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GAS RELEASE AND CONDUCTIVITY

MODIFICATION STUDIES

Lewis M. Linson and David C. Baxter

Science Applications, Inc.
La Jolla, California 92038

ABSTRACT

The behavior of gas clouds produced by releases

from orbital velocity in either a point release or venting
b

mode is described by the modification of snowplow equations !a
valid in an intermediate altitude regime. Quantitative I

estimates are produced for the time dependence of the

radius of the cloud, the average internal energy, the

translational velocity, and the distance traveled. The I

dependence of these quantities on the assumed density

profile, the internal energy of the gas, and the ratio

of specific heats is examined. The new feature is the

inclusion of the effect of the large orbital velocity, i
|

The resulting gas cloud models are used to calculate

the characteristics of the field-line-integrated Pedersen

conductivity enhancements that would be produced b_ the

release of barium thermite at orbital velocity in either

the point release or venting modes as a function of

, release aJtitude and chemical payload weight.

1
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t
I. INTRODUCTION

A number of P_perlments 1'2 have been suggested for

the Spacelab that require the release of large amounts of

gas into the ionosphere. Examples of such experiments

are the:

• Generation of acoustic gravity waves from a known i

source of momentum and energy; i

• Enhancement of the Ionospheric electron concentration

and modification of the ionospheric conductivity

by the deployment of easily ionizable vapors such

as barium or cesium;

i
• Dispersement of chemically reactive Eases, such

as H2 or H20, ir order to affect the neutral and

ionization chemistry and create holes in the F- !-

region of the ionosphere;

• Creation of large-scale neutral winds by transferring

momentum to the ambient a_mosphere;
/

• Testing of Alfv6n's critical velocity hypothesis

regarding the anomalous ionlzatJ.on of neutrals

, moving at high velocity across a magnetized plasma.

O

f
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These experiments and others like them require the

release of large amounts of gas in order to either disperse

material, transfer momentum, or input energy. The experi-

ments can be divided into two classes depending on the

suggested method of deployment--either as a point release

or in a venting modo We define a point release as a rapid

or explosive release of gas or material that takes place

in a time less than a second. In this case, the region of

space into which the material is dumped is confined and

the expansion of the gas can be _reated as being spherical.

Other experiments require the deployment of gas in a venting

mode lasting from five to ten or more seconds. The released

gas is then spread out in a trail and it expands cylindrically.

If conducted from Spacelab the released gas initially

will have a large translational velocity equivalent to a

hypersonic Mach 10 flow. The large kinetic energy associated

with the initial translational velocity is a new feature

that has not been treated previously. This feature

dominates the interaction with the ambient atmosphere

leading to rather striking results that affect the properties

" of the release. In order to carry out the objectives of
'\; L

the experiments, one needs to be able to describe various

aspects of the released gas such as what happens to the
i

i momentum and energy, how fast the clou_ _x_ands, how hot

I the expanding cloud becomes, and how far it travels.
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This report considers three aspects of these

experiments in detail. First, we review the properties

of the gas cloud expansion that results from a point

3,4
release that was obtained from a previous study.

Second, we develop a model that describes the expansion

of gas released in the venting mode. Third, we apply

the results of the above two studies in order to calculate

the enhancement in conductivity that can be produced by

the release of barium vapor in sunlight as a function of

altitude and the amount of release vapor. The major

part of this report is concerned with the technical

details of these calculations.

We have developed models of the dynamic response

of gas clouds, released in both the point release and

venting modes, when they interact with the ambient

rarefied atmosphere at the hypersonic orbital velocity.

These models are based on a number of simplifying

assumptions first introduced by Stuart 5 in order to

describe the ev_lution of a stationary point explosion

in the upper atmosphere. The principal assumptions

relate to the form of the velocity distribution within

the cloud and involve a self-similar density distribution

during the cloud expansion. We have added the effect of

5
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the translational velocity at release to Stuart's model

and have treated the different geometries and time-

dependencies of the released gas for the two release

_odes.

The models apply to an intermediate altitude

regime. This regime is identified by comparing an

important characteristic cloud size with the molecular

mean-free-p_th, t. For a spherical point release,

this size is called the equal-mass-radius, ao, and

is defined as the radius of a spherical volume of ambient

atmosphere containing a mass equal to the mass of

released gas. Mo. When ao is comparable to _, neither

continuum dynamics not" kinetic theory is appropriate for

describing the interaction of the gas cloud. At lower

altitudes, where k is much smal]er than ao, continuum

dynamics or fluid mechanics might be applicable. Flow

of the ambient atmosphere around the gas cloud and _he

effects of shocks and waves created in the ambient

atmosphere by the gas cloud would be important. On

the other hand, at higher altitudes where the mean-free

path is much larger than a o, a kinetic theory approach

is required. In this case the majority of the ambient

molecules would pass right through the roughly spherical

h

6
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gas cloud which is initia!ly traveling at the orbital

velocity while only a fraction of them would strike one

of the gas cloud molecules, scattering it out of the

cloud, thus producing a broad diffuse wake. The

distinguishing feature of our model is the assumption

that in the intermediate altitude regime the ambient

atmosphere interacts strongly with the gas cloud and is

carried with it, becoming a part of the cloud itself.

Bernhardt 6 rccently completed a similar study

using a kinetic approach appropriate to the high-altitude

regime. He used the same criteria for defining the

high-altitude regime, a < 34, as we adopt in this report.o

Because the physical assumptions aFpropriate to the two

regimes are different, the model calculations produce

qualitatively different results. As one example of this

difference, the distance that the hulk of an initially

spherically gas cloud travels is independent of the

amount of gas released in the high-altitude regime (it

scales only with _) but in the intermediate-altitude

!

regime this distance scales with a o and thus depends

on the mass of released gas.

The parameters that characteriTe the properties

of the gas cloud in which we are i_terested are: the

7
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scale size, R, of the cloud; the expansion velocity, R,

of the outer edge of the cloud; the translational velocity,

V, of the released gas; an equivalent "temperature," T,

determined by the average internal energy per particle,

and the distance, L, that the released gas has traveled

_,_th respect to the ambient atmosphere. In the point ._

release case, these parameters are given as functious of

time since release. The principal difference between

the point-release case and the ventlng-mode case is that

in the frame of the venting canister there is a steady-

state cylindrically-symmetric distribution of gas down-
i

stream of the canister. I
I

In Sec. II we discuss several topics ,elated to the I
l

snowplow mod_1 as applied to point releases. In Sec. II-A I

we aescribe the basic assumptions and equations of the

snowplow model. In Sec. II-B we briefly review and

summarize the results for the point release of a spherical

gas cloud at orbital velocity which is treated comprehen-

sively in Ref. 3. We shall make use of the cloud size

as a function of time, R(t), in other sections of this

: [
report and we shall compare the qualitative behavior of

the gas cloud for this case with similar behavior for

the venting-mode case to be developed in more detail in
!

later sections.

8
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The neutral gas cloud and wake expanslcn models

are based on an assumption that the density distribution

remains self-similar, i.e., that the cloud maintains

its density distribution d_ring the expansion. One

result of our models is that different density distri-

butions do not result in qualitative changes in the

nature of the solutions. In Sec. II-Cwe modify the

Stuart 5 model to include the fact that at late times

the gas cloud which initially follows a Stuart snowplow

expansion eventually c,,olves into a Gaussian shape

expanding by diffusion. W,_ treat the effect of diffusion

as if it were superimposed on the expansion process

modeled by the self-similar snowplow ex_anslon. The

result of this analysis is that a cloud with an initial

constant density profile rapidly evolves into a Gaussian-

like shape and that the Gaussian scale length of the

Gaussian distribution has a time dependence almost

identical to the cloud raaius described from the snowplow

model.

In Sec. III we describe the venting-mode model and

: the equations that determine the cloud parameters. This

quantitative model conserves the mass, momentum, and

_, energy of the expanding and moving gas cloud wake consisting

1981004372-010



of the released gas and swept-up ambient atmos_,.er_.

The a_sumptions on which the model is base_ and the

limitations of the model are discussed. Our model

applies only *o the oownstream portion of the wake

and does not provide a _scription valid in the

transition zone between the spherical distribution near

the venting canister and the ty_lnd.ical distribution

fsrther _ownstream. The _ppropirate conser_gt_on

equations are derived. The characteristics of the vented

gas cloud _re determined by the model and a specification

of the parameters associated with the released gas; _o'

the rate at which mass exits the canister in kg/s; Eo'

the rate at which energy exits the canister in J/s; and

y, the ratio of specific heats.

In Sec. IV the results of _ho venting model are

described. The wake-model equations are integrated

numerically and an accurate analytic approximation is

derived. In particular, the radius of the wake, the

radial expansion velocity, the axial velocity of the

gas in the wake, the temperature, and the distance that

j the gas has traveled with respect to the at_osphere are

j obtained. The dependence of the solutions on the

I various input parameters is illu_trated in a series uf
!
!

J
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figures. It is found tha_ the analytic expression

provides a good descrl_,tion of the scaling of these

solutions with the input parameters. The wake-model,

and thus the solutions, becomes more valid far downstream

at large radius in the wake; the model is less valid at

small R. For an_ particular set of the input parameters,

the wake-model allow_ a family of solutions corresponding

to different assumed initial values of the radial expansion

velocity, _o' specified at a small value of radius, Ro-

The approach of the various numerical solutions to the

analytic curve at larg_ R is also illustrated by appropriate

sets of figures. As an example of a quantitative result,

it is found that _ar downstream all solutions have the

behavior R(x) - Kx i, where the constant K depends on the

values of the input parameters.

In Sec. V we apply the results of our theoretical

modeling of the expansion of the neutral gas clouds to

the calculation of the change in Pedersen conducti_ity

that results 'then the neutral gas being released Is

neutral barium atom vapor. Much of the motivation for

_: the calc-lutions reported here is based on previous

modeling of large barium ion clouds released in the

ionosphere from rockets. In particular, the approach

11
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analyses 7 *used here relies heavily on detailed data of

the Spruce ion cloud, a barium release experiment

conducted on I February 1971 at 2352 UT at an altitude

of about 190 km from Eglin AFB in Florida. The data

consist of both optical and radar data obtained with

an incoherent scatter radar, an HF long-pulse radar,
;)

and by radio-wave propagation through the ion clouds.

These data provide information on the electron concen-

tration and distribution and scale size of the '.on

cloud. We combine our recent work on the expansion

of neutral clouds released from orbital velocity in

both the point release and venting modes with detailed

ion cloud modeling performed on the Spruce ion cloud

in order to calculate the height-integrated Pedersen

conductivity that can be produced bs, the release of

various amounts of vapor at a range of altitudes.

In Sec. V-A we consider the deposition of barium
:}

ions from the neutral barium atom vapor. BaseO on

_h@ results of Sec. III-C, we assume that the density

distribution in the barium cloud during the time of ion

-_ deposition is essentially a Gaussian distribution. We _

make extensive use ot earlier work on the deposition of

ionlza_x.z from barium releases conaucted from rockets

12
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in order to determine parameters of the barium ion cloud

in terms of parameters associated with the neutral cloud.

The procedure that we apply takes into account the competing

processes of barium oxidation by ambient molecular oxygen

and photoionization by sunlight. These effects result

in an altitude-, ependent inventory of available barium

ions from a given amount of barium vapor and in an

effective ionization time constant associated with the

loss of neutral barium atoms. The model described here

also includes the effect of the time delay before

photoionization begins when the initial density is high

and impedes the transport of the metastable-exciting

radiation to the center of the cloud. The choice of

parameterizations is based on the detailed analysis

of the Spruce ion cloud.

The important parameters for carrying out

conductivity modification experiments are the field-line-

integrated Pedersen conductivity and the transverse

scale size of the ion cloud perpendicular to the

magnetic field. The scaling of these two parameters

with altitude and amount of gas released is assumed

_! to vary as the radius of the neutral cloud at an appro- '

)t
priate time. The results of the analysis are shown in

i !

13
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Sec. V-B in three pairs of figures, each pair corresponding

to one of the following three cases: a point release

from a rocket, from Spacelab, and a vented release from

Spacelab. The figures show contours of constant perpen-

dicular scale size of the ion cloud and constant Pedersen

conductivity in the altitude versus chemical-payload- E

weight plane. As a typical example, a 48-kg barium release

from a rocket at 190 kra altitude will produce a field-line-

integrated Pedersen conductivity of approximately 30 mho,

several times the ambient ionospheric conductivity, and

will h_ve a transverse scale size just less than 3 km.

If the same chemical payload is released at orbital

velocity, the resulting conductivity is lower by a factor

of 5 from that l)roduced by a release from a rocket and

the transverse size of the ion cloud is increased by a

factor of approximately 2.3.

14
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II. REVIEW OF SNO_LOW MODELS

\

The expansion of neutral gas clouds from point

releases in the intermediate altitude regime can be

described by snowplow equations. Point releases at

orbital velocity are described by a model that represents

an extension of Stuart's 5 original model. The venting
i

model described in detail in Sec. III is based on a i
/

modification of $tuart's model that takes into considera- [
/

tion both the orbital velocity and the steady-state

cylindrical geometry. We briefly review the snowplow

model and summarize the results for point releases.

These results will be useful for comparing with the

results of the venting model and will be used in Sec. V i

where we calculate the deposition of ionization from a

knowledge of the time variation of the cloud size, R(t).

A. Basic assumptions and equations _

i
The central assumptions of Stuart_s model are

that a spherical cloud of gas, consisting of released

gas plus swept-up ambient atmosphere, retains a self-

similar or shape-preserving density profile, that the

:_ velocity of the gas is radial and that the velocity

increases linearly with radius from the center of the

cloud. In the case of release at orbital velocity, the •

1B
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above assumptions are modified. We assume that the _'

expanding gas cloud remains spherical in shape and that

its center moves with a velocity _(t). We also assume

that the gas cloud completely picks up the ambient air

by incorporating all of the atmosphere that crosses its

boundary into the cloud. The cloud does not disturb the

ambient atmosphere exterior to the cloud and no ambient

molecules can pass through the cloud unaffected. The

appropriate equations conserve the mass, momentum and !.

energy of the expanding and moving gas cloud consisting

of the released gas and swept-up ambient air. The

qualitative results of the model are believed to be

reliable during the early phase of the cloud's dynamics

prior to times when diffusion is the dominant process.

A detailed analysis resulting from these assumptions Is

described in Her. 3.

In the Stuart snowplow model and its ex_en_ion

described above, all lengths are found to scale with a

characteristic length called the equal-mass-radius, a o.

This length is the radius of a spherical volume of ambient

atmosphere with mass equal to the mass of the released
L

gas, Mo. In terms of the ambient atmospheric density,

the equal-mass-radtl_s is defined by ao - (3Mo/4W0a) _,%

1

1981004372-017



This model appears to be appropriate when 3 < ao/X < 30

where _ Is the ambient m_n-free-path between collisions.

At higher altitudes where a o • 3_ a kinetic treatment

' would be necessary. At lower altitudes where a o > 30_,

It ls difficult to consider the released and ambient

species as being well-mixed, and other gasdynamtc

phenomena neglected in _he snowplow treatment, such as

shock formation and wave generation, would be Important.

We summarize the equations that lead to a specifi-

cation of the snowplow model. The similarity condition

for the mass density, _(r, t), becomes

O(_, t) - [M(t)/R3(t)] f(_) (1)

where N(t) Is the total mass of the cloud Including

swept-up ambient atmosphere and R(t) is the radius of

the cloud. The dimensionless space variable _ is given

by

. - (2>

where _(t) Is the three-dimensional position of the

center-of-mass of the cloud and _ _s any point in

,_ three-dimensional space. Equation (1) describes a

gas cloud that retains Its density profile while

17
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expanding and translating. The shape function f(_)

has the properties

f., -(_)d3_- Z ; (3) '

3_ = 0 . (4)

The second moment is a time-independent (but shape-

dependent) constant _;

/, Ja 2f(_)d3_ .= (5)

For a constant density profile, f(_) = 3/4_ and u = 0.6.

For a spherical shell with all of the mass concentrated

at the radius R(t), f(_) = _(l_l - I)14_ and a = Z.O.

The gas veloclty at any point is assumed to be

given by

v(r,t) - _(t)+ _(t)_(_,t) (6)

where

:

d_ _x (7)

._ and the dot represents differentiation with respect to ,-

• time. Thus the hydrodynamic derivative is given by

b'_= + v • v - (8)
r

18
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!

because a point moving such that _ is constant _oves

with the local "fluid" velocity.

The conservation equation for mass Is written

_ + DV • _ " DnV2p + S(_. t) (9)

where S is a mass source function due to sweeping up of

the ambient atmospheric mass and Dn is a diffusion
t

coefficient. Snowplow models set Dn - 0 in order not

to violate the density similarity assumption. We will

discuss the effect of diffusion on changing density

profiles in Sec. II-C below. Due to the density similarity

assumption, the mass source term must be given by

$(_, t)-(M/.)p(_, t) (10)

where M is the rate at which ambient atmospheric mass

is swept up as the cl ud expands and translates. For

spherical clouds wit. ut translation

, _ - 4.e20a_ . (11) .
i

_"i lith translatlon, a more compllcated expression, _.
i

:_ " dependent upon model as_umptions, is necessary. In _
)1
_I general, with translation, the volume of swept-up

atmosphere, V' - (,_ - Mo)/Oa, is greater than the

19
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volume of the gas cloud, V = 4_R3/3,

The momentum equation is written

D_
, , (r. t) =-_p(_ t) (12)o(_ t) 5V + S(P t) ; *

where p is the pressure in the cloud and the mass

source term account_ for the momentum of the picked-up

atmosphere. The internal enersy density of the gas

is given by P/(7 - 1) where 7 is the ratio of

specific heats. The total internal energy of the cloud

is

_.. p(r, t.)d3_ (t3) :_

where the integral is taken over the volume of the cloud.

Following procedures similar to those applied by Stuart

as discussed in Ref. 3, the equations governing the

translation and radial expansion in the cloud can be

brought to the forms

_---(._)= 0 (14)dt '

_ :,R _ (._) .. 3(v - 1)U - 3psV (15)

2O

i "
I

e ,

1981004372-021



where _ is the second moment of f and Ps is the limit

of the cloud pressure approaching the surface from within

and has been assumed to be spherically symmetric. Note

that Mu is the total momentum of the cloud and that both _

J

M and u are functions of time.

Equatien (15) shows that the expansion of the cloud

is driven by (7 - 1) times its internal energy, proportional

to the cloud pressure, and is retarded by the pressure at

the surface of the cloud. In our model, we take Ps to

be the atmospheric pressure Pa" These equations represent

a quantitative descripticu of the basic snowplow model.

Eeference 3 contains discussions of the treatment of

these equations, their relationship to other author's

work, the effects of various treatments of the pressure

at the surface of the cloud, extensions of the derivations

outlined here to incorporate different values of the

molecular mass and 7 for the released gas and atmospheric

gas.

We can replace the internal energy U, defined by

Eq. (13), in Eq. (15) by using conservation of total

energy, ,_

M - Mo Pa

E - U + K - Eo + Oa _--_--f , (16)

21
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, f

where K is the kinetic energy given by

E° is the total initial energy of the cloud, (M - Mo)/p a

= V' is the volume of the swept-up atmospheric gas,
L_

,i

and pa/(y - 1) is the internal energy density of the

ambient atmosphere. Because we are including the

possibility of a nonzero translational _locity for
i

the cloud, the volume, V', of swept-up atmosphere may

be greater than the volume, V, of the cloud itself.

The initial energy of the c]oud, Eo, derives from

the translational velocity of the release vehicle and

from the chemical and/or thermal energy of the exploding

gas. The chemical energy, initially released as heat,

is transformed into kinetic energy of expansion in a

time scale which is short compared to that of the other

processes in this model. Thus

M

t

:": where Mo is the initial released mass, uo is the initial .'

translational velocity, and Ro is the initial expansion

velocity.

22
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f,1

Equation (15) becomes:
i

aR (MR) - 3(Y - 1) Eo - K + (V' - V) _ . (19)

Ambient atmosphere has been swept up and compressed by

the cloud and the term (V' - V)pa/( Y - 1) is the portion

of the swept-up atmospheric thermal energy that is

available to drive the expansion of the cloud. If there

is no translation, then 9' E (M - Mo)/O a I V, the ambient

atmosphere is not compressed and its internal energy

does not contribute to the expansio_ of the cloud. At

late times ( V' - V)Pa/(7 - 1) approaches a constant,

thus contributing to Eq. (19) in the same manner as Eo.

B. Results for point releases from rockets and 8pacelab

Equations (19) and (14) together with an equation

for dM/dt, such as Eq. (11), can be integrated numerically

to produce the translational motion, expansion, and mass

accretion of the gas cloud. Reference 3 contains the

results of such integratiuns for various values of the

input quantities Eo, y, a, and Ro' Here we show only

typical results in order to illustrate the nature of the

solutions and present analytic expressions that approxi_ate

the behavior of R(t) for R • a and have the correct asymptoticO

behavior as t _ _.

23
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Figure 1 shows several examples of R(t) obtained

by numerically integrating the equations. Both the

radius and the time are scaled by t_e equal-mass-radius.

The time scale has been drawn under the assumption that

Ko = 1 km/s for all cases. The heavy solid curve is

the nominal case with _ = 1.4 and a = 0.6 corresponding
1

to a uniform density profile. The dashed curve shows

the influence of the assumption of an _xtreme density

profile, that of a spherical shell with all the mass

concentrated at the outer edge characterized by a = 1.

It does not expand as fast as the constant density

profile benause the available energy drives _Ii particles

at the same velocity. Likewise, the outer edge of a

gas cloud with a density profile more peaked at the center

with _ < 0.6 would expand more rapidly than shown by the

solid curve.

The four thin solid curves show the effect of vari,,us

values of y. As y decreases, the number of degrees of

freedom increases and a larger fraction of the energy is

stored as internal energy per particle and less is available

_ for kinetic energy of expansion. The curve labeled _ - ®

_ corresponds to the assumption that none of the available

energy is stored as internal energy. Regardless of the

24
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value of 7 asscciated with the released gas, as R >> 1
/

the cloud radius approaches a curve corresponding to

the valu_ of 7 of the ambient atmosphere (as shown in I

Ref. 3) because the majority of the gas clouds' particles t

are atmospheric particles, t

The dotted curva represents the original Stuart I
1

snowplow without the effect of translational velocity. [

This curve corresponds to a release from a rocket in [

which the translational velocity is small compared to

the initial expansion velocity Ro" All of the curves

initially have the behavior R = Rot. The snowplow

without translation begins to decrease its r,te of

expansion as R _ ao and the cloud has picked up an

atmospheric mass comparable to the mass of released

gas.

The case of release at orbital velocity is qualita-

tively different. Figure 1 shows that R increases from

its initial value before R - a and reaches a maximum ato

around R - a° before decreasing. The explanation for

this behavior depends upon the fact that the velocity of

the atmosphere relative to the shuttle corresponds to

a large kinetic energy per particle amounting to 5.1 eV

fol oxygen atoms. This energy input rapidly exceeds the

original chemical energy, aMoR_/2, beiore the swept-up

25
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mass approaches Mo or R _ ao. The result is an increase

in the internal energy of the cloud leadin_ to its rapid

expansion. This rapid _xp_usion leads to a rapid rate
a

of sweeping up of atmospheric mass. The translational

velocity of the gas cloud drops rapidly with a resultant

significant reduction in the rate of energy input to the

cloud.

Figure 2 shows the typical behavior of a 100 kg

gas release at orbital velocitj at 200 km altitude.

The time and length scales are given in seconds and

kilometers, respectively, based on the derived value

of 3.65 km for the equal-mass-radius. The dashed

I curve for the cloud radius is the same as the heavy

solid curve in Fig. I. The solid curve labeled Zempera-

ture corresponds to the average internal energy per

particle with an assumed mass of 20 atomic m_sses. The

curve shows the initially cold expanding gas rapidly

heating due to the a_mospheric energy input reaching a

maximum of 5600°C by 2 s after releace. This rapid

heating leads to the rapid expansion ax,d subsequent

cooling of the gas cloum. The temperature asymptotically
I

approaches the ambient atmospheric temperature. The

distance traveled ts,._,- _tu(t*)&t" a;_ is shown by the

+
26
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broken curve. The clodd at first coasts at orbital

velocity but rapidly decelerates when R _ ao reaching

2/3 of its asymptotic travel distance wlthin 3 s. Note

that by 4.5 s after release the cloud diameter

exceeds the distance traveled while the cloud is still

expanding rapidly and its forward motion has nearly

stopped. The fact that the cloud size rapidly exceed_

the distance traveled suggests that the model assumption

of a spherical cloud shape is justified because any

asymmetry that may be introduced by the translational

velocity rapidly becomes less important.

Indeed, the fact that after a few seconds the

gas release at orbital velocity appears to behave as

a stationary point release of greater initial energy

can be used to obtain an accurate approximation to

R(t). In our model, when u(t) < R(t) or MR • MoUo, we

take M - 4_R2paR and then V' - V - AV ceases to grow
!

and M(t) may be written
i

, + 4 OaR3M(t) - Mo _ w + AVpa (20)

where the last term is a constant generally smaller

than the first and much smaller than the second. The

total energy available for driving the late-time

I
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expansion may be written .,

0a

ET . F° + _V 7_---T--f (21)

where E° is given by Eq. (18). The last term can be

sho_'n to be smaller than the first by writing it as

(3_V,4._a 3) [._oC2/y(y - i)] where Ca Is the atmospheric

sound speed.

Thus, for _1_ greater than ._oUo, Eq. (19) can be

written

aR _ (,MR) - 3(¥ - i) (ET - K) (22)

where ET is a constant given by Eq, (21) and K is the

kinetic energy given by Eq. (17). As t - -, u(t) _ O,

H(t) - _loR3/ao,3and K - ½_2. If we define a non-

dimensional time by

s - ot/a° (23)

Re is the initial expansion velocity, we find
wh*re

that for large s , the solution of Eq, (22) has the

asymptotic form

R - aoCsO'4 as s _ - (24)

where
+

l 2s
P
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t The first term has the numex.ical values 1.123 and 1.201

for 7 " 1.4 and 5/3, respectively. If we neglect the

small term proportional to AV in Eq. (21), then the

' coefficient C can be written

47 + -_j . (26)

By direct comparison with the numerical integration of

Eq. (19) from s = O, we have found that an analytic

expression of the form

R(t) "- aoC ao / - 0.44 (27)

provides an excellent approximation to R(t) for R _ a o

with C defined by Eq. (26) for both the stationary ana

- 0 and 7 8 km/sorbital release cases with u° . ,

respectively. We shall make use of the expression in

,::_ Eq. (27) for R(t) later in this report.
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C. Snowplow model with diffusion

At late-time, gas clouds released in the atmosphere

have a Gaussian density profile and e,_and by diffusion.

In this section we explore how rapidly the density profile

of a spherical point release can change in profile from

the self-similar profile assumed in the sno_low model

to the Gausslan profile at late time. _e find that this

change can take place surprisingly rapidly.

In this work we modify the snowplow model to include

the fact that at late time the gas cloud can be modeled

by a Gaussian density profile diffusing into the ambient

atmosphere. The r, _it is a model which initially

follows a snowplow e_pansion and evolves into a Gaussian
k

diffusing cloud. Obviously, we must relax one of the

central assumptions of the snowplow model, specifically

that the cloud retains a shape-preserving density profile.

We will great the effect of diffusion as if it were

superimposed on the expansion process modeled by the

: self-slmilar snowplow expansion. In a self-slmilar

expansion the size of the cloud is Eiven by R(t), a

tlme-dependent scale length of the cloud. If the self-

similar shape were a spherical constant-denslty profile,

for example, we would take R(t) to be equal to the radius

of the sphere.

30
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We use this same R(t) to scale the continuity

equation for mass, Eq. (9), but now we retain the diffusion

term. We restrict this discussion to the stationary

point release case for which _(_, t) = _/R(t), the fluid

velocity of the gas is _ - _R/R, and R(t) is the charac-

teristic scale length of the expanding cloud if there

were no diffusion. The last term on the right-hand side

of Eq. (9) includes the effect of sweeping up ambient

mass according to Stuart's original model and is given

by Eq. (10).

By making a suitable change of space and time variables

we can define a function fib(r, t), tD(t) ] which is analogous

to the shape function of the self-similar model. If we

define TD by

t 4Dnd t,_D " _ ; (28)

tD

implying that diffusion begins at t - tD, then the

density can be written

' With these substitutions Eq. (9) can be simply written

31
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_f = I _ (29)

where we have used the following:

M V_f ;

V2p =_V f ;

= _ .__IR2 ;
Bt

_ZD 4Dn

_t R2(t)

Equation (29) is the diffusion equation for f(_, x),

which has the solution

exp[-(_ - _')2/_D]

• _c_,,o,=f_3_.,c_.,o>_ (_XD)312 - (30)

In terms of this function we may write the density at

• _ny time t > t D as

: 32
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exp - - /_D(t. _ i d3_..p(_, tD )
p(_, t) M t I_D [X,D(t)]3/2

where RD - R(tD) and MD - M(tD). For TD << 1 we have

*.be limlt of little diffusion and the denslty reduces to

that given by the self-slmilar model,

0(r,t) _ _ p --, tD

M

or p(r, t) R3 f(r/R, O)

At long ti_es after diffusion has been turned on, the

similarity function f approaches a Oausslan distribution

wlth an expanding radius and constant volume:

f(_, _D ) * (_TD)-3/2exp(-_2/TD) (31)

as TD _ -.

In order to illustrate the effect that dlffuslon in

has on an assu_ed density distribution, we have applied

Eq, (30) to two _peciflc examples. The first is a uniform

density our to a finite expanding radius; we refer to

this profile as a flat-top distribu_lon. The secot.d is

33
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t
an expanding spherical shell with all the mass concentrated

at the surface of the shell. For the flat-top distribution

f(_, O) = 314_ ; _ < 1 "'

f(%, O) = 0 ; _ > 1 ;

and for the spherical shell

f(¢, o) = _(_ - I)/4_ .

The normalization has been chosen so that each contains a

unit volume.

We have found that the profile approaches a Gaussian

profile more rapidly if the Gaussian with which it is

compared has a Gaussian radius of the form (8 + TD )I/2 i eP " "9

In order to illustrate the change of the flat-top and

spherical-shell distributionstoward the Gaussian form

given in Eq. (32) at various values of TD, we Lave

renormalized both the radius and density by defining

z - _/[0.693 (3 + TD)]½ ,

g(z, TD)- [_(8 + TD)] 3/2 f(_, TD ) . (33)

34
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The limiting value of g(z, TD) for large TD is

exp(- 0.693 z2). The scale factor 0.693 is chosen

so that g(l, _) is 0.5

Figures 3 and 4 show g(z, TD) for various values

of TD for the flat-top and spherlcal shell initial

distributions respectively. The value of 8 in the

scalings given by Eq. (33) are different for the two cases.

It is appropriate that 8 be unequal to zero because in

both cases the initial shapes have finite spatial extent.

We have chosen _ so that g(1, 1 _ is approximately equal

to one half; for the flat-top B = 0.5 and for the spherical

shell B = 0.75. The larger value of B for the spherical

shell results from the fact that all of the mass is

initially at _ = 1 for the shell while the mass is

distrlbute0 over _ _ 1 for the flat-top.

The vertlcal dashed lines _.n Figures 3 and 4 indicate

the position of the initial radius in the newly-scaled

radial coordinate z. For TD greater than one, the scaled

position of the initial radius continues to move to the

left and approaches z - 1.2 TD } as TD indicating the

increase in size of the cloud due to diffusion as

shown by the TD - ® curve. For the flat-top in

Figure 3, the horizontal dashed lines indicate the

height of the original flat-top in the newly-scaled

)_/2f(_, 0)density with amplitude [_(B + TD

35
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Examination of Figures 3 and 4 indicates that the

density distributions are approaching Gaussian-like

shapes for TD > 0.2 and 0.75 for the two cases, respectively,

and have essentially the asymptotic shape given in Eq. (33)

for _n > 0.4 and 1.0 respectively. We will discuss

specific evaluations of TD below.

The approximation of f(_, r D) by its limiting

form [_(8+TD)]-_ × exp[- _2/(8 + TD) ] is equivalent to

approximating the density distribution of the cloud by

a Gaussian density profile

p(r, t) = M(t) [na2(t )] -3/2 exp [- r2/a2(t)] (34)

with a time-dependent Gaussi_n radius, a(t), given by

a2(t)_ R2(t)[8+ :D(t)] (3S)

where TD is given by Eq. (28). Although the actual shape

at early time is not Gaussian, i_ the case of the flat-

top distribution we find that the distance at which the

density is I/e of its value at r = 0 is within a few

percent of R(t) for rD(t) < 0.5 and of course is

indistinguishable from a(t) given by Eq, (35) for

TD > 0.5.
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In the preceding, we have discussed a procedure for

introducing diffusion wlthln the framework of a snowplow

model. The effect of diffusion is to tl,ansform an initial

self-similar profile for the density into a Gausslan

proflle. The treatment so far does not depend on the

the time-dependence of R(t) which we take to be determined

by the snowplow model without diffusion.

With a normalized time defined by Eq. (23), we i
)
(

define a function ¢(s) such that i
)

R(t) = ao¢(S) . (36) ]

Wlth u = 0 we have AV = V' - V = 0 and the origlnal

Stuart snowplow equation has the form of Eq. (22) with

= _MoR_/2 and K - a_2/2. OurET normalizations for

and s are different from those of Stuart; with
?

our normalizations ¢ satisfies the differential

equation
L

: The solution of this equation has the following
%

!_' properties for large and small s: ¢
I
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$(s) + s for s << 1 "

(¢(s) * 6 25 _ - 1 2 sO.4 for s >> 1

At early time the cloud expands with the initial expansion

velocity R while at later time the cloud radius is pre-
0

dlcted to expand as t0"4. At very late time when the L

snowplow description is no longer appropriate, the cloud

expands as t0"5 due to diffusion. It is apparent that

once the appropriate value of 7 of the released gas is

specified, the snowplow model for the expansion of a

gas cloud determines the tlme-dependence of the radius

R(t) of the cloud in terms of the two key parameters ao

and Ro"

Once the functional dependence of _(s) is known,

then we may define a normalized diffusion function T(s)

by

i s ds '_(s) - -T_(s9 . (37)

The diffusion parameter rD defined in Eq. (28) can be

expressed in terms of r(s) as

$8
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TD(t) - --_ [_(s) - _'(SD) ] (38)
nor o

where s - Ro t/a o and the diffusion is assumed to
_omme _ce

at t = t D. For a _as with 7 = 5/3 which is appropriate

for barium atom vapor, we show the resulting normalized

diffusion function _(s) in Fig. 5. The solid curve is

the correct value of _(s) only as long as %(s) is given

by the snowplow model. If the snowplow model were to

be turned off at a specific value of s, then _2 in the

denominator would be a constant and ¢ would increase

linearly with s. Examples are shown by the dashed curves

in Fig. 5 if the snowp_owwere stopped at s = 18 and

k 46.

As an example of the time scale in which the profile

can change from a flat-top distribution to a substantially

Gaussian shape when _D = 0.2, we ,Ise parameters associated

with a 48 kg barium release (called Spruce) at 190 km

altitude. For this cloud, detailed mode!ing 7 has shown

km2 , - 1 26 _, and - 1 15 km/sthat Dn - 0._52 /s a o .

_ so that the numerical value of the coefficient of the

_ brackets in Eq. (38) is 0.144. Thus TD has the value 0.2
,f

when _(s) - _(s D) - 1.4. Figure 5 shows that if we take

sD as small as 1, TD could re_ch 0.2 as rapidly as

39
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t = Sao/K o = 4.4 s with s 4. Our detailed analysis 7

of the observed prof:'.le of the neutral cloud has indicated

that it is in substantial agreement with the scPle size

and profile obtained by adding diffusion to a snowplow

description of the expansion in radius of the neutral

c1oud. :_
r

i

%

qL

T
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III. VENTING MODEL AND EQUATIONS

In this section we d_scribe a quantitative model

\

that conserves the mass, momentum, snd energy of the

expanding and flowing gas in the wake downstream of a

canister traveling at orbital velocity and venting

gas. In the frame of reference moving with the canister,

the flow is in steady-state. In accordance with snowplow

models, we assume that all of the ambient air that

encounters the wake and crosses its boundary becomes

incorporated into it. The wake does not disturb the

ambient atmosphere exterior to it. The quantitative

results of this model are believed to be reliable beyond

one wake radius downstream of the canister and prior

to times when diffusion is the dominant process. The

reasonableness and implications of these assumptions are

discussed below.

In the point release problem treated previously

we found that all lengths scale with a characteristic

length, the equal-mass radius, a o. Likewise, in the
T

steady-state wake problem all lengths scale with a

different characteristic length a.

41
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This length is defined as the radius of a cylindrical

volume of ambient atmosphere that contains a mass per unit

length equal to _o/Va, i.e.,
axial

a - (_o/_Va_a){ . (39)

where _ is the rate at which mass is being released
o £

from the source. It is also the radius of a disk moving

at the source (shuttle) velocity, Va, in the ambient

atmosphere through which the ambient mass flux is equal

to _!
0

As in the previous section, we take this venting

model to be most appropriate in an intermediate altitude

regime defined by 3 < a/_ < 30 where _ is the ambient

mean-free-path between collisions• At higher and lower

altitudes the assumptions of the model are less justified

and require different approaches.

Figure 6 shows the altitude variation of the number

density, n, mass density, Da, and mean free path, A, of

the ambient atmosphere based on the CIRA 1972 model

atmosphere. The solid curves correspond to a moderate

exospheric temperature Tex - 1200°• The mean-free-path

\ - (n_)"I is derived from an assumed typical collision

2
cross section o - 5 × 10"19 m independent of species
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or temperature. The variation of the atmospheric density

for more extreme values of the exospheric temperature, 700 °

and 2000 °, is shown by the dashed curves.
l

Figure 7 shows contours of constant characteristic

length a in the altitude versus mass-venting-rate plane.

Because the horizontal axis is logarithmic and a _ M _,
0

all of the solid curves for Tex - 1200 ° have the same

shape and are displaced horizontally from each other by

an appropriate amount. The two dashed curves drawn for

a 8 1 km indicate the shapes of the contours for Tex - 700 °

and 1200 ° , respectively. These curves can be used to

estimate the value of a for different model atmospheres.

Figure 8 shows contours of constant values of a/_

in the same altitude versus mass-venting-rate plane.

Again, the solid curves all have the same shape and

represent appropriate horizontal displacements. We

note that the intermediate altitude regime, 3 < a/_ < 30,

covers a broad range of mass-rates and altitudes of

interest for the experiments proposed for Spacelab. In

this intermediate regime, ambient atmosphere is picked

up and mixed with the gas cloud, and neither the hl_h-

altitude kinetic approach nor the low-altitude continuum

fluid dynamics approach is valid.

43
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Following the approach of our previous work

outlined in the previous section, we have further

modified the treatment of Stuart 5 and assumed a

self-slmllar expansion of the cloud as a wake behind

the source. We assume that the denslty of the wake

is given by

o(r, x" - f(_)M(x)/R2(x)V(x) (40)

where x is the axial distance in the direction

downstream of the source, r is the radial distance from

the x-axis, R(x) is the radial ext_nt of the wake at

a distance x downstream, _ = r/R(x), f(_) is tile

dimensionless self-similar radial density profile,

is the mass flux in the wake through the disc of

radius R(x) centered on the x-axis, and V(x) is the

x-component of the fluid velocity at axial distance x.

As in the point release problem, an ad hoc assumption

is required about the fluid velocity flow field. We

have assumed that the x-component of the velocity, V(x)

_ is independent of radial distance and that the radial
!

velocity component is given by

r dR
vr = V(x) " (41)

44
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Equation (41) insures that the velocity at the surface

of the steady-state wake is parallel to the surface.

This model assumes that the only interaction j

L
between the gas cloud wake and the ambient atmosphere !

is the sweeping up of all the ambient atmosphere encountered

by the cloud. Shocks and diversion of fluid flow in the

surrounding atmosphere external to the cloud are neglected

in this model. We also neglect the effects of ionization
!
c

and condensation within the wake. I

L
The imposition of contraints on the velocity as j

in Eq. (41) and on the density profile in Eq. (40) is !

somewhat artificial as they have been imposed to make

i
the problem mathematically tractable. These constraints

!
m

!

lead to some inconsistencies between the model and the i

I

actual wake of a steady-state release. As with all 1

mathematical models, it is hoped that the necessary

inconsistencies are small enough that they do not

destroy the value of the model. In this case, the

model assumption abou¢ the velocity in Eq. (41)

obviously cannot be satisfied near the point of

_ release for nearly all modes of gas release. In fact,
/

as we shall see later, Eq. (41) cannot be valid near

the point of release for any configuration because of

conservation of ,ass, momentum, and energy.

45
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The equations for local conservation of mass and

momentum are

_-_ (0) + _ • (P_) = S(x, r) (42)

and

,!

_ (_V) * _.(0_) * _p = t(x, r) . ,.3) i,

In Eq. (42), S(x, r) is the mass source function due to

the sweeping of atmospheric mass and the mass injection

from the shuttle source. In Eq. (43), p is the gas

pressure within the wake and _(x, r) is the momentum

source due to the swept-up ambient atmosphere having

velocity Va in the x-direction in the rest frame of

the shuttle.

The velocity vector _, defined above, is the
i.

fluid flow velocity in the rest frame of the shuttle [;
t

and is not %he velocity of the released gas with

respect to the atmosphere as in the previous section. !

: The corresponding conservation equation for energy is I
I

½ [ ½ ](u + oV2",+ _ • _(u + oV2 + p) = Q(x, r) (44)

where

, 46
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u = _2__ (45)
y - 1

is the internal energy density, y is the ratio of specific

heats, and Q(x, r) is the energy source term due to the

swept-up ambient mass with velocity Va and the energy

injected with the mass from the shuttle source.

Because we are solving for a steady-_tate solution,

the time derivatives do not contribute in Eqs. (42), (43),

and (44). The global equations for conservation of mass,

x-component of momentum, and energy are obtained by

integrating the=e equations over the volume of the wake

envelope bounded downstream by a plane of constant x

as shown by the dotted line in the sketch below. The

result is



M(x) = 9° + VaPaWR2(x) = Mo(1 + R2/a 2) , (46)

M(x)V(x) - PaV2a_R2(x) - _R2p a + p(x, r)2_rdr - 0 ,(47)

1 V 2 fR-(u a + _pa a+Pa)Va_R2+V(x)(u+lp,_,2+p)2_rdr

(48)

0

where u a and Pa are the internal energy density and

pressure of the ambient atmosphere and Eo is the rate

at which the source is injecting energy along with the

mass injection
O"

The ambient temperature T a is related to Pa and

u a by

kT a

Pa = m_- Pa " (Ya - 1) u a (49)

where k is Boltzman's constant and m a is the mass

of the ambient particles. Thus, ua + Pa in Eq. (48)

, can be written

t,

Ya kTa
m Oa .

ua + Pa Ya " 1 ma

48
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By using the definition of the characteristic length,

a 2 - Mo/_OVa, Eq. (45) to relate p and u, Eqs. (40)

and (41) for the radial dependence of 0 and _, and

defining

dU fo R
_ = u(x, r) 2_rdr, (50)

Eqs. (47) and (48) can be written

R,( kTa)I_IV- l_° _-_ Va + Vama + (y - I) dU
_- o , (51)

R2 /V2a Ya kTa_+ yV dU

-I_o g _"_" + Ya-1 m"_ / d'x + 1 _(V 2 + at_2) " Eo" (52)

where

1
a - f(E)E22_EdE (53)

0

is a dimensionless tnvariant determined by the self-

similar radial density profile and

r

• dR
(
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The radial component of the momentum conservation

Eq. (43) is treated analogously to the virial treatment

5of Stuart. By taking the dot product with r on both

sides of Eq. (43), where r is the component of position

perpendicular to the x-axis, integrating over the volume

shown in the previous sketch, and differentiating with

respect to x, one obtains.

d _R2pa- (55)

The set of Eqs. (46), (51), (52), and (55)

determines the four quantities R, M, V, and dU/dx and

constitute the venting model.

5O
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' IV. RESULTS OF THE VENrING MODEL

In this section we illustrate the properties of

the solution of the equations derived in the previous

section. We restrict our discussion to the special case

7a = 7g = 7 and will not distinguish between the mass of

the gas species, mg, and the mass of ambient species, ma,

by setting them both equal to 20 atomic mass units as
b

representative of a mean _olecular weight in the thermosphere.

The choice of the molecular mass has no impact on the

dynamics when 7a = 7g but enters only when determining

an average "temperature" defined as

mV
a dU

T= (7 - 1) _ d-_ (56) ,

A. Analytic characteristics of the solution

In order to examine the nature of the solution of

the venting model equations, we first note that the ambient

energy density and internal energy appear in the same

combination in Eqs. (51) and (55). Hence, we define

dU vR2pa (57)U' - (7-1) dx "

By using this definition of U' to eliminate dU/dx from

_q. (52) and rearranging terms, the energy equation may

51
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be written

+ _ Mo kTalR\2

As R X�„h�aand the second term on the RHS approaches a

constant, contributing to the energy balance in the same

manner as Eo" This terms arises from the compression of

the ambient atmosphere as it is swept up and serves as a

source of energy to drive the radial expansion. Each

R2of the terms in the square brackets increases as as

R_ a.d the leading terms exactly cancel leaving a constant

as the dominant contribution of this term to the energy

equation in this limit.

The structure of Eqs. (51) and (55) is considerably

simplified if we define new normalized independent and

dependent variables

y = R2/a 2", (59)

= _V/_oVa; (60)q

x = a_2_21_2 v2o a ' (61)

A = U'IMoV a (62)
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'- Equations (51) and (55) can now be written

q = y - A, (63)

:=4 = 2qA (64)
Y dy

[

respectively. Unfortunately, the energy equation does not

simplify greatly. However, by multiplying Eq. (58) by M,

using Eq. (46), defining the constants c and b,

2_. kT
c - o b = a (65)' m--Tv 'oa aa

and using Eq. (63) appropriately, the energy equation (58)

can be written uniquely with no terms of the form q2 ,,2' v

or qy ;

Y-_2 qA = c + (l+c)y + _ y(l+A) + A2 - × (66)

The three equations (63), (64), and (66) determine

the three functions q, A, and X as functions of y (and thus R).

The equations in this form do not contain R explicitly and

the dynamics do not depend explicitly on the value of a.

In terms of these normalized functions, the axial velocity,

V, and temperature, T, defi:.ed by Eq. (56),are given by

53
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-q --V Y-_"
V --V a l+y a y+l ' (67)

I IT:v _ �%
M q = E- a (y+l)2 , (68)

where the last form is an explicit function of y once a

solution A(y) of the equations has been obtained. (

One consequence of the venting model and the above

equations is that _olutions do not exist below a minimum

value of R which depends on the %arious parameters.

Accordingly, solutions can only be obtained for finite

initial values of y. For any given set of gas release

parameters and a sufficiently large value of y (or R), the

model allows a family of solutions corresponding to different

values of R (or X; see Eq. (61)_. The range of allowed

values of R (or X) for a given value of R (or y) is

determined by the energy equation. The maximum permitted

value of X is given by Eq. (66) with A=O, or

2yb_
X _ c + (l+c+ y_-Uf-Y '

On the other hand, if Eq. (63) is used to eliminate q

fron Eq. (66), we obtain another form of the energy

equation
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y+l A2 2(l-yb) yA + c +(l+c +y2-_ib) y - X = 0 (69)
- y-1

which is quadratic in A. The requirement that A be real
i

puts a lower bound on the pPrmitted value of X Jn order that i
I

the discriminant be positive for sufficiently small y. !

The model equations have been integrated numerically

for a variety of different allowed initial conditions. All

of these families of solutions asymptotically approach the

same behavior at large radius f_r downstream in the wake

where the model assumptions are more valid. Some of the

allowed values of initial conditions at small R are within

reasonable ranges and some are not, but all such solution

curves are less valid at small R because the model assumptions

are less justified.

Before illustrating the numerical solutions we

obtain the asymptotic form of the solutions and give

an analytic expression for the expansion velocity that is

an excellent approximation to a particular numerical

I solution. By direct substitution into Eqs. (63), (64), and

(66) or (69), it can be cerified that the following forms

/

;. represent asymptotic solutions of the equations for t_e first
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two terms in an expansion valid as y--_ (R_-_)

42 J%

_ ._ _0 _. 0 _ O I.=_ ° (70_

X _ 2AoY + 2_',oB + 0(i) ; (71)

( )1 i+< + 0 ---2 ; ( 72 )
V -_ Va (l-b)y Y

+ m V2 _-b + 0 { I_ .

T -.. T a k a -7- _yr.] ' (73)

y-i
where < = 2v-_-(I + c)

= (< "_"b) ,' (I - b) , <74)
0

B = c/2Ao + (72_-_ib + 1 ) AO/2 (75)

All solutions of the model equations have the

asymptotic form given by Eqs. (70)-(73) for sufficiently

large y. However, the analytic expressions obtained by

keeping only the first two terms in the expression (71)

and setting A = &o in Eqs. (67) and (68) are indistinguishable
t

through three significant digits from a particular set of

numerical solutions for y Z I. By remembering the definition

'i
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for X, Eq. (61), we cz_n write an explicit expression for

Z 2 (R2/a2+ B)1/2= - , (76)
_ Va R2_a2/ + 1

where

K2/2 = (24o/a) 1/2 (77)

The expression (76) for R(R) has an asymptotic expansion

for R>>a,

�_-Va _ 1-(1-B/2)_-_. + 0 _-_ , (78)

identical through the first two terms to the asymptotic

expansion of all the solutions.

The parameter b, defined by Eq. (65), i_ a normalized

ambient temperature and has the numerical value b = 0.00679

for Ta - lO00°K and V a - 7.8 km/s. Hence it makes only a

very small change to the value of 4o and B defined by Eqs.

_ (74) and (75). However, the form of 4 o given in Eq. (74)
with the term (l-b) in the denominator indicates that this _.

venting model cannot be used to describe the gas cloud

!

t=
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produced by slowly moving canisters. Indeed. it is probably

inaccurate for velocities approaching thv ambient thermal

velocity. Thus this model must not be used to describe

venting releases from sounding rockets which have velocities

in this range. This breakdown in this model is associated

with the compression of the atmosphere that results from

our description of the atmospheric mass pick up.

The parameter c, defined by Eq. (65), is related to

the stored chemical or internal energy per unit mass. For

reasonable values of Eo/_o. c << 1 and does not have
a

majer affect on the solutions. The detailed analyses of

barium releases from rockets 7 indicated that the best value

of the initial expansion velocity of the barium vapor with

a flattop distribution is Ro " 1.15 km/s. This value

corresponds to Eo/M o _ 0.6 R_/2 - 4 x 105 J/kg. We use

this same value for _o/M¢, in the case of a vented release

and obtain c - 0.0131. With these values for b and c, the

quantities 40 , B, and K2Va/2 have the values tabulated in

Table I for the indicated values of y.

_ B. Evaluation of the solutions

The equations for the venting model have been

integrated numerically. The next twelve figures show

examples of representative solutions for various gas

release parameters and assumed initial conditions. In
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TABLE I. Numerical values

ParLneter _ - 1.1 y - 1.4 _ = 5/3
i

Ao 0.0532 0.1523 0.2108

B 0.1528 0.123 0.140

K2
-_- Va (km/s) 3.60 6.09 7.16

order to illustrate the sensitivity of the solution to

a change in the value of each of the varioas parameters,

we have compared the solution curve produced by the

changed value of a single parameter with a "nominal"

case corresponding to a standard set of parameters.

Table II lists the values of the parameters for which

representative solutions are shown. The first column

of values represent the values associated with the

nominal solution. Solutions associated with the other
4

values are illustrated in the flgures.

The parameter Co is rela_ed to the stored '

chemical or internal energy and is given by Co - _ Va.

It is the velocity at which all the mass would travel
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TABLE II. Venting model parameter values.

Paratneter Nominal Other
Value Values

Co (km/s) 0.89 3.09

0.5 1.0

(km/s) 3.23 2.23, 4.23, 1.93, 3.76G

1.4 I.I, 5/3

Ta (°K) 1000 0

if all of the stored initial internal energy were

converted into kinetic energy. The nomina] value

is appropriate for the specific energy associated with

barlmn vapor of 4 x 105 J/kg. The larger value of CO

corresponds to a value of specific energy twelve times

larger than for barium. If applied to hydrogen gas,

it corresponds to the energy content of gaseous H at

770°K and is 8.5% greater than the mean thermal velocity.

The par&meter a is the density distribution

parameter defined for this cylindrical geometry case

by Eq. (53). The values 0.5 and 1.0 correspond to

a flattop distribution and cylindrical-shell

distribution, respectively. (In the point release
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case, _ has the value 0.6 for a flattop distribution

as discussed in Section If.).

In Fig. 9 we show the nominal solution for _(R)

by a heavy curve and the _olutions corresponding to

the alternate values of CO and _ by lighter solid lines.

In this and the subsequent eleven figures, the heavy

curv_ always corresponds to the nomii,al case. The

other curves represent solutions corresponding to

changes in only one or two of the parameters. These

curves are labeled by the non-nominal value of the

parameter. At the top of the figure the nominal values

of these parameters are given. The values of all

parameters not shown explicitly are those given as

the nominal values in Table If. Each figure thus

emphasizes the sensitivity of a solution to the change

in a particular parameter.

Returning to Fig. 9, the nominal curve is

= 3.23 km/s at R = Ro = aspecified by the choice Ro
Q

In this and the next eleven figures the scale length

a, defined by Eq. (39), is represented by A. This

value for _o is the value produced by the expression

(75) evaluated at R - a. The analytic expression (76)

is IndlstlnguJshable from the numerically-integrated
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solid curve. The two other curves behave like expression

(78) for R >> a (in practice, R _ 2a) with the appropriate

evaluations for K and B given by Eqs. (77) and (75). For

Co = 3.09 km/s the expansion velocity is only slightly

greater for a given value of R/a due to the small additional

amount of initial energy available for expansion. Note

that there is maximum in R(R) for R > a. If a larger

initial value for Ro at R0 = a had been chosen there

would have been no maximum for R > a. We will illustrate the

effecz of the choice of R on the solution in the next figure.o

For a mass distribution more peaked towards the outer

edge, the expansion velocity approaches that given by the

a = 1.0 curve corresponding to a cylindrical shell.

The expansion velocity is less in this case because the

energy available for expansion is distributed to all of

the particles. The expansion velocity of the outer edge

corresponding to a density distribution more peaked in

the center with a < O.S would be greater than that given

-½
by the nominal curve, varying as a

Figure I0 shows solutions resulting from different

choices for the initial value of _o' The value9 tllustrated

correspond to the nominal value ±i km/s. Both curves

quickly approach the nominal solution, curve which is well

approximated by Eq. (76). For R > ":t, the solution is
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insensitive to the particular choice of Ro forfairly

reasonable values of this parameter. The asymptotic

expansions given in Eqs. (70)-(73) and (78) depend only

on the released gas parameters and are independent of

_o" For the Ro = 2.23 kmls case, a smaller fraction

of the total energy is contained in the kinetic energy

term and a larger fraction is contained in internal

energy with the result that initially the gas has a

higher temperature, as we shall see below. This

excess thermal energy rapidly expands the radius until

the expansion velocity approaches the nominal solution, i

Figure 11 illustrates the dependence of R(R)

on the assumed ratio of specific heats, ), according

to the venting model equations. The two dashed curves

represent solutions appropriate for the release of

monatomic (y - 5/3) and polyatomic (7 " I.I) gases.

In general, as y decreases, the number of degrees of

freedom increases with the result that more energy

is stored as internal energy and less is available

for kinetic energy of expansion. The initial value

of _o = 1.93 km/s for the y - I.I case is the value

obtained from Eq. (76) evaluated at R - a. The thin

solid line with Ro - 1.93 km/s illustrates the affect

of a change in y on the resulting expansion velocity.
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Equation (76) has the value 3.82 km/s at R = a with

= 5/3. This value is below the minimum permitted

value o' Ro at R = a a._cording to Eq. (69). Rather

than choosing a numerical solution with a larger

initial value for Ro' we have shown a numerical

solution beginning at Ro = 1.1a with a permitted

initial value for R of 3.76 km/s given by Eq. (76)
0

evaluated at R = 1.1a. With this choice, the two

dashed curves are indistinguishable from the analytic

expression (76). Regardless of the value of yg associated

with the released gas, when R >> a the effective value

of y of the gas mixture will tend towards Ya associated

with the ambient atmosphere as shown in Ref. 3 for the

point release case. The appropriate value ranges between

1.4 and 1.67 depending upon the altitude of release.

The dependence of the temperature, T, defined by

Eq. (56) in terms of the average internal energy per particle,

on the gas release parameters is given by Eqs. (68) and (73).

An accurate representation for the nominal case for R > a

is given by Eq. (68) with A - Ao. Figure 12 shows T(R) for

the nominal case and the dependence on different initial

values of Ro' A smaller initial kinetic energy of expansion

results in a higher initial temperature. The temperature

resulting from an assumed expansion into a cold atmosphere

is shown b)" the curve labeled Ta = O°K. The presence of

a warm atmosphere has only a very small effect on the dynamics

G4
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of the expansion due to the small value of the parameter b.

The primary effect is to raise the temperature of the gas

cloud mixed with ambient atmosphere by T a for R _ 2a as

shown explicitly in Eq. (73). Figure 13 shows the effect

of Y on the temperature. The greater the number of degrees

of freedom, the lower the temperzture.

Figure 14 shows the axial veloclty of the gas plus

air mixture in the frame of the canister. As the gas cloud

encounters the ambient air, it comes to rest with respect

to the atmosphere which streams by the canister at speed

Va = 7.8 km/s. The analytic,,1 dependence for the nominal

case is given adequately by Eq. (67) with & = &o" Figure 14

shows that the velocity is rather insensitive to the choice

of Ro" Equation (67) with & ffi &o indicates that the velocity

of the wake with respect to the atmosphere varies as

1+5

= o Va for R ~> a (79)
Vwake Va - V ~ R2_a2/L+

which is rather insensitive to gas release parameters because

A is small.
o

The shape of the plume behind the canister is obtained

by recognizing that dR/dx - _/V and integrating
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R/,

; / dR' (8O)X

J I_(R')

By using the approximate expressions (67) with 4 = _ and
0

(76), we obtain th£ explicit relationship

½

= __1 (R(R2/a 2 + B)x - x° K2

(81) ,.

- (240 a £n R/a + (R2/a 2 + B)

2

where x is an arbitrary constant of integration. Asymptotically,o

for R >> a, the radius of the plume is found to vary as

R(x) - _(ax) ½ I + (240 R2.a 2
+ B) in(R/a) _ O (82)

with K given by Eq. (77). Far in ti}e wake x _ V t anda

the radius of the plume increases as t0"5 This asymptotic tilz:e

dependence is different from the tTM dependence Vor the

spherical point release case because of the different geomet,v.

Figure 15 shows the normalized plume radius as a

function of normalized distance downstream of the canister

for various values of the gas release parameters. The j:

constant of integration h_s been chosen in each case so that

R = a (- l.la for y m i.I) at x = a. The half-power

dependence of radius on distance is obvious for R • 2a;

the value of the y-axis intercept of the extrapolation of
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the straight-line portion of the curves is equal to K.

Figure 16 shows the same set of curves on a linear scale.

Note that the vertical axis is expanded 9.3 times the

horizontal axis. Figure 17 illustrates the sensitivity

(or insensitivity) of the plume radius to assumed initial

conditions.

We expect that the wake model provides an adequate

description of the characteristics of the vented gas once

R > a. We expect that this criterion occurs wi. ,in a

distance of order a downstream of the canister. We

have no model for the transition region from the vicinity

of the canister to the cylindrical region described by the

wake model. Figure 14 shows that the released gas has lost

half of its orbital velocity by the time this wake model is

applicable and is decelerating rapidly. The distance. L,

that the released gas travels with respect to the atmosphere

as it grows in radius from R to R is
O

f /L (ga - V) dt gwake(R')
_ = dR'

p R(R')
o

(83)

,:i2(1 + A ) R + {R 2 + Ba 2
~ a -2 Q £nK

_+ BaS/+ (Ko
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L
!

where we have made use of Eqs. (76) and (79) for t_e

approximate expression. Because for large R we have

R _ x 0"5 and R _ t 0"5 we find that this model predicts

that the distance traveled is not finite but increases as
i.

£n t. This result is different from the spherical point

release model result which has the gas cloud traveling a

finite distance.

Figures 18, 19, and 20 show the normalized distance I

traveled by a parcel of gas located a distance x downstream i
J

in the wake for various gas release _arameters and initial i
[

conditions. In the_e figures. L is arbitrarily assigned i

the value a at x = a. The three cur s in Fig. 19, all
i'

drawn for the same gas release parameters, indicate that a i_

slab of gas initially having R = a at x = a, travels 0.2a

fu_t,,er (less) if the initial expahsio_ velocity is 1 km/s

!

less (greater) than the nominal value.

In summary, the wake model derived here produ,_es

quantitative estimates of tl_e primary characteri3tics from

a continuously venting gas release traveling at orbital

velocity. All lengths scai_ with the characteristic scale

length a. Far downstream in the wake the cylindrical plume

radius expands as t 0'5 the shape of _he plume as a function

of distance x downstream is R _ K(ax) 0"5, the axial ve!ccity

6b
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falls as a2/R 2 _nd the distance traveled increases indefinitely

as £n t. A k. a position x _ lOOa downstream, the typical

plume radius is _ 12a and the distance traveled with respect

to the ambient atmosphere since R = a is &L _ 4a. Close to

the canister when R _ a, the expansion velocity falls rapidly

from_3 km/s and the temperatur" rapidly cools from several

thousand degrees to the ambient a_mospheric temperature.

These results are dependent upon the snowplow model

used to derive the appropriate equations. The most suspect

assumptions are those relating to the self-similar radial

density distribution and the uniformity of the axial velocity

_,.'thradius. It would seem reasonable to expect that both

the mass pick-up and momentum pick-up in the wake are probably

more concentrated toward the outer edges than assumed by this

mgdel. Near the canister, the outer edges of the plume

would 9e swept ba,_k more rapidly than the central portion,

particularly in the lower altitude end of the intermediate

altitude regime. This effect is partially modeled by the

= 1.0 curve corresponding to the assumption that all of the

released and plcked-up mass is concentrated at the outer

_dge. Th& resu]t is a small redu:tion in the radius of

the plume. Far downstream where the axial velocity with

respect to the atmosphere is small, Vwake << R, R >> a,

and 0 _ 0a, the results of this model for a flattop

distribution, _ = 0.5, should be more valid. Of course,
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at very late time, the released gas in the plume expands

by diffusion. Tho radial distribution can be assumed to

evolve from a flattop to a Gaussian shape during the snowplow

expansion as outlined in Section II-C.
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V. CONDUCTIVITY ENHANCEMENTS PRODUCED BY BARIUm! RELEASES

Barium releases from rockets have been conducted in

the ionosphere worldwide primarily to measure ambient

electric fields using small releases (< 4 kg) at high

altitude (> 200 km) and to produce enhancements in the

ionospheric electron concentration using large releases

(16 kg to 320 kg) at lower altitudes (< 200 km). The

properties of the larger releases have been studied

extensively using a variety of radar, optical, propagation

path, and rocket probe techniques. As a result, many

characteristics of these releases, such as the time development

of the scale size of the neutral cloud, peak electron

concentration, and distribution of barium ions perpendicular

and parallel to the magnetic field are well documented

and the behavior is understood.

These large barium releases have produced major

enhancements in the ionospheric field-line-integrated

Pe_ersen (FLIP) conductivity. The ability to create such

large FLIP conductivities is of interest for a variety

of prc posed Spacelab exper'ments. In this section we first

briefly describe the process of creating ion clouds from

released barium atom vapor. We then apply the results

of Sections II and IV for the expansion of gas clouds
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released in both the explosive and venting modes to the

calculation of ion deposition from releases st orbit&l

velocity. The results of these calculations are estimztes

of the scale size and FLIP conductivity enhancements that

can be produced by barium releases from rockets and

Spscelsb as a function of altituOe of release and amount

of relea;ed vapor.

A. Ion deposition for point barium releases

In Section II we summarized the results o_ a snow-

plow model that describes the expansion of a spherical gas

cloud in sn intermediate altitude regime released either

at orbital or negligible velocity. A barium thermite

release typically produces an expanding cloud of barium

atom vapor that exits the canister in 0.I - 0.2 seconds

&nd thus this event can be called a Int release. Our

understanding of the process by which :sarium ion clouds

are produced from the expanding vapor cloud and the resulting

p operties of the ion cloud comes in part from a detailed

analysls 7 of the 8prtlce ion cloud resulting from a 48 kg

barium release at 190 km altitude, and in part from observations

)

of many barium releases ranging in size from 16 kg to 320 kg

snd rele&sed at various altitudes between 150 km and 255 km.

The description of the ion deposition &s well as the
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quantitative values for important parameters for the process

are taken from Ref. 7. Here we summarize this process and

describe the modeling adopted to obtain quantitative

estimates for other altitudes and chemical payload weights.

As the barium atom vapor expands, it encounters

the ambient atmosphere. The outer radius expands initially

with velocity Ro" We assume that diffusion changes an

initi&l flattop distribution into a Gaussian profile

whose Gaussian scale length increases according to the

snowpZow model. The number of barium atoms is depleted

with an exponential time constant, Ti, by two competing

processes" oxidation by ambient oxygen molecules and

photoio,[zation from excited metastable states. The

cross section for the absorption of solar radiation that

excites _round-state barium atoms into the metastable

states is lazge. Photoionization commences only after a

time dealy, t i, when the barium cloud has expanded

sufficiently so that the metastable exciting radiation

is able to permeate the cloud.

As the barium ions are created, they become tied
1

to the magnetic field line at their position of creation

and cease their motion transverse to the magnetic f_ld,

_. After the passage of several zi time periods, the

bulk of the ionization has been created. The number of
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ions on a given magnetic field line remains constant beyond

this time and the distribution of this field-line content,

N (r), with radius transverse to _ is a bell-shaped curve.c

We represent the characteristic size of the ion cloud by

a scale length, a , which is the distance transverse to

in which Nc has fallen to e-I of its central peak value.
.|

The process described above has been modeled in

detail in Ref. 7 for the Spruce ion cloud. The results

of that model are the determination of appropriate values

of a number of the required parameters so that the model

produced results consistent with the various measurements.

Table III presents a tabulation of the values of these

parameters.

A Fopular barium thermite reaction that produces

barium vapor is

_Ba + CuO -----@- BaO + Cu + (_ - I) Ba (84)

where _ is a number typically between 1.7 and 2.5. For

Spruce with _ = 2.5, the 48 kg chemical payload weight

produced 3.56 kg of barium atom vapor which corresponds

to a vaporization efficiency of 7.4%. Quantitative

determinations of this efficiency are diffuclt to obtain

to much better than a factor of 2 and typlcal reported

values range from 5% to 124. The mode] value reported

here is consistent with measurements of the properties

of the neutral and ion clouds.
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TABLE III. Parameters for the Spruce ion cloud.

Parameter Value Units

Inputs to Model

1 Mass of barium vapor, Mo, 3.56 (kg)

2 Vaporization efficiency 7.4%

3 Fraction of atoms ionized, f, 0.42

4 Ionization time constant, T i, 10.0 (s)

5 Total ton znventory 6 5 (x 1024 )

6 Atmospheric density, 0a. 0 45 (kg/km 3)

7 Neutral diffusion coefficient. D , 0 052 (km2/s)n

8 Equal-mass-radius, a o, 1 26 (km)

9 Initial expansion velocity, l; 1 15 (km/s)o

I0 Onset of photoionization, ti, 1 9 (s)

Derived Quantities

Ii. Neutral cloud k'adius, R, at t = t. 1.59 (km)
1

12. Neutral cloud radius, a, a_ t = t.1

+ T. 3.8 (km)l

13. Transverse scale size, a_, 2.7 (km)

14. Field-line content. N c, 2,4 (1017m -2)

15. Peak ion density at I00 s I.? (1013m -3)

16. Ion cloud length at I00 s 7.8 (km)

17. Initial Pedersen conductivity 27 (mho)
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The fraction, f, of the atoms that are ionized is

equal to the ratio of the photoionization rate, u, to the

total loss rate of barium atoms. The photoionization

time, l/u, has been consistently reported by Haerendel

8
et al. of the Max-Planck Institute to be of order 19 s.

9
Rosenberg et al. of AFCRL report a time closer to 30 s.

We choose I/v = 24 s as being within 20_ of the correct

value. The oxidation rate is proportional to the molecular

oxygen concentration, kn O , and was estimated by Rosenberg
29

et al. from observations of a series of barium releases

at different altitudes. Because no2 is considerabJ " lower
in the 1972 CIRA atmosphere model than in the U.S. Standard

Atmosphere used by Rosenberg et al. , we have had to use

a relatively large value for the rate constant, k = 1.25

× 10-16 m3/s, in order to match their observed loss rates.

The fraction ionized is

u 1
f = = (85)

+ kn02 1 + 3 x I0-15n02

and has the value for Spruce given as entry 3 in Table III.

The time constant for the loss rate of barium atoms is

1 f 24
= . = - = s (86)

_i v + kn02 v 1 + 3 _ I0-15n02
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and has the value given as entry 4 for Spruce. The total

number of oarium atoms is NT = Mo/mBa where mBa is the

atomic weight of barium. The total ion inventory given

as entry 5 for Spruce is fNT.

If we neglect transport of barium ions perpendicular

to the magnetic field, the conservation equation for

the ions can be written

_--_-+ niViz = _,nb(r,z,t ) (87)

where v. is the velocity in the z-direction assumed toiz

be along _, nb(r,z,t) is the concentration of barium

atoms, and r is the radial coordinate perpendicular

to _. Based on the discussion in Sec. II, we take

the distribution of barium atoms to be an expanding

Gaussian of the form

NT -t*/7 i

nb(r'z't) = 3/2 exp[-(r2 + z2)/R2(t)] e (88)

where t* is the length of time that the barium atoms have

been exposed to ionizing radiation. By integrating Eq. (87)

along the magnetic field we oOtain an equation for the time

dependence of the radial distribution of the field-line

content Nc(r,t) = :'nidz

3Nc(r't) vN T o o -t','-
3t = o exp[-r'/R-(t)] e "i ($9)

_R'Ct)
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If we start the Ionization process at time, ti, after release

we can integrate Eq. (89) in order to determine the radial

profile of the field-line content of the ion cloud,

ft r2 / -(t' - ti)/T i dt (90)Nc(r,t ) = _N T exp[- R2_t')] e
t. nR2(t' )

1

Entries 6-9 in Table III are related to the neutral

cloud expansion. The first two are atmospheric numbers for

190 km altitude and determine the equal-mass-radius. As

discussed previously, it is appropriate to delay the start

of photoionization until the neutral cloud has expanded

sufficiently so that the metastable exciting radiation can

permeate the neutral cloud. For the Spruce ion cloud, this

delay time was considered a free parameter and adjusted until

the time-dependent characteristics of the ion cloud matched

the available data as described in detail in Ref. 7. The

radius of the Spruce neutral cloud at the delay time t. was1

1.26 a =1.59 km as given in entry 11.o

If we define _ as the size of the Gaussian radius

of the neutral cloud at the time t = t. + _. 2fter release.
1 1

i._.. at one ionization time constant _fter ionization has

been assumed to begin, we may write the field-line content

aS
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fN T
Nc(r,t) = _---_I(r,t) (91)

_a

where

_2 --#t , -(t' - ti)/T i- exp[-r2/R2(t, )] e dt '

l(r,t) zi j R2(t,)
(92)

I(r,t) represents a normalized field-line content. The

normalization is chosen so that

I(r,t)2_rdr = I - exp[-(t -- t " ] (93)
_2 1"/x i

which approaches one as t _ _

The result of the integratzon in Eq. (92) combined

with Eq. (91) is the field-line content as a function of

radius transverse to the magnetic field. From the profile

we determine that for Spruce the radius at which the content

-1
has a value e of its central peak value is a_ - 2,66 km. The

value of I(O,®) is 1.65 which when combined with Eq. (91)

determines the peak field-line content through the center

of the cloud as given by entry 14 in Table III.

Fcr a point release at orbital velocit ", v,o

neglect the translation of the neutral cloud _nd ,'_e tFe
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approximation that the ions are deposited as though the

neutral cloud were stationary. As pointed out in Sec. II,

the distance that the neutral cloud travels is :'inite and

qulcklj becomes small compared to the rapidly expanding

spherical cloud. Hence the same procedure outlined above

can be applied for this case with an appropriate specifi-

cation for H(t) as is discussed in Sec. V-C.

B. Ion deposition for venting-mode barium thermite

releases

Thermite reactions have been successfully used

in order to produce lithium atom vapor trails released

i0
in a venting mode from both rockets and satellites. To

date, there have been no releases of barium atom vapor

via a thermite reaction in the venting mode. Thus, we

have no data regarding the nature ef the ionization

enhancement that can be produced by such a release. In

this section we calculate porperties of such an enhancemen_

by adapting the ion-deposition procedures applicable _o

the Spruce ion c].3ud to the trail-like neutral-cloud expanslon

model resulting from a venting-mode release.

In prigciple, the procedures are similar but

the details of the calculations &re different due t_> the

cylindrical geometry and the motion of the neutral cloud

in the axial, x', direction, We assume that there is a
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critical radius, Ri, to which the cloud must expand before

9hotoionization and loss of barium atoms commences. (We i
r

will discuss the criteria for determining this critical

value as a function of altitude anu mass-venting-rate,

Mo' in the next section.) In the rest-frame of the shuttle,

the venting-mode model presents a steady-state shape for

the cloud-wake, R(x') with the origin chosen so that R(0)

= Ri, in which the gas has an axial flow velocity V[R(x')]

- V'(x') which approaches Va as x' In the (x,y,z)

rest-frames of t,.-eatmosphere, the shuttle travel_ in the

negative x-direction, which we shall assume to be perpen-

dicular to _, with velocity V s = -V a. At time t = t i, we

choose the origin of the x-axis to be located at the

position where R = R i. Due to the coordinate transformation

x' = x + Va(t - t,) ,

the cloud radius, Rc, in the rest frame of th_ atmosphere

is

Rc(x,t) - R(x') = R[x + Va(t - ti)] (94)

After the passage of many • time periods, the

bulk of the ionizat,.on has been deposited and is uniform

in x. Henceforth, we will concentrate only on the x = 0

position aud examine the t_me dependence of the ion

deposition on field lines as the expanding neutral trail

sweeps by that position. The cloud radius at x = 0 becomes
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a function of time only;

Re(t) = R[Va(t - ti)] (95) i,_
Note that in this s1:eady-state problem, the time t.

- R. '
re_resetts a critical time such that at x = O, R c l

at t : t i, it does not represent a time delay since

release as in the point release problem.

During the ion deposition we model the barium

cloud trail as having a Gaussian density profile in the
i

radial direction with a Gaussian sc21e length Rc(t ) = R(x')

given by our _'elf-similar snowplow expansion for the

reasons discus _d in Sec. II-C. The barium atom concentration
t

that enters Eq. (87) a_ x = 0 for t > t is uow written
1

_'T 2 z 2 2 -t*/zinb(y.z,t) - exp [-(y + )/Rc] e (96)
V_ R2

C

where ST = Mo/mBa is the rate at which barium atoms are

being emitted from the source,_ is parallel _o B,and _ ,

is perpendiculaz to x and _. This expzession is the

cylindrical equivalent of the exo;es,-ion given in Eq. (88)

for the spherical case. With the expression (96) for n, ,
0

Eq. (87) caa be integrated along the magnetic field to

get the rate of change of the transverse distribu*ion in

y of the f_eld-line ion content, -.
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BNc(Y't) _NT , 2 -t*/ri ,
- exp [-y2/R c(t) ] e (97

_t ¢_ V(Rc)Rc(t)

In this equation, the length of time, t*, that the barium

atoms have oeen expos, d to ionizing radiation is not equal

{

to t - t. %s _ th_ point-release case, but is equal tor

the time tha= it has taken the cloud to grow from radius

R, ",,,r_]ius Rc,

'Rc (t)
t*(t) = dR' (98)

R. '
1

wh .'e R(R) _ (dR/dx')V is gi-'en b_ the venting model

results discussed in Sec. IV.

The uniform-in-x transverse profile of the field-

li_e ion content, No(Y), is obtained by i_tegracing

Eq. (97). It is convenient to change variables and integrate

with respect to t* by maFing use of the relations

dR dR V
dt* 1 c i dx' c

d-_ R(R ) dt V dR dt V(Rc) (99)
C

where the fLrst, second, and Third equalities follow from

Eq. (98), the definition of R(R), and Eq. (95), respectively.

W_th this substitution, ve obtain
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fNT 0_® exp[-y2/R'2(t*) - t*/Ti] dt* (I00)Nc(Y) _ V a R'(t*) T i

t

where R'(t) = R[x'(t)] and x'(t) =_ Vdt' is the axial
O

position of a slab of releRsed gas at time t after R = R..
l

If we define a' as the radius of the wRke at one

time period T£ after being exposed to ionizing radiation.

a' = R'(T i) , (1011 .

we may write Eq. (100) as

Nc(Y ) = I'(y) (102)V _q_'

where I'(y) is s. normalized field-line content;

® y2/R 2(

f exp-[ ' t'' t'/T i ]l'(y) = a' R'(t') dr' (103/

0 j

The normalization is chosen so that

I'(y)dy - ¢_ a'

!

I

which is the same value that would result if I'(y)were [

exp(-y2/_' 2). i

In order to determine the properties of such ,,

a release we need to carry out the integral in Eq. (!03).

The venting-mode model determines the function R'(t')
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once a specification of M (which determines the charac-
o i

teristic length a) and R i is made. For the Spruce ion 1
!

7
cloud, the detailed modeling resulted in a value for

I
the radius of the neutral cloud of 1.59 km = 1.26 a

o

when photoionization began. For this venting mode model, r

we take R. = 1.59 km. For the spherical point release i
B i

with a flattop distribution, a cloud radius equal to

1.26 a° implies t_at the barium atom density, Mo/(4_R_I3)

= Oa/2, was one-half the ambient atmospheric aensity.I

We apply this same criterion in the venting-mode model

case,

| _o/V.rrR2 = Pa/2 ,

which reduces to

t VR_ = 2Vaa 2 (104)

Examination of the numerical integration of the

venting mode equations indicates that criterion (104)

for the nominal case occurs at R. = 1.69 a. Thus, fori

the venting-mode equivalent of a Spruce-like point

release at 190 km altitude with R. = 1.59 km, we have
1 f-

a = 0.94 km which corresponds to ._! = 9.7 kg/s. For 1
0 I_

these same conditions we find that a' = R'(T i) 10 9 km.
f

I
We have carried out the integral in Eq. (103) I

1
using these values, and have found that I'(y) is a bell-
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shaped curve that has a peak value I'(0) = 1.56 and has

fallen to 0.57 = (I/e)I'(0) at y = 0.57 a'. Hence, a

venting-mode release that produces barium atoms at the

rate of 9.7 kg/s at 190 km altitude is calculated to

produce a cylindrical trail of barium ions having a

characteristic scale of a = u.57 a' = 6.2 km in the

transverse direction and a maximum field-llne content of

1017 m-2
1.56 fNT/Na_ a') = 1.84 x

C. Scale size and magnitude of conductivity

enhancements from _kets and Spacelab

In Secs. If, III, and IV we have discussed

models that describe the expansion of neutral gas clouds

released in an intermediate altitude regime in both a

point release mo_e at both negligible and orbital

velocity and _ ranting-mode at orbital velocity. In

Secs. V-A and V-B we have described the application of

the results of the neutral cloud modeling to the calculation

of the deposition of ionization on magnetic field lines

resulting from" a) a point 48-kg barium thermite

release (Mr = 3.56 kg) from a rocket at 190 km altitude'

and b) a venting-mode barium thermite r(lease (Mo = 9.7 kg/s)

at orbital velocity at 190 km altitude. The procedures

described for the former case produce results consistent

with various detailed measurements made of such a release as
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described in Ref. 7. The procedures described for the

venting-mode case are derived from criteria establishe,

in the point-release case, but there are no data available

f for comparison.

In this section we derive the field-line-integrated

Pedersen (FLIP) conductivity that results from the ionization

enhancements that are created and describe how we model

the characteristics of the conducti¢ity modifications

produced by releases of different magnitudes at different

altitudes.

The FLIP conductivity enhancement due to the

deposition of ionization from barium thermite releases

is defined by

p(h) eB f  (z)ni(z)
= - dz (105)

1 + ¢2(z)

where z is the coordinate along 3, ni(z) is the distribution

of ion concentration along the magnetic field line that

-i
passes through the peak value of ni(z), £(z) = [fiT(Z)]

J

where f = eB/mBa is the barium ion gyrofrequency and T(Z)

, is the altitude-dependent ion-neutral collision time,

' and h is the altitude of the peak in the ion concentration.

-I
Henceforth we will adopt a nominal value of _ = 35 s

appropriate for a 5 × 10-5 T magnetic field.
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The ion-neutral collision time can be obtained

from measurements of the mobility of barium ions in

II
nitrogen gas resulting in

-8.6 x 1015
= s (106)

nn

where _ is an effective neutral concentration inn

particles/m a ,

= + + 0.8 no (_.07)_n nN 2 no 2

In deriving Eq. (106) it has been assumed that the collision

cross section varies inversely as the square root of

the temperature and that the collision cross section for

oxygen molecules and atoms is the same as it is for

nitrogen molecules. The fact that the lighter oxygen

atoms are less efficient in stopping a heavier barium

ion is expressed by the appropriate Langevin factor,

(I + mBa/mN2 )½ (I + mBa/mo )-½ ~ 0.8

where mN2 and mO are the masses of the nitrogen molecules

and oxygen atom respec*i_ely.

The distribution of ionization along the magnetic

field through the peak value is governed by Eq. (87) with

the right-hand-side evaluated at r = O. As discussed in
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Sec. V-A, after the passage of several Ti time periods

(typically of order I minute after release) most of the

ionization has been deposited on field lines. The

t
extent of the distribution of ionization along field

lines is still small at that time compared to the atmos-

pheric neutrzl-denslty scale-height Hn. Hence, the value
t

of the FLIP conductivity in Eq. (105) resulting from the

deposition of ionization on field lines can be approximated

by
!

_p(hr) e ar= B 1 + 2 Nc ~ 3.2 × 10-15 1 +e e 2 Nc mho f108)
r

_here Er is evaluated at th_ altitude of release, hr, _d
-2

N is the peak field-line content in m through the
C

cen'.er of the cloud given by

fN T
Nc = No(0.®) = 1.65 _---_ (109)

na

for point releases where Nc(r,t) is defined by Eq. (91), and

fl_/T ,_
0 Nc = Nc(O) = 1.56 (II0)v ,,qE'

a

for venting-mode releases where Nc(Y ) is delined by Eq. (102).

' Note that NT/Va is the number of barium atoms that the

source emits per unit length and f is the fraction of
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these atoms that are phetoionized.

The numerical coefficients in Eqs. (109)

and (II0) were derived on the basis of calculations

appropr%ate for the nominal 190 km altitude releases

described earlier (M ° = 3.56 kg and Mo = 9.7 kg/s,

respectively). We have not carried out the detailed

ion deposition calculations indicated by Eqs. (92)

and (103) for releases of different amounts of barium

vapor at different altitudes. Instead, we approximate

the field-line content produced by other releases by

the expressions (109) and (II0). In these expressions,

and NT depend directly on the am_,unt of releasedNT

vapor or the rate of vapor release, respectively, and

f, given by Eq. (85), depends on the altitude of

release. The scale sizes of the neutral clouds one

time period Ti after photoionization, a and a', depend

in a cemplicated way on both factors as described

below.

By combining Eqs. (109) and (II0) with Eq. (108),

we obtain expressions for the FLIP conductivity as a

fuDction of amount of released gas and altitude, i

_r fN T

_p(L,r) = 1.68 × 10 -21 1 + c_ _a mho , (III)
r
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_p_n r) 2 82 x 10 -21 er fNT
= . maho , ( 112 )

1 + ¢2 Va _,

; for the cases of point releases, and venting-mode releases,

respectively, with a, a', and V a expressed in km, km, and

km/s, respectively. NT and NT sre the number of barium atoms

and number of barium atoms per second, respectively.

Equation (27) in Sec. II-B provides an excellent

analytic approximation to the neutral cloud radius, R(t)

for R > a o. For the cas- of stationary point releases,

we take for the characteristic size of the neutral cloud

at one time period, z i, after photoionization commences,

the expression

1.15 Zi .+ S - 0.4 km (113)
= 1.2 a ° ao

where a° is in km, T i is given by Eq. (86), and S i is a

parameter reflecting the time delay before the onset of

photoionization. We assume that phozoioniza_ion commences

when the optical depth of the cloud to the metastable-

exciting radiation approaches one. This assumption is .:

equivalent to a critical value for the product of the

barium density times the cloud radius or

91

w

1981004372-092



3M

PiRi = o = 0.34 kg/km 2 (114)
4w Ri2

where the numerical value was obtained from the Spruce 3

case. If we use Eq. (27) with S i = Roti/ao in oraer to

evaluate Eq. (114), we obtain

1.25
S i = (0.44 + 2Paa o) (115)

in kg/km 2. This value used inwhere
Paao

is expressed
J

Eq. (113) determines the dependence of a on mass of

released gas and altitude.

For the case of a point release at orbital velocity,

we take

_. 1.15 "ri + S - 0 44 km (116)
a = 2.68 a ° ao i "

which is larger than Eq. (113) by about a factor of 2.3

hg.in by applying the criterion (114), we obta_

1.25
3.i = (0.44 + 0.4 Paao ) (117)

The expressions (115) and (117) are not accurate whenever

the _orresponding critical radius Ri < a o. This condition

occurs only a_ove a critical altitude depenuing on M wheno

Sit 0.6 and £s much smaller than the term 1.15 T/sl,o tn_

which it is added. Hence this approximation to a does not

lead to significant error.
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In the case of a venting-mode releaa,_, Eq. (76)

can be integrated in order to obtain time as a function

of wake radius which provides an implicit R(t)"
i
d

K2Va(t - Zo) = R(R2/a 2 + B) ½ + a(2-B)£n[R/a + (R2/a 2 + B) ½] (_13)

where t is an arbitrary constant of integration. Thiso

equation cannot be inverted to obtain R(t) implicitly but

we have found that the exp!ession

K2V K

R(t) = a t + Si + 0.2 - _n a t + Si (119)

wlth a in km and K2V = 12.2 km/s provides an adequatea

represmtation for the radius for the nominal case for

R .> 1.2 a with S i = 1.24. Because Si and t are additive,

the time t in this equation can be interpreted as the time

lapse after photoionization commences if we scale _.i

properly with pa a in order zo reflect the critical time

to reach a critical radius Ri. The criterion (II,I) in

this case reduces to

= o - 0.34 kg/km 2 (120)J PiRi V. _R.
1 1

,_r

V.R.  .2/a
1 1 1

Vaa (R2. + 2.8 a2) "_- 3Paa (*'_*)
1

93

I_L',

1981004372-094



with Paa expressed in kg/km 2. The middle expression is i:

an approximate expression which is reasonably accurate I.

for R i > 1.2 a. By solving this quadratic equation for

(Ri/a) 2 in terms of pa a, using this value in Eq. (118)

and adjusting to so that S i = 4.05 when "'i'ui,__ 1.69 as I

for Spruce, we obtain the following expression for Si !_

for the venting mode case, I

Si = _- 'V + B + (2 - B)£n + \ 2 + B - 1.17 (122)

Equation (119) then defines the characteristic size of

the neutral cloud wake as a' = _(Ti).

As discussed in Sec. V-A, the transverse scale

size of the ion cloud field-line content defined as the

half-width _- (I/e) of the maximum value is given as

u

a_ = 0.7 a (123)

in the case of point releases and

= 0.57 (]24)

in the case of venting-mode releases.

Figures 21-26 show contours of constant value_

ot _he _ransverse sca]- size, a_, and FLIP conductivity,

_, for the three release mode cases. The shaded portions
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$
of these figures represent regions in which the snowplow

models used, applicable oni] to the intermediate altitude

regime, are not valid. The contours should not be used

in the shaded regions because their actual form is

qualitatively different from those shown. Fortunately,

the allowed regions correspond to regions of many

interesting suggested experiments.

As a typical result, a 48 kg barium release at

190 km altitude will produce a FLIP conductivity of approx-

imately 30 mho, several times the ambient ionospheric

conductivity, and will have a transverse scale size just

less than 3 km. The extra energy availaDle in the shuttle

release causes the gas to expand faster resulting in the

barium ionization being spread over a larger area. The

correspondingly lower density of ionization results in

lower conductivity. If the same amount of chemical

payload is released from shuttl£, the resulting conductivity

is lo_,'er by a factor of 5 from th:_t produced by a release

from a rocket and the trans¢grse size of the ion cloud

is increased by a factor of approximately 2.3.

As time passes, th_ conditions envisioned by

: _ais modeling change and the distribution of ionization

both parallel and perpendicular to _ chan[. Afte_

about a minute following release the ionization cl.ouds
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that are produced have the characteristics that we have

described. Beyond this time, the distribution cf ionization

along the magnetic field is governed bY Eq. (87) with the

right-hand side equal to zero. The z-component of the

ionization velocfty is given by

Viz Vrlz _ 1
Z

where Vnz and gz are the components of _[,_ ,ioutral wi ....

velocity and gravity parallel to _, respectively, T e and

T. are the electron and ion temperatures. _espective!y,
1

and T is the ion-neutral col±ision time given by Eq. (106).

The resultizg evolution of the dist;ibution p&ralle! to

as a i esult of neutral wind, gravity ana pressure gradients

in an exponen_ially varying atmosphere whose effective

:,umber density, n, defined in Eq. (107), varies as

_(h) = n(h r) exp[-(h - h r)/H ni (126) •

has been discussed i' detail in Sec. 4 of Ref. 7. !

luit_ally the distribution is Gaussian, then the

peak density descends in altitude and the distribution

in altitude evolves into a Chapm_n-like _ayer with the

density falling off r_pldly on the unde;_ide and

exponentially on the top side. An analytical solution o_ ,_

£q. (87) for ni(z,t) with Viz given by Eq. (125) ha_ been obtained
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f

I
that describes the evolution as a function of time for

various models of altltude-dependent neutral winds. By

analytically integrating the solution, the remarkable

re_ ult was obtained that at a later time when the peak

iu :he ionization density has descended to altitude h,

the FLIP conductivity has the simple value

_p(h) _ _p(hr)eXp[-(h - hr)/B n] . (127)

We remark that this fully-time-dependent result obtained

in Ref. ? does not require that z be in the vertical

direction, and that the winds can be either constant 6r

altitude dependent with an exponentia3 profile.

In the direction transverse to the magnetic

field, the situation is far more complex. A neutral

wind blowing across a plasma gradient leads to the

12
well-known gradient-drift instability. The result is

that the coherent picture of a conductivity modification

no longer applies because the ionization _triates. The

typical time scale for point releases from rockets between

150 and 250 km for striations to onset is 5 to 20 minutes.

Simple theoretical modeling indicates that this onset

time scales with _a /v where _ is a factor that dependsn

on the magnitude of the conductivity enhancoment and

typically lies between 5 and 20. Hence, co:,,_epts to

affect ionospheric and magnetospheric current flows by
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conductLvity enhancements such aa we have been describing

can probably only b_ planned for the first 10 minutes

followin£ reIease.
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Fi& ,re CaptioLs

FIG. i. Cloud radius vs. time for various values

of the ratio of specific heats, _, and density profile

parameter, a. Translatlonal velocity at release is 7.8

km/s except for the curve u-O.

FIG. 2. Temperature, radius, and distance traveled

vs. time for a I00 kg gas release at orbital velocity at

200 km altitude.

FIG. 3. The evolution of the normalized density

distribution, g(z, TD), from an initial flat-top to a

Gaussian as a result of diffusion for several values of

the diffusion parameter TD.

FIG. 4. The evolution of the normalized density

distribution, g(z, TD), from an initial shell to a

Gaussian as a result of diffusion for several values of

the diffusion parameter _D"
t

FIG. 5. Normalized diffusion function T (s) for a

gas with y-5/3 in terms of which the diff,mton parameter

rD is defined according to Eq. (38). The dashed curves

101

1981004372-102



show the values of _(s) if the snowplow were stopped at

s-18 and 46 respectlvely.

FIG. 6. Number density, n, mass density, Pa,and

mean-free-path, _, as a function of altitude based on the

CIRA 1972 model atmosphere. Note the logarithmic altitude

scale. The solid curves correspond to an exosphecic

temperature Tex - 1200 °', the dashed curves correspond to

Tex = 700 ° and 2000 ° .

FIG. 7. Contours of constant characteristic length,

a, for a CIRA 1972 model atmosphere with Tex = 1200 ° in

the altitude versus mass-venting-rate plane. The dashed

curves show the shape of the contours for Tex = 700 ° and

2000 ° .

FIG. 8. Contours of constant a/A in the altitude

versus mass-venting-rate plane. The dashed curves show

the shape of the contours for Tex - 700 ° and 2000 °.

FIG. 9. Radial expansion velocity as a function

of normalized radius for different density profiles and

specific internal energies.,i
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FIG. 10. lladlal expansion velocity as a function

of normalized radius for different assumed initial

velocities.

FIG. 11. Radial expansion velocity as a function

of normalized radius for different values of the ratio

of specific heats.

FIG. 12. T_mperature, defined according to Eq. (56),

as a function of normalized radius for different assumed

initial expansion velocities and ambient atmospheric

temperature.

FIG. 13. Temperature, defined according to Eq. (56),

as a function of normalized radius for different values

of the ratio of specific heats.

FIG. 14. Axial velocity in the rest frame of the

canister as a function of normalized radius for different

assumed initial expansion velocities.

ff

FIG. 15. Normalized radius versus normalized axial

position fo_ various values of gas release parameters

plotted on a logarithmic scale.

103

1981004372-104



FIG. 16. Normalized radius versus normalized axial

position for various values of ga_ release parameters plotted

on a linear scale.

FIG. 17. Normalized radius versus normalized axial

position for different assumed initial expansion velocities

plotted on a logarithmic scale.

FIG. 18. Normalized travel distance versus normalized

axial position for different density profiles and specific

internal energies.

FIG. 19. Normalized travel distance versus normalized

axial position for different assumed initial expansion

velocities.

FIG. 20. Normalized travel distance versus normalized

axial position for different values of the ratio of

specific heats.

FIG. 21. Contours of constant transverse scale size

of the conductivity modification in the altitude versus

chemical payload weight plane for point barium releases

from rockets. In this and the next 5 figures the model is

invalid In the shaded regions.
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FIG. 22. Contours of constant field-line-integrated

Pedersen conductivity in the altitude versus chemical

payload weight plane for point barium releases from

rockets.

FIG. 23. Contours of const:nt transverse scale

size of the conductivity modification in the altitude

versus chemical payload weight plane for point barium

releases at orbital velocity.

FIG. 24. Contours of constant field-line-integrated

Pedersen conductivity in the altitude versus chemical payload

weight plane for point barium releases at orbital velocity.

FIG. 25. Contours of constant transverse scale size

of the conductivity modification in the altitude versus

chemical payload re!ease-rate plane for venting mode

releases at orbital velocity.

FIG. 26. Contours of constant field-line-integrated

Pedersen conductivity in the altitude versus chemical

payload release-rate plane for venting mode releases

at orbital velocity.
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1oo
10 1o14 1o15 1016 101 1018

NUMBFR DFNSITY Im'3_

• 1013 tO 12 10-11 io-lO !0 9 1C-8 10 '
MASS DENSITY"_kg m$_

FIG. 6. Number density, n. mass density, 0 , and
me'an-free-path, k, as a function of altitud_ based
on the CIRA 1972 model atmosphere. Note the lol__-

I rithmlc altitude scale, The solid curves corres-

pond to an exospheric temperature T = 1200°: the

dashed _,urves correspond to Tex = 7_ O and 2000 °,
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MASSRATE (KG/S)

FIG. 7, Contours of constant characteristic length,
a, for a CIRA 1972 model atmosphere with T = 1200 °
in the altitude versus mass-venting-rate p_ne. The
dashed curves s_ow the shape of the contours for T= 700 ° and 2000 ex

' 112

1981004372-113



7
!

110

lo-2 lo-1 loo _o1 1o2 loa
MASSRATE(KG/S)

PIG. 8. Contours of constant a/_ in the altitude
versus mass-venting-rate plane. The dashed curves

show the shape of the contours for Tex - 700 o and2000 ° .
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NOMINAL CASE; _ - 0.5

4,5 - CO = 0.89 KM/S -

|
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E
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1.5 -

0.S i- 1i I I I I l I I i I
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FIG. 9. Radial expansion velocity as a function of
normalized radius for different density profiles and
specific internal energies.
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NOMINAL CASE: I_o = 3_3 KM/S
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!+1o - 4.23 KM/S
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/
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l

FIG. 10. Radial expansion velocity as a function of
normalized radius for different assumed initial velocities.
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NOMINAL CASE; _ - 1.4

4.5 - Ro -A -

I_o - 3.23 KM/S

315 m m

'_¢ Y = 5/3, qo" 1.1 A, I_o - 3.76 KM/S
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\
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0.5 - / _ -
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0 1 2 3 4 5 6 7 8 9 10
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FIG. 11. Radial expansion velocity as a function of
normalized radius for different values of the ratio of
specific heats.
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- NOMINAL CASE; I_o - 3.23 KM/$

g - T,- 1000o -
X,

3

1

I_o" 3.23 KM/S

Ta =0°K

0
0 1 2 3 4 § 8 7 8 9 10

R/A

FIG. 12. Temperature, defined according to Eq. (56), as
a function of normalized radius for different assumed
initial expansion velocities and ambient atmospheric
temperature.
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NOMINAL CASE; )' - 1.4, Ro - A
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FIG. 13. Temperature, deftned according to Eq. (56), as
a function of normalized radius for different values of
the ratio of specific heats.
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I_o = 4,23 KM/S
7 ,--

0 _ I I I 1 I I I J 1
0 1 2 3 4 6 6 7 8 9 10

, lr R/A
i FIG. 14. Axial velocity in the rest frame of the canister

as a function of normalized radius for different assumed
* initial expansion velocities.
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m NOMINAL CASE: 7 " 1.4, a- 0.6,

8 Co - 0.89 KM/S

Ro- A //

7 I_o - 3.23 KM/S ///
/
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7 -5/3, Ro-1.1A /

5 I_o - 3.76 KM/S //
/

/
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Co = 3.09 KM/S //

/
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2 /I/,_j "/./f I_o = 1.93 KM/S i

I,f I
1

lO0 lO1 10
X/A

FIG. 15. Normalized radius versus normalized axial

position for various values of gas release parameter_
plotted on a logarithmic scale.

; 120

1981004372-121



r

10 .... I I I' I I/

/
' NOMINAL CASE; _ - 1.4, /

9 - a -0.5, Co- 0.88 KMIS, /
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FIG. 16. Normalized radius versus normalized axial
positJon for various values of gas release parameters
plotted on a linear scale.
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Ioo IoI Io2

X/A

FIG. 17. ._;ormalized radius versus normalized axial
position for different assumed initial expansion
velocities plotted on a logarithmic scale.
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FIG. 18. Normalized travel distance versus normalized

axial position for different density profiles and specific
internal ene, gies.
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FIG. 19. _Tormalized travel distance versus normalized
axial position for different assumed initial expansion
velocities.
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' NOMINAL CASE; 7 " 1.4
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FIG. 20. Nor_,.:_ized travel distance versus normalized
_xi:tl position for different values of the ratio of
speciftc heats.
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FIG. 21. Contours of constal_t transverse scale

size of the conductivity modification in the
altitvde versus chemical payload weight plane for
point barium releases from rockets. In this and
the next 5 figures the model is invalid in the
shaded regions.
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FIG. 22. Contours of constant field-line-integrated
Pedersen conductivity in the altitude versus chemical
payload weight plane for point barium releases from
rockets.
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FIG. 23. Contours of constant transverse scale

size of the conductivity m,_dification in the
altitude versus chemical payload weight plane

for point barium releases at orbital velocity.
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FIG. 25, Contours of constant transverse scale
size of the con_uctivity modification in *he
altitude versus chemical payload release-rate
ple.ne for venting mode releases tit orbital
velocity.
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FIG. 26. Contours of constant field-line-
integrated Pedersen conductivity in the altitude
versus chemical payload release-rate pl_ne for
venting mode releases at orbital velocity.
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