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SECTION I

INTRODUCTION

Holography has found wide application in a variety of fields, yet

perhaps the most remarkable application of optical holography is the

interferometeic comparison of diffuse wavefronts. Classical interfero-

metric techniques, such as the Michelson interferometers are restricted

to the comparison of wavefronts of simple geometric form, usually plane

or spherical from polished surfaces using high quality optics. Holographic

interferometry, however, can be used to measure the vector displacement

of points on diffuse opaque surfaces or through diffuse transparent

mediums of complicated shape. This is a consequence of the hi gh informa-

tion content of holograms, which makes possible the faithful recording and

reconstruction of the optical wavefront scattered from such objects.

The subject of holography per se can be found in many good texts e.g.

"Optical Holography" by Collier, Burkhardt and Lin-Academic Press and

therefore, will not be discussed here. A knowledge of holography is

assumed for this report.

In this report we primarily consider an application of holographic

interferometry for which the object is a transparent medium with non-

homogeneous refractive index. This constitutes the foundation of

measurement techniques used in fluid flow visualization, aerodynamics,,

heat transfer, plasma diagnostics and stress analysis of transparent

models. The technique is based on the analysis of the optical path

length change of the object wave as it propagates through a transparent

medium. Phase shifts due to variations of the speed of light within

the medium give rise to an interference pattern. The resulting inter-

ferogram can be analyzed to determine physical properties of the medium
k
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or transparent objects. Such properties include; mass density of fluids,

electron densities of plasmas, temperature of fluids, chemical species

concentration of fluids, and state of stress in solids. Each of these

properties can be related to refractive index, which is measured by

interferometry.

The optical wave used to probe transparent objects or mediums can be

a simple plane or spherical wave, or it may be a complicated spatial wave

scattered by a diffusing screen. When a plane object wave is used, the

holographic interferograms are quite similar to those produced by classi-

cal instruments such as Michelson or Mach-Zehnder interferometers. There

are differences, however, which are of considerable practical importance.

When a diffuse object wave is used, holographic methods are unique and

provide multidirectional interferometric data. Diffuse light holographic

interferometry of phase objects gives rise to fringe localization effects

similar to that found with diffuse opaque objects. In this report we

discuss methods of recording holographic interferograms of transparent

objects and of analyzing the formation and localization of interferometric

fringes.

Information about the structure of the refractive index distribution

is displayed in two ways or techniques in a holographic interferogram;

1) fringe number, position and spacing,

2) fringe localization/parallax.

Holographic interferometry can be, and is frequently used, to

measure vector displacements of points on diffusely reflecting opaque

objects. This theory of fringe analysis is reasonably well developed

E
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and localization/parallax plays an important role, While there is an

analogy between the fringe localization th oNory of opaque bodies and that

for transparent (phase) objects, the analysis of holographic interfero-

grams of transparent media, on the other hand, has thus far virtually

been based exclusively on fringe number, position and spacing. The role

of localization has been largely ignored.

Fringe analysis in the case of transparent mediums are quite complicated

because fringe shifts are associated by path integrals through the object

rather than with a single phase shift due to reflections at a single object

Point. As a consequence of this, the determination or computational recon-

struction of a refractive index field based on fringe number, position and

spacing, requires thp . the object field be viewed from a large number of

viewing directions, Ideally over a 180 0 range of angles. This required

range can be reduced if the object field has known symmetries. It is

important, therefore, to develop a theory of fringe localization in dif-

fusely illuminated transparent media, to see if it augments conventional

fringe analysis in useful ways. At the very least, fringe localization

must provide information which is useful for approximate reconstruction

of refractive index fields when the range of viewing angles is restricted

to less than 180 0 (the usual case in practice). Ultimately, a new recon-

struction theory could result. Either result would be extremely useful.

The phenomenon of fringe localization is always useful in the sense

that it discloses symmetries of the field, assists the viewer in locating

the field in space, and helps one to form a qualitative impression of the

structure of the field.

3



A distinction should be drawn between two separate and related

localizatx^.r, problems.

1. The forward problem: Given a refractive index distribution,

determine the fringe localization surface for a specified viewing

direction.

2. The inverse problem: Using the »4asured fringe localization

surface for a specified viewing direction, determine the refractive index

distribution (or use the measurements to augment reconstruction based on

fringe number, position and spacing). Of course, the inverse problem is

the most formiauble. We treat both problems in this report.

Section II of this report discusses a review of the literature, and

Section III provides a determination of the feasibility and application

of localized fringes to the Holographic Optical Schlieren System (HOSS).

Section IV of this report provides the theoretical models for fringe

formation - both problems, while Section V treats the application and

implementation of localized fringe formation model to density/refractive

index changes in a transparent medium. Conclusions and recommended areas

for further study constitute Sections VI and VII respectively.

7
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SECTION II

REVIEW OF LITERATURE

Since its introduction in 1965 the field of holographic interfero-

metry has become somewhat confused by the very large number of papers

published on the problem of interpreting the fringe patterns observed.

Most of the papers have dealt with the fringe patterns created by dif-

fusely reflecting opaque bodies [1-111]. Only a relative few papers

have dealt directly with the recon;,truction of refractive index fields

from multi -directional interferometric data of diffusely illuminated

transparent media. Because of the similarity of the two problems, much

of the theoretical model development for holographic interferometry of

opaque bodies provides a good analogy for the theoretical model develop-

ment for refractive transparent media.

Contributions, of the Seventies

The past ten years have produced a steady stream of papers on holo-

graphic interferometry, many of them dealing with the problems of

interpretation. Emphasis has remained centered on the zero-order fringe

(ZF) technique [39] using a multiple-hologram approach. The three-

hologram technique was described in detail by Shibayama and Uchiyama [112],

Hecht et. al. [113], and Eweres et. al. [114]. A vector approach was

used by Mac:akova [115] to obtain the direction and magnitude of the dis-

placement from a single hologram. Bijl and Jones [116, 117] used a tensor

approach to obtain three-dimensional strains from three separate holograms.

The problem of establishing a common datum point between the separate

holograms in the multiple-hologram was overcome by Abramson [118], who

used a length of elastic rubber strip fixed at one end to the object

5



and at the other end to the (stationary) holographic bench. Using the

same technique, after measuring fringe positions to an accuracy of X/100,

the rubber strip idea was also used by Hung et.al . [120] who suggested

that an alternative to using three separate holograms was to use a

single hologram plate and to record three double-exposure holograms on

it using three different illumination directions. This technique avoids

the need for fringe projection inherent in the original three-hologram

method, since all the fringe patterns can be photographed from the same

viewing direction. The need for some simplification of the analysis if

holographic interferometry is to become a widely used engineering tool

was stressed by Hansche and Murphy [12,122], who showed that if the

geometry of the object and the expected direction of the displacement

are known a priori, then the analysis from first principles can be very

straightforward. Specific applications of the ZF technique have been

described by several authors [123-126]. Comparisons of the ZF technique

with the fringe counting (FC) and fringe localization (FL) techniques

were made in papers by Sollid [127] and Hansche and Murphy [121]. The

combination of the ZF technique (to measure line-of-sight displacements)

with speckle interferometry (to measure in-plane displacements) has been

suggested by Velzel [128] and by Adamas and Maddux [129].

The fringe counting (FC) technique, introduced originally by

Aleksandrov and Bonch-Bruevich [29], has also been developed in recent

years . Kohler [130] proposed the use of cut-out masks in the hologram

plane to dictate the way in which the viewing direction is changed.

6



Landry and Wise [131] proposed a semi-automatic method of data analysis

for the FC technique, and a similar scanning method, but using the real

image from the hologram, was suggested by Bellani and Sona [132]. A paper

by King [133] combined the advantages of the multiple-hologram methods

(the accurate measurement of all the components of motion) with the sim-

plicity of the FC technique. He used two holograms mounted perpendicularly

to each other. The FC technique has been compared with the ZF (zero-order

fringe) and FL (fringe localization) techniques by several authors,

including Sollid [1271 and Hansche and Murphy [1211.

The fringe localization (FL) techni q ue, pioneered by Haines and

I

Hildebrand [10], has also had

used the criterion of maximum

localization of the fringes.

[135], and was discussed in ti

and Murphy [121] compared the

method.

its adherents. Dubas and Schumann [134]

fringe visibility to define the plane of

The FL method was also used by Ashton et.al .

vo papers by Stetson [136, 137]. Hai,sche

technique with the fringe counting (FC)

The Haidinge r fringe/holoqram fringe (HF) technique, first proposed

by Tsujiuchi et.al . [71, 99] and Gates [74, 98], has been taken up and

developed by other workers, notably by Boone and DeBacker [138, 139].

The problem of fringe localization has continued to attract atten-

tion, with contributions from several authors [134, 136, 137, 140-143].

The application of moire techniques to holographic interferometry has

generated some considerable interest. Twin apertures in the hologram

p lane were used by Velzel F128] to produce moire fringes which are contours

of equal in-plane displacement, while Der et. al. [144] used a four-exposure

technique to obtain moire frinqes which gives the difference between two

7
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displacements of the object. Moir6 fringes were also used by Hariharan

and Hegedus [145] in a method designed to eliminate the effects of spurious

movements of the object and to record only symmetrical deflections. Moir6

fringe theory has also been used to explain and interpret holographic in-

terferograms - the images can be regarded as moir6 fringes between the two

complex gratings making up tie two holograms. This line of approach has

been developed by such authors as Abramson [146-148] and Gori and Mallamace

[19].

Abramson has developed his holo-diagram technique in a series of

papers [118,148,149] and has also introduced an 'analogue computer' based

on the holo-diagram and stretched strings to facilitate the interpre-

tation of holographic interferograms [118,148]. The use of the holo-

diagram has been extended to time-averaged holography and the study of

vibrations by Bjelkhagen [150]. An interesting set of photographs of

holographic interferograms was also published by this team [151]..

A detailed account of vibration analysis by time-averaged holography

is outside the scope of this paper, but it should perhaps be recorded

that a considerable amount of work has been put into this branch of

holography. The reader is referred to the literature for further details

of this topic and particularly to the contributions of Wilson [152-154] on

vibration mode patterns. Stetson [155-158] on non-sinusoidal vibrations and

higher-order fringes, Bielkhagen [150] on the use of Abramson's holo-

diagram, and Vikram on vibrating objects undergoing constant acceleration

[159] and on a technique for extending the range of time-averaged holography

[160] .

8
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Several techniques using two or more separate holograms, instead of

either one double-exposure hologram or a single-exposure hologram and the

original ob,iect, have been proposed. Havener and Radley [18] called their

method, which was used with phase objects, 'dual-holo gram interferometry'.

A similar approach. also using phase objects, was described by Gori and

Mallamace [19]. A multiplex ".ec`;tique, in which several images of the

object in different states are recorded either on separate hologram

plates or on different parts of the same plate, was described in a paper

by Hariharan and Hegedus [20]. Finally, a novel approach by Abramson

[21, 161] uses two holographic plates sandwiched together; the holograms

can be mani p ulated either separately, or together as a single 'sandwich

hologram' as an aid to fringe interpretation.

Other contributions to the field of holographic interferometry during

the past few years have included the further development by Stetson [136,

162, 163] of his generalized mathematical theory of fringe formation, the

use of projected fringes to reduce the sensitivity of holographic inter-

ferometry [164], the use of temporally modulated illumination 0165], the

use of a double pulsed laser for work with impact-loaded objects [166],

considerations of errors and accuracy attainable in holographic inter-

ferometry [119. 167],the use of a small frequency shift to achieve

fringe interpretation down to better than ^/100 [168], a Fourier trans-

form method of analysis [169], and the application of holographic inter-

ferometry to a wide variety of problems. such as the stretching of rubber

[135], stresses in rigid pavements subjected to simulated traffic loads,

9
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k: :
the monitoring of plant growth and other a pp lications F172-176].

In general, the many techniques proposed for the interpretation of

holographic interferograms can be classified according to four main groups

of techniques as defined by Briers. These are:

1) The fringe localization techniques (FL)

Historically this technique was the first reported technique for

interpreting holographic interferograms. The technique utilizes the

fact that for certain types of motion or optical pathlength change, the

fringes are localized at some distance from the image. In calculations

this distance is used as a parameter. The method is powerful in deter-

mining the in-plane component of motion or optical pathlength change (the

component in the plane perpendicular to the line of sight). The other

components of displacements can be found, in principle, by repetitive

measurements of fringe spacing and localization from different obser-

vation directions. Nevertheless, the effectiveness of the procedure is

limited by the normally small size of typical interferograms. Usually for

asymmetric conditions the range of angles to be covered by the hologram

recordings are +90°. So the components of motion, with the exception of the

in-plane one, are very difficult to measure with some accuracy. Another

disadvantage of the FL technique is the difficulty to locate the plane of

fringes to some accuracy.

This method is one of the primary subjects of this report and will be

treated in detail below.

2) The fringe counting technique FC

This technique, [29,74] also makes use of the fact that the fringes

10



are, in general, located at some distance from the surface of the recon-

structed image. The optical system used for viewing the fringes is focused

on the image and is stopped down until the fringes are clearly visible.

The surface point under consideration is viewed continuously from different

directions and then the displacement component is determined by counting

the number of fringes passing across the image point. The method gives

the component of translation of the point in a direction perpendicular to

the bisector of the two extreme lines of sight and in the plane containing

these lines of sight. Other components of motion can be measured to a

limited accuracy as in the case of the FL method. In spite of its rather

convenient application in determining a complex object motion, the FC

method does not suit measurement of the three-dimensional motion to the

accuracy required by the industry. Due to its relative simplicity the

FC technique remains a very useful holographic method even in its original

form and the more so with improvements and developments especially for the

rapid, semi-quantitive interpretation of interferograms.

This technique is also known as the parallax method and is a function

of the size and geometry of the viewing aperture used.

3) The hologram or Haidinger fringe technique (HF)

The FL and FC techniques both use the fact that the fringes are

localized in a plane remote from the image to measure the ire-plane com-

ponents of translation of the object. They interpret any fringes local-

ized at a distance from the image as being due to a displacement with an

in-plane component. However, it has been reported by several authors that

11
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pure line-of-sight translation (i.e., displacement along the z-axis) also

gives rise to fringe patterns with similar localization properties. Gates

[74] described such fringes as 'curved bands', while other authors were

more specific and reported them as concentric circles centered on the line

of sight [62,64,71]. These fringes can be used to measure the line of sight

translation that produced them.

The explanation of these fringes is that they are Haidinger fringes

(fringes of equal inclination) and are due entirely to the variation in

path difference across the object caused by the change in angle of view.

They are identical to the fringes seen in the Michelson interferometer in

diverging light. Although their origin is easy to explain, and they can

be used to measure rigid-body translations along the line of sight, one

might think that they would be a possible source of error when using the

FL or FC techniques L o measure in-plane displacements. However, this is

unlikely to be the case since the holographic system is much less sensitive

to rigid-body translations along the line of sight than it is to in-plane

displacements. (This becomes less valid at large angles of view, but for

an angle of view as large as 45 0 there is still an order of magnitude

difference in sensitivity.) Secondly, the curvature of the fringes will

indicatE that some line-of-sight displacement has occurred. If the fringes

are concentric circles centered on the line of sight, the displacement is

entirely along the line of sight. If the center of the fringe system is

off-axis (possible out of the field of view), the displacement has com-

ponents both along and perpendicular to the line of sight. For the present,

12



however, we would point out that if the curvature of the fringes is not

too great, the FL or FC techniques will still give the in-plane component

of the displacement.

4) The zero-order fringe (ZF)technique

The zero-order fringe method was first described by Ennos [393, although

it is really the direct application of classical interferometry techniques

to holographic interferometry. It is based on the first-principles argument

that the change in optical path from the source to the observer (the

fringe order, m, can only be determined absolutely 'if a known zero-order

fringe is in the field of view. In many cases it will be known that a

particular point on the object has remained stationary between the two

holographic exposures, and the fringe order can be determined by counting

fringes from such a point. A technique which has been used by several

authors [118-120,126] consists of fixing one end of a strip of rubber to

a point on the object, and fixing the other end firmly to the holographic

bench; fringe counting can then be commenced from the latter point, which

is known to have undergone zero displacement. Ennos [39] and Sollid [72]

suggested that a zero-order fringe could be identified from the fact that

there would be no parallax between it and the image; this approach must be

adopted with caution. However, we have already seen that rotations about

an axis in the plane of the object produce a system of parallel fringes,

all of which display no parallax with the image.

Once the fringe order at all points on the image is known, the prob-

lem then becomes one of pure geometry - relating the change in optical

path for each point to the actual displacement of that point. There are

two schools of thought regarding this problem. One approach is to consider

13
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the general case of arbitrary illumination and viewing conditions and to

derive a set of equations from which the three components of the displace-

ment can be calculated. Other authors have taken the view that the result-

ing expressions are so complex for the general case that it is better to

treat each case on its own merit and to devise an experimental arrangement

which will simplify the calculation of the displacement from first principles.

Considering the generalized approach first, it should be pointed out

that, in general, three separate holograms will be required if all three

components of the displacement are to be measured. Each hologram gives

the component of the diplacement parallel to the bisector of the illumina-

tion and viewing directions [39]. Most authors have used vector analysis

methods to derive equations connecting the displacement components of each

point on the object with the path differences calculated from the three

holograms. In his original paper on the technique, Ennos [39] predicted

that this would be a 'formidable task' in the general case, and this has

certainly proved to be so. The problem has been attacked by several

authors, among whom we might mention Sollid [72], Stetson [60], Shibayama
N

and Uchiyama [112], Hecht et.al . [113] and Bijl and Jones [116,117] but

the resulting equations are usually very complex, and either difficult or

tedious to apply in practice. 	 The equations become more manageable, at

the expense of some loss of generality, if the viewing directions, (i.e.

the positions of the three holograms) are specified in certain ways. For

example, Sampson [76], in a paper which perhaps deserves to be more

widely known than it is, described a technique in which the object under

14



test is rotated about specific axes for the second and third holograms,

the illumination and viewing conditions remaining fixed.

Relation Between Localization of Interference Fringes in Classical and

Holographic Interferometry [177,178]

W. H. Steel [177]provides a descriptive account of both classical and

hologram interferometry which shows many common features. In each, the

position of fringe localization is found by a similar ray construction and

the fringe visibility is derived from the amplitude distribution in a

diffraction pattern near focus. Steel maintains that the van Cittert-

Zernike theorem leads to the useful result that the theory of fringe

visibility in an interferometer with an extended source is the same as

the theory of diffraction of coherent radiation. Since the technique of

hologram interferometry is an example of the diffraction and interference

of coherent waves, it might be expected to have a theory equivalent to

that of classical interferometry. The descriptive treatment given by Steel

points out an equivalence and shows that the results obtained by other

more mathematical theories can be derived, or at least made plausible, by

a simple physical argument.

M. Meler [178] demonstrates graphically and experimentally that the

localization of interference fringes in classical interferometry is a

special case of the localization in holographic interferometry.

9
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Fringe Localization and Holographic Interferometry of Transparent Objects

in Refractive Index Phase Fields [179-204]

Optical interferometry can be used to determine or reconstruct the

refractive index field of a transparent medium by measuring changes in

optical pathlength of light rays due to their passage through the medium.

Because refractive index is a function of other physical properties of the

medium such as temperature, density, or state of stress, interferometric

measurements are useful in a number of scientific and technological

applications. Classical interferometers display the phase variations of

a single plane wave that has passed through the test object. This provides

sufficient information to reconstruct only those fields that are axisymmetric

or those that have no variation in the direction of the optical axis. Ho-

lographic interferometry provides a practical technique for simultaneously

recording phase variations in many wavefronts that traverse the test object

in a variety of directions. Data obtained by such multidirectional inter-

ferometry consists of the optical pathlength changes of a collection of

rays due to their passage through a refractive index field.

The pathlength ^i of a ray that can be determined by interferometry

is defined by
	

I

	

(1)

where f (x,y,z) = n (x,y,z) , n o is the refractive index relative to some

reference field no and where the path integral is evaluated along the ray

path s i . Equation (1) can be considered to be a functional equation from

which local values of the real scalar function f (x,y,z) can be determined

when ^b i is given for a large collection of rays.
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In general the light rays passing through n (x,y,z) are refracted

and follow a curved path. In many interferometric applications, however,

ray curvature is minor and the integral in Eq. (1) can be evaluated along

straight lines. In this refractionless limit Eq. (1) is linear [205].

Note that in the refractionless limit a two-dimensional field f(x,y)

can be considered without loss of generality, since any arbitrary plane

within a three-dimensional field can be studied. This is verified by the

analysis of Berry and Gibbs [2061. It is convenient, then, to rewrite Ea. (1)

in the form

s.1 f (x,y )ds = ^( p ,e),
	

(2)

where ds is a differential element of the geometric ray path and c(p,e) is

the pathlength of the ray specified by the polar coordinates (a,e). All

possible rays are included in the range -90 0 <e<900 . The range of e over

which data is actually collected is referred to here as the angle of view.

In practice it is often less than 1800 . For example, in holographic inter-

ferometry utilizing diffuse illumination, the angle of view is determined

by the aperture of the hologram, the angular aperture of the illuminated

diffuser, and the extent of the test object.

Only a few previous papers have dealt directly with the reconstruction

of refractive index fields from multidirectional interferometric data.

Rowley [207] was apparently the first to consider the solution of Eq. (2) in

this context. Assuming the value of ^(p,e) to be known for all possible

straight rays through the object in a given plane, he derived an expression

for the two-dimensional Fourier transform of f(x,y). Alwang et.al .[208] reported

that A. Pal had obtained the solution for f(x,y) as a function of(N,a).

17
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To avoid a troublesome singularity in an integrand, he introduced a

resolution parameter the optimum value of which is dependent upon the

structure of the field being studied. This method was used to measure

the density distribution in a slot flame. This same solution has also

been derived by Junniger and van Haeringer [2091, who proposed using a Taylor

series expansion of f(x,y) to determine the principal value of the inte-

gral. Tanner [210] showed that the principal value of the integral should

be finite in practical applications. Alwang et al [208] also discussed a

discrete element technique in which the phase object is considered to

be divided into N finite grid elements, each of which has a uniform refrac-

tive index. Equation (2) is then replaced by a system of N simultaneous

linear equations in N unknowns (the refractive indices of the grid

elements). This technique was found to be extremely sensitive to such

factors as grid size. Although little detail regarding this technique

was presented, it was apparently not too satisfactory.

Matulka and Collins [211] considered a different approach to the

problem. Their analysis technique is based on earlier work by Maldonado

and Olsen [212] on plasma emissions. In this approach f(x,y) is ex-

panded in the mean sense in terms of a complete set of orthogonal

functions within a circular region outside of which f(x,y) is assumed to

vanish. An important criterion for selecting the set of expansion functions

is that they be invariant in form to a rotation of coordinate axes in

order to avoid algebraic complexity when the path integral in Eq. (2) is

evaluated for various ray directions. Such a set was developed by Maldonado

[213]. The coefficients of this expansion can be determined by substituting

F

18



it into the integral equation and orthogonalizing the resulting equations.

Matulka and Collins [211] showed this inversion technique to be capable of

generating quite accurate results, although convergence was not always

rapid (a 1700-term expansion wa. ,., required in the case of an axisymmetric

distribution with a severe discontinuity). This method of analysis

requires that in the absence of symmetry, data must be obtained over a

1800 range-of-viewing angle in order to carry out the necessary

orthogonalization. This technique tends to be efficient when the distribu-

tion is nearly axisymmetric, particularly when the distribution is

Gaussian or nearly so. The paper by Matulka and Collins [211] is especially

noteworthy because their scheme was reduced to practice; experimental

measurements were made of the density distribution in both axisymmetric

and slightly non-axisymmetric (11 0 of tilt), free-air jets.
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SECTION III

DISCUSSION OF SIMULATED HOLOGRAPHIC OPTICAL SCHLIEREN SYSTEM (HOSS)

In this section we seek to determine the feasibility and to demonstrate

the application of localized fringes in holographic interferometry using

transparent objects in general and in fluid visualization via the HOSS in

particular. To this end holographic data has been obtained experimentally

from two different holographic arrangements and several different test objects

which were immersed in a transparent fluid of known constant index of re-

fraction or known variation of index of refraction. The two holographic

arrangements are; a typical off-axis sideband configuration, and a scaled-

down version of the original HOSS, which we here call the "simulated HOSS".

Schematics of both of these systems are provided and discussed below.

We intend first to determine the feasibility of fringe localization via

holographic interferometry using two different holographic arrangements and

secondly to demonstrate the application of these localized fringes to the

q uantitative analysis of fluid flow visualization via the simulated HOSS.

Feasibility Demonstration of Holographic Fringe Localization

Figure 1 provides a schematic of the first holographic arrangement used

to determine and demonstrate the feasibility of fringe localization. The

system employed an argon laser which operated at 514.5 nm wavelength and

after expansion and spatial filtering the object and reference beams were

both rendered parallel prior to being incident on the test cell and holo-

gram respectively. The object beam was incident on a diffuser glass,

prior to entering the cell, so as to satisfy the extended source req uire-

ment necessary for the localization of fringes. U pon passage throu g h the
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cell, the object beam interfered with the reference beam to form the

hologram record. The Polaroid film holder is useful for recording the

holographic real image upon reconstruction.

Figure 2 provides a schematic of the test cell which was constructed

of acrylic with 6.5 mm wall thickness. The cell dimensions were 104 mm

depth x 280 mm width x 152 min height. The diffuser glass was 130 x 130

mm and was centered on the 76.2 mm diameter object beam. (See top of

figure 2.) Two hollow acrylic cylinders were placed at either end of the

test cell and centered in the object beam. Each cylinder was 25 mm in

diameter. Regular tap water was now poured in to fill the test cell.

A double exposure (frozen fringe) hologram was recorded through the test

cell as shown in bottom of figure 2. The first exposure was taken of the

test cell with the water at ambient temperature. Prior to the second ex-

posure small pieces of ice were introduced into each of the hollow acrylic

tubes. This provided a temperature or density gradient in the volume of

each hollow cylinder. Upon taking the second exposure and properly

processing the hologram, the real images were reconstructed in several

planes and recorded using the Polaroid film back. In this reconstruction

the Polaroid film could be placed along any plane in the reconstructed

three-dimensional real image. The relatively large aperture of the

system allowed for critical focusing (fringe localizaticn)in the real

image.

Figure 3 displays the seven planes in the real image at which photo-

graphs were recorded. The photographs of the real image taken at these

seven locations are shown in figure 4 and are numbered corresponding to
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the planes of their location as shown in figure 3. Photograph number 1

is at the back of the test cell adjacent to the diffuser, number 7 is

at the other end of the test cell closest to the hologram. These seven

photographs readily display that the various fringes are indeed localized

discretely throughout the cell.

A second double exposure was taken using the same identical procedure

except a third hollow, acrylic cylinder was added slightly off-center

from the first two as shown in figure 5. Upon reconstruction of the real

image as before, we display in figure 6, photographs of eleven different

planes recorded throughout the volume of the real image. The numbers of

the photographs of figure 6 correspond respectively to the numbered planes

indicated in figure 5, as before. Again the fringe localization is

apparent with position.

In both of the previous cases the reconstruction aperture was large.

This was necessary if the fringe localization was to be critically positioned.

Using the same off-axis hologram arrangement and the same test vessel

filled with water as before,we employed a different test object with a

different means of creating density variations within the cell.

In this case twelve precision resistors of twelve ohms each were soldered

together to simulate a crystal boundary during growth. The input and

output for the voltage source was taken across the volume diagonally as

shown in figure 7. The cube so formed was 12.7 mm per side.

First a real-time (live fringe) hologram was employed in order to

observe the response of the resistor cube to current. It was found that
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a

approximately 5 volts provided enough power to the circuit to cause ob-

servable heat flow in the water in which the cube was submerged. The
i

resistance of the water across the volume diagonally was about 500 ohms,

thus making a short circuit of the resistors by the water improbable.

Next,a double exposure (frozen fringe) hologram was now taken of9

the test cell and cube, first with ambient conditions and second with

power on the cube. As before, the real image of the double exposed holo-

gram was reconstructed with a large aperture beam and photographs were

recorded in five planes of the real image of the test cell volume as

shown in figure 8. Figure 9 displays photographs of the real image

corresponding to the planes located as shown in figure 8. Again the

localization of fringes is very apparent.

Therefore, as stated in the literature and demonstrated above,the lo-

calization of fringes in a diffusely illuminated transparent medium via

holography is a very real and predictable phenomenon, and simple feasibility

is verified.

We now describe the second holographic arrangement employed experi-

mentally, the simulated HOSS arrangement.

Figure 10 presents the schematic of the present HOSS configuration.

Figure 11 presents a schematic of our scaled-down version of the HOSS.

All HOSS parameters were satisfied except we employed half-size optics

mirrors and worked with a three (3) inch optics instead of a six (6) inch

as in the HOSS. Data taken with the scaled-down HOSS compare sufficiently

well with that from HOSS. A modification of this scaled-down version of

HOSS was then made to conveniently allow localized fringe holograms to be
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made using diffuser glass illumination of the test cell. This modified

HOSS or simulated HOSS is shown schematically in figure 12.

We have stated at the outset that	 two different holographic

arrangements were employed. There is, however, no real difference in

that both are forms of off-axis sideband arrangements. However, the

physical geometric parameters are different and this is of importance

in that we can quantify them and that the remaining data will be from a

geometry essentially identical to the HOSS system of NASA.

Therefore, using the holographic arrangment having the geometry of

the simulated HOSS of figure 12 we investigate various objects in a trans-

parent medium using diffuse illumination. The cell employed was identical

to that described earlier. The object in the experiment was two heating

elements.

Two soldering pencil heads were integrated into the base of the

test cell. Each possessed a female threaded core which normally served

to receive the soldering pencil tip. In the various cases discussed be-

low, this served as a mounting for the various objects used.

The two heating elements so mounted in this experiment were: a

simple soldering tip and a 25mm diameter cup—shaped disc. Figure 13

displays the location of both the large and small heating elements in

the test cell. Three. separate double exposure holograms were recorded

with the object, each allowing a different magnitude of heating to occur

between the first and final exposure. The first exposure was in all
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cases taken at ambient conditions. The second exposure was at: 30 sec

after first with heat on, 60 sec after first with heat on, 90 sec after

first with heat on. The photographs of the real image of each of these

are shown in figures 14, 15 and 16 respectively with the locating plane

of each photograph identified as shown in figure 13.

In further support of the demonstration of localized fringe feasi-

bility we will briefly present the results of another experiment. With

the holographic arrangement as before, the object this time was a small

aluminum cube, a pproximately 15 mm per side, attached to the heating

element closest to the diffuser and immersed in water in the test cell.

After completion of the required double exposure the real image was

reconstructed and photographs were taken in four planes of the real image.

The location of the planes is shown in figure 17, the four respective

holograms are displayed in figure 18. It will be noted for this case the

plane of best focus (localization) occurs at position 2, the center of the

cube.

From the foregoing it is obvious that it is quite feasible to produce

localized fringes using diffuse illuminated holographic interferometry.

It is not so obvious how easily or how accurately one can quantitatively

s pecify where this localization physically occurs. This will be the sub-

ject of the section on theory to be discussed below.

Demonstration of Localized Fringe Application

We have previously alluded that the fringe localization is a function

of the geometric parameters of the holographic arrangement employed. We

have determined, and the literature states, that the localization of
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fringes is a critical function of the aperture size and geometry used for

the reconstruction of the holographic real image. We have further seen

from the literature survey that the fringe localization technique (FL)

and the fringe counting technique (FC) i.e., parallax technique, are

closely related. We wish now to present the results of an experiment

which verify this and which demonstrate the utility of both of these

methods and which further exhibit the discreteness of localization

of the fringes as well as illustrate 	 the dependence of the localization

on still another parameter - the geometric perspective or viewing angle.

As additional parameter dependence is unfolded in this manner,it be-

comes clear that the theoretical description of the phenomena of local-

ized fringes is indeed a complex one.

For this experiment two heating elements of the same size were em-

ployed in the localized fringe mode as before, except now we have positioned

an accurate temperature probe within the test cell to provide quantitative

magnitude of the temperature field. (Quantitative information will be ex-

tracted from this hologram in Section V.

A double exposure was recorded with the first exposure at ambient

conditions and no heat flow. Both feting elements were energized for

thirty(30) seconds and a second exposure recorded. The temperature probe

was located near the edge of the heat plume closest to the hologram.

Upon proper development the real image was projected out and Polaroid

photographs were recorded.

Figure 19 displays a schematic of the hologram real image projection
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technique for fringe localization and parallax demonstration. The holo-

gram was positioned so that the line passing through the center of both

heating elements intersected the hologram one inch from the right-hand

side (see line A and insert A, fiqure 19).

With appropriate ad,iustment of the Polaroid film plane in the real

imaqe, photographs 1 and 2 -of figure 20, were recorded with this "A" per-

spective. The fringe localization is most evident. Photo number 1 shows

the fringes localized in the vicinity of the heatinq element furthest from

the hologram. Note the out-of-focus tem perature probe. Photo number 2

shows the fringes localized in the vicinity of the heating element nearest

the holoqram. Note the temperature probe in-focus.

If the reconstruction beam is shifted to the other side of the holo-

cram, we then have the perspective "B" of fiqure 19. With appropriate

adjustment of the Polaroid film plane in the real i ►nage, p hotographs 3

and 4, figure 20, were recorded with this "B" perspective. Again, the

fringe localization is most evident. Further, the parallax now is most

striking. Photo g rap h number 3, analogous to number 1, shows the fringes

localized in the vicinity of the heating element furthest from the holo-

g ram (temperature probe out-of-focus). Photograph number 4, like number

2, shows the fringes localized in the vicinity of the heating element

nearest the holo g ram (temperature probe in-focus).

Comparison of photo gr ohs 1 with 3 and 2 with 4 dramatically

demonstrates the fringe localization and parallax and how the presence

of one p lume can obstruct the contrast of another set of fringes.
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The phenomenon of localized fringes as generated by the diffuse

illumination of a transparent medium also allows for the viewing of fringes

from different directions within the limitations of the hologram's

aperture. In the situation where there are two or more disturbances in

the test cell, it appears advantageous to be able to choose a viewing

direction where the light passes only through a single disturbance and is

not affected by the other disturbances in the cell. On obtaining a photo-

graph (or image) where the fringes are due only to a single radially

symmetric disturbance, the index of refraction and thus the temperature

within the disturbance can be calculated in two ways. The first is a

quick and easy way of obtaining the average temperature readings across

lines through the disturbance, the second generates a fairly detailed map

of index of refraction in a cross section of the radially symmetric disturbance.

Both of these will be discussed and pursued in Section V.
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SECTION IV

MACHEMATICAL THEORY ON THE FORMATION AND ANALYSIS OF LOCALIZED FRINGES
IN A TRANSPARENT MEDIUM

General Background, Model Formulation and Fringe Interpretation

The process of holography provides an interferometric tool which is

linear in time, in the sense that two or more object wavefronts can be

recorded sequentially in time and later both wavefronts can be reconstructed

simultaneously with interferometric comparison. For example, consider a

typical off-axis sideband arrangement similar to that used earlier in

Section I with sli g ht modification. Fi gure 1 displays our intended con-

fiquration. The phase object could be a transparent solid or a trans-

parent solid in a transparent fluid, etc. In any case, consider the

refractive index distribution within the p hase object to be g iven by

n l (x,y,z), during an initial holographic exposure and n 2 (x,y,z) during

the final holographic exposure of a double exposure hologram. On proper

development and reconstruction of this hologram, two waves are reproduced

simultaneously

-9	 = c2,(Y,9) eXP

2	 2

where 0 = fnds,
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The irradiance becomes

I (Y, I ) = 2 1i +a OZ5  A I
cl'z (X)I) — ^^CX,y)]	 (1)

where we have assumed that a l (x,y) = a 2 (x,y) = uniform unit amplitudes.

If, as in most practical cases, the refractive index during one ex-

posure is uniform and constant, n o , then the fringe pattern is

(2)
COS

where

is the optical path difference, and the equation representing a bright

fringe is

A C; N	 (3)
For the simple case where the refractive index n l (x,y,z) varies

only in the y direction, i.e., n (x,y,z) = n(y), then the integration in

equation (3) is easily performed and the optical pathlength difference is

.A 4;(x, y) -L.n(`)-n,]J
where 1 is the total length of the phase object.

The fringe spacin g , of the holographic interferometric fringes, is

determined by the product of n.

If the refractive index n(y) varies linearly as

n (y ) = no + n'y

the fringe pattern produced is a series of equally spaced parallel

fringes , and
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A C5 ( x, y) = [o + n'(y) - n.] I = ^ A

with	

= NX/n 11 	 r = i, z, 3^,...

If, however, the refractive index, n(x,y,z) is a distribution

similar to that which occurs in the measurement of thermal boundary

layers, then

n(^^=no-n,exp(-ay)
and the fringes are parallel straight lines with variable spacings, and

	

[no-A Ĉ ox ' y) =  -n, al - n V ] J = NX	
(4)

with

The spacing is large in regions of small gradient and small in

regions of large gradient.

There is another class of index of refraction distribution of

great practical importance in aerodynamics, heat and mass transfer and

plasma diagnostics. It is the radially symmetric distribution and is

found in radially symmetric phase objects.

We provide the first exposure to it here and treat it in depth

later during fringe analysis along with experimental evidence of its

behavior with regard to localized fringes.
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Figure 2 provides a schematic of a radially symmetric phase object

n(r) and allows the definition of notation necessary for discussion. A

plane wave traveling in the z direction is used to interrogate the

object. This is indicated by the typical ray shown in the figure.

The optical path difference, 66(x), for a two-ex posure hologram is

determined via equation 3, with dz = (r 2 - x 2 ) -l r dr to be

Cxl = 2 R C nor) -Y)Q 
r df-
zCr2- xZ^^x 

The integral in equation 5 is the Abel transform of [n(r)-n o ] and

is found to be quite instrumental in the evaluation of fringes of

radially symmetric phase objects. The interferogram displays contours

of the Abel transform of a radially symmetric object. We address this

subject in same detail in later sections.

As stated at the outset, holographic interferometey is dif'erential

in time, that is the two waves constitutin g the first and second exposure

object wavefronts are separated temporally rather than s patially. For

example, in a Mach-Zehnder interferometer, only one wave passes throuah

the phase object. This wave then interferes with a p lane comparison

wave which is separated in geometric space and has traveled a different

path throu gh the interferometer.

I

(5)
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In a holographic interferometer, however, both the object and comparison

waves travel across and through precisely the same object space, but at

different times. Holographic interferometers are then single path inter-

ferometers. This important feature is what permits the use of test

sections with windows of rather poor optical quality.

In classical interferometry, if a test section window is not

optically flat and homogeneous, it will introduce a pathlength error or

noise term On(x,y) into an optical wave passing through it. Let A^(x,y)

represent the pathlength difference due to the phase objects inside the

test section and remember that it is the contours of this # (x.,y) which

we desire the interferometer to display as a fringe pattern.

In a Mach-Zehnder interferometer, the fringe pattern for this test

section and phase object would be:

(6)

I ^x,yl = z ^^. + cas ZIT 
[A ^ cY^yl t A ^n cx^y^^

Thus the presence of the noise term A^n (x,y) due to the poor quality

windows produces pathlenqth variations leading to errors in the fringe
pattern which can be eliminated only by the use of optically flat homo-

geneous windows so that A^ n (x,y) is a constant.

In holographic interferometry, only changes in pathlength between

exposures are displayed. Therefore, since the same test section, windows

and phase objectsused above are present during both holographic exposures,

the effects of A^„(x,y) are cancelled and the expression for the holo-

graphic fringes is given by equation (2) as:

7

^^x,) = ^. 1 + cos A F2 (x,y)J	
)

y
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It should be noted, however, that errors due to refraction by curved

test section windows occuring between exposures are not cancelled and

must be accounted for in quantitative measurements.

An interferoqram described by equation (2) above is called an

infinite fringe interferogram. This means that an infinitely wide

fringe results when A^(x,y) = 0. Further, this type of interferogram

displays contours of constant value of -AO(x,y). There is a siqn

ambi guity in such interferograms, however, because + oo(x,y) and -A^(x,y)

.yield the same fringe pattern. This is a result of the cosine beinq an

even function. Because of this, interpretation of the fringes from such

an interfero g ram is ambiguous. That is, we cannot determine if the

optical pathlength increases or decreases from one frinqe to the next.

This si gn ambi guity can be removed by the use of a priori knowledge of

the specific experiment and by introducing reference fringes into the

interferogram. These frinqes are most commonly parallel, straight,

"wedge fringes" with equal spacing corres pondinq to a constant phase

gradient of known sign. The resultinq interferograms are called finite

fringe interferograms and are commonl y used in classical interferometry.
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Fringe Localization in Transparent Media: Development of Basic Equation+

Holographic interferometry can be used to visualize and measure re-

fractive index fields in transparent media. If the medium is a liquid,

knowledge of the refractive index distribution enables one to calculate

the spatial distribution of density throughout the field. If the object

(transparent medium) under study is illuminated with diffused light, such

as that scattered by a ground glass screen placed between the source and

the object, the fringes of holographic interferometry have a distinct

three dimensional nature. They exhibit spatial localization, i.e., they

are localized. To the observer they appear to be suspended in space in

the object location or perhaps in front of or behind it. As the observer

changes viewing direction, the fringes appear to change form, shift about

and change position of localization.

Information about the structure of the refractive index distribution

is displayed in two ways in a holographic interferogram:

(1) Fringe number, position and spacing

(2) Fringe localization

As mentioned earlier, holographic interferometry can also be used to

measure vector displacement of points on diffusely reflecting opaque

objects. In the case of opaque objects, fringe localization plays an

important role, either directly or indirectly, in the analysis of holo-

graphic interferograms and further, the theory of analysis for these

objects is well developed. the analyses of holographic interferograms of

transparent media, on the other hand, has thus far been based almost ex-

+Appreciation is gratefully acknowledged to Dr. Charles Vest of the
University of Michigan for his consultation on the theory development
for this section.
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clusively on fringe number, position and spacing and the role of

localization has been largely ignored. Fringe analysis in the case of

transparent media is quite complicated because fringe shifts are

associated with path integrals through the object rather than with a

single phase shift due to reflection at a single poi.nt as in the case of

opaque objects. As a consequence of this complication, the determination

or computational reconstruction of a refractive index field has conven-

tionally been based on fringe number, position and spacing which requires

that the object field be viewed from a large number of viewing directions,

ideally over a 1800 range of angles. This required range can be reduced

if the object field has known symmetries. It is important, therefore, to

develop a theory of fringe localization in diffusely illuminated trans-

parent media to provide augmentation of conventional fringe analysis

in useful ways. At the very least, this additional information of fringe

localization must provide information which is useful for approximate

reconstruction of refractive index fields when the range of viewing angles

is practically restricted to less than 180 0 (the usual case in practice).

At best a new reconstruction theory might ultimately result. Either re-

sult would aid the present conventional method of analysis.

There exist two distinctly separate but related localization problems

which are defined in terms of what we know and what we desire to determine

from a given holographic interferometry experiment. We draw the following

distinction:
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a

,I

(1) The Forward problem: Given a refractive index distribution, 	 {

An, determine the surface in which the fringes appear to localize when	
1

1
viewed from a specified direction, i.e.,

An	 f (Loc )
known	 calculate	 z

(2) The Inverse problem: Using physical measurements of fringe

localization, f (Loc), determine the refractive index distribution, An,

or use the measurements to augment reconstruction based on fringe

number, position and spacing, i.e.,

An	 f (Loc )
calculated	 meal.

Our first task here is to set forth a theory for the forward prob-

lem, which will form a basis for subsequent exploration of the role of

fringe localization in the inverse problem. Finally, in this section we

provide an application of the theory to the analysis of localized fringes.
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Model for Fringe Formation in the Forward Problem

Ideally the description of formation of interferometric fringes in

diffused light should be developed in the context of diffraction theory;

however, this approach is more complicated and mathematically cumbersome

than is necessary to meet the objectives of the current task. Therefore,

a simplified model, which has been satisfactorily used to develop a

comTMlete and practical theory of fringe formation and interpretation for

opaque objects, will be used. This model is modified to address an ideal

case of the diffuse illumination of transparent media. In this section

we present and explain this model.

Figure 3, drawing on the treatment for opaque bodies (Section I,

ref. [1-111]), presents the optical elements which are considered in a

discussion of the fringes of holographic interferometry for a transparent

medium. At the left is a diffuser, illuminated from behind by a column

of laser light. Light transmitted and scattered by the diffuser then

passes through the object space. During an initial holographic exposure

the refractive index in this object space is known to be n o , which often

is uniform throughout the reqion. Durinq a second exposure (or observation

in the case of real time interferometry) the distribution of refractive

index throughout this object space is n (x,y,z).

Our objective is to study this difference of refractive index:

f (x,y,z) = n (x,y,z) - n o = An
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These wavefronts in turn pass to the hologram where each is recorded,

processed and later holographically reconstructed. On reconstruction the

optical field transmitted through and diffracted by the hologram (shown

to the right of the hologram in figure 3) is accessible to the observer

who may form an image on a screen, photograph the interferogram with a

camera, or visually observe it with an unaided eye. Any viewing system

used by the observer to investigate this image has a particular, finite

entrance aperture. Such an aperture is indicated schematically in

figure 3.

For convenience, consider the diffuser to be a plate of ground glass

whose front surface has some random microscopic variation so that the

phase of light scattered by it varies randomly in phase from point to

point. Let P and M be two typical points on the diffuser surface.

The effect of the change in the refractive index field f (x,y,z) is to

slightly distort the optical wavefront which passes through it at the

time of the second exposure, relative to that which passed through it

at the time of the first exposure. If, as in many practical cases, this

distortion is very small, we can, to a satisfactory degree of approx-

imation, describe the effect of f (x,y,z) as a phase shift of light

rays whose path direction through the field remains unchanged. We

refer to this as the refractionless limit and say that f (x,y,z) is a

phase object. The errcrsand effect of such an approximation will be

treated later in this paper.

To fix ideas in relation to figure 3, we can also think of f (x,y,z)

as causing a very slightly distorted and displaced image of the diffuser.
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This idea is shown schematically in figure 3. P' and M' are the new

apparent location of the points P and M respectively.

Because the interferogram is formed in diffuse, coherent light,

it will include laser speckle - a small-scale random interference pattern.

This is indicated schematically by the finely spaced irradiance variation

falling under the cosinusoidal envelope of the holo qraphic interferometry

fringes in the observation plane of figure 3. The scale of the speckle

is controlled by the size of the aperture. If the aperture is large, the

speckle size will be small; if the aperture is small, the speckle size will

be large. Specificall y if, b s , is the typical speckle size, it is given

in terms of fiqure 3 by

b s = 1.22 a z.,
0
	(s)

where \ -is the wavelength of light employed and D is the aperture diameter.

In the reconstructed image of the hologram, and as a result of the

first exposure, light is scattered by the diffuser at and in the neiqhbor-

hood of P and O ves rise to a complex amplitude of light, U. (x,y,z) in

the observation plane a distance, z, from the diffuser. The corresponding

irradiance I (x,y,z) observed through the aperture would be recognized as

a speckle pattern. In holographic interferometry , as a result of the

second ex posure, a second optical wave is present and can be thought of

as scattered by the diffuser at and in the neighborhood of point P' on

the effectively distorted and displaced diffuser. The corresponding

complex amplitude, U,,(x,y,z) differs in fine detail from tTa (x,y,z).

If we could compare the correspondinq speckle patterns 
1  

(x,y,z) and

so
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I 0 ' (x.y,z) they would be uncorrelated at an arbitrary plane z = constant,

that is their fine structure would be completely different. However, there

exists one special value of z, where for a given observation direction,

U„ (x,y,z) and `Y,,/(x,y,z) will be nearly identical, except for a small

relative displacement and a variation in phase whose spatial scale is

large compared with the value of b s . The irradiance pattern of this

particular value of z consists of a speckle structure modulated by a

broad, cosinusoidal variation which is the pattern of fringes of holo-

graphic interferometry. The fringes are localized at this special value

of z for this particular viewing direction. In the next segment of

this section, equations are derived for determining this localization

distance, z.

The localization equations will be based on the assumption that for,

purposes of fringe pattern computation, we need only consider the change

in optical pathlength, ^,b, discussed earlier, of light scattered by

apparent correspondin q points such as P and P', and that the light from

P and P' will travel to a point in the observation plane along nearly

straight, coincident rays. The equivalent model for fringe formation

with opaque objects successfull y predicts all important phenomena. The

present model will be indirectly verified by experimentally checkinq

predictions of the theory. These results will be p resented later in

this document.

As this model is pursued, we conclude that fringe localization

occurs where "TZ(x,y ,z) and	 Vo (x,y,z) are most nearly matched. Near

51



such locations,Io(x,y,z) and Io'(x,y,z) are most nearly matched and

overlap. This position will be calculated by using simple geometric

optics and by requiring the optical pathlength change Ac between light

scattered by the apparent points P and P' to be equal to that of light

scattered by pairs of matched apparent points M and M'.
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Derivation of Fringe Localization Equations in the Forward Problem

Consider a refractive index distribution backlighted by a laser

illuminated diffuser as in figure 3. It is convenient to redraw the

configuration as shown in figure 4. Using the model of fringe formation

introduced above and assuming the refractionless limit to apply, it is

useful to imagine a field f(x,y,z) to be located in front of the diffuser

where

is the change of refractive index under study. It is unnecessary to

explicitly consider the hologram per se in this analysis. The function

of the hologram is merely to make the two wavefronts, passing through no

and n(x,y,z), from the first and second exposures respectively, simul-

taneously accessible. In some cases it will be convenient to use vector

notation to locate a point in the object field, which in this notation

will be

Y

The coordinate system may be arbitrarily positioned in space, but for

our purposes it is helpful to imagine it attached to the diffuser.

An observer looking toward point P(Xp,y P ,O) receives a small cone

of ray pairs with a mean propagation vector of 	 Kz . Each of the ray

pairs necessary for comparison originate at the same point on the diffuser.

The pairs result from the first and second exposure and are designated in

figure 4 by solid and dotted lines. Note that there are two pairs shown

(9)
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1in the cone. Each pair consists of one solid and one dotted line

respectively. Each pair in this case represents a point in the neighbor-

hood of P (x p ,yp ,0)	 on the diffuser. The two pairs so represented could

be thought of in terms of our P and M discussed earlier. To carry it

further consider the uppermost pair in figure 4, let this solid line repre-

sent the wavefront resulting from P of the first exposure, let the dotted

line of this pair (uppermost) represent the wavefront resulting from P

(call it P' ) of the second exposure. Repeat this analogy for the lower-

most pair (one dotted one solid) and call it M and M' . Observe though,

that here we say, P and P' are the same point and their respective

wavef routs are altered as a result of one exposure through a field no,

and a second exposure through a field n(x,y,z). They are related through

a change in refracture index distribution of

^Cr) = nCx, y,e) - no
Now for such a ray pair the optical pathlength difference is

D q^ =	 ( r) ^s r	
(11)

J
where ds is the differential distance along the ray in question. This

ray is in the direction specified by K. the unit vector coincident with

K 	
Recall that

(12)

and note that

rP = X P + ^^ ^P
	

(13)

`s
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so that we can write

r	 (14)

cr, + ^C Z S^ ds - I`^^

With this the optical pathlength change can be determined by the usual

fringe counting procedure as shown at the first of this section.

In order to understand localization, we must recognize that the
1

imaging system is focussed on some plane, normal to X.,, which contains

the point Q (X,Y,z) shown in figure 4. The location of Q and the

aperture of the imaging lens determine the extent of the cone of ray

pairs.	 If Q is located at an arbitrary position in space the optical

pathlength difference,^^, will be different for each ray pair in the

cone. In this case the observer will not see the desired interference

fringes, he will only see a speckle pattern. However there will be a

specific location of Q (X,Y,z) at which ^^ is nearly identical for each

ray pair in the cone. This is the precise position of fringe localization,

at this location the observer will see very distinct holographic inter-

ferometry fringes.

Analytically, we determine localization by seeking the points Q

along all rays propagating parallel to K Z for which the change of

with small changes in viewing direction is zero. It is convenient to

describe changes in viewing direction by changing the location of the

point P (x p ,y p ,0) .	 (It should be emphasized that it is the change in

direction which is important, introducing x 	 and 
Y  

is merely an

algebraic convenience.)

From vector algebra the limiting value of ,	 along _`s employs the

directional derivative of ^^ and with the above we can write the condition
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for localization as

^C4SO- 
^C4 	

dXP +^ (A
	 dy .oa x P 	 P

P

We wish to evaluate the two partials on the right-hand side of

equation (15).

Recall from equation (11) that

^^ = f -^c r^ ds

taking the partial derivative with respect to x  first, we have

(AC1) ` '^ (I (Y)ds)
Y" p	 ) A P	 /

If we maintain that f(r) decays smoothly to zero and is zero outside

of some finite re q ion we can integrate over the limits ±-.	 In this case

we can take the derivative operation inside the integral and

fax ^Cr As
x	 _^ ^ P

The integrand of equation (17) can be written as

^Xp a X XP ^y	 aX P a^ a X P

The first factor in each product on the right in equation (18) depends

only on the index distribution, f, and on the coordinates of the point P,

at which the derivatives of f are evaluated. The second factor in each

product is inde pendent of f and depends only on the direction in which

(15)

(16)

(17)

*m

56



AS (21)

the derivative is being computed. This observation suggests that aaXp

can be thou ght of as the dot product of two vectors, one depending only

on f and the coordinates of P, the other depending only on the

direction of d X p and in fact we can write

+ a K)' <ax• L a—`	 +	 K
Xp	 y	 P	 axP	 XP

.^	 A
Since	 r= X (+y 1 +2 ► we have

Now the quantit y in parenthesis is just the gradient of f and we have

(19)

	

x P 	a xp
Substitution of equation (19) into equation (16) produces

	

—^ XP
	

3 	
^XP
	 (20)

By analogy, the second partial on the right-hand side of equation (15),

becomes

We now wish to evaluate the partials in the integrand of equations (20)
J

and (21). We start with that of equation (20), % Xp
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Recall that from equations (12-30),

^ 1 n
Y, = rP + Kzs

where	
rf, = XP I + v f, .^

n
K z = K zx c 

+ Kzy 
1 + K2z K

then

a r
	

a	
rP + KZS]

ax	 ^x LP	 P

using equations (23) and (_24) in (25)

^r =

	

A.
 + a Kzx i	 ^ K ZY^ + ^ K z^ K s

^ x P	 a^P	 ^xP	 ^ xP

By analogy the partial of equation (21), becomes

^r	 aKzx i t	 KZy	 + 
^KZ^ K S

+ a y P	a yP ^	 ^^PP

Substitution of equation (26) into (20) and (27) into (21) produces,

^^ Q l̂ =	 ^• t + ^ K 2.x ^ } 
a	 1 t ^KzZ	 S ^5

XP _^	 axP	 a X P	 ^ Xp

	zCd^ = p^ I t(^_ _x ^ + ^K2y ' + a Kz^ 51 8:5

 yP 	 a Y 	 a `fP

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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We pause now to define a specific shorthand notation for the expression

of the partial derivatives, e.g.

XPK2 x — Kz.xAP _

a K ZX _ KvP
zx

ayP

(30)

a KZ y _ K Z
xP	 1

Kzz	 xP

K=y = KYP

^ y	 Zy
P

^ K7z	 v 
a yP — ; 

KzR

These will be used throughout the remainder of this derivation.

Let's rewrite equations (28) and (29) in terms of this shorthand

notation

{-(K2% -^ KZy 1 + K2-2 ^c) S
J 

c^s

9 P J^ 
^ ^ . ^^ .^ ^ KYX L -r K y + K ? ^^ s^ d s (32)

We now address the integrand of equation (31) and perform the indicated

operation.

31)
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W - , + K,'p ^ + K'? + K"' ^) S]
EA	

ZN	 7. j	 ZZ

aF Aa f A	 ^^ I	 %P	 xP
	

Y.

=	 a^ ` + a i + a K
	 + (K Zx I- + KZy T + ZF S

Kzx S + a^ KZ 
P S + a; 

Kz" 5^x ^x	 y	 y 

Using another addition to the shorthand notation

W e (N)"	 etc_ . equation (33) becomes

(33)

^s
X

+ ( XP^	 Pn	 Pn
KZX ` Jr, KzY + K2 7 K ) S

+ ^ 5 K z x ^- -^ y S Kiy + T ;25 K;7
By analogy the integrand of equation (Je) becomes:

^-^ • C^ + t KzA i + KZY I + K2Z

^xs 
`Z P 

+ V + - 'S Kzy + -SOS K"ZZ

Substitution of equation (34) into equation (28) and substitution of
equation (35) into equation ( 29 ) finally produces the evaluation of the

partials of interest from equation (15). Therefore equation (28) becomes

4. K+ 51-^ + K y ^ ^ S +- Za S^^

(34)

(35)

(36)
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and e q uation (29) becomes

{ KiX -^'x5 + (1 ^ KZ P S) -^ Y + Kip -^^5̂  dS
y P	 _^

With equations (36) and (37) the localization condition, equation (15)

becomes
41^

d °-r ^ _ - [(, + K2,' 5) P x + Kz y ^ 1 3 + K"" s] ds ^ x P_

+1KZp >^ xS +^1 + KZPs) Py -+K2-C B=o

If the viewing aperture is of roughly the same O mension in all

directions, i.e., a symmetric aperture like a circular or square aperture,

then c Y'F and ^ YP can be varied inde pendently in e quation (38) above,

which is the equivalent of the original equation (15), the localization

condition. Therefore the two integral terms above in equation (38) must

vanish independently, i.e., can be set independently equal to zero.

Therefore we have that:

I(,-+ 

^ZX ^^^ "+K Y 
-F Y s + KzZ s^ ^s = 0. /^-

+^

J K'xp 	 4- + KZP 5) + K Y P ^ S d s= 0
-00

In order to render the above equations for the localization condition

into useful form, it now remains to determine expressions for the various

(37)

(38)

(39)

(40)

61



components of K 7  and their respective derivatives.

To this end we direct attention to figure 5 which reproduces a part

of figure 4 with certain modifications.

As shown in figure 5 the vector K. points from P (x p ,yp ,0)	 to

the observation point Q (X,Y,z) which is held fixed while the derivatives

are taken. The distance PQ is denoted by p. The various components of

vector KZ are as follows.

2	 7.	 L
V2-

P) + (Y Vf') + ?- ]_Q

and

Kzn -^

	

KZY = '

	

-

K z z =

taking the partials of these components, noting that X,Y,z are parameters

(held fixed) and not functions of x p and yp , we find:

Kzx	
I-
 ` x-Xp^ (\ x-AP) 'aX 7-z

	

P	 P

l 
z	

-4'
Z

-z
_7,p) +^Y- YP) Z 	 2 C^-XP)C -^

+^X -xFJ2

7	 KxP --'	 ^,
-K	 (43)zx	 C	 Zx )
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Since K I is a unit vector, we can write

^.	 2
Kzx2	 K-zq + K z.4 1

Also from the third line of equation (42), we have

	

-Kzz
	 (45)

Using equations (44) and l45% equation (43) becomes:

ZX	 l	 z	 Z e

J

0r

Kz
Z. 

r -	 z	 +	 Z/K2yz K

All the other derivatives of K components can be evaluated in this

way to give:

,K^x - 

-Kz' CKZ 2 
K xzt	 Kzxp =	

4^ 
Kzu ^ z

	

Y	 ^	 Y

(44)

(46)

Xp	 Kz^

KzY - z 
K zx 11

X,p	 2a
K	

K
z^ _	 Kz. x Kq

Kip _- K IB	 z/ K	 ^ K z
Z/ - ?— l ax	 z^-)

(47)

K 
y w K z^

> 	 _	 Kzy Kza
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Substitution of the appropriate expressions from equation (47) back

into equations (39) and (40) provides the criteria for fringe localization.

K2y + Kzz 51 f X +	 . K Z , Kzy -^y 5

I	 -BS18S =Q+	 Kzx Kz

^,TLZZL K zx K q^ '5 + r 1 K̂  ^ ( K, + K z^ s -^'L	 ^	
Y

 J

+ Kza K zj K2  -^ S d s= Q

Here the subscript, 1, has been introduced to emphasize that z l is

the z coordinate of the point of localization alon q the ray in question.

Such localization tends to form near steep gradients of refractive index.

These equations (48) and (49) relate the surface of frinqe localiza-

tion to the distribution of refractive index change and the geometry of

the hologra p hic system.

In the above equations the distance s, is the distance from P to Q

along the ray whose specific length we seek. If this distance s is

measured from the diffuser, in figures 4 and 5, that is the plane z=o then

4
(48)

(49)

(50)
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Incidentally recalling equation (45) we see that

Kzx - S

and one value of s is the directed distance PQ .

Expanding equations (48) with substitution of equation (50) we have:

Xd5	
K z2 K Z y z + K zc^z/ K ^ x d5 + .o Kz2 Kz 9 K21-1 t Y K ^s
zz	 t	 z a	 3,, o 2.t	 z

-E K zx K zL ^^ - d5 -`U
Kzx

(Kz,z
+ Kzzz) a^ x ds +	 KZxKz P F- J5

+I
-ID

L 	 I Kzx K z a	 4s =
Fk

Transposing

x is
ôo =

(
Z Z -^ x ds+	 K7	 ^ ŷ ds +	 X z Ks

3,
Crossmultiplying^, x^ S	 and performing the same operations

on equation (49) we have:

3°° L`KzY Z+Kz ^ Z ^^ X- k zx K z y-^ y- K zx K za -fi^z d5

L  x

x	 Z	 Z	 y
K ZA K2Y	+ CK zx + KZY 1	 - KZY K ee -F	 cis

_	
/" INO

-^	 „^, ^ y J,5

i

(51)

(52)
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This is the general localization criteria which is referenced to the

coordinate frame in the plane of the diffuser. Once a specific field of

refractive index, f(x,y,z), has been substituted into equations (51) and

(52), each equation represents a surface in the object space. The inter-

section of these surfaces is the curve of localization. The curve of

localization is the locus of all points of fringe localization when the

entire object field is viewed in a single observation direction, -K Z	 (If

the object field is relatively wide this may require the use of a telecentric

telescope, consisting of two lenses separated by a distance equal to the sum

of their focal lengths, and having a small aperture at the center of the

focal plane between them.)

(It should also be noted that if one wishes to write the equation of a

surface or curve of localization in the (X,Y,z) coordinate system of figure

4, the following transformation must be made.)

K ze

K2^

Insight into the significance of the localization condition can be

gained by considering the case in which the interferogram is viewed along

the z axis. In this case K Z . K and equations ( 51 ) and (52) become

(53)
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t

and

(54)

Thus in this perspective, directed along the z axis, the fringes

localized where the first moments of f  and fy vanish, that is where the

rate of change of the gradients in the x and y direction is zero.

The question now arises: Can this interpretation be extended to

arbitrary viewing directions? Of course it can because the orientation of

the original (x,y,z) coordinate axes is arbitrary. However once the

coordinate axes are fixed, the equations can still be written in a compact

form in terms of Pf for an arbitrary viewing direction K Z . To do so, we
n	 n	 n

introduce two unit vectors K h and K. which are the projections of t and
respectively onto the observation plane which is normal to K.. The

A	 ^.
vector K h , is normal to KZ , is a unit vector, and is coplanar with KZ

n
and c

A rK h - K z =0
	

(55)

^K h 1= 1	 (56)

K h • KZ i =
	

(57)

Similarly, Kv is normal to K2 , is a unit vector, and is coplanar with

K7-  and

1

i
:I
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K V ° K z '=
	

(58)

I 	 = 1	 (59)

^„

Kv K2 I = 0	 (60)

The solution of these equations is

^n
- L K Zy 2 KZ	 -- j K Z ,- K 21 - K kzxKz^

h	 z	 z \ 	 ( 61)CKz y +K Z a J -

^	 n	 1
K - -^ KznKz

Y + ^ CKzx T^L Z
L
 g' -i K zy K za	 (62)

Z	
'L

v	 IKZx + Kz^ 
Z 
\i

Comparison of the com ponents of K h with the coefficients in the numerator

of equation (51) indicates that the first localization condition can be

written as

2	 ram

= CK Z +
KZZ.Z 

—f— K n ' 7^ i c
4(63)

11.

However

Z = KZZ S	 (64)

i = K z^ ^S	 (65)

so

1	 }ro

K ZBZ^K, + Kz^^)^,zJv, Kh'^^ S ^ s 	(66)

K zal ^xds
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Finally, we note that

\'/
(KZ1Z-^xz^ 

2

K zz K h x _^, K r, '	 -^ s ^s
	 (67)

f{ -^ X
 
As

K Z z Kvy ^^ K„ • V s d5 _-	 (68)

.f
♦oo

-^ Y d s
In summary, equations (51) and (52) are the solutions of the forward

K hx =

problem of fringe localization. For a given f(x,y,z) they describe the

curve of fringe localization. These two equations can also be written in

the more compact, but not necessarily more convenient form of equations (67)

and (68).

so

and

E
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SECTION IV (Continued)

Investigations into the Reconstruction; of Refractive Index Distribution -
The Inverse Problem - Frin4e Analvsis

We have presented a detailed discussion of the forward problem. This

process carried us figuratively from inside the phase object out to the

hologram and the effects of the phase object determined the pattern of the

fringes in the subsequent interferogram.

The problem to be addressed here is the inverse of the forward problem

and this process attempts to take us back in time, as it were. That is we

must take what the interferogram has to offer and walk, figuratively, back

through the holographic process and Seek to determine what refractive index

distribution of a phase object could have existed to cause or create our

given interferogram.

We will see that in the general asymmetric case this is indeed a

formidable problem. We will, however, present, sometimes only in outline

form, what represents the current state of existing knowledge on the subject.

Much of this section is drawn from various sources and as such will be

appropriately referenced. The basis for most of this section closely

follows that of C. M. Vest of University of Michigan, which was done, for

this project, under a consultant arrangement by Vest with the TAI Corporation.

Inversion Techniques)

The pathlength change AO for an interferogram can be evaluated, as

shown earlier by use of

.pct (A, y) _ , ^n(x,V,z) - n o] dz = Na	 (68a)

This equation must then be inverted to determine [n(x,y,z) - n ol . The

degree of complexity involved in the required inversion depends on the
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geometry of the holographic arrangement used, as shown earlier, but

depends primarily on the structure of the phase object. In practice we

are generally confronted with three cases.

(1) Two-dimensional phase objects, with no variation in the z

direction (direction of propagation).

(2) Radially symmetric phase objects.

(3) Asymmetric phase objects.

Each of these will be discussed in turn.

Two-Dimensional Phase Objects

Inversion of the above equation for this type of phase object structure

is relatively simple. Consider that the phase object of interest has a

length, L, in the direction of propagation of the illumination wave and let

this be along the z axis of a rectangular Cartesian coordinate system. The
change in refractive index to be determined by inversion is then only a

function of x and y. In this case the above equation becomes

(^ l
N Cx ,^^ ^ -J Ch^x^y,^^-no^ d^-

[A (x ' Y) 2) — n o1 L
therefore

,A r)== n(x,y,^) —no^ = N (x'y) X
L

This relation, though simple to determine, is often quite useful

because flow around airfoils, temperature distributions near long heated

cylinders and many other structures encountered in practice are two-dimen-

sional or approximately two-dimensional.

I

(68b)
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Radially Symmetric Phase Objects

This particular structure is quite commonly encountered in investiga-

tions of flow around cones, jets, thermal plumes, flames, plasma arcs, and

manv other practical situations. We have mentioned it in a previous

section and we will use it again, in connection with analysis of original

experimental data, in the next section.

Objects of this structure may be either spherical, cylindrical or

cubic etc., dependent on how we orient them with respect to the propagation

axis. In either case its refractive index is a function of radius only.

For convenience let

^(r) = n ( r) — nn

Figure 2, of the background subsection of this section depicts an

optical ray traveling in the z direction through a radially symmetric

phase object. Since

^^ = d CY L- x Z^'Z t ^r2 -xZ^ , 12- r dr
equation (68a) becomes

N e')() 	 Zf Cr? xZ^'^
X

In order to conveniently treat equation (69) we must assume that the

phase object decays smoothly to zero at large radius, and has no included

discontinuities. However many phase objects encountered in practice behave

this way and the constraint is acceptable. It is convenient to rewrite

equation (69) as

(69)
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^1r^ r ^r

C r z Xz ) Y2.

x

The right-hand side of equation (70) is the Abel transform of f(r)

The inversion formula for this is well-known, it can be derived by

classical methods 2 or more conveniently by transform methods 3 . It is

given by

Tr	 (xZ_r2)^2r
From this we observe that an interferogram of a radially symmetric

phase object displays contours of constant value of the Abel transform of

n(r) - no.

In the analysis of interferometric data the fringe order number, N(x)

is known only at a finite number of discrete locations and must be inverted

numerically. Various inversion schemes can be used and must be based on

either equations (70) or (71). Our first approach is to consider that the

phase object is divided into a specific number, I, of discrete annular

zones or elements of constant width, .fir, as shown in figure 6. The

objective is to determine I discrete values of f(r) from data consist-

in q of I discrete values of N(x). To solidify what is actuall y happening

observe figure 6 and consider that the interferogram furnishes the discrete

values of the fringe order number for the position along the positive x

axis of figure 6. Our impending analysis will determine the discrete values

of f(r) from data for N(x) along this direction and for the I values of

the annular elements. Since the structure is radially symmetric we can in
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effect rotate those values of f(r) so determined through 27r about the

y axis to fully generate the required concentric annular zones of values

of f(r).

Inversion methods based on approximating equation ( 70) lead to a system

of algebraic equations which must be solved. We consider that each annular

element has a uniform refractive index. The index of each annular element

is also discrete from that of its neighbor elements, yet it is considered

to be so closely matched that a smooth transition occurs with no real

discontinuity being present. Let f i denote the value of n - n o for the

element ri < r < ri+1 , where ri = i ' Ar	 (This provides for the final

summation of the radial position.)

With this approximation equation (70) becomes

7-^ J n rK+ir  
	 (72)

I`t	 TK	 (r? r̀  Z1^z
K = i	 rK	 /

The integral in equation (72) has the value

rK+( - Y^
t Z) t/ ^I Kz - ^ i211/2n ^^	 2-iZ^ ^2 - /Kz-1z`^72

Y	 Y

K=i

So
-1

	

A	 (73)
AKjx 2Ar ^ i

K-i
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Where the coefficients A ki	 are

A KA _ [(K+1)L—LZ1 

y 

Z—^KZ L̂  
I
/
z
	

(74)

Equation (73) represents a set of simultaneous algebraic equations which

must be solved for the unknown values of f  . The solution is reduced in

complication since the coefficients A ki	 form a matrix of lower

triangular form, so that

?,_	 n
Z A  ^(T- 1)

-A

Z QY ^(z-2) - A (T-Z)^(I -Z) '(z-z; + ^(z • .1^ ^^-Z^ ^^I-1^

`'	
= A C r- 3) 3

z AY- (r-3)	 ,^-) (r-3) + A«-=),^T-3) r Cx-z)

+ A^1-1)1(Z-.3,) ^CX-'t)

The outermost element, see figure 5, is located so that f  = 0. Each

value of f should be calculated in sequence starting at the outer radius

and working towards the center, The coefficients given by equation (74) have

been computed and tabulated by Hauf and Grigull 4 up to I=25.

Alternative inversion schemes can be developed by using more complex

representations of	 f(r)	 : each different representation yields a

different set of coefficients Aki for use in	 equation	 (73)	 [ref.	 5-17].
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To summarize, many methods_are available, all based on the numerical

approximation of equations (70) and (7I), for the analysis of the interfero-

grams of radially symmetric prase objects. The best method for any specific

application is, of course, dependent on the phase object structure,

orientation, data accuracy and data point density. A study by Kulagin17

suggests that the method of Nestor and Olsen 10 is the best general purpose

method and can be expected to give reasonable accuracy and have low sensi-

tivity to errors in the data. The safest procedure is to try several

methods with known functions f(r) similar to the one expected to be

measured, and to compare the methods with regard to accuracy and sensitivity

-to random errors in the data.

Asymmetric Phase Objects

Determination of an asymmetric refractive index distribution requires

analysis of a large number of interferograms, each recorded from a different

viewing direction. Holographic interferometry is ideally suited for

recording such data, which is termed multi-directional interferometric

data. However the determination of the necessary refractive index dis-

tribution from such data is at best a most complicated effort. Even though

this subject has been investigated only recently there are many approaches

to various inversion schemes. One fact stands out as common to most of

the inversion techniques and that is the role of still another transform,

the Radon transform. An interferogram of an asymmetric phase object dis-

plays contours of constant value of the Radon transform of n(r,¢) - n o .

So we see that the Radon transform plays the same role for asymmetric

ti
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inversion that the Abel transform plays for the radially symmetric

inve rsion.

Various inversion methods are treated in the literature in references

18 through 34.

In this section we intend only to provide an outline of the analysis

of the inverse problem of fringe localization for the asymmetric phase

object. We classify it in two forms: First it is given in the spatial

domain. In this case the objective is to derive a set of algebraic equa-

tions which directly relates the unknown refractive index to measured

values of fringe localization. Second, the problem is considered by using

the Fourier transform, because this approach is so useful for the Analysis

of reconstruction from fringe order data. In each approach, we first

review the corresponding analysis of reconstruction from fringe order data.

Spatial Domain

'Reconstruction from Pathlength Measurements

Consider that the refractive index of an asymmetric phase object is

given by n ( x,y,z) - n o .	 We address the p roblem of determining this

distribution in a particular plane z = constant. In this plane the

refractive index can be denoted in Cartesian coordinates by

f( x , y ) = n(x,y ) - no	 (75)

and in cyiindrical coordinates as

f(r,^) = n(r,o) - n0	 (76)

both represent the same physical distribution in two different coordinate

systems, Figure 7 provides the notation for data recorded in a particular
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viewing direction. Using this notation the expression for optical path-

length difference is

(r
rc
^w

N ^ P ^ B^-A=ff P C r ,	 S	 r sin( -$^]dX^^r
_0

0 specifies the given observation direction and N(P,^) is the fringe

order data read from the interferogram in the manner discussed throughout

this section. 6 is the Dirac delta function so the integral on the

right-hand side equation (77) represents the line integral of f(r,^)

along a straight ray passing through the phase object. The limits as

before assume that the phase object decays smoothly to zero at the edges

of the field. The right-hand side of equation (77) is the two dimens ,)nal

Radon transform of f(r,^) 18. The inverse of equation (77) is

= X
	 ^NAP JP

Z7 S Y.
 
r s	 p^n(O—e)—

_ 	 -cod:$
z

This inversion was given by Berry and Gibbs 19 and is a special case of the

inverse Radon transform discussed in references 18 through 23.

T.nterferometric data consisting of a set of measured values of fringe

order number N(P,O)	 must be inverted numerically. Inversion schemes

can be based on numerical approximations of either equation (77) or (78).

Methods based on approximating equation (78) lead to a system of algebraic

equations which must be solved. To this end consider the region occupied

by the phase object to be divided into discrete rectangular elements of

dimension :fix by 	 ^Y , where from figure 8,

(77)

(78)
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AX _ x-	 ^'
- M +1. ' Q^ N1

Consider that each rectangular element has a uniform index of refraction.

Let fk denote the value of refractive index change of the element

centered on the point x = mAx , and y = nay 	 where m and n are

integers. The subscript k is related to m,n by

K - n (M+11 +m +

Let the fringe order number Ni	 be associated with the i th ray travers-

ing the phase object. This ray is specified by the coordinates P,(D . If

Aki	 denotes the length of the segment of the i th ray which lies in the

kth element, the total optical pathlength difference for the i th ray is

given by

	

A F =	 ^(Ke1	 K	 K

Where K=(M+1)(N+1) is the total number of elements. Equation (80) is a

finite sum approximation to equation (77). The coefficients can be deter-

mined geometrically 24 as:	 Aki=

ax sec	 r b^ ` y Z
7

anA `fan ®1 < a

A x _tan6( -^ AL
1	 +p	 SeGf^	 -^ur 1 6( ^	 z

`	 anA , fan 8, > ^^(
A 

f

(79)

(80)
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sec	 Ax ^^an6^ + o I -	 ^' or 	 Ay -^X ^tanAI	
b

2	 1bI	 2	 I I
pc[+Ax^fan8^_ s2

oy	 ^o r c^

	
A-' an d ^-tano(= ^

0
	 z

0
	

^or Icl > X and ^tar+9^ _°°

W here.

6= P see, 6 * m ,&X-Ln 6 - n Ay

and

P - rvr 4 x ^a r 8 = 2
C=

P + rn
	

^-'^r 8 = 2
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If the number I of pathlength measurements is equal to the number of

elements K, a system of K linear algebraic equations of the form of equa-

tion (80) can be generated and solved for K unknown values f k. This

approach to the analysis of holographic interferograms was introduced by

Alwang et. al.25

' Reconstruction from Localization Data

Earlier the equations describing fringe localization in holographic

interferograms of diffusely-illuminated transparent media were derived in

detail. We repeat the result of that discussion here in a notation convenient

for the present discussion. We assume that the region of interest lies in

the xy plane. Furthermore, we assume that the viewing telescope has a slit

aperture oriented parallel to this plane; then a single equation will govern

localization:

(81)

y

The denominator of equation (81) can be evaluated from the interference

pattern formed by rays traveling in the x' direction:

"a ^,d x' = d ,f dx=	 dN^	 (82)

Since N is fringe order, dN/dy' 	 where yf is the local fringe

_ — _—
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spacing. If the subscript i denotes the i th ray as in figure 9 it is

convenient to introduce the quantity

'4
	(83)

	

?I
5 ^ =	 x" y^'^

The quantity g  is the product of the wavelength and localization position

divided by the fringe spacing. This will serve as the data from which the

refractive index change f(x,y) is to be reconstructed.

We now must approximate the integral equation

Using the notation of the preceding subsection, this can be written as

	

' P K	 (85)

Ks i	 y	 J

where

i	
K -1

B z(	 -1)
K 	 j-1	

9 c Z	 jc

It is assumed that f = U outside the region of interest. Now we introduce

	

a finite difference approximation for af k/3y'	 after noting that

	

C os	 ^^ Sz n e
Y	 Y

For all interior nodes a central difference approximation can be used:

^ _ ^rr,3i, n T^-1 n	 COS 8  -4-	

Z
^rn,n+ I ^,,^,^, n-1

	

Z flX	 Siner	 A x
If an element lies on the boundary, the central difference cannot be used;

it must be replaced by an appropriate forward or backward difference.
P

4	
Equations (83)-(85) together with the preceding definition of Aki

e
13
1
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constitute a set of linear equations which can in principle be solved for

the K values of fk.

In practice this procedure may be difficult to implement because it

involves using data which are likely to have a rather high degree of

uncertainty, and because it involves finite difference approximations to

derivatives in the definition of B ki and in the evaluation of the deriva-

tive of fringe order. It may be that these equations can best be used as

ancillary equations to those discussed in the preceeding subsection, that

is as a way of increasing the number of available linearly-independent

equations. Solving both the optical pathlength and fringe localization

equations together might be particularly helpful when the range of viewing

angles is small, as it is likely to be in the subject experiments.

Fourier Transform Domain

*Reconstruction from Pathlength Measurements

Here we review the Central Section Theorem, which provides one of the

most fruitful ways to consider the reconstruction problem. In the notation

of figure 10,fringe order number is related to f(x,y) as

The one-dimensional Fourier transform of N(y') is

s	 r,^C 

(88)

(89)
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Now note the definition of the two-dimensional transform of (f(x,y):

- ^21j 0Ax4VY)

	

^= ^u, V^ a ff ^ (X ) y)	 dx d 
Y	

(90)

Clearly,

,1 )	 N (y') = 1	 C o y y ')	 (91)

i.e., the one-dimensional transform of fringe order data read from an

interferogram yields the values of the two-dimensional transform of f (x,y)

along a radial line, u' = 0 in the transform plane. This result, known

as the Central Section Theorem is the basis of Fourier reconstruction

methods. Clearly if we build up the transform along a large number of

radial lines in the transform plane we can then take an inverse Fourier

transform to reconstruct f (x,y).

'Reconstruction from Localization Data

Here we ask the question, what is the analog of the Central Section

Theorem for localization data? Given

Cbo	 (92)
fx , ^^, dx ►

ay

The two-dimensional Fourier transform of the integral is

2 X, aye = -	 ^U' (93)

The one-dimensional transform of g(y') is

q {^^^ 1	 Cyr) e -L 2 I V'^J dv ^	 (94)

I
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Hence we have the result

1
	 9^1	 u o

	 (95)

Even though this result is simple in form, we have not been able to

deduce a reconstruction algorithm from it. One may not exist. Clearly

it could play a useful role in conjunction with Fourier reconstruction

from pathlength data in the following manner. The Central Section Theorem

applied to interferometric data leads to known values of the Fourier trans-

form along discrete radial lines. To use fast Fourier transform codes on

the computer the values must be known on a rectangular grid of points.

Hence it is necessary to interpolate fro m, one format to the other. Thy

derivatives of the transform given by equation (95), if accurate, would be

useful for this interpolation.

r

i
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SECTION IV (Continued)

Some Tentative Conclusions on Reconstruction of f(r) from Asymmetric Phase
ObJects

i. There are cases in which the refractive index field cannot be

reconstructed from localization data alone. An obvious example is a

radially symmetric field; in this case fringes localize in the center plane

for all viewing directions. This does not provide sufficient data for

reconstruction.

ii. For the general case it is possible to formulate a linear algebraic

set of equations which relate refractive index to measured values of

localization position. As far as we can discern at this point in time

these can in principle be used to reconstruct the refractive index field,

except in special cases. In any event, these equations increase the

information available. For example if the localization methods are accurate,

these equations could be combined with the reconstruction equations based

on fringe order. This yields greater redundancy and should improve the

accuracy of reconstruction, especially when only limited viewing angles are

available.

iii. If Fourier reconstruction methods are used to invert fringe order

data, fringe localization data in principle provides useful information for

improving the accuracy on interpolation in the transform plane.

iv. Localization data could be used for iterative reconstruction from

fringe order data. That is, at each step one could calculate the fringe

localization position based on the reconstructed field and check for agree-

ment with measured values of localization position.

86



v. The phenomenon of fringe localization is always useful in the

sense that it discloses symmetries of the field, assists the viewer in

locating the field in space, and helps one to form a qualitative impression

of the structure of the field.
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SECTION V

QUANTITATIVE APPLICATION OF FRINGE LOCALIZATION AND INVERSION PROCESS
THEORY TO T PRACTICAL EXAMPLE IN A TRANSPARENT MEDIUM

It is the objective of this section to discuss various applications

of the theory presented in the last section. We provide a detailed dis-

cussion of the application of the theory of fringe localization (forward

problem) to the special, practical case of a radially symmetric field

with two refractive index variations. We then provide confirmation of

this theoretical result using original experimentation from the simulated

ROSS system. We further present several other original experiments, using

the HOSS system, along with results and analysis of their data. Finally,

we provide a collection, or recoup, of the conceptual theory to fix

ideas, and provide a simplified computer code for analysis or inversion

of data from the radially symmetric field using 9835A BASIC, with detailed

instructions for implementation.
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A Specific Application of the Theory of Fringe Localization

As shown earlier in Section IV, the optical pathlength difference

for a radially symmetric field is:	 R	
c^ ,-^(r^2

(r

where x is normal to both the axis of symmetry and the viewing direction.

We have indicated earlier that the fringes localize where the moment of

the gradi7:nt of f (r) normal to the viewing direction vanishes, and for

the radially symmetric phase object, the fringes will localize in the

center plane of the object field. This is illustrated by original ex-

perimentation using the simulated ROSS system presented later in this

section.

For the moment, let's pursue the details of an hypothetical ex-

periment with regard to prediction of fringe localization. Then we will

produce the results of a similar experiment which supports our theoretical

conclusions.

Consider two radially symmetric phase objects,which are plumes of

heated water above small, identical electrical heating elements. This

experimental situation is displayed schematically in figure 1. Our view-

ing direction is along k 2 , so that the optical axis passes diametrically

through both heating elements. Because of symmetry, the moments of the

gradient normal to the viewing direction vanish in the plane midway be-

tween the two objects. If our viewing direction is along, say k 2 ' of

figure 1, then again because of symmetry, the fringes due to each phase

object independently will separately localize in their respective center

planes.
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Let's assume that the radial distribution of refractive index change of

our plumes of heated water is Gaussian. Then our plume (phase object)

which is centered at Z = Zo l , has a refractive index distribution fz(rl),

given by

r z	 (1)

(^ ^ - 
^',

^ eX P ^ o^^
Similarly for our second plume, which is centered at Z = Z 02 , has a re-

fractive index distribution f 2 (r 2 ), given by

/

)7*]	 (2}r,

^oz exP C^l1-1

where fo l , and foe represent the maximum value of refractive index and

r oi and roz are the characteristic radii of the respective plumes of

heated water, i.e., phase objects.

Recall from Section IV that the equations of fringe localization for

an interferogram viewed along the z axis, where kz = k, are given by

and

In our case where we view our interferogram along the z direction, 'ocali-

zation is determined by the use of the first one of the two localization

equations above. The second equatis-1 is not used since fy = 0 for our

case.
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Further, recall that in our notation of Section IV f y = of/ax. We

then must first evaluate the gradient of our refractive index distribution.

 
os^	 exP _ Xz}C^z^o1^Z

rot

x 4 (9
^ ^o 2 eXP -	 r 2

oz

2

_ — 2 x	 ex PI 
X2 	 Ro, yzdosC Yoe	 ro

	

^zX 
ffoz	

exp	 x'+	 z 
oZ'z

	

roe	 rb z

^x — 2x ^olZ eXP X^+(^ Z ^ 	 2XP — xZ+ ^̀ — ^QLi (3)
Y	 \ -7	 Z	 J01	 of	 oz	 o a

Substitution of equation (3) into the first of the localization integrals

and evaluation of this integral equation produces the equation of the sur-

face of localization, i.e.

Z^ =

(r^ 

^P Lr t^

	

^ ^X ^^ To2	 X ,^r Z exp -`roe/ } 
Y z exP-(r---

°^	 02	 ^ oz/

3
o^ 11

° ► l r'/exp[-fA 
Yoi).

(4)
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In our case roi = r 02 and fo l = fo 2 , and

C	 1	 x	 ^o ► 	 x
poi ^Y { e L roi + X02 ^'o1Z 

exP L roz,

n ► 5
rp ^ Z e^ P o^Z + r cmp - i

D^	 o^

and the surface of localization for our case becomes

(6)

=	 +
2

Using the simulated ROSS System, described earlier in Section III,

we performed an experiment, designed as closely a <_ possible to comply with

the characteristics of the above described hypothetical experiment. (A

similar, but separate, experiment has been presented and described

qualitatively in Section III.) Presented below are some of the results

of this experiment which are offered in support of the theoretical find-

ings on fringe localization.

Double exposure holograms of two heating elements were taken as

shown in Fig. 1.	 In the construction, the straight line bisecting the

centers of the heating elements was normal to the plane of the diffuser

yielding a hologram which showed the elements located "on-axis" in the

object beam. The distances used were Z ol = 0.5 in (1.3cm) and Z 02 =

3.5in (8.9cm) = distance to plane b. The distance to plane a may,

therefore, be calculated from Equation 6 to be Z1 = 2in(5.lcm).

Upon reconstruction of the holograms, photographs of the real
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images as projected using a }4 " x 2" vertical slit in the collimated re-

construction beam are shown in figure 2. The top row of pictures shows

the results of exposing the first half of the double exposure during

the quiescent state, then applying power to the heating elements for 30

seconds. Immediately after this 30 seconds of heat, the second half of

the exposure was token, The bottom row was taken with a 60 second delay

between "heat off" and tie second half exposure. The right-hand column

of photos shows the image in plane b while the left-hand column displays

plane a which is the plane of localization as predicted by Equation 6.
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A Presentation of Several Experiments Using The Simulated HOSS System

With Quantitative Data Analysis..

On obtaining an interferogram where the fringes are due only to a

single radially symmetric disturbance, and with a temperature of the

test cell, the index of refraction and thus the temperature (or vice

versa) within the disturbance can be calculated in two ways. The first

way is a quick way of determining the average temperature over a specific

region of the disturbance. The second method (already presented in

theory of Section IV), generates a reasonably detailed map of refractive

index and temperature of a cross section taken through the disturbance.

In order to present the first of these methods, attention is di-

rected to figure 3 which presents an interferogram of a doubly exposed

hologram which has employed a diffuser in the object beam. The phase

object is a plume of heated water rising from a heater element during

the second exposure and has a temperature probe positioned in the plume

as shown. We seek to determine the average temperature in the region

of the temperature probe tip. The depth of the test cell (along the

object beam) was 10cm.

This method of analysis uses the concept of zeroth order fringe (ZF)

discussed in Section II.

As the heater element is turned on, between the exposures, the water

in the entire test cell begins to slowly heat up from the top down to the

bottom. This results in background fringes and provides us with the
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zeroth order fringe. We wish to calculate the temperature on the left - and

right-hand sides of the temperature probe.

From figure 3 there are only two bright fringes from the bottom up

to the level of the temperature probe tip. This

calculations of the temperature at the left-hand

due to its level in the water bath. We call thi

side of the temperature probe and the right-hand

tively. In this way we reference to its position

10 cm for test cell depth and X = 514.5 nm in

N^^n p s
we find for the outside

An= I x105

provides information for

side of temperature probe

left-hand side the out-

side the inside respec-

in the plume.. Usings =

From CRC tables for water at approximately 20 0C a An of 1x10-5 corresponds

to a AT of 0.1 0C. Since the ambient temperature of the water bath after

the first exposure and prior to heating was 20.2 0C, then the temperature

at the outside edge is

20.30 C = ambient temperature + AT

Because the sensor tip of the temperature probe was relatively large

(4mm), it senses an average of the temperature across it. We must now

determine the temperature of the inside edge of the probe.

On counting the fringes from left to right across the tip of the

probe, figure 3, we find N = 4. Again, using probe diameter of 4mm

^! A
on = s = 

q
4?,

 o =S.dM10
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From CRC tables a An of 5x10- 4 corresponds to a AT of 5.30 C and -the

temperature at the inside of the temperature probe is

25.60C = outside temperature + 5.30C

The average temperature across the probe is then

20.30 C + 25.6 0 C -. =- 23.OoC

The temperature reading for this position sensed by the probe was

22. 50C.

We will now address the second, more detailed method and we will em-

ploy this method to the analysis of two distinctly different experimental

techniques of recording basically the same phenomenon. In one of these

experiments we employ a single exposure hologram and a single heater ele-

ment with no diffuser. This constitutes use of a collimated light source

and classical interferometer for fringe production. In the second ex-

periment, everything remained the same except we employed a double ex-

posure hologram with the diffuser in the object beam and utilized localized

fringes. We describe and analyze the single exposure hologram experiment

first.

A collimated beam of 514.5 nm radiation was incident (without diffuser)

on the test cell of water after a single heater element had been turned on

for thirty (30) seconds to create a radially symmetric disturbance as the

phase object. A temperature probe was located in the center of the heat

plume to provide a reference temperature determination. The ambient

temperature was 22.O o C and the temperature reading at the time of exposure

was 33.40C.
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The hologram was processed and replaced in position to generate an

interferogram using the simulated HOBS system shown in figure (12) ;section

III. The interferogram so generated is shown in figure 3, which labels

the cross section under investigation.cross section number 1. This

cross section was analyzed using the Abel inversion 'technique already

described in Section IV under Invrprsion Techniques.

Using this technique, a computer code called "RINDEP , was produced

which was a prototype of that code offered for analysis at the end of

this section. This program provides for the mapping of refractive index

and temperature from interferometric fringe data.

The basics of the analysis procedure is to first calculate the re-

fractive i-=k:ex of H2O at the ambient temperature of 22.0 0C. This is done

via an expression from reference 1:

n - 1.337253 = - (2.8757T + 0.14825T 2 ) x 10-5

This produced that no = 1.33590.

The An for each region or annulus of the disturbance is calculated

using the equations from Section III for the Abel inversion techniques.

This yields an annular map of the radially symmetric disturbance. The

^n calculated for each sequential annuli in the map, starting from the

outside of the plume and reading in toward the center, are sequentially

added to the calculated value of n o . This yields the absolute index of

refraction, n, for each region of the annular map. The indices of re-

fraction for each region of the map are then converted to temperature

values ( o C) for the map by using the expression above.
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Figure 5 shows an enlarged view of the selected fringe cross section

nu-°_,er 1. Note that the fringe order is negative if the density de-

creases as we go from outside, n o , toward the center of disturbance and

the fringe order is positive if the density increases toward the center.

(The reverse is appropriate for the temperature calculation and our

computer program accounts for this.)

Figure 6 displays a table of the values found for index of refraction

and temperature for the map of the first quadrant of the disturbance.

Figure 7 shows a plot of the temperature versus distance for the

radius of the disturbance.

We now describe and analyze the double exposure hologram experiment,

i.e., the second method. The double exposure experiment had the same

collimated object beam except this time it was incident on a diffuser

platE. The temperature probe was at a slightly different position in

the radially symmetric disturbance. The first exposure was at ambient

conditions with a temperature of 21.4 0C. A single heater element was

again turned on for thirty (30) seconds and a second exposure was re-

corded. The temperature probe reading at the time of the second ex-

posure was 32.20C.

The doubly exposed hologram was processed and the interferogram

produced is shown in figure 8.

processea by the same computer

Figure 9 displays a table of v^

temperature for the map of the

Figure 10 shows a plot of

radius of the disturbance.

The data from this interferogram was

code, RINDEX, in the same way as before.

clues found for index of refraction and

first quadrant of the disturbance.

the temperature versus distance for the
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A Summary of the General Theoretical Concepts Presented and Presentation

of a Useable Computer Code for Analysis.

In order to summarize the general concepts presented thus far on the

theoretical description of fringe localization and inversion of fringe

data we once again direct attention to the radially symmetric phase object.

Consider the interpretation of a diffusely illuminated holographic

interferogram of a radially symmetric phase object. To fix ideas, examine

figurell.	 Light is scattered by an input diffuser through a transparent

fluid medium which has a homogeneous refractive index, no, at the time of

the initial holographic exposure, A phase object, for example a thermal

plume or a mass diffusion boundary layer, is then introduced and examined

by either real-time or double exposure holographic interferometry. This

object is assumed to be symmetrical about an axis, which for convenience,

is assumed to be vertical. We now address the question of how the

refractive index, n(r), of this field can be determined from the fringe

pattern. Here, r, is the radial coordinate measured from the centerline

of symmetry.

Recall that two types of information are available from the inter-

ferogram.

(1) Fringe number, position and spacing.

(2) Fringe localization.

To determine the role of fringe localization in this case, assume that we

view the object field (through the hologram) along the direction k2,

parallel to the z axis. Now consider the solution of the "forward

problem" which has been derived in Section IV and above in its simplest

form as
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These equations were interpreted as indicating that fringes localize where

the first moments of the refractive index distribution, f  and fy , normal

to the z direction ( direction of propagation) vanish. In the radially

symmetric case if our viewing direction, k2 , lies in the xz plane, the

numerators of the above fringe localization equations will vanish because

of symmetry, if the origin is located along the axis of symmetry as shown

in figure 12. Therefore the fringes for this case will localize in the

center plane of the object field. The orientaton of the xz coordinates

is arbitrary, so this conclusion will be valid if we use any other viewing

direction k2	 in the xz plane, as shown in figure 12. We therefore

conclude that for radially symmetric phase objects the fringes will

localize in the center plane of symmetry normal to any viewing direction

k 2 which is normal to the axis of symmetry.

Now let us determine what this result implies for the "inverse

problem". In Section IV this was approached in two ways: by finite

differences in the spatial domain, and analytically in the Fourier

transform domain. First consider the latter. The data, g(y') as was

given in Section IV is
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C ^^\ _	 xr c^ r All9 ) .f	 a

where x' is along the viewing direction and y' is normal to it. We

have shown above that this is a constant for any given viewing direction

i.e., fringes localize in a plane orthogonal to the viewing direction.

When we use this fact in

u,o

of Section IV, the result simply indicates that the transform is radially

symmetric. This result is correct, but it does not contribute a

reconstruction.

Similarly the spatial domain formulation leads to ^. at of algebraic

equations which, from Section IV, we can represent as

K

K=t

where the coefficients C ki are determined by geometry and the finite

difference representation of derivatives of f = n - no, f  are the

unknown values of f, and g i are the data of fringe localization

defined by

5L
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from Section IV. For simplicity, assume that we locate our coordinate

origin at the axis of symmetry of the phase object. In this case

g i = 0, and the above equation will be homogeneous. Since there are no

unknown parameters to serve as eigenvalues, this set will have no

solutions. Again, the localization data cannot be inverted to determine

n(r). We conclude that:

'The role of fringe localization in the case of radially symmetric

phase objects is to disclose whether or not the phase object does indeed

have radial symmetry. Radial symmetry is assured if, as the observer

changes viewing direction about an axis, he observes that the fringes

always localize in a plane which contains that axis and is normal to the

viewing direction.

'6y symmetry, the fringe pattern will be the same in any localiza-

tion plane.

'Once radial symmetry is recognized by the localization effect,

f(r) can be reconstructed by use of the Abel inversion technique to

interpret fringe order data.
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^i

Inversion of Fringe Order Data
i

This section includes a listing of computer code, written in Hewlett

Packard 9835, BASIC, which enables the user to interpret fringes formed

by holographic interferometry of a radially symmetric transparent object

field. Given the fringe pattern, the refractive index as a function of

radius is computed. if iifluse illumination is used to form the inter-

ferogram, the analysis applies to the fringe pattern in the plane of

localization. If collimated illumination is used, the analysis applies

to the fringe pattern recorded by a camera focussed on the center plane

of the radially symmetric object.

The computer code presented here is based on the discussion in the

subsection on Inversion Techniques discussed in Section IV of this

report (and applied via a prototype program above). Figure 13 depicts a

fringe pattern and ind i cates the manner in which fringe order would be

assigned to dark and bright fringes if the object has a refractive index

which increases from n o at the periphery to some maximum value at the

center. The numbering scheme, for the fringe order data, would be the

same, but all orders would be negative if the refractive index decreased

toward the center. (In either, case only the sign would be different.)

The objective is to determine f(r) ^ n(r) - n o in the horizontal plane

which contains the line as in figure 13. The data are to be plotted

as shown at the bottom of this figure. Either graphically or by curve

fitting, the operator should fit a smooth curve to the data as indicated.

We assume that we deal with objects for which f(r) goes smoothly to zero

at some maximum radius R.
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To prepare data for the computer program, the x axis is divided

into a number of equal increments or widths Ax, and the values of fringe

orders, N i , are recorded at each point, x(i).	 The number of intervals

to be used cannot be specified by any rule. It depends largely on the

smoothness and amount or density of data. The best approach is to use

some exactly invertable function which is roughly similar to the object

under study and to ascertain accuracy of reconstruction and sensitivity

to data errors as a function of increment size prior to analyzing the

experimental data.

The approximate reconstruction of f(r) is effected by dividing the

region of interest into discrete annular rings or zones of width or

(which is identical to the width Ax of the data intervals along FEY).

Following the detailed development in Section IV, Inversion Techniques,

one can construct a linear system of equations relating the unknown values

of f(r) in each annulus to the discrete values of fringe order N i . The

approximation made in this approach is that f(r) has a uniform value

throughout the annular ring r  < r < ri + 1 . The set of equations can be

denoted symbolically as

=11,21 1
K-^

The coefficients are given by

A	
-[[

[("'1)Z-Lz 1/z- (Kz`zl^/
x^ 	, 	 J
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i

f k is the vector of values of f(r) to be computed, A is the wave-

length of the light employed, or is the increment in radius and N i is	

v
the vector of data values.

The program fully prompts the user at each step. The procedure for

using the program is:

1. Read the instructions which appear on the output device, care-

fully noting that the outermost radius must be one for which fringe

order N = 0.

2. Enter "1" to continue execution.

3. The computer will prompt "How many data points will be entered?"

Enter the total number of data points including both the center of the

field and the outermost radius.

4. The computer will prompt "What is the radius of the outer fringe

(N = 0) in mm?" Enter this value.

5. The computer will prompt "What is the wavelength of light in nm?"

Enter this value in nanometers (e.g. 632.8 for He-Ne light).

6. The computer will prompt "Enter data as requested". It will

then ask for the fringe order at each required radius. The operator enters

each value, as read from the graph in figure 3, when requested.

7. The entered pairs of radius and fringe order are then displayed

on the screen. The operator is asked to review the data, and is given

explicit instructions for correcting any errors in the data and then

continuing.

8. To alleviate operator boredom, the values of the coefficients

Aki are flashed on the screen as they are computed.
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9. The computer will then pause as the system of equations is

solved. The coefficient matrix of this system 'is triangular, so the

solution is by a very simple and fast back substitution.

10. The results are displayed in the format:

	

"at R = 0, F=	 - - - - -	 atR=.2, F=	 -----

	

atR=.3, F=	 -----	 etc."

11. If another data set is to be analyzed, the program is simply

rerun.

The BASIC program accompanying this report is of the simplest form

possible. It can be upgraded easily to carry out more sophisticated Abel

inversion algorithms if desired. Many other algorithms simply require

that more complicated coefficients A ki be used. Some other algorithms

may have better suppression of experimental error; however, if a suffi-

cient amount of smooth, accurate data are available, the accompanying

code should be adequate.

F
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SECTION VI

CONCLUSIONS

The phenomenon of fringe localization plays an important,fundamental

and practical role in the analysis of holographic interferograms of

opaque objects. An understanding of localization is important in all

but the most trivial quantitative analysis of holographic interferometry

in solid mechanics. This phenomenon of fringe localization also plays an

increasingly important role in holographic interferometry of transparent

mediums using diffuse backlighting arrangement. To date, however, its

role in this case has been insufficiently pursued. The analysis carried

out by this effort suggests that there is a potentially important role for

localization in the interpretation of diffuse illumination holographic

interferograms of transparent media.

Information about the structure (that is, the spatial distribution)

of changes of refractive index is displayed in two ways in a holographic

interferogram:

(1) Fringe number, position and spacing,

(2) Fringe localization.

Traditionally, only data of the first kind has been used, however,

the analyses presented in this report indicate that data of the second

kind contain quantitative information about the object field which can

be used in conjunction with fringe order data, or possibly alone, for

the numerical reconstruction of refractive index fields.

It was pointed out in this report that there are two distinct local-

ization problems:
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(1) The Forward Problem: Given a refractive index distribution,

determine the surface in which the fringes appear to localize when viewed

from a specified direction.

(2) The Inverse Problem: Using measurements of fringe localization,

determine the refractive index distribution (or use the measurements to

augment the reconstruction based on fringe number, position, and

spacing).

The forward problem was discussed in Section IV of this report. This

work was basically an expansion, adaptation and clarification of work con-

ducted by C.M. Vest, of the University of Michigan, under contract/

consultant to the TAI Corporation for this purpose. Section IV also con-

tains analysis of the inverse problem. To the best of our knowledge, this

was the first treatment of this problem. It is useful at this point to

review the conclusions of this report:

(1) The solution of the forward problem is given by equations (51)

and ( 52 ) of Section IV. They describe the curve of fringe localization

for a given distribution f (x,y,z) = n (x,y,z) - no, These two equations

can also be written in the more compact, but not necessarily more conven-

ient form of equations (67) and (68) of Section IV.

(2) There are cases in which the refractive index field cannot be

reconstructed from localization data alone. An obvious example is a

radially symmetric field, for which fringes localize in the center plane

for all viewing directions. This does not provide sufficient data for

reconstruction. However, it does provide sufficient data for specific

structure resolution and thereby indicates the inversion technique to
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be employed for reconstruction.

(3) For the general case of asymmetric fields, it is possible to

formulate a linear algebraic set of equations, (see Section IV), which

relate refractive index change to measured values of localization

position. It appears that these can, in principle, be used to recon-

struct refractive index fields, except in special cases. In any event,

they increase the available information and might be combined with the

usual fringe order equations to improve accuracy and error suppression

when only a limited range of viewing angles is available.

(4) If Fourier reconstruction methods are used to invert fringe

order data, fringe localization data, in principle, provide information

for increasing accuracy of interpolation in the transform plane.

(5) Localization data might be used in an iterative reconstruction

scheme. That is, at each step one could calculate the fringe localiza-

tion position based on the field reconstructed from fringe order data and

check for agreement with measured values of localization position.

(6) The phenomenon of fringe localization is always helpful in the

sense that it discloses symmetries of the field, assists the viewer in

locating the field in space, and helps one to form a quantitative im-

pression of the structure of the field.

(7) An exhaustive literature search was performed and the analysis

of this literature is provided in Section II.

(8) The simulated HOSS system,which was constructed during this

effort, was successfully employed to provide the determination of

feasibility and application of localized fringes. Multiple holograms
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of various phase objects were constructed and their data and analysis are

included in this report.
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SECTION VII

RECOMMENDATIONS FOR FURTHER STUDY

This report has treated the problem of localized fringes in the

holographic interferometry of transparent media. In so doing it has

provided solutions to the two specific areas of what is called the

Forward Problem and the Inverse Problem. Treatment of the forward

problem was handled rather generally, but the general equations were

rather complicated. Treatment of the inverse problem, of necessity,

was not as successful for the general case. However, use of the special

but important case of a radially symmetric disturbance did prove to be

successful, and quantitative analysis was performed for this case.

We feel that the general state of knowledge on this subject is

adequately represented in this report. However, we further feel that

this state of knowledge is itself inadequate for the appropriate

realization of the apparent potential that this subject holds for the

investigation of fluid flow visualization. We further feel that the

effort spent on this investigation by the TAI Corporation personnel has

allowed us to specify areas in which further investigation should prove

most beneficial to the appropriate understanding and realization of the

potential of this area of knowledge and its application to the investi-

gation of fluid flow visualization.

Specifically the areas needing further investigation are:

(1) Write the equation for depth of localization and relate it to

fringe spacing.

(2) Computer p rogram for localized formulation.
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(3) Relation of localization to reconstruction theory.

(4) Effects on localization of refraction.

(5) What are the limitations due to fringe resolution.

(6) Difference between real and virtual images.

(7) Investigate absolute localization.

(8) The effect of aperture geometry and orientation on the

extraction of information from localized fringes.

(9) Further effort to attempt the simplification of the general

localization equations.

(10) Pursue other approaches to the solution and simplification

of the general inverse problem.

We wish to thank the NASA for allowing us the opportunity to work

with them on this important problem and wish to request their sincere

consideration of the necessity for performing the further study indicated

above.
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APPENDIX I

Sample Problem

An artificially contrived test problem which can be used to check

the program user procedure is: Maximum radius = 1, No. of data = 11,

Wavelength = IE6

DATA:	 x N(x) RESULTS:	 r f(r)

0 3000 0 2082.35

.1 2960.1 .1 2052.08

.2 2841.6 .2 1982.01

.3 2648.1 .3 1874.42

.4 2385.6 .4 1730.76

.5 2062.5 .5 1552.4

.6 1689.6 .6 1340.49

.7 1280.1 .7 1095.17

.8 849.6 .8 813.018

.9 416.1 .9 477.299

1.0 0 1.0 0
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Fig. 1 Typical side band holographic arrangement used to show the feasibility
of fringe localization.
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Fig. 2 Test cell with two hollow cylinders in place.
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Fig. 3 Real image sample planes
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Fig. 4	 Photographs of real image planes shown in Fig. 3
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Fig. 4 Cont.
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Fig. 6	 Photographs obtained from Fig. 5
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Fig. 6 cont.
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Fig. 7 Resistor-simulated crystal
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Fig. 8 Photographic planes of real image
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Fig. 10 Present HOSS, configuration
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Fig. 14	 Fringe
30 sec
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Fig. 16	 Fringe
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Fig. 17 Location of photograph planes
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Fig. 19 Fringe localization and parallax planes
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PLANE 2
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Fig. 20 Photographs of planes shown in Fig. 19
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1. Typical side band holographic arrangement
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F igure 2. Schematic for radially symn*tric phase object notation.
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IRRADIANCE IN OBSERVATION PLANE

Fig. 3. Schematic diagram of fringe formation from phase object space.



Observation
Plane

Fig. 4. Notation diagram for derivation of fringe localization equations.

?4E



Q(X.Y.:)

0 Source

Fiuure 5. Nomenclature for analysis of fringe localization. Points P
and Q correspond to P and Q in figure 2. 0 is the illumina-

tion source.



(x)

X

Figure o.	 Cross section of a radially symmetric phase object divided into dis-
crete annular elements of width .1r.
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y

Figure 7. Notation for equations (77) and (78). A typical optical ray is shown passing
through an asymmetric phase object f (r,p) and impinging on a particular ob-
servation plane where an interferogram is recorded. Here " defines the ob-
servation direction, and p locates a probing ray oriented in this direction.
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©)

y

_X

Figure 3. Cross section of an asymmetric phase object divided
into discrete rectangular elements of
dimension '%xvy. A typical probing ray, denoted
by the index i, is shown traversing the object.
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Figure 9. Notation for Localization Reconstruction

15.



Figure 10. Notation for Fourier transform
Domain-Pathlength

52



FIGURES

FAR

SECTION V

1^J



Q,a/

r02
^	 ^ b

^	 Q1a

Figure i.	 *in example of fringe localization.
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Plane a - no delay	 Plane b - no delay

Plane	 60 sec. delay	 i'lane b - 60 sec. delay

Figure 2. Experimental data on 2-element radially symmetric phase
objects showing fringe localization.
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Figure 3.	 Interferogram of double exposed hologram - Number 26.
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CROSS SECTION

Figure 4. Fringe production by classical interferometer for collimated
beam, single exposure and radially symmetric phase object.
Hologram #29, cross section a1.
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-- -- CROSS SECTION

#1

UFO AL P.,
h k 4^L;4 G , IS,

r7}'

Figure 8. Fringe production by double exposure. localized fringes of

radially synmietiic phase object. Hologram #31, cross section
#1.
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