrix calculated by substituting equations (34), (35), (40), and (51) into equation (42) is
\[
0=\left[\begin{array}{cc}
\frac{i k_{0} L}{T+M_{0}} & 0  \tag{52}\\
& \\
0 & -\frac{i k_{0} L}{1-M_{0}}
\end{array}\right]
\]

The transmission matrix calculated by substituting equations (34), (51), and (52) into equation (44) is
\[
T=\left[\begin{array}{cc}
\frac{\left(e^{\lambda_{1} L}+e^{\lambda_{2} L}\right)}{2} & \frac{\left(e^{\lambda_{1} L}-e^{\lambda_{2} L}\right)}{2}  \tag{53}\\
\frac{\left(e^{\lambda_{1} L}-e^{\lambda_{2} L}\right)}{2} & \frac{\left(e^{\lambda_{1} L}+e^{\lambda_{2} L}\right)}{2}
\end{array}\right]
\]
or using the complex definition of the sine and cosine functions
\[
T=e^{-i \zeta M_{0} L}\left[\begin{array}{cc}
\cos (\zeta L) & i_{0} c_{0} \sin (\zeta L)  \tag{54}\\
\frac{i \sin (\zeta L)}{\rho_{0} c_{0}} & \cos (\zeta L)
\end{array}\right]
\]
where \(\zeta=k_{0} /\left(1-M_{0}^{2}\right)\).
Note that for \(M=0\), the transmission matrix given by equation (54) reduces to that given by equation (48),

Variable Area Duct Without Flow
The second geometry discussed in this section is a duct of length \(L\) having an exponential area variation
\[
\begin{equation*}
A_{L}=A_{0} e^{m L} \tag{55}
\end{equation*}
\]

First, the zero frequency limit transmission matrix for no flow will be calculated. For this case \(M=0, k=0\), and \(d \ln (A) / d x=m\). Consequently, from equations (22) to (25) the \(B\) matrix is given by
\[
B=\left[\begin{array}{cc}
0 & 0  \tag{b6}\\
& \\
0 & -m
\end{array}\right]
\]

Substituting equation (56) into equation (31) again yields equation (46). For this case, equation (46) can be evaluated using equation (30). Again substituting for the power series obtained yields a closed form solution as follows
\[
T=\left[\begin{array}{cc}
1 & 0  \tag{b7}\\
0 & e^{-m L}
\end{array}\right]
\]

Substitution of equation (55) into equation (57) yields
\[
T=\left[\begin{array}{cc}
1 & 0  \tag{58}\\
0 & A_{0} / A_{L}
\end{array}\right]
\]

The corresponding set of simultaneous equation is then
\[
\begin{align*}
p(i \omega, L) & =p(i \omega, 0)  \tag{59}\\
A_{L} u(i \omega, L) & =A_{0} u(i \omega, 0) \tag{60}
\end{align*}
\]

Consequently, at low frequencies for no flow the acoustic pressure is the same at both ends of the duct and the acoustic volume flow is constant.

Next, the general transmission matrix for the exponential duct without flow will be calculated. For this case \(d \ln (A) / d x=m\). Consequently, from equations (22) to (25) the B matrix is given by
\[
B=\left[\begin{array}{cc}
0 & i k_{0} \rho_{0} c_{0}  \tag{6.1}\\
\frac{i k_{0}}{\rho_{0} c_{0}} & -m
\end{array}\right]
\]

Substituting equation (61) into equation (31) snows that the transmission matrix is given by equation (46). For this case, the value of \(\exp (B L)\) will be evaluated using equation (33). The eigenvalues found using equations (37) to (39) are
\[
\left.\begin{array}{l}
\lambda_{1}=i k_{0}\left(-\varepsilon+\sqrt{\varepsilon^{2}+1}\right)  \tag{62}\\
\lambda_{2}=-i k_{0}\left(\varepsilon+\sqrt{\varepsilon^{2}+1}\right)
\end{array}\right\}
\]
where
\[
\begin{equation*}
\varepsilon=m / 2 i k_{0} \tag{02}
\end{equation*}
\]

Based on equation (40) a matrix is given by
\[
P=\left[\begin{array}{cc}
\varepsilon+\sqrt{\varepsilon^{2}+1} & \varepsilon-\sqrt{\varepsilon^{2}+1}  \tag{64}\\
1 & 1
\end{array}\right]
\]

The diagonal D matrix calculated by substituting equation (64) into equation (42) and using equation (35) to determine the \(\mathcal{A}\) matrix is
\[
D=\left[\begin{array}{cc}
i k_{0}\left(-\varepsilon+\sqrt{\varepsilon^{2}+1}\right) & 0  \tag{65}\\
0 & -i k\left(\varepsilon+\sqrt{\varepsilon^{2}+1}\right)
\end{array}\right]
\]

The transmission matrix calculated by substituting equations (34), (63), and (65) into equation (44) is

(66)
ar
\[
T=e^{-i k_{0} \varepsilon L}
\]


Note that for a constant area duct \(m=0\) and thus \(\varepsilon=0\). The transmission matrix given by equation (67) for this case reduces to the transmission matrix given by equation (48).

Also note that for the low frequency case, the eigenvalues are given by
\[
\left.\begin{array}{l}
\lim _{k \rightarrow 0} \lambda_{1}=0  \tag{68}\\
\lim _{k \rightarrow 0} \lambda_{2}=-m
\end{array}\right\}
\]

Substituting these eignevalues into the transmission matrix given by equation (66) and letting \(k\) go to zero, yields the transinission matrix given by equation (57).

In this section analytical solutions to equation (31) were found for the case where the Mach number in equations (22) to (25) is zero or constant and equation (31) yields an exact solution. It was shown that using equation (33) to obtain a solution for \(\exp (B L)\) yields a solution in terms of exponential or trigonometric functions. It was also demonstrated that while equation (30) can be used to obtain an analytical solution, it is only useful in the most simple cases where the resulting power series recognizable. The next section discusses numerical solutions. COMPUTATIONAL EXAMPLES

Numerical calculations of transmission matrices for several duct configurations with and without flow were made by evaluating equation (31). The calculations yield exact solutions for cases where the Mach number is zero or constant. Thus for any of the cases discussed above the numerical solutions are identical to the corresponding aralytical solution.

When the Mach number is not constant or zero the numerical calculations yield an approximate solution. The approximation is improved as the duct is
divided into smaller subsections. Typical results obtained by dividing the duct configuration into 500 equal length subsections are presented next. For all solutions, the zeroth order system of equations is solved first to evaluate \(\rho_{0}, u_{0}, \theta_{0}\), and \(\rho_{0}\) at the start of each subsection using a stagnation pressure of one atmo sphere and a stagnation temperature of 295 K . The ratio of gas specific heats was 1.4.

The numerical results are presented as plots of the magnitude and phase angle of each of the matrix elements versus frequency.

Constant Area Duct
Results obtained for a one-meter-long cylindrical duct will be discussed first. Since in a cylindrical duct the Mach number is zero or constant, the numerical solution is identical to the analytical solution. Transmission matrices for the one-meter-long constant area duct calculated for \(M=0, M=0.25\), and \(M=0.6\) are shown in figure 1 . The solid curves in figure 1 correspond to solutions obtained using equation (48). The dashed curves correspond to solutions obtained using equation (54). The curves are functions of \(\zeta L=\left(2 \pi f / c_{0}\right) L /\left(1-M_{0}^{2}\right)\). Consequently, the curves appear to contract with increasing Mach number. This is because the frequency location of corresponding peaks and dips which occur at constant \(\zeta L\) values must shift to lower frequencies as the Mach number is increased. In addition, as the Mach number increases so does the phase factor \(\exp \left(-i \delta M_{0} L\right)\) which multiplies each transmission matrix element.

The ratio of the pressure at \(x=1.0\) to the pressure at \(x=0\) with zero acoustic particle velocity at \(x=0, T_{11}\), is equal to \(\exp \left(-i 5 M_{0} L\right) \cos (\zeta L)\) which is plotted in figure \(1(a)\). The ratio of the acoustic particle velocity at \(x=1.0\) to the acoustic particle velocity
at \(x=0\) with zero acoustic pressure at \(x=0, r_{22}\), is shown in figure \(1(d)\) and is also equal to \(\exp \left(-i \xi M_{0} L\right) \cos (b L)\).

The ratio of the pressure at \(x=1.0\) to the acoustic particle velocity at \(x=0\) with zero acoustic pressure at \(x=0, T_{12}\), is \(\rho_{0} C_{0} \exp \left(i\left(\pi / 2-\zeta M_{0} L\right)\right) \sin (\zeta L)\) which is shown in figure \(1(b)\). The ratio of the acoustic particile velocity at \(x=1.0\) to the acoustic pressure at \(x=0\) with zero acoustic particle velocity at \(x=0, T_{21}\), is \(\exp \left(i\left(\pi / 2-\zeta M_{0} L\right) \sin (C L) / \rho_{0} c_{0}\right.\) which is shown in figure \(1(c)\). Variable Area Ducts

Results obtained for one-meter-long ducts having exponential area variation will be discussed next. Two examples are presented. One example which is identified as the long exponential nozzle (LEN) has an area which decreases exponentially from 0.02 to \(0.01 \mathrm{~m}\left(\mathrm{~d} \ln (A) / \mathrm{dx}=\mathrm{m}_{\mathrm{LEN}}=\ln (1 / 2)\right)\). The transmission matrix for this geometry calculated for mass flows of 0 and \(2.0 \mathrm{~kg} / \mathrm{sec}\) are shown in figure 2. The second example which is identified as the long exponential horn (LEH) has an area which increases exponentially from 0.01 to \(0.02 \mathrm{~m}\left(\mathrm{~d} \ln (A) / \mathrm{dx}=\mathrm{m}_{\mathrm{LEH}}=\ln (2)\right)\). The transmission matrix for this geometry calculated for mass flows of 0 and \(2.0 \mathrm{~kg} / \mathrm{sec}\) is shown in figure 3.

Without flow. - First, the no-flow cases will be discussed. At low frequencies, the analytical solution given by equation (58) for the long exponential nozzle transmission matrix, \(T_{\text {LEN }}\), is
\[
T_{\text {LEN }}(f=0)=\left[\begin{array}{lc}
1 & 0  \tag{69}\\
0 & \left(A_{0} / A_{L}\right)_{L E N}
\end{array}\right]
\]
where \(\exp \left(-m_{L E N} L\right)=\left(A_{0} / A_{L}\right)_{L E N}=2.0\). Furtherinore, at low frequencies, the analytical solution given by equation (58) for the long exponential horn transmission matrix, T , is
\[
T_{L E H}(f * 0)=\left[\begin{array}{cc}
1 & 0  \tag{70}\\
0 & \left(A_{O} / A_{H}\right)_{L E H}
\end{array}\right]
\]
where \(\exp \left(-m_{L E H} L\right)=\left(A_{O} / A_{L}\right)_{L E H}=1 / 2\).
In addition, at frequencies greater than \(\left|m c_{0} / 4 \pi\right|\) the analytical solution given by equation (67) for \(T_{\text {LEN }}\) is
\[
T_{L E N}=\left(\frac{A_{0}}{A_{L}}\right)_{L E N}^{1 / 2}\left[\begin{array}{cc}
\cos \left(k_{0} L\right) & i \rho_{0} c_{0} \sin \left(k_{0} L\right)  \tag{71}\\
\frac{i \sin \left(k_{0} L\right)}{\rho_{0} c_{0}} & \cos \left(k_{0} L\right)
\end{array}\right]
\]
where \(\left(A_{0} / A_{L}\right)_{L E N}=2\). Moreover, at frequencies greater than \(\left|\mathrm{mc}_{0} / 4 \pi\right|\) the analytical solution given by equation (67) for \(\mathrm{T}_{\text {LEH }}\) is
\[
T_{L E H}=\left(\frac{A_{0}}{A_{L}}\right)_{L E H}^{1 / 2}\left[\begin{array}{cc}
\cos \left(k_{0} L\right) & i_{0} c_{0} \sin \left(k_{0} L\right)  \tag{72}\\
\frac{i \sin \left(k_{0} L\right)}{\rho_{0} c_{0}} & \cos \left(k_{0} L\right)
\end{array}\right]
\]

Where \(\left(A_{0} / A_{L}\right)_{L E H}=1 / 2\). The results of the numerical calculations shown in figures 2 and 3, for the case without flow are identical with these
analytic results. These few examples show that the numerical calculations are in agreement with the analytical solutions.

With flow. - The numerically calculated transmission matrix for the long exponential nozzle and horn with a mass flow of \(2.0 \mathrm{~kg} / \mathrm{sec}\) shown in figures 2 and 3 will be discussed next.

As expected from the results presented in figure 1 the frequency location of the peaks and dips shifted to lower frequencies. Also as expected, the phase angle is significantly different for this case. However, the types of changes in the magnitude and phase angle of the elements of the long exponential nozzle and horn transmission matrix is unexpected. The interaction of the flow and the gradient of the logarithmical area variation change the transition matrix elements significantly. For instance, the low frequency value of \(\left(T_{22}\right)\) LEN shifts from 2 with no flow to 3.3 with a mass flow of \(2 \mathrm{~kg} / \mathrm{sec}\). Also, the low frequency value of \(\left(T_{22}\right)_{\text {LEH }}\) shifts from \(1 / 2\) with no flow to 0.295 with a flow of \(2.0 \mathrm{~kg} / \mathrm{sec}\).

The numerical method can be applied to any type of area variation. The transmission matrix for a short exponentially contracting duct and a linearally contracting duct, both 20 cm long, are compared in figure 4. Be low 50 Hz the transmission matrices are similar. Above 50 Hz the magnitudes do not agree. However, the phase angle differences become significant only above 400 Hz .

CONCLUDING REMARKS
A numerical method for detemnining the trarismission matrix of a variable area duct or nozzle carrying a compressible subsonic mean flow was presented. The method yields an exact solution for the zero mean flow case and an approximate solution for the nonzero mean flow case. However, in
using the numerical method the duct or nozzle is divided into regions in a way that makes the method more accurate as the number of regions increases and the region size decreases. Consequently, the accuracy of the method is only limited by the region size.

Furthermore, for the no-flow case not onis does the numerical solution become exact, but it also becomes possible to use the equations which describe it to generate an analytical solution in terms of exponential and trigonometric functions.

The method was applied to several geometries with and without flow, including both expanding and contracting duct sections. For the cases without flow analytical solutions were obtained.

The numerical method may also be useful in studying sound propagation in ducts without a mean flow having shapes for which the Webster Horn equation does not have an exact solution. Furthermore, the method is easy to apply. Therefore, even for ducts with shapes for which the Webster Horn equation does have an exact solution, the method may be useful where a numerical solution is adequate.

REFERENCES
1. J. H. Miles and D. D. Raftopoulos, "Spectral Structure of Pressure Measurements Made in a Combustion uuct," NASA TM 81471 (1980).
2. J. H. Miles and D. D. Raftopoulos, "Pressure Spectra and Cross Spectra at an Area Contraction in a Ducted Combustion System," NASA TM \(8147 \%\) (1980).
3. A. H. Nayfeh, J. E. Kaiser, and D. P. Telionis, "Acoustics of Aircraft Engine-Duct Systems," AIAA J., 13, 130-153 (1975).
4. J. Igarashi and M. Toyama, "Fundamentals of Acoustical Silencers. I - Theory and Experiment of Acoustic Low-Pass Filters," Rep. No. 339, Aeronaut. Res. Inst., Univ. of Tokyo, Vol. 24, No. 10 (1958).
5. T. Miwa and J. Igarashi, "Fundamentals of Acoustical Silencers. II - Determination of Four Terminal Constants of Acoustical Elements," Rep: No, 344, Aeronaut. Res. Inst., Univ. of Tokyo, Vol. 25, No. 4, 67-85 (1959).
6. J. Igarashi and M. Arai, "Fundamentals of Acoustical Silencers. III - Attenuation Characteristics Studied by an Electric Simulator," Rep. No. 351, Aeronaut. Res. Inst., Univ. of Tokyo, Vol. 26, No. 2, 1)-31 (1960).
7. T. Sakai and S. Saeki, "Study on Pulsations of Reciprocating Compressor Piping Systems (1st Report, Calculation of Natural Frequency of Complicated Piping Systems)," JSME Bu11., 16, (91) 54-62 (1973).
8. T. Saki and K. Mitsuhashi, "Study on Pulsations of Reciprocating Compressor Piping Systems (2nd Report, Model Experiment of Natural Frequency)," JSME Bul1., 16, (91) 63-68 (1973).
9. M. Lampton, "Transmission Matrices in Electroacoustics," Acustica, 39, (4) 239-251 (1978).
10. C. W. S. To and A. G. Doige, "A Transient Testing Technique for the Determination of Matrix Parameters of Acoustic Systems. I - Theory and Principles," J. Sound Vib., 62, (2) 207-222 (1979).
11. C. W. S. To and A. G. Doige, "A Transient Testing Technique for the Determination of Matrix Parameters of Acoustic Systems. II - Experimental Procedures and Results," J. Sound Vib., 62, (2) 223-233 (1979).
12. J. Miles, "The Reflection of Sound Due to a Change in Cross Section of a Circular Tube," J. Acoust. Soc. Am., 16, (1) 14-19 (1944).
13. F. C. Karal, "The Analogous Acoustical Impedance for Discontinuities and Constrictions of Circular Cross Section," J. Acoust. Soc. Am., 25, (2) 327-334 (1953).
14. T. L. Parrott, "An Improved Method for Design of Expansion-Chamber Mufflers With Application to an Operational Helicopter," NASA TN D-7309 (1973).
15. M. L. Pollack, "The Acoustic Inertial End Correction," J. Sound Vib., 67, (4) 558-561 (1979).
16. R. F. Lambert and E. A. Steinbrueck, "Acoustic Synthesis of a Flowduct Area Discontinuity," J. Acoust. Soc. Am., 67, (1) 59-65 (1980).
17. H. F. Olson, Acoustical Engineering (Van Nostrand, Princeton, New Jersey, 1957), Chap. 5, pp. 100-115.
18. L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John Wiley, New York, 1962), pp. 275-279.
19. G. J. Thiessen, "Resoñance Characteristics of a Finite Catenoidal Horn," J. Acoust. Soc. Am., 22, (5) 558-562 (1950).
20. C. T. Malloy, "Response Peaks in Finite Horns," J. Acoust. Soc. Am., 22, (5) 551-557 (1950).
21. C. Malloy, "N-Parameter Ducts," J. Acoust. Soc. Am., 57, (5) 1030-1035 (1975).
22. N. A. Eisenberg and T. W. Kao, "Propagation of Sound Through a VariableArea Duct With a Steady Compressible Flow," J. Acoust. Soc. Am., 49, (1) (Pt. 2) 169-175 (1971).
23. S. S. Davis and M. L. Juhnson, "Propagation of Plane Waves in a Variable Area Duct Carrying a Compressible Subsonic Flow," presented at the 87th Meeting of the Acoustical Society of America, New York, Apr. 23-26 (1974). For Abstract KK2, see J. Acoust. Soc. Am., 55 Suppl., S74-S75 (Spring 1974).
24. L. S. King and K. Karamcheti, "Propagation of Plane Waves in the Flow Through a Variable Area Duct," AIAA Paper No. 73-1009 (Oct. 1973).
25. E. Lumsdaine and S. Ragab, "Effect of Flow on Quasi-One-Dimensional Acoustic Wave Propagation in a Variable Area Duct of Finite Length," J. Sound Vib., 53, (1) 47-61 (1977).
26. R. J. Alfredson, "The Propagation of Sound in a Circular Duct of

Continuously Varying Cross-Sectional Area," J. Sound Vib., 23, (4) 433-442 (1972).
27. H. S. Tsien, "The Transfer Functions of Rocket Nozzles," J. Am. Rocket Soc., 22, (3) 139-143 and 162 (1952).
28. L. Crocco and Sin-i Cheng, Theory of Combustion Instability in Liquid Propellant Rocket Motors (Butterworths Scientific Publications, 1956), Appendix B, pp. 168-187.
29. S. M. Cande1, "Analytical Studies of Some Acoustic Problems of Jet Engines," Ph.D. Thesis, California Institute of Technology, Pasadena, California (1972).
30. Katsuhiko Ogata, State Space Analysis of Control Systems (Prentice-Hall, Englewood Cliffs, N. J., 1967).


Figure 1. - Cylindrical duct transmission matrix. 1
where \(\vec{Y}(x=1.0)-T \vec{Y}(x=0.0)(L-1 \mathrm{~m}, T=29 \mathrm{~K}\). \(W \cdot 2 \mathrm{~kg} / \mathrm{sec}\) )

UHHINAL PAGH I OIT POOR QUALITY


Figure 1. - Concluded.


Figure 2 - Long exponential nozzic transmission
matrix, \(T\), where \(\mathcal{Y}(x-1,0)=T \mathcal{Y}(x-0,0)\).






Figure 2. - Concluded.
gryginal page ia or bagan guality


Figure 3. - Long exponential horn transmission
matrix, F , where \(\vec{Y}(x-1.0) \cdot \overrightarrow{\mathrm{Y}}(\mathrm{x}=0.0)\).


Figure 3. - Concluded.


Figure 4. - Comparison of short exponentlal nozzle and short linaar nozzle transmission matrices, T. where \(\vec{Y}(x-0.2)=\vec{T}(x-0.0)\) for \(W=20\)


Figure 4, - Concluded.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Avpors No } \\
& \text { NASA TM-81614 }
\end{aligned}
\] & \multicolumn{2}{|l|}{2. Government Accession No.} & \multicolumn{2}{|l|}{3. Recipipent's Corulog No} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{4. Tifle and Subtitle ACOUSTIC TRANSMISSION MATRIX OF A VARIABLE AREA DUCT OR NOZZLE CARRYING A COMPRESSIBLE SUBSONIC FLOW}} & \multicolumn{2}{|l|}{5. Report Date} \\
\hline & & & & \multicolumn{2}{|l|}{6. Peilorming Orpenirution Code} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{7. Author(s) J. H, Miles}} & & & \multicolumn{2}{|l|}{B. Perlorming Orgenization Report No. E-613} \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
9. Performing Ofoenization Name and Address \\
National Aeronautics and Space Administration \\
Lewis Research Center \\
Cleveland, Ohio 44135
\end{tabular}}} & \multicolumn{2}{|l|}{10. Work Unit No.} \\
\hline & & & & \multicolumn{2}{|l|}{11. Contract or Grant No.} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
12. Sponsoring Apency Nume and Address \\
National Aeronautics and Space Administration Washington, D.C. 20546
\end{tabular}}} & \multicolumn{2}{|l|}{13. Type of Report and Perlod Covered Technical Memorandum} \\
\hline & & & & \multicolumn{2}{|l|}{14. Sponsoring Agency Code} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
15. Supplementary Notos \\
Prepared for the One-hundredth Meeting of the Acoustical Society of Los Angeles, Callfornia, November 17-21, 1980.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
16. Abstract \\
The differential equations governing the propagation of sound in a variable area duct or nozzle carrying a one-dimensional subsonic compressible fluid flow are derived and put in state varfable form using acoustic pressure and particle velocity as the state variables, The duct or nozzle is divided into a number of regions. The region size is selected so that in each region the Mach number can be assumed constant and the area variation can be approximated by an exponential area variation. Consequently, the state variable equation in each region has constant coefficients. The transmission matrix for each region is obtained by solving the constant coefficient acoustic state variable differential equation. The transmission matrix for the duct or nozzle is the product of the individual transmission matrices of each region. Solutions are presented for several geometries with and without mean flow.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
17. Key Words (Supgested by Author(3)) \\
Acoustics; Sound; Noise; Propagation; Ducts; \\
Acoustic ducts; Transmission matrix; \\
Matrices; Nozzle; Acoustic propagation
\end{tabular}} & \multicolumn{3}{|l|}{18. Distribution Statement Unclassified - unlimited STAR Category 71} \\
\hline & 9. Security Clasulf (of this report) Unclassified & \multicolumn{2}{|l|}{20. Security Classif. (Jof this pape) Unclassified} & 21. No. of Papes & 22. Price \({ }^{\circ}\) \\
\hline
\end{tabular}
*For sale by the National Technical Information Service, Springfield. Virginia 22161```

