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by J. H. Miles
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio e,
ABSTRACT
The differential equations governing the propagation of sound in a
variable area duct or nozzle carrying a one-dimensional subsonic

compressible fluid flow are derived and put in state variable form using

acoustic pressure and particle velocity as the state variables. The duct or -

nozzie is divided into a number of regions. The region size is selected so
that in each region the Mach number can be assumed constant and the area
variation can be approximated by an exponential area variation.
Consequently, the state variable equation in each region has constant
coefficients.’ The transmission matrix for each region is obféined by
solving the constant coefficient acoustic state varianle differential
equation. The transmission matrix for the duct or nozzle is the product of
the individual transmission matrices of each region., Solutions are

presented for several geometries with and without mean flow,

NOMENCLATAURE
o matrix
Ayh ~area
B,C,D  matrix
b,c constants
c isentropic speed df sound

f ' frequency, Hz
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I unit matrix

i (-1t/2

ko propagation wave number, w/c

Mo Mach number, uolc0

(MW) molecular weight

m d In(A)/dx

p transformation matrix

p pressure sii

R gas constant

S entrépy of gas

T transmission matrix

t time

u fluid velocity

W massvffow i

X Cartesian coordinate

y acoustic state vector

A acoustic impedance

AX region length

} Specific heat ratio of gas

€ m/2iko

T k(1= M)

A eigenvalue
_ é | temperature

A | gas déﬁsity

w0 angular frequency, radians/sec

~Superscripts and subscrig;gz

(") vector quantity
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(™) instantaneous yuantity
(), reference state quantity
( )y  perturbed quantity
INTRODUCT ION

The use of the transmission matrix approach provides considerable
simplification tojthe algebraic complexities involved in the analysis of
acoustic systems which can be modeled as a series of simple regions.: Thé
elements of a region transmission matrix are a set of coefficients which
depend only on the properties of the region. Furthermore, this set of
coefficients relate the acoustic pressure and particle velocity at the in1et.
of the region to those quantities at the exit of the region. The algebraic
complexities are reduced in this case because the transmission matrix of the
entire system is the product of the constituent transmission matrices.
Consequently, the properties of a system can be calculated by
straightforward mu]ﬁip]ication using a building block approach based on
defining the input-output relationship of each of the regions of a systﬁﬁ.
As part of a combustion noise research program conducted at the NA§A
Lewis Research Center, internal pressure measurements are made in aircraft
engines. Because the frequency spectrum of the combustion noise peaks below -
1000 Hz and the combustion noise generally propagates in a small area
annulus, the plane wave mode of bropagation is extreme]y important. Plane | o ‘
wave combustion noise propagafion is a ducted cohbustion system with flow R :
has been studied by Miles and Raftopoulos (refs. 1 and 2). Miles and o %
Raftopoulos ¢onstructed a system moded usihg a transmission matrix appfoach P

A
to the relate acoustic pressure and particle velocity at one point in the
system to those quantities at another pointi In constructing the model, it
was assumed that the duct system consisted of constant area duct regions

(

. S




4
which could be matched at area discontinuities, Then transmission matrices
were calculated for both the constant area duct regions and the area
discontinuities using the systems acoustic differential equations.

This approach of using transformation matrices should also be
applicable to the study of the propagation of plane wave combustion noise in
aircraft engine ducts and nozzles. However, aircraft engines do not have
only constant area ducts. Also, by definition nozzles have varying area.
Thus, as a first step in constructing an aircraft engine nozzle or duct

g ‘ system model for combustion noise propagation, this paper derives the
| input-output relationship in the form of a transmission matrix for the
propagation of sound in a variable area duct or nozzle carrying a
| one-dimensional subsonic compressible fluid flow.
BACKGROUND
Many studies of acoustic probiems rejated to the acoustics of aircraft
engine-duct systems have been made. Much of the previous work was related
to fan noisé‘and this type of work.is reviewed in reference 3. While the‘
+13 : acoustics of variable area ducts is among the topics reviewed in
reference 3, the transmission matrix approach is not discussed'iﬁ
reference 3. This topic was probably omitted because the transmission

matrix approach is used to study the plane wave propagation of low frequency

TRy T T |

‘ ; noise and is not used for fan noise, However, the appliCation‘of
transmission matrices to ducts without flow is discussed in references 4

lfb 11. Among these references, note that a brief but comprehensive

~intrqductibn to tbe fundamentals of the transmission matrix fepreSentation

; o i§ giVen,by‘Lambtbn (ref. 9). As mentioned previously, transmission matrices.

‘ can be useg;to,mbdel»dyct systems with flow if the systems consist of

different diameter constant area ducts by taking into account the area
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discontinuities, Methods for dealing with area discontinuities are
discussed in references 1 and lz‘to lo.

To the author's knowledge, transmission matrices have not been used to
mode sysfems containing variable area regions with mean flow. However, if
there is no mean flow in a variable area duct, the acoustic equations reduce
to the Webster Horn equation for which solutions may oe obtained for some
specific duct shapes (réfs. 27 to 21). Consequently, it is possib]é‘to
determine exact transmission matrices for these cases.

With a mean flow in a variable area duct, the probiem of finding a
transmission matrix becomes more complex, since the velocity, density, and
Mach number are then dependent on the duct area. Consequent]y,vthe acoustic

differential equations have variable coefficients. An exact solution to the

differential equations governing tne propagation of sound in a variable area

duct with one-dimensional flow was obtained by Eisenberg and Kao (ref, 22).
However, this solution is flot applicable to the present problem since it was
for'Specific duct shapes which,ﬁré semiminfﬁnite and diverge from a sonic

throat. Furthennore, the equations are not in transmission matrix form.

For ducts having more general shapes, numerical methods can be used to solve

the variable-coefficient equations. Solutions of the one-dimensional
acoustic differential equations‘with variable coefficients have been
obtained by Davis and Johnson (ref. 23), King and Karamcheti (ref. 24), and

Lumsdaine and Ragab (ref. 25) using numerical methods. Again none of these

~solutions is in transmission matrix farm,

Another numsical technique for calculating the behavior of sound is an
approximate technique developed by Alfredson (ref. 26) which uses many

small discontinuities to define the duct shape. Each discontinuity is then

,,freated using. the procedure described in reference 12. The technique
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described herein also uses many small discontinuities to describe the duct
shape, However, tne method is based on the infinite exponential horn
solution (descrived in refs, 17 and 18) and includes mean flow effects,

The governing equations used herein have been used by H, S, Tsien
(ref. 27), L. Crocco and S. Cheng (ref. 28) to study oscillations in rocket
nozzles, and S. Candel (ref., 29) to study entropy noise proéucéd by a nozzle.

In this paper, first, the governing'équations are derived by
Vinearization and put.intq state variable forh using acoustic pressure and
particle velocity as»the state variables, Next, in order to solve the
resulting differential equation, tne duct or nozzie is divided into regions
so that the coefficients of the differential equation can be made constant.
The transmission matrix is thained for each region by solving the acoustic
state variable differential équation using methods described by Ogata
(ref. 30). The transmission matrix for the variable area duct or nozzie is
the product of the transmission matrices for each segment. Last, solutions
are presented for several geometries with and without mean flow.

DERIVATION UF STATE! VARIABLE EQUATION

kThe following assumptions are made. The duct or nozzle has an area

profile A(x). Thé flow in the duc£ or nozzle of an ideal nonviscous,

nonconducting perfect gas is described by the following equations of

‘continuity,‘momen§um; energy, and state:

a(pA)/at + a(plUA)/ax = O v | (1)

p(au/at + Tali/ax) + ap/ax = 0 : (2)

| (a/at + Ua/px)§ = 0 . (3)
o «g-__‘so =’Cv ]n(—p-/"‘;Y) ‘ (4)

where P, ¥, U, and 5 are, respectively, the instantaneous pressure,

density, velocity, and entropy.
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The fluctuations in the duct arg assumed so small tnat the flow in the

duct 1is only slightly perturbed. Cunsequently, the instantaneous quantities

can be written in terms of a unperturbed stationary flow quantity designated

by o and a small perturbed quantity designated by 1 as follows:

o
n

Pol%) * py(t,x)
polX) * pq(t,x)
u (x) * ul(t %)
5o(%) *+ 54(t,x)

ol
i

ot

n

"

S= S

(5)
(6)
(7)
(8)

Substituting eguations (5) to (B) into equations (1) to (4) yields the

following zeroth order system of equations:

d(pouOA)/dx = 0

Poly auodx'+ de/dx =

So = €y In(p,/pl) = constant

and the first order system of equations:
A apl/at + qu Gpl/GX + Apo aullax + pl(uO dA/dx + A duo/dx)
+ ul(p0 dA/dx + A opoldx)=.0
Py gllat * ey duolox * gy aullax *opqU, duO/dx + apllax =0
(a/ot + uj a/ax)sy/c, = (s/ot + u, 8/9x)(py/p, - o /pg) = 0
? . For the system under consideration the gas equation is
P = pd6/(MW)
and the isentropic speed of sound is

2
Cy = 7990/(MW) = ¥P,/0,

From equation (14) the density perturbation is related to a pressure

perturbation by

Ql = 0, pl/Ypo pl/c

(9)
(10)
(11)

(16)

(17)
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Substituting equation (17) into equations (12) and (13) yielus the

following equations in matrix form:

o2 Z .
1/p0cO Q apllat ”o/”oco 1 apl/ax
o
5 0 1 aullat l/p0 u, aullax
F‘ Usp fd In(A) . d ln(uO) d In(A) , d ]n(po) /P4
G f \ 9 Toax ax ax
| U0\ '
. = 0 (18)
2 ‘ ‘
| ug 9 In(u,) du, ug
: 7 % K
¥ poco
; = -
Taking the Fourier transform of equation (18) and solving for dY/dx
yields |
m' dV]dX = BV . ‘ (19)
d
3 Using the zerotn order system of equations (Y) to (11) and equation (1b) to
relate the gradients of the logarithmical variation of velocity and density
to the gradient of the logarithmical variation of area yields
% ; ,
:
dMnfug) 1 dina) (20)
dx (1 - Mg> dx
d n(p) ME '
0 0 O_]n(A) (21)
r ax (1 - MZ) ax
! (¢] .
| Using equations (20) and (21) the elements of the B matrix in
SN ~ equation (19) are
Rl

gl o ook L =




e-ufihe — -~

¥
r

Y

2
Mo a1 + Mo (- ko)

11 ? % Y
(1 - M) (1~ M)
o Pofoliko) | ot g i) (23)
0 (} - Mo)
ik
Pyl = M)
i
9y = = (1+ M) g Tn(A) Mo(-1ky) (25)
MY % ? '
2 : (1 - M%)
(} - Mo) ¢

The acoustic state variable differential equation is given by
gquation (19). This equation will now be solved to obtain the duct
transmission matrix,

METHOD OF SOLUTION

In the previous section a general acoustic state variable differential
equation was derived {eq. (1Y)). In this section an approximate solution to
equation (1Y) is obtained. The first step in solving equation (19) is to
divide the duct or nozzle into a number of regions or subsections. The
region size is selected so that the Mach number can be assumed constant ‘in
each region and the area variation in each region can be approximated by an

exponential area variation. Consequently, in any given region
My = constant (20)

A:A&m | | (27)

with these assumptions the Mach number factors in the B matrix in

this region are constant. Also, the value of d(inA)/dx is given by
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d{ In{A)) .
~inaé~l~ s (28)

The B matrix is now independent of x invtne regtian where it is to

be evaluated. Thus, the solution to equation (1Y) for the jth region is
v Bax .
. b E , .
Y(xJ Ax)’ (e )JY(xJ) - (29)

where ax s the length of the jth region and exp(Bax) is known as the

matrix exponential, The value of e&p(BAx) is defined by
[
BaXx | (Bax)® ﬁBax‘)3
e = I * (BAX) +“\ 2, * 3. * o (30&)

The matrix exp(Bax) is the transmi§$ﬁon matrix of the jth vegion,

(1), so that C
= T, T
(Bax)j (BAx)§ 1 12
£=0 21 To2 ;

Consequently, the transmission matrix, T, for the varjable area duct is

found from

_ N T Tl _ |
Y(x) o 'ﬂ' (e‘“")jv(x) - Y(X), o TY(x) o (31)
J=1 Tp1 T2z
where
N
L = J§1 (8x); (32)

T

| N s



11
and N 1is the number of duct regions.

In this section an approximate sclution to the state differential
equation was obtained, In the next section computational techniques useful
for obtaining analytical and numerical solutions will be discussed,

EVALUTION OF MATRIX EXPONENTIAL

The solution of the matrix space differential equation thus involves
the matrix exponential exp(Bax), It is necessary to express exp(Bax) as a
matrix in order to obtain numerical vaiues for the transmission matrix.
Methods for evaluating a matrix exponential are discussed by Ogata in
chapter 6 of reference 30. These same methods can be used for evaluating
exp(Bax). The first method discussed produces a solution which can be
evaluated on a digital computer using the built-in complex exponential
function. It is also useful in generating analytical solutions in terms of
exponential and trigonometric functions. The second method that will be
discussed uses equation (30) to numerically obtain a value of (T) by
evaluating the exponential power series in (Bax).

The first method is to transform the B matrix into a diagonal matrix

- D using a transformation matrix P. If the eigenvectors of the B matrix

are distinct, then

Bax

=lana=lpy,.
8 - c"lpe<P CBC P)Axp-.-lC (33)
where
1 0
C = (34)
0 c

. p.C
o 0°0
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This method is implemented by first calculating

o CBC-l

s0 that
w11 = By
W1p = Balegt,
Po1 = B1P0%
Ay = Byp

Next, the eigenvalues of the & matrix, A, are found by setting the
determinant of the matrix (& - AI) equal to zero, Consequently, tne

eigenvalues are the roots of the equation

Az"' bA+*¢c =20
where

b=~y + )
and

C= s 9, = o))

Next, the P transformation matrix is calculated using

or

(3v)

(37)

(39)
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P = ) ) (41)
11 - N 11 - A

Note that if the P matrix defined by either equation (40) or (41) is
multiplied by a constant the result is also a P matrix. Consequently, it

is possible to significantly simplify the P matrix generated by equation

{40) or (44). The diagonal D matrix is then

B 0 |
D = <P lup e (42)
0 a1
2,
L 7

Consequentiy, the square matrix, exp{Dax) is given by

A1AX
o L
Dax

€ = ‘ (43)
ArAX
0 e ”

The value of the stuare matrix exp(Bax) is then given by

T T2

T = eBAxv= C-1 -

at Ta1 T2z
: ) ; -

Note that the elements of the matrix contains only complex exponential

- functions from equation (43).

As mentioned previously, the second method fon evaluating exp(Bax) is

based on expanding exp(Bax) in the exponential power series in (Bax) given

by equation (30). Equation (30) is also important in obtaining anq]yticél"

peP%p-le | (44)
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solutions, For instance, using equation (30) it is possible to prove
equation (43)., The virtue of equation (30) is its simplicity. However, in
writing a digital computer program based on equation (30) convergence
requirements must be specified and this may increase the running time of a
s computer program evaluating exp(Bax).
In this section two procedures for implementing the solution were
\ presented, Some analytical solutions will be presented next. These
solutions are presented to clarify the computational techniques and to
provide some insight into the nhumerical results.
E ANALYTICAL\SOLUTIONS
% In this section analytical so]uti;ns for the input-output relationship
{ : of the acoustic pressure and the particle velocity in the form of a
| | “transmission matrix will be obtainéd using the methods described in the
previous section. The solutions are exact since only casés where the Mach
number is zero or constant are considered. The geometries considered aré a
duct with constant area and a duct with an exponential area variation.
.These solutions are presented to clarify the numerical results presented in
the next section and the methods used to thqiq_them.
é | : | Constant Areé Duct Witﬁéui Flow
First, consider a constant area duct of length L with no flow. For
o this case M =0 and d 1n(A)/dx =0, C6n§equent1y, substituting these
% f ? ‘ ~values of M and d In(A)/ax into“equations (22) to (25) yields the
- following B matrik |
: | o pocoiko'
- ST .~ B= e ’ - £nY (45)
| D . o ikglee, 0 |

Substituting equations (45) ahq (32) into équatioh (31) yie1dsv

N

P

R R P S T

et Rt v i e
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o T Tio ]
: STy 11 12
Tz-l—-l.(e AX)J=E =€,) =
J
Ta1 ez

(46)

since the B matrix is independent of the Mach number. Using equation (30)

to evaluate equation (46) yields

i 2 4 3 5
| 02 (kL) (kt)® (kL)
Tt g i94¢ Y(kot) = —gr— * —%
T=| |
3 5 2 4
IS R O A Gkt kgt
G B H 5T 77 7T

Substituting the series definitions of the trigonometric functions, it

follows that

Fos(kéL) ip,Co sin(koL) §
T=]
| : é
i sin(k. L)
— 0 cos(k L)
L %% o

Constant Area Duct With Mean Flow

Next, consider a constant area duct of length L with mean flow.

(47)

(48)

Since the duct'area is constant again d ln(A)/dx,= 0. Using equations (22)

to (25) the B matrix is given by

R

[ R S

DY WLt
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BLA . poCol iKy)]
fier U
| IR T %
(ik,) M, (ko) |
Y oM
_poco( - M) Mo

Substituting equation (49) into equation (31) shows that the transmission
matrix is again given by equation (46). For this case the value for
exp(BL) will be evaluated using equation (33).

First, the & matrix is calculated from equation (35). Next, the

eigenvalues are found using equations (37) to (39). Thus,

A= (k) /(1+ M)

(50)
Ay = (~ik0)/(1 - MO)
Based on equation (40) a satisfactory P matrix is
i 4
P=| (51)

The diagonal D matrix calculated by substituting equations (34), (35), :
(40), and (51) into équation (42) is ' .

ik L . |
i+ MO i
D - | | (52)
ot ik L
U - _I.._..._._O
b -

P L T

R .
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The transmission matrix calculated by substituting equations (34), (51),

and (52) into equation (44) is

o .

(ML L AL AL
(e 17y e ) (e 1= _ .2 )
i 2 2 '
T=| | (63)
i : l
A4l AoL) Al AL
(e - e 2 ) (e | e 2 )
2 ; Vi
b. L
or using the complex def1n1t10n of the sine and cosine funct1ons
i ‘ |
) cos §L 0,C o SinEL) |1 |
o S
-itMoL C f |
T=e e o (54)
__ElﬂQL_l cos(tL)
6%

where & = k /(1 - Mz)
Note that for M = 0, the transmission matrix given by equation (54)
reduces to that given by equation (48),
Variable Area Duct Without Flow
The second geometry discussed in this section is a duct of length L

having an exponential area variation

" =
AL = Aoe (55)
First, the zero fkequency limit transmission matrix for no flow will be

calculated. For this case M= 0, k=0, and d In(A)/dx =

Consequently, from equations (22) to (25) the B matrix is giVen by
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- J
0 0 | |
B = . | (56) -
L0 ~m ' !
Substituting equation (56) into equation (31) again yields equation (46). |
!
For this case, equation (46) can be evaluated using equation (30). Again |
substituting for the power series obtained yields a closed form solution as f
follows | |
|
Lo |
T=] ' (57 ,;
O e“mL

The corresponding set of simultaneous equation is then

p(iw,L) = p(iw,0) S (59)

ALu(im,L) = A,u(in,0) ; ~(60) - |
Conséduently, at Tow frequencies for no flow the acoustic pressure is the ‘ %

same at both ends of the duct and the acoustic volume flow is constant,
 Next, the general trahsmissionrmatrix for the exponential duct without
flow will be calculated. For this case d In(A)/dx = m. Consequently, from

equations (22) to (25) the B matrix is given by
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" . b
0 [LPCACH
5| (61)
%E%« -

Substltutung equation (61) into equation (31) shows that the transmission
matr1x is given by equatwon (46), For this case, the value of exp(BL) will
be evaluated using equation (33). The eigenvalues found using equations

(37) to (39) are

~<f"")

A = :_
‘ ’ : (62)
)‘2.-:~1k( ' ) ‘ | |
" where |
€ = m/21’k0 | (b3)
Based on equation (40) a 2. matrix is given by
e * 252 + 1 € - e2 + 1 §
o |
1 4 1 ‘
The diagonal D matrix calculated by substituting equation (64) into
equation (42) and u51ng equat1on (35) to determine the & matrix is
1k (é + gfel + 1) 0 ' E | |
o-| o (e
: 0 u‘lk(e"'Ve "'1)

Mogiosiige iy
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| - The transmission matrix calculated by substituting equations (34), (63),
and (66) into equation (44) is
({
AL g fl
4( AIL eAZL) + Y1+ e/'(eAlL A21) "oco<° - € > : 1
!‘ | 2Vl +e ' 2
: , i
T = : o
i ‘ h
| | ML A L) ML A S R
' (e b e ( ) /1 4 ¢° ( ! )
3
ZDOCO 1+ 6‘.2 'l + e ]
; (66)
: or |
) 'Ie sm@oL V ) pocoi si’n(koL 1+ ¢ )
L 1+ ¢ 1+e
oy 5
. | 7
| + (.O:S(kOL 1+e ) ,
| ,
Lik el |
0
sin‘kol.” 1+ > -ie sin(kol. 1+e )
ppcc% 1 +e /1 + ¢
|
. 1 “ r
| + cos(k L Y1+ e2>
| )
o -l

| N TR O

e
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Note that for a constant area duct ma= 0 and thus e = 0, The
transmission matrix given by equation (67) for this case reduces to the

transmission matrix given by equation (48).

Also note that for the low frequency case, the eigenvalues are given by

Tim A o= 0
k>0
> (68)
Tim Ag = =M |
k>0 J

Substituting these eignevalues into the transmission matrix given by
equation (66) and letting k go to zero, yields the transmission matrix
given by equation (57).

In this section analytical solutions to equation (31) were found for

the case where the Mach number in equations (22) to'(Zb) is zero or constant

and equation (31) yields an exact solution. It was shown that using
equatien (33) to obtain a solution for exp(BL) yieids a solution in terms

of exponential or trigonometric functions. It was also demonstrated that

while equation (30) can be used to obtain an analytical solution, it is only '

useful in the most simple cases where the resulting power series
recognizable. The next section discusses numerical solutions,
COMPUTATIONAL EXAMPLES

Numerical calculations of transmission matrices for several duct
conf igurations with and without flow were made by evaluating equation'(31).
The calculations yield exact solutions for cases where the Mach number is
zero or constant.' Thus for any of the cases discussed above thé numerical
solutions are identical to the corresponding analytical solution.

When the Mach number is not constant or zero the numerical calculations

'yield an approximate solution. The approximation is improved as the duct is
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divided into smaller subsections. Typical results obtained by dividing the
duct configuration into 500 equal length subsections are presented next.
For all solutions, the zeroth order system of equations is solved first to
evaluate pg, Ug, 99, and py at the start of each subsection using a
stagnation pressure of one atmosphere and a stagnation temperature of
295 K. The ratio of gas specific heats was 1.4.

The numerical results are presented as plots of the magnitude and phase
angle of each of the matrix elements versus frequency.

Constant Area Duct

Results obtained for a one-meter-long cylindrical duct will be
discussed first, Since in a cylindrical duct the Mach number is zero or
constant, the numerical solution is identical to the analytical solution.
Transmission matrices for the one-meter-long constant area duct caiculated
for M=0, M=0.25 and M= 0.6 are shown in figure 1. The solid curves

in figure 1 correspond to solutions obtained using equation (48). The

- dashed curves correspond to solutions obtained using equation (54). The

curves are functions of ¢L = (an/co)Lf(l - Mg), Consequently, the
curves appear to contract with increasing Mach number. This is because the
frequency location of corresponding peaks and dips which occur at constant
tL values must shift to lower frequencies as the Mach number is increased.
In addition, as the Mach number increases so does the phase factor
exp(~itM L) which multiplies each transmission matrix element,

The ratio of the pressure at x = 1.0 to the pressure at x = 0 with
zero acoustic particle velocity at x = 0, Tll,_is eqqai_to
exp(~itM,L)cos(¢ L) which is plotted in figure 1(a). The ratio of the

acoustic particle velocity at x = 1.0 to the écoustic,particle velocity
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at x = 0 with zero acoustic pressure at X = 0, Tzz, is shown in figure
1(d) and is also equal to exp(~itM L)cos(EL).

The ratio of the pressure at x = 1.0 to the acoustic particle
velocity at x = 0 with zero acoustic pressure at x = 0, Typ, is
P00 exp(i(n/2 - EMOL))sin(KL) which is shown in figure 1(b). The
ratio of the acoustic particle velocity at x = 1.0 to the acoustic
pressure at X = 0 with zero acoustic particie velocity at x = 0, Ty,
is exp(i(n/2 - EM L)sin(EL)/p c, which is shown in figure 1l(c).

Variable Area Ducts

Results obtained for one-meter-long ducts having exponential area
variation will be discussed next. Two examples are presented. One example
which is identified as the long exponential nozzle (LEN) has an area which
decreases exponentially from 0.02 to 0.01 m (d In(A)/dx = moey = In(1/2)).
The transmission matrix for this geometry calculated for mass flows of 0 and
2.0 kg/sec are shown in figure 2. The second exampie which is identified as
the long exponential horn (LEH) has an area which increases exponentially
from 0.01 to 0.02 m (d In(A)/dx = m ¢y = 1n(2)). The transmission matrix
for this geometry calculated for mass flows of 0 and 2.0 kg/sec is shown in
figure 3,

Without flow, - First, the no-flow cases will be discussed. At low

frequencies, the analytical solution given by equation (58) for the long
exponential nozzle transmission matrix, Tene 18

IR R

TLEN(fr.O): | . o ' (69).
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where exp(-mLENL) = (AO/AL)LEN = 2.0, Furthermore, at Jow

frequencies, the analytical solution given by equation (58) for the long

exponential horn transmission matrix, T, is

i

0

e

In addition, at frequencies greater than jmco/4n| the analytical

(Ro/Ay) gn

solution given by equation (67) for TLEN is

) \/2
Tiew = |72
LEN*(NL‘

LEN

" cos(koL)

i sin(koL)

o

poco

. R T
ipoco swn(koL}

cos(koL)

where (A/A ) gy = 2. Moreover, at frequencies greater than

lmcol4n| the ana1¥tica1 solution given by equation (67) for TLEH is

1/2
T = (30
Lew =\R /)

LEH

-
it

i
{

P
o
| |

; ' ]
ip,Co 51n(k°L)

cos(kOL)

|

i
i

where (Aj/A ) gy = L/2. The results of the numerical calculations

(70)

(72)

shown in figures 2 and 3, for the case without flow are identical with these

Sk i
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analytic results, These few examples show that the numerical calculations
are in agreement with the analytical solutions,

With flow, ~ The numerically calculated transmission matrix for the
Tong exponential nozzle and horn with a mass flow of 2.0 kg/sec shown in
figures 2 and 3 will be discussed next.

As expected from the results presented in figure 1 the frequency
Tocation of the peaks and dips shifted to lower frequencies, Also as
expected, the phase angle is significantly different for this case.
However, the types of changes in the magnitude and phase angle of the
elements of the long exponential nozzle and horn transmission matrix is
unexpected. The interaction of the flow and the gradient of the
logarithmical area variation change the transition matrix elements
significantly. For instance, the low frequency vaiue of (TZZ)LEN
shifts from 2 with no flow to 3.3 with a mass flow of 2 kg/sec. Also, the
low frequency vaiue of (T22)LEH shifts from 1/2 with no flow to 0,295
with a flow of 2.0 kg/sec. '

The nﬁmerical method can be applied to any type of area variation. The
transmission matrix for a short exponentially contracting duct and a
Tinearally contracting duct, both 20 cm long, are compared in figure 4.
Below 50 Hz the transmission matrices are similar, _Above 50 Hz the
magnitudes do not agree. However, the phase anglé’differences become
significant only above 400 Hz.

~ CONCLUDING REMARKS

A numerical method for detemmining the transmission matrix of a
variable area duct or nozzle carrying a compressible subsonic mean flow was
presented, The method yields an exact so1utionifor the zero mean flow case

and an approximate solution for the nonzero mean flow case. However, in
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using the numerical method the duct or nozzle is divided into regfons in a
way that makes the method more accurate as the number of regions increases
and the region size decreases. Consequently, the accuracy of the method is
only Timited by the region size.

Furthermore, for the no-flow case not oniy does the numerical solution
become exact, but it also becomes possible to use the equations which
describe it to generate an analytical solution in terms of exponential and
trigonometric functions,

The method was applied to several geometries with and without flow,
inrluding both expanding and contracting duct sections. For the cases
without flow analytical solutions were obtained.

The numerical method may also be useful in studying sound propagation
in ducts without a mean flow having shapes for which the Webster Horn
equation does not have an exact solution. Furthermore, the method is easy
to apply. Therefore, even for ducts with shapes for which the Webster Horn
equation does have an exact solution, the method may be useful where a
numerical solution is adequate,
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