General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

FINAL TECHNICAL REPORT
for
NASA Grant No. NSG 5169
Entitled: "pHYSICAL CONDITIONS, ABUNDANCES AND CHEMISTRY IN DIFFUSE INTERSTELLAR CLOUDS"

Submitted by
IHE REGENTS OF THE UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA, LOS ANGELES
DEPARTMENT OF ASTRONOMY
405 Hilgard Avenue
LOS ANGELES, CALIFORNIA 90024

Period of Performance: March 14, 1977 - November 13, 1980

PRINCIPAL INVESTIGATOR:

Professor Michael A. isura Department of Astronomy Office Phone: (213) 825-4302
(NASA-CR-163789) COPERNICUS OBSEHVATIONS UF N81-13906 C I AND CO IN DIPEUSE INHEKSTELLAR CLOUDS
Final Technical Report, 14 Mar. 1977-13 Nov. 1980 (University of Soutnern
California) $57 \mathrm{pHC} A 04 / M E A 01$

Final Technical Report NSG 5169

This project was aimed at acquiring a better understanding of the physical conditions in the interstellar medium by using the Copernicus satellite to measure C I and CO absorption lines in selected lines of sight. We successfully accumulated all the data, and we are currently analyzing it. Enclosed is a rough draft of a paper to be submitted to the Astrophysical Journal. This paper has not yet been submitted for two reasons. First, the collaboration between Princeton and Los Angeles is more difficult than we had originally expected. Second, we have discovered that the oscillator strengths of the $\mathrm{C} I$ lines as currencly given in the literature are inconsistent with our datil and are almost certainly in error. Therefore, we have spent a considerable a'nount of time estimating better values for the C I oscillator strengths. Ultimately, we do not expect the final conclusions, as given in the Abstract of the draft paper, to change.

No inventions were produced with this grant.
E. Jenkins

Princeton University Observatory

M. Jura and M. Loewenstein

Denartment of Astronomy
University of California, Los Angeles

We have used Copernicus to observe absorption lines of C I in its ground state and excited fine structure levels and CO toward 29 stars. We use the C I data to infer densities and pressures within the observed clouds, and because our results are of higher precision than previous work, we have much more precise estimatef of the physical conditions in clouds. In agreement with previous work, the interstellar thermal pressure appears to be variable, with most clouds having values if p / k between $10^{3} \mathrm{~cm}^{-3} \mathrm{~K}$ and $10^{4} \mathrm{~cm}^{-3} \mathrm{~K}$, but there are some clouds with p / k as high as $10^{5} \mathrm{~cm}^{-3} \mathrm{~K}$. Our results are consistent with the view that the interstellar thermal pressure is so variable that the gas undergoes continuous dynamic evolution.

Our observations provide useful constraints on the physical processes on the surfaces of grains. In particular, we find that grains are efficient catalysts of interstellar H_{2} in the sense that at least half of the hydrogen atoms that strike grains come of f as part of H_{2}.

Our results place strong constraints on models for the formation and destruction of interstellar co. In particular, in many clouds, we find an order of magnitude less co than predicted in some models.

1. INTRODUCTION

Ultraviolet observations are an extremely powerful way to investigate diffuse interstellar clouds (e. g. Spitzer and Jenkins 1975). Here we describe our observations with Copernicus of Interstellar C I and $C 0$. We observed $C I$ because the populations In the fine structure levels of this atom can be used to estimate the density, temperature and pressure within a cloud. In particular, we can infer densities much more accurately from studies of $C I$ than from studies of any other species except perhaps H_{2}. Since there are some uncertainties about the analysis of the populations of H_{2} in the different rotational levels, the $C I$ analysis seems to be especially important.

We emphasize that the measurement of cloud densities is crifical for understanding the physical processes within interstellar clouds such as heating and cooling, molecule formation and depletion onto grains. The thormal pressure also plays a key role in the dynamics of interstellar clouds. Therefore, although Jenkins and Shaya (1979) have performed an initial survey of $C I$, we have extended their work with more detailed observations.

In this survey we have also observed CO. Since $C O$ is apparently the most common molecule in diffuse clouds besides H_{2}, studies of $C O$ are one of the best ways to evaluate critically models far interstellar chemistry. Among other reasons, this is important because interstellar chemistry may play a key role in the evolution of interstellar clouds into stars.

II. OBSERVATIONS

A. Line List

Our basic goal was to detect at least one line that was sufficiently weak to lie on or near the linear portion of the curve of growth so that the determination of column densitite was straightforward. Our line list was taken from de Boer and Morton (1974) and Morton (1975), and in table 1 we list the observed lines and the f values that we adopted as described below. Similarly, for CO we observed lines with a wide range of f values which we took from Morton (1975) and which we also list in table 1 . We observed each line with four Copernicus scans, and we used the dipping mirror to bloak stray light as described by York et al. (1973). Also, to calibrate the amount of stray light, we observed some very saturated lines.
B. Star List

Our observed stars were taken from the H_{2} surveys of Spitzer et al. (1974) and Savage et al. (1979). From these lists we excluded stars for which detailed observations of C I were performed by others including ζ Pup (Morton 1978), ζ Oph (Morton 1975), γ Vel (Morton and Bhavsar 1979), ζ Ori Pottasch and Drake (1977) and α Vir (York and Kinahan 1979). Also, we only observed stars that are brighter than $\mathrm{m}_{\mathrm{V}}=5$. In table 2 we list the 29 stars that we observed along with their reddening and projected rotational velocities as given by Savage et al. (1977).

C. Results

We list our results for the observed equivalent widths, the PKHM (in parenthesis) and the 2σ errors in tables 3a-3d. We used the formulation of Jenkins et al. (1973) to derive the errors we give. For this procedure, we assumed a single cloud in the line of sight. In some lines of sight with multiple clouds, our upper limits may te mialealingly sali. In table 4 we list the observed radial velocities in kilometers per second,

There were some difficulties in performing these line measurements. Because we aimed at measuring C I* 1276.750 A and C I** 1277.954 A, oar Copernicus scans did not cover very well the spectral region near C I 1276.483 A. Consequently, our measurements for this line are quite uncertain because of a lack of a good continuum and not being able sometimes even to see the entire line profile. Our measurements of the C I lines near 1260 A are in some cases blended with Si II 1260.421 A. Since Si III and perhaps Si II can have high velocity wings (Cohn and York 1977), the continum in this spectral region wis not always completely flat. Finally, there were cases where we might expect multiple clouds in the line of sight. For the most part, our results are probably not severelyaffected by these systematic errors, but it should be recogrized that they may be present in the measurements.
III. OSCILLATOR STRENGTHS

Since there is some uncertainty about the C I oscillator strengths we can use our data to refine the accepted values.

Following de Boer and Morton (1979), we adopt 0.038 as the f value for multiple': y near 1260 A , and we scale all our inferred f values from this result. To infer the f values of the other multiplets, we use Ines that are not very saturated, However, if we use very weak lines the errors of measurement are so large that we are vanble to obtain much useful information.
a) Multiplet 4 at 1329 A

In principle, observations of the lines of the excited fine structure levels could be used to infer the f value of this transition. However, since the lines from the excited fine-structure Levels of the C I ground state are actually complex blends we cannot use this method with high precision, and we restrict our analysi= to the absorption lines. In any case, the measurements of the excited fine-structure levels are consistent with the f values derived from the ground state transition.

Toward ζ Pup where the C I lines apparently lie on the linear portion of the curve of growth, Morton (1978) measured W (1328.833)/ $W(1260.736)=2.47 \pm 0.33$ so that de Boer and Morton (1979) derived an f value for the line at $1329 \AA$ of 0.082 . This f value and the assumption that $f(1260 \AA)=0.038$ are not consistent with the observations of Morton and Bhavsar (1979) and Drake and Pottasch (1977) toward γ Vel and ζ Ori where it was found that $W(1329.833) /$ $W(1260.736) \geq 5.0$.

To refine our estimate for $f(1328)$, we avoid lines of sight with significant amounts of saturation, and we only consider lines
of sight with $W(1328.833) / W(1260.736) \geq 2.0$. Unfortunately we have only one such line of sight, the cloud toward δ Ori. In this direction we find that $W(1328.833) / W(1260.736)=2.3$ in agreement with the oscillator strengt' of de Boer and Morton (1979). Since $W / \lambda<10^{-5}$ toward δ Ori, and since for this region of the curve of growth there is the Na I profilee of Hobbs $(1969,1974)$ which are unsaturated, we adopt $f(1328)=0.082$ in agreement with de Boer and Morton (19*). This result is not far from the experimental value of 0.033 measured by Brooks, Rohrlich and Smith (1977). In this analysis, we do not consider the lines of sight toward 1 Ori or ρ Leo because there are multiple components in the line of sight (Spitzer, Cociran and Hirshfield 1974) so that our upper 1 imits for $W_{\lambda}(1260.736 \AA)$ are probably too low.
b) Multiplet 23 at 1138.383 A

From the f value of 0.004 given by de Boer and Morton (1979) we could expect that $W(1138.383) / W(1260.736)=0.09$ in the absence of saturation. However as can be seen from the C I curve-of-growth of Morton (1975) from which this result is obtained, there is considerable uncertainty in this result. Here, in our survey, there are only a few clouds for which we have measurements of both $W(1138.383)$ and $W(1260.736)$. The set of upper limits that we have imply that in the absence of saturation $W(1260.736 / W(1138.383) ?$ 10 in agreement with the f values of de Boer and Morton (1979). The line of sight from which we can best estimate the f value of this transition is toward 1 Sco where the lines are detected, yet the
amount of maturation in C I 1260.736 is now too great. According to Hobbs (1978) the Ma D_{1} line with an equivalent width of 135 mA is saturated by about factor of 4 in the sense that if the line lay on the linear portion of the curve of growth, the column density of $\mathrm{Na} I$ would be a factor of 4 emaller that inferred. A D_{1} line with an equivalent width of 135 mA would have the same degree of saturation as the line of equivalent width 29 mA at 1260 \& . Since the observed equivalent width of the line at 1260 K is 24 mA we may presume a "saturation factor" of about 3. Also, we may presume that the 1138 \& line with an equivalent width of 4.2 mA is unsaturated. Therefore, we derive an f value for 1138.383 of 0.003 with an uncertainty of at least 30\%. This result is in essential agreement with the result of de Boer and Morton (1979).
c) Other Lines

For the other C I and CO lines we do not have very much data from our survey. We find that our observations are consistent with the oscillator strengths given in de Boer and Morton (1974, 1979) and Morton (1979). Therefore we adopt those values, and in table 3 we sumarize our assured parameters.
IV. COLUMAN DEMSITIES
a) Results

We derive column densities from the measured equivalent widths of the weakest lines for which we have a positive measuremant; in this fashion we hope to minimize the correctione for saturation. Specifically, we use the f values derived above and the relationship between equivalent width and colum density for optically thin 1ines to derive the column densities. To perform this analysis, we must also make some correction for saturation. Ior many stars we can use the high spectra? resolution ground-based observations by Hobbs of the sodium D lines or the K I line at 7699 do estimate the amount of saturation in a given line of sight. That is, we define a "saturation factor" to equal the actual column density divided by the column density computed from the assumption that the equivalent width of the line lies on the linear portion of the curve of growth. Since we Lypically consider C I lines where W / λ is smaller than for the $\mathrm{Na} I$ or $\mathrm{K} I$ lines we can perform this extrapolation with some hope of success. We always assume a single cloud in the line of sight with a Gaussian volocity distribution of absorbers. Although this procedure is scmewhat uncertain, it should not lead to any very substantial errors since we restrict our analysis to lines of sight with relatively small saturation corrections. In table 5 we list both the C I column densities and in parenthesis the correction factor for saturation that we derive; our saturation correction factors are usually less than a factor of 2 .

Since the random ermors are also relatively mall, many of our column densities are accurate to 0.1 or 0.2 in the logarithm. One disadvantage with using ground-based observations to estimate the curve-of-growth effects is that we cannot reliably determine whether the C I and Na I curves-of-growth are different from each other. However we find agreement with the results of Jenkins and Shaya that $\mathrm{N}(\mathrm{C}$ I) is not linearly proportional to $\mathrm{N}(\mathrm{Na}$ I).

For some stars there are no available high resolution groundbased measurements. In these cases, if the equivalent widths are less than 10 mA , we assume that the line lies on the linear portion of the curve of growth. If all the detected lines are stronger than 10 mA , we use the doublet ratio similar to that described by Spitzer (1978).

For the CO column densities, in most of our lines of sight we have only detected the line at $1087.867 \AA$. We almost always assume this line lies on the linear portion of the curve of growth. b) Errors There are three sources of error in our column densities: i) the f values; ii) the equivalent widths and iii) the corrections for saturation. The uncertainties in the f values and equivalent widths are discussed above. The corrections for saturation are somewhat more difficult to estimate quantitatively. The assumption that the C I, Na I and K I lines lie on the same curve of growth is plausible but not necessarily correct. According to Jenkins and Shaya (1979), C I may be more strongly concentrated in cloud
centers than Na I. Therefors, all wa can do is note that our data are reasonable and self-consistent; we cannot demonstrate that they are completely accurate. In any case, the errors in table 5 are formal; they reflect only the statistical uncertainties in the measurements of the equivalent widths.
c) Individual Clouds

K Cas: From Hobbs (1978) the K I 1ine at 7699 A is saturated by a factor of 1.1 for $W / \lambda=1.4 \times 10^{-5}$. To derive column densities, we use the $C I$ inne at $1157.186 \AA\left(W / \lambda=2.3 \times 10^{-5}\right)$, the $C I *$ line at $1261.122 \AA\left(W / \lambda=2.6 \times 10^{-5}\right)$ and the $C I * *$ line at $1329.584 \AA$ $\left(W / \lambda=3.2 \times 10^{-5}\right)$ with saturation corrections of 1.2 .1 .25 and 1.4 respectively. The $C I *$ and $C I * *$ columas densities are consistent with the upper limits obtained from the $C I *$ line at $1276.750 \AA$ and the C I** line at 1261.552. The C I column density derived from the 1157 A line is greater than that derived from C I 1138 \& which, however, is more saturated. The $C O$ equivalent width is taken from the $1087 \AA$ line.
γ Cas: We derive $N(C I), N(C I *), N(C I * *)$ and $N(C O)$ from $1260.735 \AA$ and the upper limits to the equivalent widths of 1329.101, 1329.584 and 1087.867 \& respectively. We perform no corrections for saturation since $W / \lambda \leq 4.6 \times 10^{-6}$ for all these lines while Hobbs (1978) found that the $\mathrm{Na} I D_{1}$, line with $W / \lambda=7.6 \times 10^{-6}$ is saturated by only a factor of 1.1 .
δ Per: No lint ${ }^{=}$were detected toward this star. We use the 1 imits for the C I multiplet at $1329 \AA$ and $C O$ at $1087 \AA$ to piace upper bounds
on the column densities, and the assumption that the lines are optically thin.

40 Per: Hobbs (1978) found that the $N a D_{1}$ line with $W / \lambda=4.0 \times 10^{-5}$ is saturated, and there are no useful high resolution ground-based observations toward this star. Using a doublet ratio analysis between C I $1328.833\left(W / \lambda=3.5 \times 10^{-5}\right)$ and $1260.736\left(W / \lambda=4.4 \times 10^{-5}\right)$ is clearly not possible. It only implies that the $1260.736 \AA$ line is ssiurated by at least a factor of 3 to give $N(C I)>3 \times 10^{14} \mathrm{~cm}^{-2}$. The 2σ upper limit to $1138.383 \AA\left(W / \lambda=7.2 \times 10^{-6}\right.$) implies that in the absence of saturation that $N(C I)<2.4 \times 10^{14} \mathrm{~cm}^{-2}$. We adopt $N(C I)=$ $3 \times 10^{14} \mathrm{~cm}^{-2}$ but there is probably a factor oa 2 uncertainty in this result. For $N(C I *)$ we use the doublet ratio-type analysis between 1261.122 $\AA\left(W / \lambda=2.4 \times 10^{-5}\right)$ and $1329.101 \AA\left(W / \lambda=4.8 \times 10^{-5}\right)$ to estimate that a saturation correction of a factor of 1.4 is appropriate for the $1261 \AA$ line. For $N(C I * *)$ the $1329.584\left(W / \lambda=1.5 \cdot 10^{-5}\right.$) line is used with an inferred saturation correction of 1.2. We place an upper limit to $N(C O)$ from the strongest line of this species and the uncertain assumption that the line lies on the linear portion of the curve of growth. Although our upper limit for CO $1087.867 \AA$ is wide, we presume it lies on the linear portion of the curve of growth since we do not detect the CO line at $1150 \AA$.
ε Per: According to Hobbs (1974) the Na I D_{1} line ($W / \lambda=1.6 \times 10^{-5}$) indicates a saturation correction of 2.3. However, a direct integration of the D_{1} profile displayed in Hobbs (1969) indicates a saturation correction of only 1.7 is necessary. This discrepancy might result
because Hobbs may have considered the D_{2} profile in his estimate of $N(N a \operatorname{I})$. In any case, saturation correction factor of between 1.3 and 1.5 is indicated for the C I 1ine at $1260.736 \&\left(W / \lambda=1.1 \times 10^{-5}\right)$. We adopt a correction of factor of 1.4 . For $N(C I *)$ we may use the Ine at 1329.101 with $W / \lambda=4 \times 10^{-6}$ without any correction for saturation. For $N(C I * *)$ and $N(C O)$ we use the upper limits from the strongest lines with the nsgumption that they lie on the linear portion of the curve of growth.
ζ Per: The lines at $1157.186,1276.750$ and $1261.426 \AA$ of $C I$, $C I *$ and $C I * *$ have W / λ equal to $5.6 \times 10^{-6}, 5.7 \times 10^{-6}$ and 4.7×10^{-6} reapectively, According co Hobbs (1974) the K I line at 76998 is saturated by a factor of 1.2 for $W / \lambda=8.4 \times 10^{-6}$, and we therefore assume the very weak carbon lines lie on the linear portion of the curve of growth. Although CO 1087.867 A is wide, we presume it lies on the linear portion of the curve of growth since we do not detect the co line at 1150 .
α Cam: Since there are no useful ground-based observations toward this star, a doublet ratio analysis is used between the C I line at $1138.383 \AA\left(W / \lambda=2.4 \times 10^{-5}\right)$ and that at $1157.186 \AA\left(W / \lambda=1.3 \times 10^{-5}\right)$ to infer a saturation correction of about 1.5 for the 1157 line. For C $I *$, the line at $1329.101 X\left(W / \lambda=3.9 \times 10^{-5}\right)$ with a saturation correction of 1.7 is used to derive the column density. The 1329.584 line $\left(W / \lambda=1.0 \times 10^{-5}\right)$ is used with an inferred saturation correction of 1.1 to find the column density of $G I * *$. Since the line at $1087.867 \AA$ is too saturated to be of use, the line at $1150.48 \AA\left(\mathrm{~W} / \lambda=1.0 \times 10^{-5}\right)$ is
used to obtain the $C O$ column density.
§ Ori: We use the line at $1260.736 \AA$ to infer $N(C I)$. Since $W / \lambda=3.8 \times 10^{-6}$ there is no need for a saturation correction (lubbs 1974). For the other species we used the highest f value lines to set upper limits to the column densities.
λ Ori: According to Hobbs (1974) the K I line at 7699 A with $W / \lambda=6 \times 10^{-6}$ is saturated by a factor of 1.2. From Hobbs' (1978) measurement of the ultraviolet lines of sodium, the Na $I D_{2}$ line with $W / \lambda=6 \times 10^{-5}$ is saturated by a factor of 4.7. Therefore, it seems that the 1260.736 line of $C I\left(W / \lambda=3.0 \times 10^{-5}\right)$ is saturated by perhaps a factor of 2 to give $N(C I)=1.4 \times 10^{14} \mathrm{~cm}^{-2}$. The upper 1imit to the $1138.383 \AA$ line implies that $N\left(C\right.$ I) $<1.2 \times 10^{14} \mathrm{~cm}^{-2}$ in agreement with this result. For $C I^{*}$ and $\mathrm{C} I^{* *}$ the lines at $1261.122 \AA$ and $1329.584 X$ have $W / \lambda=6 \times 10^{-6}$ and 7×10^{-6} respectively so we correct for saturation by a factor of 1.2 . Our result estimated for C i* is consistent with the observed strength of C I* $1329 \AA$ if this line is not saturated by more than about a factor of 2 . We place an upper limit to $N(C O)$ from the absence of the line at $1087 \AA$.

1 Ori: For those C I^{*} and $C I * *$ and CO we adopt upper limits from the lines with the largest f values. For C I we use the unsaturated line at 1328.833 K .
e Ori: According to Hobbs (1974) the Na I D_{1} line with $W / \lambda=2.5 \times 10^{-5}$ is saturated by a factor of 1.5 . We presume that the C I line at $1328.833 \AA$ with $W / \lambda=2.3 \times 10^{-5}$ is saturated by an equal factor and
this is consiscent with our equivalent width for the line at 1260.736 . We assume the C. I^{*} 1ine at 1329.101 X is saturated by a factor of 1.1 while for $C I * *$ and $C O$ we presume no saturation in setting their upper limits.

K Ori: Hobbs (1974) found that the Na I D_{1} line with $W / \lambda=2.2 \times 10^{-5}$ is saturated by a factor of 2.2 . As a result we presume that the $C I$ line at $1260 \&$ with $W / \lambda=9.8 \times 10^{-6}$ is saturated by a factor of 1.3. Similarly, we presume the C I* line at $1329.101 \&$ with $W / \lambda=7.6 \times 10^{-6}$ is saturated by a factor of 1.2. We set upper limits to $C I * *$ and $C O$ from the upper limits to the lines of the highest f values and the assumption of no saturation.

139 Tau: From Hobbs (1978) the Na D_{1} line $\left(W / \lambda=4.7 \cdot 10^{-5}\right.$) is saturated by a factor of 2.9 , so the C I line at 1260.736 with $W / \lambda=3.4 \times 10^{-5}$ may have a saturation correction of 1.7 . The $1329.101 \AA$ line $\left(W / \lambda=1.0 \times 10^{-5}\right)$ is used with a saturation correction $0^{E} 1.1$ to obtain a column density for $C I *$ consistent with the upper 1 imit obtained from the 1261.122 line. The 1329.584 and 1087.867 lines are used to derive the $C I * *$ and $C O$ column densities.

HD 74375: Since there are no useful ground-based observations toward this star, a doublet ratio analysis is used between the $C I$ line at $1328\left(W / \lambda=3.5 \times 10^{-5}\right)$ and that at $1260\left(W / \lambda=1.3 \times 10^{-5}\right)$. Due to the large error in $W(1260)$ we can only infer that the line is saturated by less than 3.5. We use this to obtain an upper limit
for $N(C$ I) and derive a lower limit by assuming the 1328 line is unsaturated. The column denaity of $C I *$ is obtained by considering the line at 1329 and a saturation correction less than 2 . Our values for $C I * *$ and $C O$ are derived from the upper limits of the 1329 and 1087 lines, respectively.
ρ Leo: From Hobbs (1974) the Na D_{1} line is found to be saturated by $1.2\left(W / \lambda=1.7 \times 10^{-5}\right)$. It is therefore inferred that the $C I$ line at $1328.833 \AA\left(W / \lambda=1.7 \times 10^{-5}\right)$ is also saturated by this amount. Upper 1 imits for $C I * *, C I * *$ and $C O$ are obtained from the 1 ines at $1329.101,1329.584$, and 1087.867 respectively. 1 Sco: For the $\mathrm{Na} I \mathrm{D}_{2}$ line with $W / \lambda=3.8 \times 10^{-5}$, the saturation correction is a factor of 2.3 (Hobbs 1974). Consequently for the C I line at $1260.736 \AA\left(W / \lambda=1.8 \times 10^{-5}\right)$ we adopt a saturation correction factor of 1.3. For $C I * 1329.101\left(W / \lambda=2.9 \times 10^{-4}\right)$ we estimate a saturation correction by a factor of 1.7 to give $N(C I *)=5 \times 10^{13} \mathrm{~cm}^{-2}$. However, this disagrees with the 20 upper limit derived from the $C I *$ lines at $1261.122 \AA$ of $1.8 \times 10^{13} \mathrm{~cm}^{-2}$. We presume that $N(C I *)=4 \times 10^{13} \mathrm{~cm}^{-2}$ with an uncertainty of a least 0.2 in the logarithm. For $C I * *$ and $C O$ we use the upper limits given by the lines with the highest f values and the assumption that they lie on the linear portion of the curve of growth.
β^{1} Sco: The lines of $1138.383,1261.122$ and $1329.584 \AA$ of $G I, C I *$ and $C I * *$ have $W / \lambda=3.7 \times 10^{-6}, 5.0 \times 10^{-6}$, and 7×10^{-6} respectively. According to Hobbs (1978) the K I line at $7699 \AA$ with $W / \lambda=3.5 \times 10^{-6}$
is saturated by a factor of 1.1. Consequently we adopt corrections for saturation of factors $1.1,1.2$, and 1.2 for $C I, C I *$ and C $I * *$ respectively. We obtain the column density of co from the $1087 \AA$ line and the assumption of no saturation. ω^{1} Sco: From Hobbs (1978) we know that the $N a D_{2}$ line ($W / \lambda=4.1 \times 10^{-5}$) is saturated by about 2.1. Therefore we infer saturation corrections of 1.4 for the C I line at $1260\left(W / \lambda=2.6 \times 10^{-5}\right)$ and one of 1.7 for the $C I *$ line at $1329\left(W / \lambda=3.90 \times 10^{-5}\right)$, and use these lines to derive the column densities for C I and C I*. Upper limits for the column densities of $C I * *$ and $C O$ are obtalaed from the upper limits of the equivalent widths for the lines at 1329 and 1087 respectively. ν Sco: From Hobbs (1978) the $\mathrm{Na} \mathrm{I}_{2}$ line and K I 7699 \& Ine with $W / \lambda=4.2 \times 10^{-5}$ and 4.9×10^{-6} are saturated by factors of 7.3 and 1.2 respectively. For C I these results imply a saturation correction for $1260.736 \AA\left(W / \lambda=1.7 \times 10^{-5}\right)$ of about a factor of 2 to give $N(C I)$ $=8.0 \times 10^{13} \mathrm{~cm}^{-2}$. This result is consistent with the 2σ upper limit from the $1138.383 \AA$ line of $2.0 \times 10^{14} \mathrm{~cm}^{-2}$. The $C I *$ line at $1329.101 \AA$ $\left(W / \lambda=1.2 \times 10^{-5}\right.$) might be saturated by a factor of 1.5 . We adopt $N(C I *)=1.0 \times 10^{14} \mathrm{~cm}^{-2}$ with an uncertainty of at least a factor of 1.5. For $N(C O)$ we use the lines of the largest f value to estimate 2σ upper limits. For $C I * *$ we use the line at $1329.584\left(W / \lambda=1.5 \times 10^{-5}\right)$ to estimate a correction of 1.8 and derive $N(C I * *)=2.7 \times 10^{13} \mathrm{~cm}^{-2}$. ρ Oph: According to Hobbs (1978), ine K I 1ine with $W / \lambda=1.8 \times 10^{-5}$ is too saturated to be useful. Unfortunately, the weakest lines that we can detect with confidence toward this star have $W / \lambda=1.6 \times 10^{-5}$.

As a result we can only place lower limits on the column densities toward this star. We do not attempt any $11 m i t s$ on the $C I * *$ and $C O$ column densities.
X Oph: Crutcher (1975) found from the 33028 sodium lines that $W / \lambda=7.3 \times 10^{-6}$ corresponds to saturation by a factor of 2.1. Therefore, the best candidate for determining $N(C I)$ is the line at 1157.186 X although the equivalent width is rather uncertain. With $W / \lambda=9.5 \times 10^{-6}$ we adopt a correction for saturation of a factor of 2.5. For $C I *$ we place an upper limit to the column density from the 20 upper 1 imit to the line at $1276.750 \AA\left(W / \lambda<6.3 \times 10^{-6}\right)$ with a saturation correction of a factor of 2 , to give $N(C I *)<7 \times 10^{14} \mathrm{~cm}^{-2}$. A lower limit can be derived from $1260.996 \AA\left(W / \lambda=1.8 \times 10^{-5}\right)$ if we assume a saturation correction by a factor of 3 to give $N(C I *)>$ $5 \times 10^{14} \mathrm{~cm}^{-3}$. Therefore, we adopt $N(C I *)=6 \times 10^{14} \mathrm{~cm}^{-2}$ with an uncertainty of at least a factor of 1.5. We may take $N(C I * *)>$ $1.0 \times 10^{14} \mathrm{~cm}^{-2}$ from the measurement of $1329.584 \AA\left(\mathrm{~W} / \lambda=3 \times 10^{-5}\right)$ and a saturation correction by a factor of 3 . The 2σ upper 1 imit to $N(C I * *)$ from $1261.426\left(W / \lambda<5.4 \times 10^{-6}\right)$ is $5.0 \times 10^{13} \mathrm{~cm}^{-2}$. We adopt $N(C I * *)=10^{14} \mathrm{~cm}^{-2}$ with an uncertainty of a factor of 2 . For $N(C O)$ we adopt an upper limit from the 1 ine at $1087 \AA$ with the assumption of as much as a factor of 3 saturation.

22 Sco: The strengths of the C I $1326.833 \AA$ and 1260.736% lines indicate that the saturation is quite substantial even for $W / \lambda=1.5 \cdot 10^{-5}$. Since our noise is so large that we are unable to detect lines much weaker than this and since there are no high quality
ground-based observations, we do not attempt to infer column densities.
μ Nor: There are no useful ground-based observations toward this star. The weakest C I line of $1157 \AA$ might be saturated; we estimate that $N\left(C\right.$ I) $\geq 2.5 \cdot 10^{15} \mathrm{~cm}^{-2}$. The C I* line at 1275.750 implies a lower bound to $N(C I *)$ of $6.5 \cdot 10^{14} \mathrm{~cm}^{-2}$. $N(C I * *)$ is obtained by assuming the line at 1261.552 with $W / \lambda=8.6 \times 10^{-6}$ is unsaturated. The CO 1087 line is also assumed unsaturated since the 1150 line is undetected.
γ Ara: There are no high resolution ground-based observations toward this star. To determine $N(C I)$ we use the doublet ratio method for $1328.833\left(W / \lambda=2.9 \times 10^{-5}\right.$) compared to 1260.736 ($w i \lambda=$ 2.1×10^{-5}) to estimate that C I 1260 is saturated by a factor of 1.7 . Similarly we estimate the $C I *$ line at 1329.101 with $W / \lambda=9 \times 10^{-6}$ to be saturated by a factor of 1.1 . We may take the 2σ upper limit of C I** $1329.584\left(W / \lambda \leq 4 \times 10^{-6}\right.$) and the detected line of CO 1087 (W/ $\lambda=5 \times 10^{-6}$) to be unsaturated.
θ Ara: Again, there are no useful ground-based observations toward this star. For C I, we use a doublet ratio analysis between C I $1138.383\left(\mathrm{~W} / \lambda=6.3 \times 10^{-6}\right)$ and C I $1260.736\left(\mathrm{~W} / \lambda=2.5 \times 10^{-5}\right)$ to infer a saturation correction of 1.1 for the line at 1138.383. A doublet analysis for C I* is useless because of the large error in the $1261.122 \AA$ line. Nevertheless, we use this line with $W / \lambda=$ 6.6×10^{-6} to obtain the C I* column density with a saturation correction of 1.1 . This result is consistent with the strength of the $1260.996 \AA$ line if a moderate amount of saturation is assumed. Upper limits to
solumn densities of C I** and CO are obtained from the lines at 1329.584 and 1087.867 respectively.

K Aq1: Again there are no high resolution ground-based observations toward this star. To derive $N(C I)$ we perform a doublet ratio analysis between $1260.736\left(\mathrm{~W} / \lambda=3.2 \mathrm{c} 10^{-5}\right)$ and $1328.833\left(\mathrm{~W} / \lambda=3.9 \times 10^{-5}\right)$ to estimate that the amount of saturation at 1260.736 is about a factor of 2 so that $N(C I)=1.5 \times 10^{14} \mathrm{~cm}^{-2}$. This column density is consistent with the 20 upper limit of $2.0 \times 10^{14} \mathrm{~cm}^{-2}$ derived from the 1138.383 line. For $N(C I *)$ we use the line at $1329.101\left(W / \lambda=2.0 \times 10^{-5}\right)$ with a saturation correction factor of 1.5 . The other lines of C (* are too weak to be of use. Finally, we assume that the upper limits for CO 1087 and C I** 1329 lie on the linear portion of the curve of growth.

59 Cyg: The absence of the C I 1138 line indicates a 2σ upper limit to $N(C I)$ of $7.6 \times 10^{13} \mathrm{~cm}^{-2}$. According to Hobbs (1974), the Na I D_{2} line with $W / \lambda=3.1 \times 10^{-5}$ is saturated by a factor of 2.2. Since C I 1260.736 has $W / \lambda=2.2 \times 10^{-5}$ we infer that this line is saturated by a factor of 1.6 . We find that $N(C I)=8.4 \times 10^{13} \mathrm{~cm}^{-2}$ in essential agreement with the value derived from C I 1138 and we adopt this result. For C $I * 1329.101$ with $W / \lambda=1.4 \times 10^{-5}$ we presume a correction for saturation of a factor of 1.2 to give $N(C I *)=1.7 \times 10^{13} \mathrm{~cm}^{-2}$. The 2σ upper limit to $C I * 1261.122$ gives $1.4 \times 10^{13} \mathrm{~cm}^{-2}$ in essential agreement with the result from C I* 1329 which we adopt. We assume that $C 01087\left(W / \lambda=5.3 \times 10^{-6}\right)$ lies on the linear portion of the curve of growth as does the 2σ upper limit to C I** 1329.584 .
σ Cas: Toward this star Hobbs (1978) found that the Na I D_{1} line
density is consistent with the 2σ upper 1 imit of $2.0 \times 10^{14} \mathrm{~cm}^{-2}$ derived from the 1138.383 line. For $N(C I *)$ we use the line at $1329.101\left(\mathrm{~W} / \lambda=2.0 \times 10^{-5}\right)$ with a saturation correction factor of 1.5. The other lines of C I* are too weak to be of use. Finally, we assume that the upper 1imits for CO 1087 and C I** 1329 lie on the line portion of the curve of growth.

59 Cyg: The absence of the C I 1138 line indicates a 2σ upper 1imit to $N(C I)$ of $7.6 \times 10^{13} \mathrm{~cm}^{-2}$. According to Hobbs (1974), the $\mathrm{Na} \mathrm{I} \mathrm{D}_{2}$ line with $W / \lambda=3.1 \times 10^{-5}$ is saturated by a factor of 2.2. Since C I 1260.736 has $W / \lambda=2.2 \times 10^{-5}$ we infer that this line is saturated by a faccor of 1.6 . We find that $N(C I)=8.3 \times 10^{13} \mathrm{~cm}^{-2}$ in essential agreement with the value derived from C I 1138 and we adopt this result. For $C I * 1329.101$ with $W / \lambda=1.3 \times 10^{-5}$ we presume a correction for saturation of a factor of 1.2 to give $N(C I *)=1.6 \times 10^{13} \mathrm{~cm}^{-2}$. The 2σ upper limit to $C I * 1261.122$ gives $1.4 \times 10^{13} \mathrm{~cm}^{-2}$ in essential agreement with the result from C I* 1329 which we adopt. We assume that CO $1087\left(W / \lambda=5.310^{-6}\right.$) lies on the 1inear portion of the curve of growth as does the 2σ upper 1imit to \mathbb{C} I** 1329.584. σ Cas: Toward his star. Hobbs (1978) found that the $\mathrm{Na} I \mathrm{D}_{1}$ line is saturated with $W / \lambda=6.410^{-5}$. Therefore C I $1260\left(W / \lambda=5.7 \times 10^{-5}\right.$) is almost certainly saturated by at least a factor of 3 and we find that $\mathrm{N}(\mathrm{C} \mathrm{I})>4.0 \times 10^{14} \mathrm{~cm}^{-2}$. The 2σ upper limit to C I 1138.383 $\left(W / \lambda=6 \times 10^{-6}\right.$) implies that if this line lies on the linear portion of the curve of growth that $N(C I)<2.5 \times 10^{14} \mathrm{~cm}^{-2}$. We adopt $N(C I)=3 \times 10^{14} \mathrm{~cm}^{-2}$ with an uncertainty of at least a factor of 2 .
is saturated with $W / \lambda=6.4 \times 10^{-5}$. Therefore C $I 1260\left(W / \lambda=5.7 \times 10^{-5}\right)$ is almost certainly saturated by at least a factor of 3 and we find that $\mathrm{N}(\mathrm{C} I)>4.0 \times 10^{14} \mathrm{~cm}^{-2}$. The 2σ upper 1 imit to C I 1138.383 $\left(W / \lambda=6 \times 10^{-6}\right.$) implies that if this line lies on the linear portion of the curve of growth that $N(C I)<2.5 \times 10^{14} \mathrm{~cm}^{-2}$. We adopt $N(C I)=3 \times 10^{14} \mathrm{~cm}^{-2}$ with an uncertainty of at least a factor of 2 . For $N(C I *)$ we use the 2σ upper limit of $1276.750\left(W / \lambda=6.6 \times 10^{-6}\right)$ to find that $N(C I *)<3.6 \times 10^{14} \mathrm{~cm}^{-2}$ and the lower bound from C I^{*} $1261.122\left(W / \lambda=1.7 \times 10^{-5}\right)$ of $9.8 \times 10^{13} \mathrm{~cm}^{-2}$ to estimate that $N(C I *)=$ $5 \times 10^{14} \mathrm{~cm}^{-2}$ within a factor of 2 . For $N(C O)$ and $N(C I * *)$ we assume that 1087 and 1329.584 lie on the linear portion of the curve of growth ε though this is somewhat uncertain.

V. DENSITIES AND PRESSURES

To derive the densities and pressures within clouds, we essentially follow the procedures descrited by Jenkine and Shaya (1979) except that we use the cross sections computed by Yau and Dalgarno (1976). We assume the populations of the fine structure levels are generally controlled by collisions and we assume that there is only one major cloud in each line of sight. Unfortunately, cross sections for collisional excitation of the \mathbb{C} find structure levels by H_{2} are unavailable and, as a result, our densities and pressures are uncertain, especially for clouds with high ratios of $n\left(H_{2}\right) / n(H)$. Also, in a few clouds near early type stars, optical pumping of the C I levels could conceivably be important, but, in general, as did Jenkins and Shaya (1979), we ignore this complication. The assumption that there is only one cloud in each line of sight is not accurate. Jenkins and Shaya (1979) have discussed the iraportance of H II region contributions to the population of the excited fine structure levels of $C I$, and it is clear from the data of Hobbs that the assumption of a single cloud is a gross simplification. However, with the resolution of Copernicus and the signal to noise in our survey, we have little choice but to make this assumption.

Our further complication is that often we have no opportunity to estimate independently the temperature of the clouds since we of ten do not measure $N(C I * *)$. In this case, we have only one ratio, $N(C I *) / N(C I * *)$, to infer two parameters, the density and the tem-
perature. For these clouds, we assume the temparature derived from the relative colum densities of H_{2} in $\mathrm{J}=1$ and $\mathrm{J}=0$ (Savage et al. 1977); or, if these data are not available, we take $T=80 \mathrm{~K}$ as representative of diffuse clouds.

We find no cases where the C I data cannot be fit by a single cloud model. This is in contrast to the work by Jenkins and Shaya perhaps because we have higher quality data. Oux resulta for the inferred densities and pressures are listed in Table 6. In agreement with previous work, specifically that of Jenkins and Shaya, we find that the pressures in most clouds have values of p / k that range between $10^{3} \mathrm{~cm}^{-3} \mathrm{~K}$ and $10^{4} \mathrm{~cm}^{-3} \mathrm{~K}$. However, there also are clouds with pressures well in excess of $10^{4} \mathrm{~cm}^{-3} \mathrm{~K}$ with values up to $10^{5} \mathrm{~cm}^{-3} \mathrm{~K}$. It seems quite clear that the thermal pressure within the intersteilar medium is distinctly nonuniform. The dynamic evolution created by this pressure imballance must play a critical role in the evolution of the interstellar medium.
VI. MOLECULAR HYDROGEN FORMATION RATE

We can use our observations to iufer the rate, R, for the formation of H_{2} on grains. That is, because the formation is density dependent, we can use our estimates of the cloud densities to estimate \mathbb{R} we assume a steady state and we adopt the simple analysis described by Jura (1975b). From equations (3a) and (3b) of that paper and from the Einstein A 's of Dalgarno and Wright (1972), we can write for the formation rate of H_{2} that

$$
R=2.34 \times 10^{-9} N(4) /[N(H) n]=9.12 \times 10^{-9} N(5) /[N(H) n]
$$

In the above equations, $N(J)$ denotes of the column density of H_{2} in the J 'th rotational level, $N(H)$ denotes the column density of atomic hydrogen and n the cloud density. We use the column densities of rotationally excited H_{2} and H from Spitzer, Cochran and Hirshfeld (1974) and Bohlin et al. (1978), respectively. We list our results in Table 7 for R derived both the population in $J=4$ and in $J=5$. Since the results for the two rotational levels usually agree with each other, this adds confidence to our analysis. Also, we see that the inferred values of R are and within a factor of 3 of the value of $310^{-17} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ derived by Jura '1975a). Of course because of observational errors, because of the approximation used to jerive R and because the gas may not be in a steady state, the range of derived values of R does not necessarily imply that R is variable in different clouds. However, our results do imply that the efficiency for the formation of H_{2} on grains is nearly unity (e.g. Spitzer 1978). More precisely, at least half the atoms that strike grains become
part of an H_{2} molecule. This result is quite significant because it is an important constraint on the nature of the surface interaction between grains and H atoms (e.g., Smoluchowski 1979).
VII. CO ABUNDANCES

A large amount of theoretical work has gone into calculating the amount of CO in diffuse interstellar clouds (e.g., Glassgold and Langer 1975, Langer 1976, Oppenheimer and Dalgarno 1976, Mitchell. Ginsburg and Kunze 1978, Barsuhn and Walmsley 1977, Viala, Bel and Clavel 1979). Also, there have been a number of observational studies of CO column densities (Whittet, McNally and Dickman 1979, Knapp and Jura 1976, Snow 1975, 1977, Jenkins and Shaya 1979, Jenkins et al. 1973, Dickman 1978, Smith, Krishna-Swamm and Stecher 1978). However, because of the wide range of density, temperature, gas phase abundances, and the intensity of the ultraviolet radiation, there have not been many detailed comparisons between theory and observation. Black and Dalgarno (1977) and Black, Hartquist and Dalgarno (1978) find good agreement between theory and observations for the lines of sight toward ρ Oph and ζ Per, respectively. Barsuhn and Walmsley (1977) find good agreement between theory and observation for their model for the line of sight toward r_{0} Oph, but they predict too much $C O$ for the lines of sight toward α Cam, E Per, ζ Per and 139 Tau by roughly an order of magnitude.

Here, rather than analyze each line of sight separately, we compare $N(C O)$ with $N(C I)$. Since C I and CO are both primarily removed by the absorption if ultraviolet photons with wavelengths between $1100 \AA$ and $912 \AA$, the mean intensity of ultraviolet radiation should not enter into this ratio very significantly. Also, a comparison of C I and CO should be relatively insensitive to the
gas phase abundance of carbon. Furthermore, we expect that $n(C I)$ scales as the density squared and while the density dependence of $N(C O)$ is more complicated, it should not be too drastically different from a density squared law. Therefore, the comparison of $N(C I)$ to $N(C O)$ should not be sensitive to variations in the local physical conditions. One difficulty with this comparison is that $n(C O)$ is sensitive to the anount of H_{2}; that is, in the usual models for gas-phase synthesis of $C O$ there must be a significant amount of H_{2} present. However, we expect most $\mathrm{C} I$ to be found ir the center of clouds which implies that $N(C I)$ is dominated by the inner region of the cloud where $C O$ is found. In addition, we restrict our sample to clouds with $N\left(H_{2}\right)>10^{19} \mathrm{~cm}^{-2}$ as given by Savage et al. (1978). With these considerations, we expect that $N(C I) / N(C O)$ is a reasonably good probe of interstellar chenistry.

In Figure 1 we show our results for $N(C I)$ vs. $N(C O)$ for the different clouds that we observed and we include the data from other Copernicus observations as well. Very crudely, we can summarize our results that for $\mathrm{N}(\mathrm{C} \mathrm{I})<10^{15} \mathrm{~cm}^{-2}, \mathrm{~N}(\mathrm{CO})=1 / 30 \mathrm{~N}(\mathrm{C} \mathrm{I})$ while for larger values of $N(C I)$, we find that $N(C O) \simeq 1 / 3 N(C I)$. In all the observed clouds, we find that $N(C O)<N(C I)$. These results are in agreement with the calculations for the high column density clouds where $N(C O) \simeq 1 / 3 N(C I)$ is often predicted (e.g. Black and Dalgarno 1977. Black et al. 1978, de Jong, Dalgarno and Boland 1979, Langer 1976). However, it appears that further theoretical work should be devoted to the regions with N (C I) $<10^{15} \mathrm{~cm}^{-2}$ where we
do not find good agreement between theory and observations. One possible explanation of this discrepancy is that the photo-dissociation rate of $C O$ has been underestimated while the penetration of $C O$ dissociating radiation has been overestimated.

DISCUSSION
The results described here can be used to refine significantly our knowledge of the physical conditions and physical processes within diffuse interstellar clouds. Specifically, we find that the pressure is not uniform and that p / k ranges between $10^{3} \mathrm{~cm}^{-3} \mathrm{~K}$ and $10^{5} \mathrm{~cm}^{-3} \mathrm{~K}$. This result is consistent with the dynamical models of McKee and Ostriker (1977) and Bania and Lyon (1980) of a multi-phase interstellar medium. That is, as argued by McCray and Snow (1980), it appears that the interstellar medium undergoes continucus, pronounced, dynamic evolution.

Another consequence of our results is that it appears that a significant fraction, not much less than unity, of all the hydrogen atoms in diffuse clouds that strike grains surfaces react to form molecular hydrogen. This result is in general agreement with the prediction of Hollenbach and Salpeter (1970), although the efficiency for molecule formation may be even somewhat higher than they computed. Of course it is not obvious that our results obtain in all sorts of clouds where conditions can be quite different than in the regions we have studied.

The pressures and densities that we estimate also serve as important constraints for models for the thermal balance within diffuse clouds. In particular, as reviewed by Jura (1978), a density of $50 \mathrm{~cm}^{-3}$ and a temperature of 80 K require a heating rate of nearly 10^{-25} ergs H nuclei ${ }^{-1} \mathrm{~s}^{-1}$. Further work on the thermal properties of clouds should incorporate this argument.

Finally, our results place severe constraints on models for interstellar chemistry. In particular, as discussed above, at least in some cases there is less $C O$ than predicted by some current models.

This work has been partly supported by NASA. M. J. is an

Alfred P. Sloan Foundation Fellow.

REFERENCES

Bania, T. and Lyon, J. 1980, Ap. J., in press.
Barsuhn, J. M., and Walmsley, C. M. 1977, Astr. Ap., 54, 345.
Black, J. H., Hartquist, T. W., and Dalgarno, A. 1978, Ap. J., 224, 448.
Bohlin, R. C., Savage, B., and Drake, J. F. 1978, Ap. J., 224, 132.
Brooks, N. H., Rohrlih, D., Smith, W. H. 1977, Ap. J., 214, 328.
Cohn, H., and York, D. G. 1977, Ap. J., 216, 408.
Crutcher, R. M. 1975, Ap. J., 202, 634.
Dalgarno, A., and Wright, E. L. 1972, Ap. J. (Letters), 174, L49.
de Boer, K. S., and Morton, D. C. 1974, Astr. Ap., 37, 305. 1979, Astr. Ap., 71, 141.
de Jong, T., Dalgarno, A., and Boland, W. 1979, Astr. Ap., submitted.
Dickman, R. L. 1977, Ap. J. Suppl., 37, 407.
Drake, J. F., and Pottasch, S. R. 1977, Astr. Ap., 54, 425.
Glassgold, A. E., and Langer, W. D. 1975, Ap. J., 197, 347.
Hobbs, L. M. 1969, Ap. J., 157, 135. 1974, Ap. J., 191, 381.

1978, Ap. J. Supp1., 38, 129.
Hollenbach, D. J., and Salpeter, E. E. 1971, Ap. J., 163, 155.
Jenkins, E. B., Drake, J. F., Morton, D. C., Rogerson, J. B., Spitzer, L.,
and York, D. G. 1973, Ap. J. (Letters), 181, L122.
Jenkins, E. B., and Shaya, E. J. 1979, Ap. J., 231, 55.
Jenkins, E. B., Silk, J., and Wallerstein, G. 1976, Ap. J. Suppl., 32, 681.
Jura, M. 1975a, Ap. J., 197, 575.
1975b, Ap. J., 197, 581.
_ 1.976, Ap. J., 206, 691.

Arizona: Tucson).
Knapp, G. R., and Jura, M. 1976, Ap. J., 209, 782
Langer, W. D. 1976, Ap. J., 206, 699.
Mc Cray, R. M., and Snow, T. R. 1979, Ann. Rev. Astr. and Ap., 17, 213.
McKee, C. F., and Ostriker, J. P. 1977, Ap. J., 218, 148.
Mitche11, G. F., Ginsburg, D. L., and Kunze, P. J. 1978, Ap. J. Supp1., 38, 39.
Morton, D. C. 1975, Ap. J., 197, 85.
1978: An. J., 222, 863.
Morton, D. C., and Bhavsar, J. P. 1979, Ap. J., 228, 147.
Oppenheimer, M., and Dalgarno, A. 1976, Ap: I., 200, 419.
Savage, B. D., and Bohlin, R. C. 1979, Ap. J., 229, 136.
Savage, B. D., Bohlin, R. C., Drake, J. F., and Budich, W. 1977, Ap. J., 216, 291.

Shul1, J. M. 1977, Ap. J., 215, 805.
Shull, J. M., and York, D. G. 1977, Ap. J., 211, 803.
Shull, J. M., York, D. G., and Hobbs, L. M. 1977, Ap. J. (Letters), 211, L139.
Smith, A. M., Krishna-Swammy, K. S., and Stecher, T. P. 1978, Ap. J., 220, 138.
Smoluchowski, R. 1979, Ap. and Space Sci., 65, 29.
Snow, T. P. 1975, Ap. J. (Letters), 201, L21. 1977, Ap. J., 216, 724.

Spitzer, L. 1968, Diffuse Matter in Space (New York: Wiley).
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: Wiley).
Spitzer, L., Cochran, W.D., and Hirshfield, A. 1974, Ap. J. Suppl., 28, 373.
Spitzer, L., and Jenkins, E. B. 1975, Ann. Rev. Astr. Ap., 13, 133.
Viala, Y. P., Bel., N., and Clavel, J. 1979, Astr. Ap., 73, 174.

Whittet, D. C. B., McNally, D., and Dickman, R. L. 1979, preprint.
Yau, A. W., and Dalgarno, A. 1976, Ap. J., 206, 652.
York, D. G., Drake, J. F., Jenkins, E. B., Morton, D. C., Rogerson, J. B., and Spitzer, L. 1973, Ap. J. (Letters), 182, L1.

York, D. G., and Kinahan, B. F. 1979, Ap. J., 228, 127.

	Line	f Value	Source
CI	1328.833	0.082	(1)
CI	1260.736	0.038	(1)
CI	1138.383	0.003	(2)
CI	1157.186	0.0005	(2)
CI*	1329.101	0.082	(1)
CI*	1260.996	0.0095	(1), (3)
CI*	1260.927	0.013	(1), (3)
CI*	1261.122	0.016	(1), (3)
CI*	1276.750	0.0016	(3)
CI**	1329.584	0.082	(1)
CI**	1261.552	0.028	(1), (3)
CI**	1261.426	0.0095	
CI**	1277.954	0.0016	(3)
co	1087.867	0.163	(3)
CO	1150.48	0.015	(3)
CO	1281.866	0.0005	(3)
(1)	de Boer and Morton (1979)		
(2)	This paper		
(3)	Morton (1975)		

HD Number	Name	Sp. Type	m	$\mathbf{E}(\mathrm{B}-\mathrm{V})$	$\begin{aligned} & v \sin i \\ & (\mathrm{~km} / \mathrm{sec}) \end{aligned}$
2905	$\times \mathrm{Cas}$	B1 Ia	4.17	0.35	62
5394	γ Cas	B0.5 IV	2.58	0.08	300
22928	δ Per	B5 III	2.99	0.04	271
22951	40 Per	B1 IV	4.96	0.24	73
24760	ε Per	PO. 5111	2.90	0.10	150
24912	ξ Per	08 III	4.03	0.32	216
30614	a Cam	09.5 Ia	4.29	0.32	95
36486	δ Ori A	09.5 II-III	2.23	0.07	148
36861	λ Ori A	08	3.55	0.12	75
37043	1 Ori	09 III	2.77	0.07	122
37128	ε Ori	BO Ia	1.70	0.08	85
38771	k Ori	B0. 5 Ia	2.09	0.07	81
40111	139 Tau	B1 Ib	4.83	0.15	131
47839	15 Mon	07	4.65	0.07	106
74375	.	Bl. 5 III	4.32	0.10	72
91316	p Leo	B1 Iab	3.85	0.08	69

HD Number	Name	Sp. Type	m.	E(B-V)	V sin 1
141637	1 Sco	B1.5 Vn	4.63	0.20	311
144217 A	B^{1} Sco	B0.5V	2.63	0.20	107
144470	ω^{1} Sco	B1 V	$3.94:$	0.22	141
1455.02	V Sco	B2 IVp	4.01	0.27	202
147933	ρ Oph A	B2 IV	4.61	0.47	303
148184	X Oph	B1.5 Ve	4.43	0.53	123
148605	22 Sco	B2 V	4.78	0.10	241
149038	μ Nor	B0 Ia	4.89	0.36	133
157246	Y Ara	B1 Ib	3.33	0.08	353
165024	O Ara	B2 Ib	3.66	0.10	139
184915	X Aq1	B0.5 IIIn	4.96	0.26	276
200120	59 Cyg	B1.5 Ve	4.79	0.18	450
224572	σ Cas	BI V	4.89	0.17	189

table 3a－C I bquivalent widths．all values in ma

	TAR	$W_{\lambda}(1328.833)$	$W_{\lambda}(1260.736)$	$W_{\lambda}(1138.383)$	$W_{\lambda}(1157.186)$
κ	Cas	127 ± 19（121）	90土12（91）	44土9．0（90）	26士7．6（109）
γ	Cas	$9.6 \pm 1.8(60)$	$5.9 \pm 1.0(57.5)$	≤ 7.8	≤ 8.8
δ	Per	≤ 5.0	≤ 4.8	≤ 2.8	≤ 2.6
40	Per	47土9（57．5）	55土11（75）	≤ 8.2	≤ 7.6
	Per	29さ3（55）	14土1．3（52．5）	≤ 1.0	≤ 1.0
	Per	63土5．4（70）	51さ3．6（65）	20．0土4．0（60）	6．5士2．8（55）
α	Cam	102 ± 13（139）	95土10（130）	27さ5（69）	16士4．6（68）
δ	Ori A	11 ± 1.9	4．8士．0．9（70）	≤ 8	≤ 8
λ	Ori A	51土5．2（70）	$38 \pm 5.2(65)$	≤ 4.2	≤ 3.8
	Ori	9.1 ± 2.0（130）	≤ 1.1	≤ 0.76	≤ 0.78
ε	Ori	$30 \pm 3.2(105)$	14さ1．7（110）	≤ 2.0	≤ 1.5
	Ori	25土2．6（55）	12土1．1（50）	≤ 1.0	≤ 1.0
139	Tau	65 ± 13（93）	42 ± 10（110）	≤ 3.2	≤ 3.2
	74375	46土10．2（85）	17 ± 8.7（55）	≤ 9.10	≤ 7.9
ρ	Leo	23土8（92）	≤ 6.0	16士 3．0（93）	≤ 1.6
	1 Sco	34 ± 8.8（75）	22土4．8（85）	≤ 2.8	2.7 ± 3.0
	β^{1} Sco	35 ± 3.6（60）	24さ2．2（55）	4．2土2．2（45）	≤ 1.8
	ω^{1} Sco	62 ± 12.3（65）	33 ± 7.1（70）	≤ 7.4	≤ 6.6
v	\checkmark Sco	48 ± 13（67．5）	22 ± 7.4（55）	≤ 6.8	≤ 6.4
ρ	Oph A	$42 \pm 11(62.5)$	$24 \pm 11(50)$	≤ 13	≤ 11
	\times Oph	55 ± 9.8（95）	43 ± 8.4（67．5）	19 ± 8.4（55）	$11 \pm 7.6(50)$

table 3a-C i equivalent widths. all values in ma (Continued)

STAR	$W_{\lambda}(1328.833)$	$W_{\lambda}(1260.736)$	$W_{\lambda}(1138.383)$	$W_{\lambda}(1157.186)$
22 Sco	$15 \pm 8.6(57.5)$	$21 \pm 8.4(95)$	≤ 9.4	≤ 8.4
μ Nor	$102 \pm 13(92.5)$	$66 \pm 5.8(75)$	$25 \pm 6.8(90)$	$15 \pm 6.2(80)$
γ Ara	$38 \pm 3.8(75)$	$26 \pm 2.8(62.5)$	≤ 1.7	≤ 1.7
θ Ara	$44 \pm 9(58)$	$31 \pm 6.4(55)$	$7.2 \pm 2.2(42)$	≤ 1.6
K Aq1	$52 \pm 9.6(80)$	$40 \pm 8.0(75)$	≤ 7.0	≤ 6.2
59 Cyg	$42 \pm 7.6(100)$	$28 \pm 4.6(108)$	≤ 2.6	$3.3 \pm 2.8(55)$
σ Cas	$78 \pm 13(100)$	$72 \pm 11(110)$	≤ 8.6	≤ 7.8

TABLE 3b-C I* EquIVALENT WIDTHS. ALL VALUES IN A

table 3b-C I* equivalent widths. all values in ma (Continued)

STAR	$W_{\lambda}(1329.101)$	$W_{\lambda}(1260.996)$	$W_{\lambda}(1260.927)$	$W_{\lambda}(1261.122)$	$W_{\lambda}(1276.750)$
22 Sco	$29 \pm 19(75)$	≤ 7.6	≤ 8.6	≤ 7.4	≤ 7.8
μ Nor	$76 \pm 11(92.5)$	$19 \pm 6.0(60)$	$22 \pm 4.8(75)$	$30 \pm 6.6(85)$	$13 \pm 6.2(52.5)$
γ Ara	$12 \pm 3.6(80)$	≤ 2.2	≤ 1.9	≤ 2.2	≤ 2.2
θ Ara	$39 \pm 8.4(58)$	$13 \pm 6.8(105)^{1}$		$8.2 \pm 5.6(50)$	≤ 6.4
K Aq1	$26 \pm 9.6(65)$	≤ 7.0	$10.3 \pm 6.8(35)$	≤ 6.4	≤ 6.2
59 Cyg	$18 \pm 6.4(95)$	≤ 3.6	≤ 3.6	≤ 3.2	≤ 3.8
σ Cas	$56 \pm 10(90)$	$24 \pm 7.4(95)^{1}$	$13 \pm 8.2^{1}(45)$	$22 \pm 7.2(70)$	≤ 8.4

1 footnote: In most cases the lines at 1260.927 and 1260.996 are unresolved. In these cases either an attempt was made to determine separate equivalent width, or the combined equivalent width is given.
table 3c－C I＊＊equivalent widths．all values in ma

	STAR	$\mathrm{W}_{\lambda}(1329.584)$	$W_{\lambda}(1261.552)$	$W_{\lambda}(1261.426)$	${ }^{W}{ }_{\lambda}(1277.954)$
	Cas	42土18（108）	≤ 12	≤ 12	≤ 15
γ	r Cas	≤ 1.6	≤ 1.0	≤ 1.0	≤ 1.1
δ	δ Per	≤ 4.8	≤ 3.2	≤ 3.2	≤ 3.6
40	Per	20.5 ± 7.8	≤ 6.6	≤ 6.6	≤ 7.0
ε	Per	≤ 2.2	≤ 1.4	≤ 1.4	≤ 1.4
	Per	37士6．6（6．5）	14土3．4（55）	$5.9 \pm 3.4(45)$	≤ 3.6
α	a Cam	14土9．6（71）	≤ 11	≤ 11	≤ 3.6
δ	δ Ori A	≤ 1.5	≤ 0.96	≤ 0.96	≤ 1.1
λ	λ Ori A	9．5士5．4（78）	≤ 4.4	≤ 4.2	≤ 3.8
1	Ori	≤ 1.6	≤ 1.1	≤ 1.1	≤ 1.2
ε	Ori	≤ 2.0	≤ 1.7	≤ 1.7	≤ 1.7
K	K Ori	≤ 1.4	≤ 1.2	≤ 1.1	≤ 1.2
139	Tau	≤ 10	≤ 10	≤ 10	≤ 10
	74375	≤ 7.1	≤ 7.9	≤ 7.1	≤ 7.8
p	Leo	≤ 7.1	≤ 5.6	≤ 5.6	≤ 6.0
1	1 Sco	≤ 5.8	≤ 4.2	≤ 4.2	≤ 4.4
β^{1}	1 Sco	9．4士2．8（50）	5.1 ± 2.0（45）	≤ 2.0	≤ 2.0
ω^{1}	1 Sco	≤ 7.1	≤ 6.6	≤ 5.8	≤ 6.2
	\checkmark Sco	19 ± 12（65）	≤ 9.2	≤ 6.6	≤ 7.8
	Oph A	≤ 12	≤ 12	≤ 12	≤ 12

TABLE 3c - C I** EQUIVALENT WIDTHS. ALL VALUES IN mA (Continued)

STAR	$W_{\lambda}(1329.584)$	$W_{\lambda}(1261.552)$	$W_{\lambda}(1261.426)$	$W_{\lambda}(1277.954)$
X Oph	${ }_{44 \pm 12(42.5)}$	≤ 7.8	≤ 6.8	≤ 7.8
22 Sco	≤ 11	≤ 8.0	≤ 7.8	≤ 7.8
μ Nor	$21 \pm 7.4(40)$	$11 \pm 6.2(45)$	≤ 5.6	≤ 6.6
γ Ara	≤ 3.2	≤ 2.0	≤ 2.0	≤ 2.2
O Ara	≤ 7.0	≤ 6.0	≤ 5.6	≤ 6.0
K Aql	≤ 9.4	≤ 6.8	≤ 6.8	≤ 6.2
59 Cyg	≤ 5.6	≤ 3.4	≤ 3.4	≤ 3.6
σ Cas	≤ 8.2	≤ 7.6	≤ 7.4	≤ 8.2

table 3d - Co equivalent widths. all values in ma

	STAR	$W_{\lambda}(1087.867)$	$\mathrm{W}_{\lambda}(1150.48)$	$W_{\lambda}(1281.866)$
	Cas	53土14(73.5)	≤ 12	≤ 14
γ	Y Cas	≤ 1.1	≤ 1.5	≤ 2.4
δ	δ Per	≤ 4.4	≤ 5.2	≤ 6.4
40	Per	≤ 18	≤ 14	≤ 14
E	Per	≤ 1.3	≤ 1.8	≤ 2.2
	Per	30 ± 4.8	≤ 5.4	≤ 7.2
	Cam	37£6.8(101)	12土8.0(46)	≤ 11
δ	Ori A	≤ 1.2	≤ 1.5	≤ 2.2
λ	Ori A	≤ 6.4	≤ 4.6	≤ 12
1	Ori	≤ 0.9	≤ 1.2	≤ 2.0
ε	Ori	≤ 3.2	≤ 3.2	≤ 3.4
K	Ori A	≤ 1.4	≤ 1.7	≤ 3.4
139	Inu	≤ 7.8	≤ 7.8	≤ 9.0
	74375	≤ 10.2	≤ 10.6	≤ 14.5
ρ	Leo	≤ 4.8	≤ 3.6	≤ 5.8
1	Sco	≤ 4.8	≤ 6.0	≤ 8.6
β^{1}	Sco	7.4 ± 3.0 (80)	≤ 3.4	≤ 4.0
ω^{1}	Sco	≤ 11.3	≤ 10.4	≤ 10.0
v	Sco	≤ 12	≤ 12	≤ 16
p	Oph A	≤ 18	≤ 22	≤ 19

TABLE 3d - CO EQUIVALENT WIDTHS. ALL VALUES IN mA (Continued)

STAR	$W_{\lambda}(1087.867)$	$W_{\lambda}(1150.48)$	$W_{\lambda}(1281.866)$
X Oph	≤ 18	≤ 22	≤ 19
22 Sco	≤ 15	≤ 18	≤ 15
μ Nor	$48 \pm 10(120)$	≤ 10	≤ 11
γ Ara	$5.5 \pm 2.2(55)$	≤ 2.6	≤ 4.4
O Ara	≤ 5.0	≤ 4.0	≤ 5.2
K Aql	≤ 14	≤ 12	≤ 11
59 Cyg	$5.8 \pm 3.0(80)$	≤ 5.2	≤ 7.6
O Cas	≤ 16	≤ 15	≤ 13

STAR	$\mathrm{V}_{\mathrm{r}}(1328.833)$	$\mathrm{V}_{\mathrm{r}}(1260.736)$	$\mathrm{V}_{\mathrm{r}}(1138.383)$	$\mathbf{V}_{\mathbf{r}}(1157.186)$
K Cas	-17.6	-17.6	-20.6	-17.1
γ Cas	-9.7	-10.2	-	-
40 Per	-24.2	-25.7	-	-
ε Per	2.3	3.6	-	-
ξ Per	-70.7	-70.9	-73.3	-72.8
α Cam	-23.3	-21.7	-23.2	-17.1
δ Ori A	-13.5	- 7.3	-	-
λ Ori A	-17.6	-12.6	-	-
1 Ori	-17.6	-	-	-
E Ori	-14.7	-15.7	-	-
k Ori	-12.0	-11.4	-	-
139 Tau	- 5.2	- 7.4	-	-
HD 74375	- 2.3	- 4.3	-	-
ρ Leo	-59.4	-	-45.6	-
1 Sco	-9.7	-11.4	-	-8.6
$\rho^{1} \mathrm{Sco}$	-16.5	-16.2	-17.1	-
$\omega^{1} \mathrm{Sco}$	- 3.4	- 1.9	-	-
ν Sco	-11.7	-9.1	-	-

table 4 - RADIAL VELOCITIES FROM C I MULTIPLETS (KM/SEC) (Continued)

STAR	$V_{\mathbf{r}}(1328.833)$	$V_{\mathbf{r}}(1260.736)$	$V_{\mathbf{r}}(1138.383)$	$V_{\mathbf{r}}(1157.186)$
ρ Oph A	-5.0	-3.8	-	-
X Oph	-11.3	-8.80	-7.9	-10.6
22 Sco	-9.7	-10.9	-	-
μ Nor	-18.5	-18.6	-17.9	-24.9
γ Ara	3.4	3.1	-	-
θ Ara	-9.7	-10.2	-13.2	-
K Aq1	-1.8	-1.9	-	-
59 Cyg	-23.3	-24.5	-	-30.7
σ Cas	-13.1	-15.7	-	-

radial velocities from C i* multiplets (KM/SEC)

STAR	$\mathrm{V}_{\mathbf{r}}(1329.101)$	$\mathrm{V}_{\mathrm{r}}(1260.996)$	$\mathrm{V}_{\mathrm{r}}(1260.927)$	$\mathrm{V}_{\mathrm{r}}(1261.122)$	$V_{r}(1276.750)$
K Cas	-22.8	$-24.6{ }^{1}$	$-19.9{ }^{1}$	-15.2	-
40 Per	-22.8	-24.5^{1}	-20.9^{1}	-24.0	-
ε Per	-0.7	-	-	-	-
$\boldsymbol{\xi}$ Per	-71.8	$-72.8{ }^{1}$	-73.0^{1}	-71.8	-72.8
α Cam	-21.1	-	-	-	-
λ Ori A	-17.6	-11.4	-	- 9.3	-
ε Ori	-23.7	-	-	-	-
K Ori	-11.5	-	-	-	-
139 T au	- 4.74	-	-	-	-
HD 74375	- 2.5	-	-	-	-
1 Sco	-8.1	-	-	-	-
$\beta^{1} \mathrm{Sco}$	-16.0	-15.7	-14.0	-14.80	-
$\omega^{1} \mathrm{Sco}$	- 2.9	-	-	-	-
ν Sco	-10.6	-	-	- 6.4	-
ρ Oph A	- 4.7	- 6.2	$-2.85{ }^{1}$	- 5.2	- 3.5
χ Oph	- 6.8	$-7.85{ }^{1}$	$-7.6{ }^{1}$	- 6.2	-
22 Sco	- 5.2	-	-	-	-
μ Nor	-15.8	-18.	$-18.6{ }^{1}$	-16.4	-15.0
γ Ara	4.3	-	-	-	-
0 Ara	-10.6	-10.9^{1}	-12.4^{1}	-10.0	-
$K_{\text {Aq }} \mathbf{l}$	- 0.7	-	- 3.33	-	-
59 Cyg	-25.5	-	-	-	-
0 Cas	-14.9	$-14.0{ }^{1}$	$-14.0{ }^{1}$	-15.9	-

1 footnote: velocities are approximate only due to poor resolution of lines at 1260.927 and 1260.996 .

RADIAL VELOCITIES FROM C I** MULTIPLETS (KM/SEC)

STAR	V_{r} (1329.584)	$\mathrm{V}_{\mathrm{r}}(1261.552)$	$\mathrm{V}_{\mathrm{r}}(1261,426)$	$\mathrm{V}_{\mathrm{r}}(1277.954)$
${ }^{K} \mathrm{Cas}$	-19.0	-	-	-
40 Per	-23.9	-	-	-
$\boldsymbol{\xi}$ Per	-71.3	-73.5	-73.2	-
α Cam	-22.6	-	-	-
λ Ori A	-15.6	-	-	-
β^{1} Sco	-15.6	-14.0	-	-
\checkmark Sco	- 9.3	-	-	-
X Oph	-9.0	-	-	-
μ Nor	-15.5	-15.2	-	-
θ Ara	-10.4	-	-	-

RADIAL VELOCITIES PROM CO LINES (KM/8EC)

STAR	$V_{\mathbf{r}}(1087.867)$	$V_{\mathbf{r}}(1150.48)$	$V_{\mathbf{r}}(1281.866)$
K Cas	-16.3	-	-
ξ Per	-76.4	-	-
α Cam	-19.6	-13.8	-
β^{1} Sco	-18.5	-	-
μ Nor	-27.3	-	-
γ Ara	-3.0	-	-
59 Cyg	-29.5		

TABLE 5

logarithms of column densities with saturation parameters（in parentheses）

	STAR	N（CI）	N（C I＊）	N（CI＊＊）	$N(C 0)$
	κ Cas	15．72土0．4（1．2）	14．26士0．2	13．66士0．3	13．480．2
	$\gamma \mathrm{Cas}$	13．04土0．1	≤ 12.12	≤ 12.10	≤ 11.81
	δ Per	≤ 12.59	≤ 12.64	≤ 12.57	≤ 12.41
40	0 Per	14．5士0．3	14．28士0．2（1．4）	13．28土．0．2（1．2）	≤ 13.02
	E Per	13．57 ± 0.1（1．4）	12．62士0．2	≤ 12.23	≤ 11.88
	ξ Per	15.04 ± 0.2	14．50士0．2	13．64士0．2	13．24士0．1
	$\alpha \mathrm{Cam}$	15．59士0．1（1．5）	13．80土0．2（1．7）	13．06士0．5（1．1）	13.83 ± 0.5
	δ Ori A	12.95 ± 0.1	≤ 12.07	≤ 12.07	≤ 11.85
	λ Ori A	14．15士0．1（2．0）	13．60士0．2（1．2）	12．95土0．2（1．2）	≤ 12.57
	1 Ori	12.85 ± 0.1	≤ 12.07	≤ 12.10	≤ 11.72
	E Ori	13．55士0．1（1．5）	12．90さ0．1（1．1）	≤ 12.19	≤ 12.27
	$k 0 r i$	13．48士0．1（1．3）	12．98さ0．1（1．2）	≤ 12.04	≤ 11.91
139	9 Tau	14．13士0．2（1．7）	13．05士0．3（1．1）	≤ 12.89	≤ 12.66
	74375	13.83 ± 0.3	13.05 ± 0.3	≤ 12.74	≤ 12.78
	ρ Leo	13．32 $\pm 0.2(1.2)$	≤ 12.76	≤ 12.76	≤ 12.45
	1 Sco	13．73土0．1（1．3）	13.60 ± 0.2	≤ 12.66	≤ 12.45
	${ }^{1} \mathrm{Sco}$	14．13士0．2（1．1）	13．53士0．1（1．2）	12．94さ0．1（1．2）	12.64 ± 0.2
	1 Sco	13．93 $\pm 0.2(1.4)$	13．79 ${ }^{ \pm} 0.2(1.7)$	≤ 12.74	≤ 12.82
	ν Sco	13．90士0．3（2．0）	13.90 ± 0.3	13.29 ± 0.3	≤ 12.85
	$\rho \mathrm{Oph} A$	≥ 13.65	≥ 14.19	－•	－
	X 0 ph	15．67 $\ddagger 0.5$（2．5）	14.8 ± 0.2	14.0 ± 0.3	≤ 13.50

TABLE 5 (Continued)
LOGARITHMS OF COLUMA DEAHITIES WITH SATURATION PARAMFTERS (IN PARENTHESES)

STAR	N(C I)	N(CI*)	N(C I**)	N(CO)
22 Sco	-	-	-	-
μ Nor	≥ 15.40	214.81	13.45 ± 0.3	13.45 ± 0.2
YAra	$13.92 \pm 0.1(1.7)$	$13.01 \pm 0.2(1.1)$	≤ 12.40	12.51 ± 0.4
θ Ara	$14.36 \pm 0.2(1.1)$	$14.60 \pm 0.5(1.1)$	≤ 12.74	≤ 12.44
KAq1	$14.18 \pm 0.1(2.0)$	$13.48 \pm 0.3(1.5)$	≤ 12.87	≤ 12.91
59 Cyg	$13.92 \pm 0.1(1.6)$	$13.23 \pm 0.1(1.2)$	≤ 12.64	12.53 ± 0.3
0 Cas	14.50 ± 0.3	14.70 ± 0.3	≤ 12.81	12.97

STAR		T ${ }^{(}{ }^{\text {K }}$)	$\mathrm{n}\left(\mathrm{cm}^{-3}\right)$	$\mathrm{p} / \mathrm{k}\left({ }^{\mathrm{O}} \mathrm{K} \mathrm{cm}^{-3}\right)$
	Cas	104	10-40	1040-4200
	Cas	80	≤ 30	≤ 2400
40	Par	63	60-180	3800-12000
	Per	81	15-35	1200-2800
	Per	61	46-120	2400-7300
α	Cam	80	5-20	400-1600
δ	Ori A	80	≤ 30	1600
λ	Ori A	45	60-230	2700-10000
1	Ori	80	≤ 60	≤ 4800
ε	Ori	108	30-50	3200-5400
k	Ori	80-110	40	3200-4400
139	au	117	5-65	590-7600
HD 7	74375	80	10-160	800-14000
ρ	Leo	80	≤ 80	≤ 6400
1	Sco	73	80-100	5800-7300
β^{1}	Sco	88	40-100	3500-8800
ω^{1}	Sco	60-80	60-100	3600-8000
ν	Sco	90	80-500	7200-45000
	Oph A	46	≥ 140	≥ 6400

TABLE 6 - PHYSICAL CONDITIONS (Continued)

STAR	$\mathrm{T}\left({ }^{\mathrm{o}} \mathrm{K}\right)$	$\mathrm{n}(\mathrm{cm}-3)$	$\mathrm{p} / \mathrm{k}\left({ }^{\mathrm{o}} \mathrm{k} \mathrm{cm}{ }^{-3}\right)$
χ Oph	46	$10-180$	$460-8300$
μ Nor	54	$20-100$	$1100-5400$
γ Ara	79	$10-40$	$790-3200$
0 Ara	80	$10-40$	$800-3200$
K Aq1	59	$20-80$	$1200-4700$
59 Cyg	87	$30-60$	$2600-5200$
σ Cas	82	$40-50$	$3300-4100$

STAR	R4	R5	α
E Per	$2.1 \times 10^{-17}-5.0 \times 10^{-17}$	$\leq 2.3 \times 10^{-17}$	$0.42-0.99$
ξ Per	$5.4 \times 10^{-17}-1.6 \times 10^{-16}$	$2.7 \times 10^{-17}-8.0 \times 10^{-17}$	$1.08-6.4$
α Cam	$1.7 \times 10^{-16}-6.6 \times 10^{-16}$	$1.5 \times 10^{-16}-6.0 \times 10^{-16}$	$3.2-12.6$
λ Ori	$3.7 \times 10^{-18}-1.4 \times 10^{-17}$	$5.4 \times 10^{-18}-2.1 \times 10^{-17}$	$0.14-0.82$
139 Tau	$4.8 \times 10^{-17}-2.4 \times 10^{-16}$	$1.6 \times 10^{-17}-2.0 \times 10^{-16}$	$0.44-6.7$
$\mu \mathrm{Nor}$	$8.8 \times 10^{-17}-4.4 \times 10^{-16}$	$6.6 \times 10^{-17}-3.3 \times 10^{-16}$	$1.8-12$.
$\gamma \mathrm{Ama}$	$1.7 \times 10^{-17}-6.3 \times 10^{-17}$	$3.2 \times 10^{-17}-1.3 \times 10^{-16}$	$0.61-4.7$
59 Cyg	$6.3 \times 10^{-17}-1.3 \times 10^{-16}$	$2.7 \times 10^{-17}-5.3 \times 10^{-17}$	$.18-0.62$

