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ABSTRACT

The differential equations governing the propagation of sound in a

variable area duct or nozzle carrying a one-dimensional subsonic

compressible fluid flow are derived and put in state variable form using

acoustic pressure and particle velocity as the state variables. The duct or

nozzle is divided into a number of regions. The region size is selected so

that in each region the Mach number can be assumed constant and the area

variation can be approximated by an exponential area variation.

Consequently, the state variable equation in each region has constant

coefficients. The transmission matrix for each region is obtained by

solving the constant coefficient acoustic state variaole differential
Chi	

equation. The transmission matrix for the duct or nozzle is the product of

the individual transmission matrices of each region. Solutions are

presented for several geometries with and without mean flow.

NOME NCLATAURE

.r	 matrix

A	 area

B,C,D	 matrix
`	

b,c	 constants

C	 isentropic speed of sound

f	 frequency, Hz
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I	 unit matrix

i	 ( -1)112 1

k	 propagation wave number, w/c
o

 Mach number, 
uo

/co

(MW)	 molecular weight
a

P	 transformation matrix

p	 pressure

. R	 gas constant

s	 entropy of gas jj

9

T	 transmission matrix

t	 time
i

I

u	 fluid velocity

W	 mass f l ow

x	 Cartesian coordinate

Y	 acoustic state vector

Z	 acoustic impedance

nx	 region length

Y	 specific heat ratio of gas

E	 m/2i ko

ko/0 — Mo)

eigenvalue

r
e	 temperature

P	 gas density
0

t

W	 angular frequency, radians/sec

Superscripts and subscripts:

r
r

,' (~)	 vector quantity

;E
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( instantaneous quantity

(	 )p	 reference state quantity

) 1	perturbed quantity 1

t

`	 INTRODUCTION

The use of the transmission matrix approach provides considerable

simplification to the algebraic complexities involved in the analysis of

s

acoustic systems which can be modeled as a series of simple regions.	 The

elements of a region transmission matrix are a set of coefficients which
{ 1

f depend only on the properties of the region.	 Furthermore, this set of

coefficients relate the acoustic pressure and particle velocity at the inlet

of the region to those quantities at the exit of the region.	 The algebraic-
1

(	 complexities are reduced -in this case because the transmission matrix of the

;conent transmission matrices:
f	

entire system is the product of the 	 st tu

Consequently, the properties of a system can be calculated by

straightforward multiplication using a building block approach based on

defining the input—output relationship of each of the regions of a systs,m.
N

As part of a combustion noise research program conducted at the NASA

Lewis Research Center, internal pressure measurements are made in aircraft

engines.	 Because the frequency spectrum of the combustion noise peaks below

1000 Hz and the combustion noise generally propagates in a small area

annulus, the plane wave mode of propagation is extremely important.	 Plane -a

wave combustion noise propagation is a ducted combustion system with flow

has been studied by Miles and Raftopoulos ( refs. 	 1 and 2)'.	 Miles and

Raftopoulos constructed a system model using a transmission matrix approach

to the relate acoustic pressure and particle velocity at one point in the r
A

system to ;those quantities at another point:; 	 In constructing the model, it G

was assumed that the duct system consisted of constant area duct regions

r if

F
t

t
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which could be matched at area discontinuities. Then transmission matrices

were calculated for both the constant area duct regions and the area

discontinuities using the systems acoustic differential equations.

This approach of using transformation matrices should also be

applicable to the study of the propagation of plane wave combustion noise in

aircraft engine ducts and nozzles. However, aircraft engines do not have

only constant area ducts. Also, by definition nozzles have varying area.

Thus, as a first step in constructing an aircraft engine nozzle or duct
1

system model for combustion noise propagation, this paper derives the

input-output relationship in the form of a transmission matrix for the

propagation of sound in a variable area duct or nozzle carrying a

one-dimensional subsonic compressible fluid flow. r

BACKGROUND

Many studies of acoustic problems related to the acoustics of aircraft

engine-duct systems have been made.	 Much of the previous work was,.reiated

to fan noise and this type of work,is reviewed in reference 3. 	 While the

acoustics of variable area ducts is among the topics reviewed in

reference 3, the transmission matrix approach is not discussed in

reference 3:	 This topic was probably omitted because the transmission
y

matrix approach is used to study the plane wave propagation of low frequency

4̀4 noise and is not used for fan 'noise.	 However, the application of

transmission matrices to ducts without flow is discussed in references 4

to 11.	 Among these references, note that a brief but comprehensive

introduction to the fundamentals of the transmission matrix representation

is given by Lampton (ref. D).	 As mentioned previously, transmission matrices,

can be use_d_to model duct systems with flow if the systems consist of

different diameter constant area ducts by taking into account the area
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d i Scontinuitie s. W.thods for dealing with aroa discontinuities are

discussed in references I and 12 to 16.

To ttie author's knoWledge, transmission matrices have not been used to

model systems containing variable area regions with mean flow. However, if

there is no mean flow in a variable area duct, the acoustic equations reduce

to the Webster Horn equation for which solutions may oe obtained for some

specific duct shapes (refs. 27 to 21). Consequently, it is possible, to

determine exact transmission matrices for these cases.

With a mean flow in a variable area duct, the problem of finding a

transmission .matrix becomes more complex, since the velocity, density, and

'Mach number are then dependent on the auct area. Consequently,, the acoustic

differential equations have variable coefficients. An exact solution to the

differential equatio-ns governing tne propagation of sound in a variable ureaa

duct with one-dimensiona] flow was obtain,0d by Nsenoerg and Kao (ref. 22).

However, this -solution is fiot applicable to the present problem since it was

for specific duct shapes which are semi-infinite and diverge from a sonic
Qj

triroat. Furtheniiore, the equations are not 
in 

transmission matrix form.

For ducts having more general shapes, numerical methods can be used to solve

the variable-coefficient equations. Solutions of the one-dimensional

acoustic differential equations with variable coefficients have been

obtained by Davis and Johnson (ref. 23), King and Karamcheti (ref. 24), and

Lumsdaine and Ragab (ref. 25) using numerical methods. Again none of these

solutions is in transmission matrix form,

Another nume-:2,"i'cal technique for calculating the behavior of sound is an

approximate technique developed by Alfredson (ref. 26) which uses many

small discontinuities to define the duct shape. Each discontinuity is then

treated using the procedure described 
in 

reference 12. The technique
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0

described tierein also ures inany small discontinui ties to describe the duct

shape. However, trio method is based on the inf inite exponential horn

solution (described in refs. 17 and 18) and includes mean flow effects.

The governing equations used herein liave been used by H. S. Tsien

(ref. 27), L. Crocco and S. Chong (ref. 28) to study oscill.otions in,rocket

nozzles, and S. Candel (ref. 29) to study entropy noise produced by a nozzle.

In this paper, f irst, the gover^iinq '. equations are derived by

linearization and put into state variable form using acoustic pressure and

particle velocity as the state variables. Next, in order to solve the

resulting differential equation, tne duct or nozz'le is divioed into regions

so thot the coefficient^ of the differential equation,can oe made constant.

The transmission matrix is obtained for each region by solving the acoustic

state variable differential equation using methods aescribed by Ogata

(ref. 30). The -transmission matrix for the variable area duct or' nozzle is

the product of the transmission matrices for each segment. Last, solutions

are presented for several geometries with and without mean flow.

DERIVATION UF STATE, 
,̂
i'1ARIABLE EQUATION

The following assumptions are made. The duct or nozzle has an area

profile A(x). The flow in the duct or nozzle of an ideal nonviscous,

nonconducting perfect gas is described by the following equations of

continuity, momentum, energy, and state:

a(FA)/at + a(pUA)/ax	 0

^(au/at + ua—u/ox) + aPax 0	 (2)

Wat + ua/px)'^ = 0 (3)

S — s	 c ln(^/ P y )	 (4)0	 v

wriere	 arid K are, respectively, the instantaneous pressure,

density, velocity, and entropy.



7

The fluctuations in the duct art; assumed so small tnat the flow in the

duct is only slightly perturbed. Consequently, the instantaneous quantities

can be writtl en in terms of a unperturbed stationary flow quantity designated

by o and a small perturbed quantity designated by I as follows:

P = P OW + P I ( t ,x)	 (5)

= Po( x ) + Pj( t ' x) 	 (6)

U = U 0 (X) + u l (t,x)	 (7)

S = S O W + s i( t o)	 (8)

Sobstitoting equations (5) to (8) Into equations (1) to (4) yields the

following zer ,oth order system of equations.*

d(p 
ovoA)/dx = 0
	

(9)

POUO 
au odx , + dp 

0 ldx = 0
	

(10)

s0 = C
v In(p

0 0W) = constant

and the first order system of equations:

A ap l /at + u 
OA a p i /ax + A po au /ax + p l (uo dA/dx + A duo/dx)

Glj
+ U I(Po dA/dx + A ap 

0 /dx)= 0 (12)

PO a l 
/at + P oul 

do 
0 
/dx + p 

0 u 0 
au l /ax + p l uo du o /dx + op,/ax	 0 (13)

(a/at + u
0	

a/ax)s /C
v 

= (3/at + u
0	

.-a/ax)(PI/po	 YP j /P o )	 0 (14)

For the system under consideration the gas equation is

(MW) (15)

and the isentropic speed of sound is

co0 YRG
0 /( MW )	 Y p 0 /P 0 (16)

From equation( 14) the density perturbation is related to a pressure

perturbation by

Pi Popi/Ypo
	 P I /co

2
(17)
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Substituting equation (17) into ocluations ( 1Z) and (13) yielus the

fallowing equations in matrix forn7;

1/0 oc0	 0apt/at	 up /POC	 I	 apt/ax

0	 1	
au1/at
	 1/po	 un	 aul/ax

	

u^	 d ln(^a)	 d ln(A)	
pl

ox

	

o	 d ln(A) +	 t,	 d ln(A)	 o
^1cx  

c, o

o	 (18)

	

U ©	 d ln(u)	
-	 duo

Ox-
1

P o 0

Taking the Fouri er transform of equation ( 18) and solving for dY/dx

yields

	

dY/dx = BY	 (19)

Using the zerotn order system of equations (9) to (11) and equation (1b) to

relate the gradients of the logarithmical variation of velocity and density

to the gradient of the logaritnmical variation of area yields

i

d ln(uo)	
1	 d In(A)	

(20)
dx	 T	 (1	 M2)	 dx

0

d ln(pMo	 a In(q)	 1

dx	 (21)

r
ir

Using equations ( 20) and (21) the elements of the B matrix in

equation (:19) are

w

	

	
,
i

^	 x
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Mo	 d 1n(A)B 11	
Mo(»^ko)	

()
(
^ . "tom ^r1.

n	 o

a
0 co (iko )	 PocoMo d ±- LA)

o
1
 . Mo 2)

l
(24)E21 

`^ Pacn(1 o

,,	 2
r	 _ (	 ) d1n(A) + Mo(^-"o)

D22	 Z
	 d	

(,	 (25)

!(.	 (i	 Mo/	
o

ttp

	 The acoustic state variable differential equation is given by

f
equation (19) . This equation wi ll now be solved to obtain the duct

transmission matrix,

METHOD OF SOLUTION

In the previous ` section a general acoustic state variable differential

equation was derived (eq. (19)). In this section an approximate solution to

equation (19) is obtained. The first step in solving equation (19) is to

t divide the duct or nozzle into a number of regions or subsections. The
u

region size is sel ectea so that the Mach number can be assumed constant in

each region and the area vari ation i n each region can be approximated by an

exponential area variation. Consequently, in any given region

M	 'constant	 (26)

A	 Aoernx	
(27)

With these assumptions the Mach number factors in the 6 matrix in

this region are constant. Also, the value of d(lnA)/dx is given by

R

•
D
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d( r r ► n)	 ►►►

The	 B matrix i s now independent of	 x	 in the region where, it i s to

be evaluated. Thus, the solution to equation (19) for the j",	 region is

r

Y(xj 4- AX)	
(el3ax) 

j Y ( xj) (Zy)

where	 ex	 is the length of the 	 j th	 regi on► anu	 exp(anx) is known as the

matrix exponential. The value of	 ex BAx) is defined oy

et3ex
;I 	 (RAx)`.	

hex)	 ^	 33x
(30a).

The matrix	 exp(BAx) is the transmis.,v on matrix of the	 jth region,

(T)a,	 so that

i R	 TU 	 T 12(BAx) ^	 (BAx).
J

(T) j - e	 =	 --- (30h)

k = O T21	
T22

N

Consequently, the transmission matrix, T, for- the variable, area duct is

found from

i N	 T11	 T1

Y(x) ^ (eB.nx)-Y(x)

i
Y(x) TY(x) (31,)

x L X;zo
j=1	 TL1	 fi1^

where

L 	 ( ° x) j (32)

u j=1

-
7

a

s
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and N is the number of duct regions.

In this section an approximate solution to the state differential

equation was obtained, ,n the next section computational techniques useful

s
for obtaining analytical and numerical solutions will be discussed.

6VALUTION OF MATRIX EXPONENTIAL
i

The solution of the matrix space differential equation thus involves 	 j

the matrix exponential exp(Bax), It is necessary to express exp(B4x) as a
1

matrix in order 'to obtain numerical values for the transmission matrix.
a

Methods for evaluating a matrix exponential are discussed by Ogata in

chapter 6 of reference 30. These same methods can be used for evaluating

exp(hnx). The first method discussed produces a solution which can be
I

evaluated on a digital computer using the built—in complex exponential

function. It is also useful in generating analytical solutions in terms of

exponential and trigonometric functions. The second 'method that will be

discussed uses equation (30) to numerically obtain a value of (T) by
i

evaluating the exponential power series in (Bex).

The first method is to transform the Q matrix into a' diagonal matrix

D using a transformation matrix P. If the eigenvectors of the Q matrix

are distinct, then



.J

i
This method is impl emented by first calculating

so that
a

'f l i	 oil

10(12 	 112/pOc o
(3b) >

'V21	 3 21 p oco

22	 X22

Next, the eigenvalues of the	 ji	 matrix, A, are fauna by setting the

determinant of the matrix (&f - 0) equal to zero.	 Consequently, the

egenvalues are the roots of the equation

A	 bX	 c - 0 (37)

? where $

t
and

c - 011 .d22 	 JV12 $121 (39)

f
Next, the	 P	 transformation matrix is calculated using

a

d?2 - a1	 022 - aZ

}
F (40)

-.^21	 --V21 '.

i or
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P	 (41)

.^/1 T .^ a 
1	 .rrll'11 " ^2

Note that ifi the	 P	 matrix defined by either equation (40) or (41) is

a

3

multiplied by a constant the result is also a	 P	 matrix.	 Consequently,	 it
7

is possible to significantly simplify the 	 P	 matrix generated by equation
1

(40) or (44).	 The diagonal	 D	 matrix is then

(
a1	

0

a

D _ =^%'p' 1.^1 P
	

(42)
I

U	
2 I

L Consequently, the square matrix, exp(Dax) 	 is given by

X1ex
e	 0

eDax = (43)

a,,ex
} 0	 e

m
^

The value of the square matrix	 exp(Bex) is then given by
N

T

11	 T12

T _ 
eBnx _ C-1PeDnxP-1C

(44)

ii	

4
-

A

T21	 T22
:f

k Note that the elements of the matrix contains only complex exponential

functions from equation (43).

{As mentioned previously, the second method for evaluating 	 exp(Bnx) is

f based on expanding	 exp(Bax) in the exponential power series in (Bnx) given-
S

t

by equation (30).	 Equation (30)	 is also important in obtaining' analytical
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solutions. For instance, using equation (30) it is possible to prove.

equation (43). The virtue of equation (30) -is its simplicity. However, in

writing a digital computer program based on equation (30) convergence

requirements must be specified and this may increase the running time of a

computer program evaluating exp(Bex).

In this section two procedures for implementing the solution were

presented. Some analytical solutions will be presented next. These

solutions are presented to clarify the computational techniques and to

provide some insight into the numerical results.

ANALYTICAL	 SOLUTIONS

In this section . analytical solutions for the input-output relationship .	!,.
A

of the acoustic pressure and the particle velocity in the form of a

transmission matrix will be obtained using the methods described in the

previous section.	 The solutions are exact since only cases where the Mach

number i s zero or constant are considered.	 The geometries considered are a

-duct with constant area and a duct with an exponential area variation.

F
These `solutions are presented to clarify the numerical resultspresented in

the next section and the methods used to obtain them.
-

E Constant Area Duct Without Flow` -

First, consider a constant area duct of length-	 L	 with no flow.	 For

this case	 M = 0	 and	 d ln(A)/dx = 0	 Consequently, substituting these

i
f° values of	 M	 and	 d ln(A)/ox	 into equations (22) to (25) yields the
k

following	 B	 matrix

0	 Pocoixo

B (45)
Y

r. iko/POco	 O

^ r

Substituting equations (45) and (32)	 into equation (31) yields 	 i

^!	 a
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T	 TBE( X)j	 11	 12

	

T =T(eBeX ) d _= e 
J	

F"PL	
(46)	 i

J

	

T21	 T22

since the B matrix is independent of the Mach number. Using equation (30)

to evaluate equation (46) yields

OP

(k L) 2	(k L) 4	(k L)3	(k L)50	 +	 o	
(k 

L)	 0	 +	 o1 P0C 0 	 0 _——. .

(k L)	 (k L)	 (k
i	 o 

3
	 0 

5	
oL)2

	
(koL)4

Poc0
(k L) - -- -- + --r-+-

(41)

Substituting the series definitions of the trigonometric functions, it

follows that

1
	cos(koL)	 iPOc0 sin(koL)

j

T =	 (4$)

i sin(k L)
c 0	 cos(koL)

00

Constant Area Duct With Mean Flow

Next, consider a constant area duct of length L with mean flow.

Since the duct area is constant again d ln(A)/dx 	 0. Using equations (22)

to (25) the B matrix is given by

t
t

4E6
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Ma 	pc O k )
1̂-r--- (-Ilk   o )	 o	 p

p	 o

	

(i ko )	 Mo (—i ko)
^.___.

p0r0(1 _ MI 	 1 - M

Substituting equation (49) into equation (31) shows that the transmission

matrix is again given by equation (4b). For this case the value for

exp(BL) will be evaluated using equation (33).

First, the .W matrix is calculated from equation (35). Next, the

h	 eigen-values are found using equations (37) to (39). Thus,

a 1= (ik o)1(1 + MO)

(50)

a2 = (,-iko)/(1 - Mu)

Rased ors equation (40) a-satisfactory P matrix is

	

1'	 -1

P _	 (51)

	

1	 1

The diagonal D matrix ca4culated by substituting equation, (34), (35),

(40), and (51) into equation (42) is
i

ikoL	 t

r	 1 
M	

p

_a

E	
0_
	 f	 n

(52)

U	

ik 
o 
L,	 Y

! 
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The transmission matrix calculated by substituting equations (34), (51),

and (52) into equation (44) is

i
NiL	 a2L	 a1L	 a2L

e	 +e	 a	 -e

T= I	 I

e
AIL	

e 

all	
+ ee a

1L	 a2L
- 

or using the complex definition of the sine.and cosine functions

co$(96a
0 c0

 sin(tL)

-itm L
T - e	

o	
(54)i	

I	
I

sin(i;L
cos(f L)

L. 
POCO

(53).

where s; = k o/(1 - Mo).

Note that for M 0, the transmission matrix given by equation (54)

reduces to that given by equation (48),

Variable Area Duct Without Flow-

r	 The second geometry discussed in this section is a duct of length L

having an exponential area variation

AL A0 	 (55)

First, the zero frequency limit transmission matrix for no flow will be

calculated. For this case M = 0, k = 0, and d ln(A)/dx = m.	
r

: t	 Consequently, from equations (22) to (25) the 6 matrix is given by

i

5
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(56)

0	 ^m

Substituting equation (56) into equation (31) again yields equation (46).

For this case, equation (46) can be evaluated using equation (30). Again

substituting for the power series obtained yields a closeu form solution as

follows

f	 1	
0

T =	 (57)

	

0	 e-mL

Substitution of equation (55') into equation (57) yields

	

1.	 p

i	 r ..	 (58)

s

	

0	
A

0 
/A

The corresponding set of simultaneous equatiun is then

p ( iw + L ) — p ( i W' o )	 (59)

AL u(iw,L) = Auu(w,o)	 (60),

Consequently, at low frequencies for no fl ow the acoustic pressure is the

same at both ends of the duct and the acoustic volume flow is constant.

f	 Next, the general transmission matrix for the exponential duct without

r	 flow will be calculated. For this case d 'In(A) /dx' r m. Consequently, from

equations (22) to (25) the B matrix is given by

y	
,

tl



1
lg

0	 ikonoco

iko
—nt

IL poCo

Substituting equation (61) into equation (31) snows that the transmission

matrix is givers by equation (46). For this case, the value of exp(BL) w0l

be evaluated using equation (33). The eigenvalues found using equations

(37) to (39) are

t	 ik o -E + Ile , 	 1^y {

l
a2 -- —ik o 	+	 e2 + 1

(62)

where

e	 m/ 2i k o KQ

Based on equation (40) a,. _ matrix	 is given by

e 2 1 —	 e2+1

P _ (64)

1	 1

The diagonal	 p	 matrix calculated by substituting equation (64) into

equation (42)	 and using equation (35) to determine the 	 Af	 matrix is
f	

^ 3

l

—+	 a	 + 1	 0
r

p

E	 ° _
(65)

o	 —ik e + a-+ 1

w

fi
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The transmission matrix calculat(d by slnustiLut• ing equations (34), (63),

and (65) into equation (49) is

le	 -- e	 l 

+
^e
	 e x
	 Pnce`e	

e

2fl e1+E,

T
i

L	 L^ e ^ 2 /	 —r e 
(. 2L1	 1 

e 
a 1L	 a2L

—e / + 1 e 	 e

2p oc
0
	1 + c 2	 2 1 + E2

r

=o r

i

(bb)

f

ic —Sink 
0 
L	 1 * t 2	 PQcoi sits k0L f, +	 l

fl—T-71+7

+ ''r nclk	 1/1 + ^``^^



Note that for a constant area duct m 	 and thus c 0. The

transmission matrix given by equation (67) for this case reduces to the

transmission matrix given by equation (48).

Also note that for the low frequency case, the eigenvalues are given by

I im X 1 = 0

k*0

(68)

I im X
2 
= -m

40

Substituting these eignevalues into the transmission matrix giver) by

equation (66) and letting k go to zero, yields the transmission matrix

given by equation (57).

In this section analytical solutions to equation (31) Were found for

the case where the Mach number in equations (22) to (25) is zero or constant

and equation (31) yields an exact solution. It was shown that using

equation (33) to obtain a solution for exp(BL) yields a solution in terms

of exponential or trigonometric functions. It was also demonstrated that

while equation (30) can be used to obtain an analytical solution, it is only

useful in the most simple cases where the resulting power series

recogniza0e. The next section discusses numerical solutions.

COMPUTATIONAL EXAMPLES

Numerical calculations of transmission matrices for several duct

configurations with and without flow were made by evaluating equation (31).

The calculations yield exact solutions for cases where the Mach number is

zero or constant. Thus for any of the cases discussed above the numerical

solutions are identical to the corresponding analytical solution.

When the Mach number is not constant or zero the numerical calculations

yield an approximate solution. The approximation is improved as the duct is

P
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p;

4k

divided into smaller subsections. Typical results obtained by dividing the

duct configuration into 500 equal length subsections are presented next.

For all solutions, the zeroth order system of equations is solved first to

evaluate po, uo, oo, and po at the start of each subsection using a

stagnation pressure of one atmosphere and a stagnation temperature of

296 K. The ratio of gas specific heats was 1.4.

The numerical results are presented as plots of the magnitude and phase

angle of each of the matrix elements versus frequency.

Constant Area Ouct

Results obtained for a one-meter-long cylindrical duct will be

discussed first. Since in a cylindrical duct the Mach number is zero or

constant, the numerical solution is identical to the analytical solution.

Transmission matrices for the one-meter-long constant area duct calculated

for M = O, M = 0.25, and M = 0.6 are shown in figure 1. The solid curves

in figure 1 correspond to solutions obtained using equation (48). The

dashed curves correspond to solutions obtained using equation (54). The

curves are functions of tL 	 (27rf/co)LI(I	 M
2 
). Consequently, the0

curves appear to contract with increasing Mach number. This is because the

frequency location of corresponding peaks and dips which occur at constant

9L values must shift to lower frequencies as the Mach number is increased.

In addition, as the Mach number increases so does the phase factor

exp(-itM0
 L) which multiplies each transmission matrix element.

The ratio of the pressure at x = 1.0 to the pressure at x 0 with

zero acoustic particle velocity at x 	 0, Tjj, is equal to

exp(-itM
0 L)cos(tL) which is plotted in figure 1(a). The ratio of the

acoustic particle velocity at x	 1.0 to the acoustic particle velocity
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at	 x - 0	 with zero acoustic pressure at	 x - O, T22 , is shown in figure

1(d) and is also equal to	 exp(-i9M0L)cos(t L) .

The ratio of the pressure at	 x	 1.0	 to the acoustic particle

velocity at	 x	 0	 with zero acoustic pressure at	 x = 0, T 121 is

P 0 
c
0
exp(i(n/2 - 9M0

L))sin(tL) which is shown in figure 1(b). 	 The
I

ratio of the acoustic particle velocity at 	 x = 1.0	 to the acoustic

pressure at	 x = 0	 with zero acoustic particle velocity at	 x = 0, T21,

is	 exp(i(W/2 - 0
0
L)sin(tL)/p oco	 which is shown in figure I(c).

Variable Area Ducts

Y Results obtained for one-meter-long ducts having exponential area

variation will be discussed next.	 Two examples are presented.	 One example
1

which is identified as the long exponential nozzle (LEN) has an area which

decreases exponentially from 0.02	 to 0.01 m (d ln(A)/dx = m
LEN ` ln(1/2)).

The transmission matrix for this geometry calculated for mass flows of 0 and

2.0 kg/secure shown in figure 2.	 The second example which is identified as

the long exponential horn (LEN) has an area which increases exponentially

from 0.01 to 0.02 m (d ln(A)/dx = mLEN = ln(2))_.	 The transmission matrix

for this geometry calculated for mass flows of 0 and 2.0 kg/sec is shown in

f i gure 3._	 a

Without flow. - First, the no-flow cases will be discussed. 	 At low

frequencies, the analytical solution given by equation (58) for the long

exponential nozzle transmission matrix, 
TLEN'	 i'

1	
0

TLEN(f a 0) = (bg)

!
G

E

F

J)

0	
(Ao/AL)LEN

;!

;t
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where exp(-mLENL) - 
(Ao/AL ) LEN * 2.0. Furthermore at low

frequencies, the analytical solution given by equation (58) for the long

a exponential horn transmission matrix, T, is

r	 X

TLEN (f	 )	 (70)

	0 	 (A /A )
o H LEH

where exp(--mLEHL) - (Ao/AL)LEN 	
1/2.

E;	 In addition, at frequencies greater than imc ol41 the analytical

solution given by equation (57) for TLEN is

cos(koL)	 ipoco sin(kal.)

A 
0^1

TLEN = W	 (71 j
LEN

i sin(kOL)
cos(koL)

00

where (Ao /AL ) LEN 2. Moreover, at frequencies greater than

i ,mc0 /4,r1 the analytical solution given by equation (67) for TLEH is

cos(koL)	 iaoco sin(koL)

(AL 1/2 
	 ^

TLEN	 72),

LEH
i sin(koL)

c	 cos(koL)
00

where_(A0IA L ) LEH = 1/2. The results of the numerical calculations

shown in figures 2 and 3, for the case without flow are identical with these

e	
1

r

^I



analytic results, These few examples show that the numerical calculations

are in agreement with the analytical solutions,

With flow. — The numerically calculated transmission matrix for the

long exponential nozzle and horn with a mass flow of 2.0 kg/sec shown in

figures 2 and 3 will be discussed next.

As expected from the results presented in figure I the frequency

location of the peaks and dips shifted to lower frequencies. Also as

expected, the phase angle is significantly different for this case.

However, the types of changes in the magnitude and phase angle of the

elements of the long exponential nozzle and horn transmission matrix is

unexpected. The interaction of the flow and the gradient of the

logarithmical area variation change the transition matrix elements

significantly. For instance, the low frequency value of (T 22)LEN

shifts from 2 with no flow to 3.3 with amass flow of 2 kg/sec. Also, the

low frequency value of (T22)LEH shifts from 1/2 with no flow to 0,295

with a flow of 2.0 kg/sec.

The numerical method can be applied to any type of area variation, The

transmission matrix for a short exponentially contracting duct and a

linearally contracting duct, both 20 cm long, are compared in figure 4.

Below 50 Hz the transmission matrices are similar. Above 50 Hz the

magnitudes do riot a9 ree. However, the phase angle differences become

significant only above 400 Hz.

CONCLUDING REMARKS

A numerical method for determining the transmission matrix of a

variable area duct or nozzle carrying a compressible subsonic mean flow was

presented. The method yields an exact solution for the zero meat) flow case

and an approximate solution for the nonzero mean flow case. However, in
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using the numerical metliod the duct or nozzle 
is 

divided into regions in a

way that makes the method more accurate as the number of regions increases

and the region size decreases.	 Consequently, the accuracy of the method is

only limited by the region size.

Furthermore, for the no-flow case not only does the numerical solution

become exact, but it also becomes possible to use the equations which

describe it to generate an analytical solution in terms of exponential and

trigonometric functions.

The method was applied to several geometries with and without flow,

including both expanding and contracting duct sections.	 For the cases

without flow analytical solutions were obtained.

The numerical method may also be useful in studying •ound propagation

in ducts without a mean flow having shapes for which the Webster Horn

equation does not have an exact solution.	 Furthermore, the method is easy

to apply.	 Therefore, even for ducts with shapes for which the Webster Horn

equation does have an exact solution, the method may be useful where a

numerical solution is adequate.
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