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Notation

Q	 ;speed of sound

e	 :voluminal mass

V	 :speed of flow

M	 :Mach number

C	 :chord
a	 :incidence of airfoil
S	 :angle of flap, positive downwards

Sm :average angle of flap
S ► 	 :amplitude of oscillations of flap
t	 :time

:circular  frequency
F= - :frequency of oscillations (Hz)

COk- 	 KFc; :reduced frequency
_ 2 Voo	 Vuc

P	 :instantaneous pressure

Pm	 :average pressure

QP	 :fluctuation of pressure

Kp p---
 Poo 2 • coefficient of instantaneous (or steady) pressure

A P k eoo voo
Cp_ ---f-	 :coefficient of unsteady pressure

y2 
ec,vO; ELK 	 :val'ue of Kp when Mp -. 1

Cz :steady lift coefficient

Cz b :unsteady lift coefficient
C h,, 6 :coefficient of steady of moment pitch
Cmc & :coefficient of unsteady moment of hinge
Ô 	:angle of phase
p^	 :generating pressure

Re :Reynolds number

,oef f icients

M	 :average values ( ,S. P

e	 : local values (a , V , M )
00	 :values to infinity upstream ( a V , M

1' :indicator assigned to the module _and phase of first

harmonic of cp .
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UNSTEADY EFFECTS OF A CONTROL SURFACE IN TWO-DIMENSIONAL
SUBSONIC AND TRANSONIC FLOW

R. Grenon, A. Desopper and J. Sides

Office national d' Etudes et de Recherches A6rospatiales
(ONERA) 92320 Chatillion (France)

1, Iatroduction

The design of present-day aircraft is more and more governed by /19-2*

the use of Control 40onfigured Vehicle (CCV) techniques which require

uti.lization of ► control surfaces with a short response time. With
this in view, ONERA undertook an in-depth study of the unsteady effects

of an oscillating control surface,

This presentation more specifically concerns results obtained in

subsonic and transonic two-dimensional flow on an airfoil equipped with

a trailing edge control surface involving 25% of the chord, to which a

sinusoidal motion can be imparted.

We first briefly recall the principal experimental results of

steady and unsteady pressure measurements carried out on this airfoil

in the S3 wind tunnel at Modane, These results have already been the

subject of a presentation at an AGARD meeting in 1.977 (1),

Then we compare these experimental results with those obtained

using various methods for calculating steady anti. unsteady inviscid

flows. Finally, we present the results of the first attemp.js to take

into account the effects of viscosity in unsteady flow.

2. Stum*aary of Principal Experimental Results

2.1 Presentation of Test Material

For this study, carried out in close collaboration by the

*Numbers in margin indichte pagination in the foreign text.

V,
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Aeordynami.cs and Structural Resistance departments of ONRRA, the

selected airfoil is a ^,upeYcritical airfoil of 16 relative thickness,
developed by the Agrospatiale company (airfoil RA 16 SC 1),

The two-dimensional model has a chord of 180 mm. The control

surface of the trailing edge, involving 25% of the chord, is activated

by two small rotary hydraulic actuators controlled by synchronized

servo-valves and driven by a sinusoidal signal generator. This system

makes it possible to obtain oscillations of the control surface of

+ 10 at 100 Hz, the amplitude reaching + 50 at 20 Hz (figure 1).

The model is equipped with 78 static pressure gauges and 32

Kulite short response time unsteady pressure gauges.

The test took place in the S3 iigustn wand tunnel at Modane,

at Mach numbers between 0,3 and 0.8. The test program comprises a

steady and an unsteady segment, with study of the influence of numerous

parameters. The treatment of the signal collected by the Kulite gauges

during the dynamic test is detailed in Figure 2.

Finally, a strioscopy bench made it possible to film the

movement of the extrados shock wave in transonic mode.

2.2 Steady Characteristics of the Airfoil

At zero incidence and zero flap angle, a supersonic zone

appears at the extrados trailing edge in the vicinity of MOD	 0.7

(Figure 3). As the Mach number increases, this supersonic zone rapidly

extends downstream, giving a distribution of pressure in the form of a

plateau with a rather weak shock, and the intrados in its turn becomes

supersonic.

The appearance of the supersonic zones is profoundly altered

by the angling of the flap (Figure 4) , but, as the airfoil is heavily /19-4
loaded towards the rear because of its design (Figure 3), the control

surface remains positively loaded in most cases, the load on the control

W
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surface being cancelled only for a flap angle in the neighborhood of
0-10

2.3 Unsteady Characteristics of the Airfoil

The various coefficients of unsteady pressure, lift, moment

of pitch and moment of hinge are presented in the form of the modulus

and phase of the first harmonic ( w term of the Fourier series). This
mode of presentation is justified by the experiment, the harmonics of

the higher order being negligible except very locally for pressure

signals in the narrow zones swept by the shocks, The phases are deter-

mined in relation, to the position of the control surface and the extrados
pressure phases are presented with an interval of 180 0 ; this would make

it possible to obtain the same phase curve for the intrados and extrados

in the case of a symmetrical airfoil at zero incidence with a control

surface oscillating around a zero flap angle; here this will. demon-

strate the effect of the dissymetry of the airfoil which was used.

Influence of the Mach Number

First we note the importance of theinfluence of the Mach

number on the distribution of the unsteady pressure coefficients for

the saute reduced frequency (Figure 5). In subcritical regime the curve

of the Cp I moduli shows the classic appearance anticipated in the plane

plate theory (maxima at the leading edge and at the hinge corresponding

to the infinite values of the theory), the phase evolving in almost

linear fashion from a lag at the leading edge to a lead at the flap.

As the Mach number increases, a supersonic zone forms, termin-

ating in a shock of variable intensity. The oscillations of this shock

are reflected on the curve of the moduli by a peak whose intensity

depends on that of the shock. The level of pressure fluctuations

upstream from the shock, that is, in the supersonic flow zone, dimin-

ishes as the Mach number increases.

The difference in phase increases with the Mach number at the

leading edge, but it maintains an almost steady level in the supersonic

1	 .3
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zone and shows an abrupt leap at the level of the shock.

The appearance of the unsteady pressure distributions is thus
very different depending on whether we are in subcritical regime, with-
out shocks, or in supercritical regime, with shocks,

,Influence of the Reduced Frequency

The influence of the reduced frequency, moreover, is reflected

somewhat differently in the two cases, In suberitical regime, the

modulus of pressure diminishes and the phase lag at the leading ed-e

grows as the reduced frequency increases, the zero phase joint being

displaced upstream (Figure 6). In supercritical regime, while the

phase lag in the supersonic zone increases with the reduced frequency,

the unsteady pressure moduli, in contrast, evolve in the opposite

direction on either side of the shock (Figure 7).

Steady-Unsteady Interactions

Contrary to the results anticipated by the linear theory, 	 /19-4

there is significant interaction of the average characteristics of the

flow on its unsteady characteristics, This interaction is well illus-

trated by the effect of average angle of the flap on the unsteady

pressures (Figures 8 and 9). When the average angle of the flap in-

creases, thus increasing the average load on the wing and on the con*

trot surface, the moduli of the unsteady pressures diminish, and the

phases evolve slightly in the direction of a phase lead. However, a

strong increase in unsteady pressures at the trailing edge appears

when the flap oscillates increasingly near breakaway (b m = 2.5 in

the present case). In supers ritical regime (Figure 9) to an increasing

degree, we observe translation of the peal-, of the curve of moduli and

of the jump in the phase curve corresponding to the displacement of

the average position of the shock.	 /19-5

3. Comparisons between Experimental and Computed Results

3.1 Presentation of Methods of Computation

Each of the methods of computation used will be briefly.



presented, For more detail, refer to the works quoted as references.

a) Methods Based on the Hypothesis of Potential Flows

Steady Flows

The programs which are available use the GARABEDIAN

and KORN method:-to forecast steady flows in inviscid fluid in super-

critical regime. The effects of viscosity are taken into account by

pairing with a boundary layer calculation, with pairing technique con-

sisting of computing tt*Le inviscid flow around the airfoil, enlarged by

the thickness of displacement of the boundary layer (2.3).

Unsteady, Flows in Inviscid Fluids, Suberitical

To deal with unsteady flows in the entire subcritical

area , we can use the linear- plane plate theory. This method, current-

ly used in structural calculations by ONERA, i  a doublet method (4):
the airfoil is assimilated into a line without thickness or curve and
broken down into about twenty elements, each comprising a doublet
of the acceleration potential of the forward 1/4. The conditions of

tangency of the flow are applied to the rear 1/4 of each element. This
method is, however, of limited use, as it does not take into account

the influence of the average flow in the unsteady response, an influence

which is significant in heavily loaded configurations.

To represent the influence of the average flow on the

unsteady response at low speeds, we have at our disposal a program for

computing incompressible unsteady flow, developed by the Bertin company

(5) and based on the GEISING method (6). The airfoil is represented by

surfaces and recesses along its contours and eddies on the median line.

The wake is composed of free eudies emitted at each time increment to

preserve the total circulation of the f l ow. This method takes into

account the exact form and movement of the airfoil, as well as the

deformation of the eddying wake.

Unsteady Flow in Inviscid Fluid, Supercritical Regime:

5



In order to deal with unsteady flows in supere ritical
regime, we currently use a computation program solving, by a method
of finite differences, the equation for speed potentials with the
appsoximation of small disturbances for transonic, two-dimensional
unsteady flow, This program, initially developed for the study of

flow over helicopter blades by F.X, Caradonna (7), was adapted to suit
oscillating flaps by J,J. THIBERT of ONERA, There is also another
method for small transonic disturbances being developed by the Struc-
tural Resistance department of ONERA (8) and which has the advantage

of requiring a shorter computation time than does the CARADONNA program.

b) Solution of Euler Equations

The hypothesis of small disturbances is not very realis-
tic for a 16% airfoil comprising supersonic zones, sometimes extensive,
for an upstream infinite Mach number of the order of 0.73 to 0.75, and
it is quite difficult to know what terms can be ignored in the poten-

tial equations.

To evaluate error due to the small transonic distur-

bances hypothesis, we will refer to a method for computing steady flow

in inviscid fluids solving the Euler equations (9). This method makes
it possible to compute, for an airfoil of a given thickness, super-
critical flows, without restrictions on the intensity and movement of
shocks. The inviscid flow around an airfoil with an oscillating flap
is calculated by solving the complete Euler equations, in the form of
integral laws of conservation,,, by the "finite volumes" method general-
ized as a. mobile Lattice. The method is conservative, in the sense

that in a numerical evaluation of mass or quantity of movement or of
energy in a field made up of cells, the contributions of the internal

flows intervening in the numerical diagram cancel each other out in

pairs. The condition of sideslipping 	 is imposed on the oscillating

flap in its exact position over time.

The main disadvantage of this ;ast method, which is of

6



the type which is explicit in its present form, is the length of time
required for computation.

This method was tested and perfected by a NACA 0012
airfoil with oscillating flap (9), but it was only possible to carry
out two steady flow calculations with the RA 16 SCI airfol.1 in time to

include them in this article, Unsteady flow calculations are in progress,

c) TakinginLo Account Unsteady Viscous Effects

In order to take into account unsteady viscous effects,
we carried out a pairing of a method of computation for inviscid fluids
with a program for computation of unsteady ^:urbulent boundary layer,
simultaneously with incompressible flow, using the BERTIN program,
and transonic flow, with the C,, .ADONNA program.

All the results presented in this report were obtained4M

with an integral method for calculating the turbulent: boundary layer
in unsteady compressible flow, developed at CERT (10). This method
uses the Karman equation (conservation of quantities of motion) and

the equation' of entrainment established for unsteady flow, the added
relationships required to solve the system of equations being the same
as those used for steady flow,

Whether for incompressible or transonic flow, the method
of pairing consists of making the inviscid fluid calculation with a
modification of the limiting conditions on the airfoil to take into
account the development of the boundary layer. In concrete terms, this
means a flow of fluid across the wall 	 characterized by normal
speed vt in the BERTIN program, and by a modification of the local
slopes of the airfoil of quantity 	 the CARADONNA program, ve

and V^,), are given by the relationship:

'Lre	 (V ) 
p - 

I	 L (^,: tiAitlt
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wherebi is the thiekness of displacement, t4 v the tangentlal speed	 /19-6

of inviscid flow and t. the volum'Anal mass.

This relationship is dentiCal to that given by J,C,

LEBALLEUR for steady flows (11); in fact, the pairing relationship

at the	 wall causes

4

to appear as the single unsteady term which has been ignored even in
compressible flow.

For eacii time interval, two or Lhrec iterations for

inviscid fluid-boitndary layer are carried out:, with, if necessary, the

use of a relaxation method,

The main problems encountered 
in 

pairing are essentially

linked to the appearance of breakaway at the trailing edge, at the

hinge and in the presence of shocks of significant intensity. The

shock wave-boundary layer interactions and breakaway are treated in a

simplified manner, and it is obvious that the pairing technique is only

usable in the case of weak shock wave-boundary layer interaction and

small breakaway zones.

3.2 Comparisons 
in 

Steady Flow

Figures 10 and 11 correspond to two control surface angles,

For each angle, steady pressures measured with a guided jet were brought

to X o,* = 7,3 and calculations carried out for inviscid fluids with

the potential method and with the Euler equations. These computations

were carried out with the Mach number and incidence corrected for wall

Anterferenoe	 these correctionsbeing quite well known for guided
juts. The two methods of calculation give fairly similar results, with

a shock much farther downstream than in the experimental results, for

the extrados. The shock calculated using the Euler equations is always

8



a little farther downstream than that computed using the potential

method.

From, the results presented 1A Figures 10 a,id 11, we drew

experimental and theoretical quasi-steady values for the unsteady

pressure coeEficients; these values correspond to oscillation of the

control surface at zero frequency with an amplitude of + 0,590 around
the average angle bm -1. 07 0 (Figure 12)	 They are obtained as

follows#

CPQS

The peak due to the rtiqplaoement of the shock is still much farther

downstream in invis -d fluid theories rt"han 
in the experiment, the one

given by the Euler equations being slightly farther downstream than.

that given by the potantial theory. The two theories given very similar

re-,ults upstream 
from the shock ) but on the other hand, they differ

sharply downstream from the shock and on the flap.

In figures 13 to 15, which correspond to three control sur-
face angles, the experimental steady pressures are presented along with
those calculated using the potential theory with and without boundar-,

layer (2 3)

The agreement between the experiment and the theory with	 /19-8

boundary layer is relatively good, except, perhaps, immediately down-
stream from the shock, where the theory often indicates a reac-celera-

tion which is not found experimentally, and on the extrados of the
flap, where computations diverge notably from the experimental results.

To explain these discrepancies, it must be noted that the

shock wave boundary layer interaction is treated in a simplified manner

9



in the computation, and that there may exist a draft effect through
the slit between the wing and the control surface which cannot be
taken into a-,.,count in computation. In addition, in the three selected
configurations, computations did not always converge very successfully
and almost always indicated breakaway on the control surface, which
limits the val.idity of the results,

We also compared the experimental quasi-steady values with
the values given by the potential flow theory, with and without boundary
layer (Figure 16) in the same situation as in Figure 12,

We noted a certain dispersal of experimental quasi-stationary
values for the in ,-.rados, as they are obtained by differences in Kp
which have very similar values,

Figure 16 shows the advantage of the computation with. bound-
ary layer, in particular in order to position. the shock displacement
puak, correctly, But the part downstream from the extrados shock,
espeieally on the flap, is still rather poorly predicted by the theory
using the boundary layer, It is therefore most important to improve
the treatment of the shcoir. wave - boundary layer interaction, and of
breakaway,

3.3 Com2arisons in Unsteady Flow

3.3.1 Subaritical Zone

At low Mach numbers, the linearization theory predicts
the development of unsteady pressures along the chord with fair suc-
cess (figure 17), but it does not differentiate between the extrados
and the intrados because it does not take into account the effects of
the average flow on the unsteady flow, so that its use is limited to
lightly loaded configurations, In this case, it benefits from a fortun-
ate compensation between the effects of thickness and curvature on one
hand and viscosity on the other, effects which are already acting in

i
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T

the opposite direction in quasi-steady mode (12). 	 /19-9

It will be noticed that this linear theory gives
infinite unsteady pressures at the leading edge and at the hinge,

In Figure 18, one of the experimental cases presented
with the linear theory in Figure 17 is compared with the results of
the Bertin company's program for invisaid flow computation with and
without pairing with a computation for unsteady turbulent boundary
layer. The inviscid flow computation program gives stronger moduli of
unsteady pressure than does the linear theory, (see Figure 17), but it
differentiates well between the intrados and the extrados and gives a
better qualitative representation of the unsteady phenomenon, especial-
ly 

In 
the vicinity of the leading edge and of the hinge. The gain

obtained by pairing it with the boundary layer computation is appre-

ciable: the discrepancy in the unsteady pressure moduli between the

inviscid flow computations and the experimental results is reduced by
more than 50%.

The phases are almost unchanged by this pairing, except
in the vicinity of the trailing edge.

The advantage of pairing appears even more strongly in
Figure 19 which represents a case of strong viscous interaction, with

an average flap angle of 5 0 : when the flap is angled 5 0 in steady
flow, a breakaway occurs at the extrados trailing edge, in the neigh-
borhood of x1c	 0.95. Calculations for unsteady inviscid flow pro-

vide very different results from those obtained experimentally. Pair-

ing with boundary layer computations reduces, by nearly 70*/g,, the dis-

crepancy between the unsteady pressure moduli and causes the phases to
evolve in a forward direction. The paired computation fairly well
represents the evolution of unsteady pressures along the chord up to
about %/c 0.9 ,, on the extrados a very pronounced phase advance behind
the hinge, and an increase in the moduli of unsteady pressures towards
the trailing edge, can be observed. However, the last ten per cent of

s.



the chord is unrealistic because of the simplified treatment of the

breakaway zone. This results in a lack of exactitude in the quanti-
tative values of the moduli and phases of unsteady pressures on the

airfoil as a whole. The paired program is thus functioning here at
the limit of its potential.

If we consider the intensity of the unsteady pressures

between the leading edge and the hinge, for example, (Figures 17 and

18), non- linear computation paired with the boundary layer may appear /19-10
disappointing in comparison to the linearized theory which gives a

roughly equivalent result, since it benefits from an error, compensation

between the effects of thickness and curve on one hand, and viscous

effects on the other.

However, by suppressing the infinite values:of the

leading edge and the hinge, by giving much better results than those

of the linearized theory for the flap, and by being very sensitive to
the average flow parameters, paired non linear computations give

results which are much more satisfactory from the point of view of
overall coefficients. This is shown in Figures 20 to 22:

- Figure 20 first shows the evolution of the three

unsteady coefficients (lift, moment of pitch at 25% and moment of

hinge) as a function of the reduced; frequency at N oo = 0.3 in config-

urations in which the average angle of the control surface is nil.

The experimental results a : e presented with those of the linear theory

and of the BERTIN program with and without boundary layer. The paired

program gives better results than the linear theory, but it does not

give satisfactory results for the phase of the moment of hinge. It

should however be noted that the experimental determination of the

unsteady moment of hinge lacks precision as a result of the limited

number of pressure gauges on the flap (10 in all) , the one farthest

downstream being located only at x/c= 0.95. In addition, there may be

a draft between the wing and the control surface which the theory does

not take into consideration.

12



- the advantage of using the paired,program is still

more apparent in Figure 21, which shows the evolution of the same three

overall unsteady coefficients as a function of the average angle of

the control surface for a given reduced frequency at M oa = 0.3. The

coefficients given by the linear theory are constant, since according

to the hypothesis the unsteady flow does not depend on l the average

flow. The coefficients given by the BERTIN program for inviscid fluids

vary very slightly when the average angle of the contxol^surface varies

between - 100 and + 100 . On the other hand the unsteady coefficients

of lift and moment of pitch given by the paired program are quite

close to the experimental coefficients and evolve in the same way with

the average angle; the modulus decreases more and more quickly as the

average load on the wing increases and the phase evolves in a forward

direction as we approach configurations in which breakaway occurs. It

will be noted, moreover, that the paired computation does not give

phases which are different from those of the inviscid flow computations
except on approaching breakaway configurations, in the vicinity of s,„
5°. The paired computation was not pursued beyond 6m= 5'
 cause of

the large extent of the breakaway zones. We may therefore conclude

that the phenomenon of dependericy on the average angle which affects

the unsteady performance of the control surfaces is essentially of

viscous origin.

As far as the moment of hinge is concerned, the paired

computation show's evolution as a function of the average angle to be

more significant than does the inviscid flow computation, but the

theoretical values differ increasingly from the experimental values

for large angles, which can be explained by the reasons already given.

Apart from this lack of precision on the moment of

hinge, the par ied program thus offers a number of ad.vantaes, from the

point of view both of predicting unsteady coefficients, and of pre -
dicting average values, as shown in Figure 22 where the average values

of the lift coefficient as a function of the average angle of the
control surface are shown.
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In order to attempt an oXplanaLion of the discrepancies
noted between the eXperiMeatal results and those of the paired program,
A should be remembered that the boundary layer was presumed to be
entirely turbulent from a point arbitrarily located about; 	 from the

leading edge. In addition, the test results have not been corrected

for the wall Int-e-i-rovence.

3.3.2 High Subsonic and SUPorefiLiCal Zone

The linear theory being incapable of anticipating the
existence of shocks, only comparisons with the CARADONNA program for
Small transonic diKurbaacos will be considered.

Im suporcri t teal rogbuo, the position of Cho shocks

is a crucial point, and is strongly influenced by the Wall

This is why the computations woro enrriod out 
at 

an 00"o1; co nad WWI
nj^.mbon: corrected for 

the 
steady * wall effect, the only one which call

presently be estimated With Validity, III guided jet,, this	 Wall
effect can be assimilated with a Mach number Correction and eou Id be
estimmod correctly as can be scow in the steady computations (Figures
13 to 16). In permeable jet, the	 Wall ^ offeeL Was 0SWated empir-
ically and assimilated with a correction of incidoace proportional to
the average lift coefficient for a given Mach IIumbor.

In any case the variations in lift due to small movements
Of the control surface (1 0 of amplitude) being relatively small, we
suppose, a priori, that the purely unsteady -wall	 effects have a
limited influence on the results, even for already significant reduced
frequencies of the order of 0.165 or 0.235,

Figure 23 shows the distribut ion. of local unsteady lift,
Ace CP	 Ce 6 xrj%' if
	

, along the chord, in modulus and phase, in
permeable jot at M, a,,- 	 a Mach number above which the first sonic

points begin to appear on the extrados leading edge in steady flow.	 /19-12
In this case, the small transonic disturbances method, paired with



computation of the boundary layer, gave very good results, the effect

of the pairing being to diminish the moduli. (as in low subsonic) but
to accentuate the phase delay, for a moderately loaded configuration
(Cz average - 0.3) .

Figures 24

chord of the extrados uns
which a shock is observed

same jet configuration as

in guided jet.

and ?5 present

tcady vrossures

at , r ,.e,_same re,

at Ti Co	 0.6.

the evolutions along the
at two other Mach numbers for

3uced frequency and in the
Figure 26 shows an example

(hrer.all, inviscid flow calculations by the method of

small transonic disturbances predict fairly well the appearance of

experimental phenomena with peaks on the curve of the moduli and more

or less accentuated prase leaps linked to the displacement of the

shock. These singularities are located farther downstream than in

the experiments, but they are much better placed and the order of

size of the unsteady pressure moduli is more correct when the boundary
layer is taken into account.

However, when the shock occurs at less than 30% from

the leading edge, either by inviscid flow computations (Figure 24) or

because of the boundary layer (Figures 24 and 25) it Loses its charac-

ter of singularity and gives rise to an insignificant maximum on the

moduli. This is perhaps attributable to the fact that the method of

small disturbances lacks precision at the leading edge, especially

for a 16% airfoil.

For the guided jet example (Figure 26) at an already	 /19-13
large Mach number and reduced frequency, even though the Mach number

correction was satisfactorily estimated according to calculations

carried out for steady flow (Figures 13 to 16), the present paired

computations bring the shock forward a little too much, while the
order of size of the unsteady pressures remains correct. Where the

phase is concerned, as the inviscid flow, in this case, already gives

15



insufficient delay at the leading edge, the boundary layer accentuates

this descrepancy by reducing the size of the supersonic zone, the

source of the delay. Upstream from the shock, the boundary layer

acts as it doev, at Moo * 0.6, bringing about a fairly significant

phase delay.

Figure 27 summarizes, for several examples, the averiage

value, Lhe amplitude 
of 

variation and the phase of lift, both experi-

mental kind theoretical, with and without: boundary layer.

4. Conclusion

This study shows 
that 

in many cases, the unsteady aerodynamic

response due to a movement of Lhe control surface depends to a large,

degree on 
the 

conditions of the average flow over the airfoil and

control surface as a unit. It seems that this phenomenon is clue

largely to viscosity. The use of linear theories to preduct unsteady

aerodynamic responses is therefore 
in 

fact very limited, and it: is

necessary to have recourse to non-linear inviscid flow methods which
should be paired with a boundary layer calculation.

In this respect the results of the first attempts at pairing are
encouraging. However, it is necessary to have the inviscid flow
method which is as exact as Possible, ;Nl ithout forgetting the com-
promise between the desired precision and speed of calculation. In

addition progress remains to be made in pairing techniques, espeically

where the treatment of breakaway zones and shock wave-boundary layer
interactions are concerned. Finally, an effort should be made to
Lake into account, either experimentally or by calculation, the un-A
steady boundary effects.
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