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Using a recent idea of J. Massey, we show that interleaved binary block codes com
bined with pulse position modulation give the best practical coded systems yet devised 
for optical communication with photon detection. 

I. Introduction 

In Ref. 1, the use of Reed-Solomon (RS) codes with pulse
position modulation (PPM) was suggested for optical commun
ication using direct, photon detection. In Ref. 2, it was shown 
that PPM is optimal or nearly so in this application, but with 
no guarantee that RS coding cannot be improved upon. Indeed, 
in a recent article Massey (Ref. 3) has suggested the use of 
interleaved binary convolutional codes for this application, 
and these codes perform almost as well as RS codes. In this 
article we shall expand on Massey's suggestion and show that 
interleaved binary block codes can, for a given decoder com
plexity, perform even better than RS codes. In Fig. 1 we will 
present performance curves for an explicit code with a bit 
error probability less than 10-6 at a code efficiency of 2.8 nats 
per photon, using 256-ary PPM. Since channel capacity with 
this level of PPM is only 5.6 nats per photon, this performance 
is about as good as could be hoped for with any reasonable 
decoder complexity. 

II. Massey's Equivalence 

When M-ary PPM is used, the photon channel becomes, as 
explained in Ref. 1, an M-ary erasure channel with erasure 
probability € = e-r., where A. is the expected number of pho
tons received during a time slot when the transmitter is pulsed. 
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How should we code for this channel? In Ref. 1 it was shown 
that if M = 2L, Reed-Solomon codes over GF(2L) give good 
results. More recently Massey (Ref. 3) has suggested that when 
M = 2L, it might be wise to view the M-ary erasure channel as 
an array of L parallel, completely correlated, binary erasure 
channels. It is this latter possibility that we wish to explore 
here. 

Massey's idea is simply that when M = 2L, each input letter 
to the M-ary erasure channel can be represented by L bits. 
When this input letter is received correctly, all L bits are re
ceived correctly. However, if this input letter is erased all L 
bits are erased. For example if L = 3, and if {0,1,2,3,4,5,6,7} is 
the transmission alphabet, the sequence 314152653 might be 
received as 314 ?5?65?, where "?" denotes a channel erasure. 
Using the standard octal code 0 = 000, ... , 7 = 111, this 
sequence could be viewed as three parallel binary sequences, 
as follows: 

8-ary stream 

3 parallel 
binary 
streams 

314152653 ~ 314?5?65? 

{
OO 1 0 1 0 1 1 O} {OO 1 ? 1 ? II?} 
100001101 ~ 100?0?10? 
110110011 110?1?01? 

transmitted received 
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Notice that the erasures occuring in the L parallel binary 
channels occur in exactly the same locations, Le., if the k-th 
transmitted bit is erased in anyone of the channels, it will be 
erased in all of them. Thus the 2L -ary erasure channel is 
equivalent to L parallel, completely correlated, binary erasure 
channels as Massey observed. In Ref. 3, Massey suggests that, 
in view of this equivalence, it might be worthwhile to code 
for this channel by using an L-fold interleaving of a good code 
for a single binary erasure channel (BEC). The codes he sug
gests for this use are in fact short constraint-length convolu
tional codes with Viterbi decoders. In this paper we will also 
investigate this interleaving idea, but will consider linear block 
codes rather than convolutional codes. 

III. Linear Block Codes for the BEC 

It has been known since the mid-1950's (Ref. 4) that linear 
block codes are especially well-suited for combatting erasures. 
Rather than give an abstract explanation of this fact, we will 
illustrate it by example. We will also consider the implementa
tion of interleaved linear codes on the parallel erasure channels 
discussed in the last section. 

Consider the (8,4) d = 4 extended Hamming code with 
parity-check matrix 

o 2 3 4 5 6 7 column indices 

Suppose we receive the word [1 ?O???O 1]. How should we 
decode it? The idea is to try to express the erased coordinates 
in terms of the unerased coordinates. In the present case, 
coordinates 1,3,4,5 have been erased, and to decode we 
reorder the columns of H so that the columns corresponding 
to erased coordinates all appear on the left: 

3 4 5 0 2 6 7 

[~ 
0 1 0 1 1 0 

~] H= 
1 0 1 1 0 0 

0 0 1 1 1 
0 0 0 0 

Next, using elementary row operations, we put H into row-
reduced echelon form H'. Omitting details, we obtain the 
result 

H'" [~ 
3 4 5 0 2 5 7 

000 
100 
010 
o 0 

This matrix expresses the erased coordinates as linear combina
tions of the unerased coo~dinates, as desired. This is because 
the definition of a codeword X is the equation H)(T = 0, 'which 
is equivalent to H' XT = 0, which in our example is equivalent 
to the four equations: 

Xl = X +X +X 
067 

X3 = X +X +X 
026 

X4 
= X +X +X 

267 

Xs = X +X +X 
027 

Hence the word [1?0???01] with Xo = 1, X 2 = 0, X6 = 0, 
X 7 = 1, must be a garbled version of the codeword [10011001] , 
and the decoding is complete. 

Now this particular code is not capable of correcting all 
patterns of four erasures; e.g., if we had received [I ?O??O? 1] , 
we would compute 

H= 

13460257 

[

10101100J 
1 I 00 1 0 1 0 H' = 
01011100 ' 
11000101 

13460257 

[

100101 10J 
01011100 
00111010 
00001111 

In this case H' tells us that the erased coordinates Xi' X 3' X4 
can be expressed in terms of the unerased coordinates X 0' X 2' 

X s' X 7 plus the erased positionX6 : 

Xl = X +X +X 625 

X = X +X +X 
4 6 0 5 
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Since we do not know the value of X 6' there are in this case 
two possibilities for the transmitted codeword: 

X = 0: [10011001] 
6 

X 6 = 1: [11000011 ] 

These are both bona fide codewords, and both agree with the 
received word on all four unerased positions. In this case our 
decoder fails, but in any case detects its own failure. 

The general situation is this. H will be an r X n binary 
matrix, where r = n - k is the code's redundancy. If e positions 
are erased by the channel, after reordering, the columns H 
will have the form 

e -41+--n-e 

H = L R 

After row-reduction, H' will look like this: 

H' I 
e 

I r- e 

I e-e 

I E 

(ZEROES) 

where e' ..;; e, and I is an e' X e' identity matrix. The given 
erasure pattern will be correctable if and only if e I = e, in 
which case the top e rows of H' will express the e erased coor
dinates in terms of t~e n - e unerased coordinates. (The lower 
right-hand matrix R l' expresses. parity-checks that must be 
satisfied by the unerased positions. In the present application 
this is not useful, but if bit errors as weII as erasures are pres
ent, R~ can be used to help locate the errors.) The amount of 
computation required to row-reduce H is at most r2 row 
operations, or r 2n bit operations. Once H' is known, it requires 
at most r further row operations, or m bit operations, to 
recover the erased coordinates. Since each codeword carries 
k = n - r information bits, the total computational effort is at 
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most A (r + 1) row operations, or A (rn + n) bit operations per 
decoded bit, where A = (1 - R)/R and R = kin is the code's 
rate. 

If we want to use L interleaved copies of this code on the 
L parallel, completely correlated BECs described in the last 
section, the decoding effort per bit is considerably reduced. 
This is because all L garbled codewords will have the same 
erased positions, and so the reduction from H to H' need only 
be done once. Thus decoding L codewords requires at most 
r2 + Lr row operations or at most AIL r + A row operations, 
or AIL m + An bit operations, per decoded bit. For most 
choices for the parameters, this is very nearly a savings of a . 
factor of L. 

In the next section we wiII show how these results can be 
used to design good coding systems for the photon channel. 

IV. Performance of Interleaved Block 
Codes on the Photon Channel 

In the last section we discussed the decoding of linear 
block codes on a BEC, but did not discuss the performance of 
these codes. For a given choice of nand r, it is in general not 
easy to find the r X n parity check matrix H that describes 
the best possible erasure-correcting linear block code. However, 
we can give conservative estimates of the performance of linear 
codes by using the "Ro-coding theorem" (Refs. 4 and 5) 
which says in this case that for a given choice of rand n, a ran
domly chosen r X n parity check matm H yields a code with 
probability of decoding error bounded by 

(1 + et p ..;; --'---'-
E 

(1) 

where e is the channel's erasure probability. If a code with 
these parameters is used on the L paraIIel erasure channels 
corresponding to the photon channel with 2L -ary PPM, the 
erasure probability e is given by Ref. 1 as 

e (2) 

where R = (n - r )/n is the code's rate, and p is the code's 
efficiency measured in nats per photon. Combining Eqs. (1) 
and (2) we have plotted in Fig. 1 (conservative estimates of) 
the bit error probability of randomly selected (100,50), 
(200,100), and (300,100) linear codes interleaved to depths 
L = 5 and L = 8. Presumably, carefuIIy selected codes with 



these parameters would perform somewhat better. The compu
tational effort per decoded bit is, from the remark in the last 
section, seen to be: 

121 row operations (300,100) L = 5 

76 row operations (300,100) L = 8 . 

21 row operations (100,50) L = 5 

14 row operations (100,50) L = 8 

41 row operations (200,100) L = 5 

26 row operations (200,100) L = 8 

We note from Fig. 1 that the (300,100) L = 8 linear code 
slightly outperforms the RS code suggested in Ref. 1, and a 
vector-oriented special purpose decoder for this code would 
be a considerably simpler device than the corresponding RS 
decoder. 
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Fig. 1. Code performance curves 
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