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SUMMARY 

An optimal  design  program  with  constrained  parameter  optimization  has  been 
shown  to be useful  in  evaluating  the  impact  of  certain  flying-qualities  design 
assumptions  and  in  determining  the  sensitivity  to  several  related  parameter 
variations.  Transports  optimally  configured  with  relaxed  static  stability 
showed  a  potential  savings  in  direct  operating  cost of 1 . 4  percent  when  compared 
with  transports  with  conventional  static  margins.  This  corresponded  to  a  fuel 
savings  of 4 . 2  percent  for  the  medium-range  mission  considered.  Savings of 
nearly 1 percent  in  direct  operating  cost  were  also  possible  from  utilizing 
half  the  nominal  center-of-gravity  range of travel  and  from  allowing  the  landing 
gear  to be structurally  dislocated  from  the  wing.  Requiring  transports  to be 
able  to  take  off  with  the  stabiliz.er  trimmed  in  the  most  adverse  position was 
shown  to  penalize  the  aircraft  over 4 percent  in  direct  operating  cost. 

During  the  course of  this  study,  it  became  obvious  that  there  is  a  need 
for  developing  design  criteria  for  the  minimum  flying  qualities  that  are 
necessary  for  specifying  the  inherent  stability  and  control  characteristics of 
augmented  transports.  Most  existing  criteria  did  not  have  useful  parameters 
for  defining  handling  qualities of inherently  unstable  transports  which  rely 
upon  augmentation  systems.  Furthermore,  few  flying-qualities  data  were  avail- 
able in  terms  of  factors  that  would  be  useful  for  developing  appropriate 
inherent  longitudinal-handling-qualities  design  criteria  for  transports  con- 
figured  to  take  maximum  advantage  of  relaxed-static-stability  augmentation 
systems. 

INTRODUCTION 

Active  controls  technology  in  aircraft  design  involves  the  application 
of automatic  control  systems  which  augment  either  the  rigid or flexible  body 
dynamics  of  the  aircraft.  This is done  to  enhance  either  performance,  struc- 
tural  efficiency,  airframe  lifetime,  ride  quality,  or  some  other  measure. 
Relaxed-static-stability  augmentation  systems  (RSSAS)  constitute  an  active 
controls  concept  that  has  already  been  successfully  applied  to  fighter  and 
supersonic  transport  configurations.  Similarly,  significant  benefits  are 
anticipated  for  subsonic  commercial  transports  if  the  RSSAS  concept  could  be 
applied  (refs. 1 and 2 ) .  Utilization  of  RSSAS  permits  a  more  aft  center-of- 
gravity  position,  which  typically  attenuates  the  required  tail  lift  for  trim, 
thereby  reducing  the  induced  drag of the  tail.  Stability  reductions  also  per- 
mit  smaller  tail  surfaces,  which  reduce  wetted  area  drag  and  weight. 

The  benefits  of  applying  RSSAS  to  transports  were  initially  hypothesized 
by conceptually  retrofitting  current  configurations  (refs. 3 and 4 ) .  The  per- 
formance  gains  were  estimated  by  adjusting  center of gravity  and  tail  size  to 
minimize  weight  and  tail  drag  while  satisfying  flying-qualities  and  control- 
power  requirements.  This  scheme  provided  rough  approximations of the  potential 
benefits,  but  fell  short of documenting  the  full  benefits  which  would  be 



possible by applying  RSSAS  early  in  the  design  process.  Currently,  a  program 
is  underway  to  study  the  implications  of  minor  configuration  alterations  at  the 
preliminary  design  level  which  could  enhance  the  application  of  active  controls 
technology  (ref. 5). 

With  respect  to RSSAS, there  are  two  major  obstacles  to  hinder  the  reali- 
zation  of  the  maximum  performance  improvements.  First,  syntheses  of  the  config- 
urations  under  study  are  being  heavily  influenced  by  current  hardware  and,  in 
reality,  have  only  minor  degrees  of  freedom  in  geometry.  The  designs  are  being 
optimized by classical  engineering  methods,  which  include  intuition  in  achieving 
the  proper  balance  between  weight  savings  and  performance  improvements.  It is 
assumed  that  the  operating  cost  of  the  overall  vehicle  will  then  be  optimized. 

Secondly,  the  first  assumption  required  when  designing  a  transport  with 
an RSSAS is  the  level  of  the  aerodynamic or inherent  stability  contribution 
toward  the  fully  augmented  flying  qualities.  If  it  can  be  assumed  that  it  is 
always  possible  to  augment  an  airplane  to  the  desired  level  of  flying  qualities, 
the  unaugmented  flying  qualities  impact  the  design  principally  through  failure 
mode  considerations.  It is still  unresolved,  even  philosophically,  what  level 
of  flying  qualities  a  transport  should  have  in  the  event  of  control  system  fail- 
ures  (refs. 6 to 11 ).  Design  philosophies  range  from  requiring  excellent  fly- 
ing  qualities  to  having  marginally  safe  handling  qualities  for  landing  and  even 
to  allowing  loss  of  the  aircraft  (requiring  fail-safe  reliability  in  the  auto- 
matic  control  system). 

The  study  reported  herein  utilized  a  direct  constrained  optimization  pro- 
cedure  for  the  preliminary  optimal  design  of  transport  aircraft  for  the  purpose 
of  identifying  the  full  benefits  of RSSAS. The  aircraft  geometry  was  optimally 
sized  to  yield  the  maximum  obtainable  improvements  from RSSAS in  terms  of  mini- 
mum  direct  operating  cost  per  block  hour.  The  flying-qualities  and  related  con- 
straints  were  systematically  varied  to  identify  the  configuration  sensitivity 
to  these  assumptions.  This  information  (which  was  presented  in  condensed  form 
in  ref. 1 2 )  should  allow  both  designers  and  those  concerned  with  flight  safety 
to  appreciate  the  impact  of  choosing  appropria-te  unaugmented  longitudinal- 
flying-qualities  criteria  upon  the  design  of  transports  configured  with R S S A S .  

SYMBOLS AND ABBREVIATIONS 

AR aspect  ratio 

CAS  airplane  cost, 1979 dollars 

drag  coefficient, D 5 

‘D,o total  drag  coefficient  at  zero  lift 

fuel  cost  per  block  hour, 1 979 dollars CFS 

c.g. center  of  gravity 
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CL 

CL, 0 

CMS 

D 

Doc 

g 

FARE 

IOC 

L 

L/D 

MAC 

MDOC 

OPDOT 

P 

PR 

q 

lift  coefficient, L gs 

design  lift  coefficient  of  the  airfoil  section  representing  the  center 
of the  drag  bucket 

maintenance  cost  per  block  hour, 1979 dollars 

drag,  N 

direct  operating  cost  per  block  hour,  1979  dollars 

acceleration  due  to  gravity, 9.8 m/sec2 

income  per  seat-kilometer  required  to  generate  a  15-percent  ROI, 
1979  dollars 

indirect  operating  cost  per  block  hour,  1979  dollars 

lift, N 

aerodynamic  efficiency,  CL/CD 

fuselage  length, m 

mean  aerodynamic  chord,  m 

modified  direct  operating  cost  per  block  hour, 1979 dollars 

modified  direct  operating  cost  per  block  hour  for  baseline  config- 
uration,  1979  dollars 

steady-state  normal  acceleration  change  per  unit  change  in  angle of 
attack  for  an  incremental  longitudinal  control  deflection  at 
constant  airspeed,  gravity  units/radian 

computer  program,  Optimal  Preliminary  Design of  a  Transport 

savings  in  augmented  direct  operating  cost,  percent 

pilot  rating 

free-stream  dynamic  pressure,  N/m2 

rms root mean  square  with  respect  to  mean 



a n n u a l   r e t u r n  on  investment ,   percent  

relaxed-static-stability augnenta t ion   sys tems 

l i f t i n g  surface area, r n 2 ( ~ 2 )  

i n s t a l l e d   t h r u s t ,  N ( lb f )  

weight , N 
l o n g i t u d i n a l   l a n d i n g   g e a r   p o s i t i o n ,   f r a c t i o n  of t h e  mean aerodynamic 

chord 

shor t -pe r iod  damping ra t io  

shor t -pe r iod   na tu ra l   f r equency ,  sec-l 

Subscripts: 

e mPtY 

max  maximum 

t h o r i z o n t a l  t a i l  

to  take-off 

tot total  

W wing 

PROCEDURE 

Method of C a l c u l a t i o n  

The cunputer  program used for   per forming   the  trade s tud ie s  du r ing   t he  
f l y i n g - q u a l i t i e s   a n a l y s i s  was OPDOT, Optimal   Prel iminary  Design  of  a Trans- 
p o r t .  A mre complete   descr ipt ion  of   this   computer   program is p r e s e n t e d   i n  
r e fe rence  13. The o p t i m i z a t i o n   i n d i c a t e d   i n   r e f e r e n c e  13 was performed  using 
a mod i f i ca t ion   o f   t he   s equen t i a l   s imp lex   op t imize r  proposed i n   r e f e r e n c e s  1 4  
and 15. The nonlinear  programming  logic is shown i n   f i g u r e  1 . A t r i g o n a n e t r i c  
func t ion   t r ans fo rma t ion   ( r e f .  16 )  was u t i l i z e d   w h i c h   a u t a n a t i c a l l y  scaled t h e  
independent   des ign   var iab les  i terated by t h e   o p t i m i z e r  and applied c o n s t r a i n t s  
d i r e c t l y  t o  the   des ign  variables. Naninal   values  for the  independent   design 
var iab les   (wing  area, wing a spec t  ratio,  f u s e l a g e   l e n g t h ,   h o r i z o n t a l - t a i l  area, 
h o r i z o n t a l - t a i l  aspect ratio, i n s t a l l e d   t h r u s t ,   a n d   c . g .   l o c a t i o n )  were assuned, 
and a set of des ign   cons t an t s  were i n p u t   i n t o   t h e  data base ( table  I ) .  These 
c o n s t a n t s  were used to spec i fy   the   miss ion ,   opera t ing   econcmics ,   nonvary ing  or 
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simply  scaled  geometr ies ,   and some of the  nonl inear   aerodynamic terms. These 
i n p u t s  were h e l d   c o n s t a n t   t h r o u g h o u t   t h i s   a n a l y s i s   u n l e s s   e x p l i c i t l y   s t a t e d  
o therwise .  

The opt imizer  is a s e c t i o n  of computer code w h i c h   i n t e r a c t s   w i t h   t h e   d a t a  
base, t a k i n g   t h e   c u r r e n t   v a l u e  of each   des ign   va r i ab le  as i n p u t  to  g e n e r a t e  a 
performance  index. The performance  index  used as a f igure-of-meri t  for t h i s  
s tudy  was a m o d i f i e d   d i r e c t   o p e r a t i n g  cost per block  hour (MDOC). T h i s  crite- 
r ion,   which was minimized by the   op t imize r   w i th in   t he   cons t r a in t   boundar i e s ,  
i nvo lves   t he   e s t ima t ion  of t h e  cost performance from a s imulated  mission.  A 
schematic  for t h e   l o g i c a l   f l o w  of t h i s   s e c t i o n  of computer  code is shown i n  
f i g u r e  2. 

The mission profile was a m u l t i p l e - s t e p  classical (ref. 1 7 )  approximation 
to an optimal f u e l - e f f i c i e n t   f l i g h t   p a t h .   T h i s   p a t h   b e g a n   w i t h  a climb to a l t i -  
t u d e   w i t h i n   t h e  maximum speed   regula t ions ,   fo l lowed by a cruise-cl imb a t  maxi- 
mum cL/CD3I2 to maximize  range factor, then a cruise-climb a t  maximum cL/cD, 
and f i n a l l y  a rapid descent  to landing .  The f u e l   u s a g e  of t h i s  profile has  been 
shown to be wi th in   abou t  3 p e r c e n t  of a c o n t i n u o u s   o p t i m a l l y   f u e l - e f f i c i e n t  
f l i g h t   p a t h  (ref.  1 8 ) .  Although t h i s  was no t   i nc luded   i n   t he  cost r e l a t i o n -  
s h i p s ,   t h e   a i r c r a f t  was s i z e d  to c a r r y  enough f u e l  to s a t i s f y   t h e   r e s e r v e  
requi rements .   S ince   about  95 p e r c e n t   o f   t h e   f u e l   b u r n o f f  is r e a l i z e d   d u r i n g  
t h e   c r u i s e - c l i m b   p a r t s  of t h e   m i s s i o n   p r o f i l e ,   t h e   i n d e p e n d e n t   d e s i g n   v a r i a b l e s  
and   o ther   des ign   inputs  w i l l  have  the most impact on   t hese   po r t ions  of OPDOT's 
model o f   t h e   t r a n s p o r t   o p e r a t i o n .  

The a i r c r a f t   w e i g h t  was e s t i m a t e d   i n   a n   i t e r a t i v e   f a s h i o n  from the  equa-  
t i o n s   o f   r e f e r e n c e s  1 7 ,  19, and 20. Although take-off weight is t h e  summation 
of each of the  es t imated  component   weights  as well as both   the   payload   and   fue l ,  
the   take-off   weight  was r e q u i r e d  by many o f   t h e  s ta t i s t ica l  r e l a t i o n s   u s e d  to  
estimate each  component  weight.   Each  i teration of the   op t imize r  was s t a r t e d  
with  the  take-off   weight  from t h e   p r e v i o u s  set  of   independent   des ign   var iab les .  
An e n t i r e   m i s s i o n  was simulated,  i nc lud ing   t he   r e se rve   s egmen t  for each  weight  
i t e r a t i o n .  If the   d i f f e rence   be tween   t he  l a s t  estimate of gross   take-off   weight  
and   the   ca lcu la ted   weight  was g r e a t e r   t h a n  0.22  newton,   another   i t e ra t ion  was 
begun with  an  updated estimate. The program  averaged  about  four  weight i tera- 
t ions   per   per formance   func t ion  c a l l  for an e n t i r e   o p t i m i z a t i o n .  

The a i rc raf t  w a s  trimmed for c r u i s i n g   f l i g h t   u s i n g  a n o n l i n e a r ,   i t e r a t i v e  
method. The aerodynamic forces and moments were es t ima ted   u s ing  classical aero- 
n a u t i c s  and s t a t i s t i c a l l y   n o r m a l i z e d   d a t a  for supercrit ical  aerodynamics. The 
drag was estimated u s i n g   r e f e r e n c e s  1 7  and 21 to 23. The  wing was assumed to 
be s u p e r c r i t i c a l ,   a n d   t h e   p i t c h i n g  moment and  drag were estimated as a f u n c t i o n  
of wing t h i c k n e s s  ratio, Reynolds  number, Mach number,  and sweep us ing   t he   t ech -  
niques from r e f e r e n c e s  1 7  and 23 to 27. 

Once t h e   a i r c r a f t  w a s  trimmed, a l l  t h e   c o n t r i b u t i o n s  of drag  were summed 
to de termine   the   requi red   th rus t   and ,   hence ,   fue l   consumpt ion .  A parabolic drag  
polar was assumed  with a des ign  C L , ~  of 0.4 r e p r e s e n t i n g   t h e   c e n t e r  of t h e  
a i r f o i l  sec t ion   d rag   bucke t .  Drag c o n t r i b u t i o n s  due to t a i l  l i f t  and  ta i l /wing 
i n t e r f e r e n c e  were es t ima ted   u s ing   b ip l ane   t heo ry  (refs. 2 and 2 8 ) .  The engine  

5 



performance  and  weight were s c a l e d  from a b a s e l i n e   e n g i n e  as suggested by ref- 
erence  17.  The e n g i n e   o p e r a t i n g   c h a r a c t e r i s t i c s  were determined as a f u n c t i o n  
of Mach number a n d   a l t i t u d e  from a model developed i n  r e f e r e n c e   1 8 .  

The modified direct o p e r a t i n g  cost MDOC used  the  summation of t h e  follow- 
ing costs: d e p r e c i a t i o n ,   s u p p o r t ,  spares, de lay ,   insurance ,   fue l ,   main tenance ,  
l anding  fee, crew, a t t e n d a n t s ,   f u e l   s e r v i c e ,  and c o n t r o l .  The parameter MDOC 
differs  from indus t ry   s tandard   methods  by t h e   i n c l u s i o n  of support, de lay ,  
a t t endan t s ,   f ue l - se rv ice ,   con t ro l ,   and   l and ing- fee  costs. Operat ing costs were 
estimated u s i n g   t h e   r e l a t i o n s h i p s   f o u n d   i n   r e f e r e n c e s  29 to  32. Th i s   s tudy  was 
pe r fo rmed   w i th   t he   fue l  cost set a t  0.2 U.S. d o l l a r s  per l i t e r  ($0.75  per 
g a l l o n ) .   P a r a l l e l   s t u d i e s  were also comple ted   wi th   fue l  costs of up to 0 . 4  U . S .  
d o l l a r s  per l i t e r  ($1.50 per g a l l o n ) .  The d e p r e c i a t i o n  costs were c a l c u l a t e d  
us ing   t he   a i rp l ane   pu rchase  price e s t i m a t e d  from reference  17  and  assuming a 
r e s i d u a l   o f   1 2   p e r c e n t   a n d  a d e p r e c i a t i o n  period of 1 4  y e a r s .  The i n c l u s i o n  
of a c t i v e   c o n t r o l s   r e s u l t e d   i n   a n  appropriate i n c r e a s e   i n   t h e   p u r c h a s e  price 
and  maintenance cost as i n d i c a t e d  by r e f e r e n c e s  4 ,  5,  and 20. It was assumed 
t h a t   t h e  same l e v e l  of r e l i a b i l i t y   a n d   d i s p a t c h a b i l i t y   c o u l d  be maintained  and, 
t h e r e f o r e ,   t h a t   t h e   i n c l u s i o n   o f   t h i s  new t echno logy   wou ld   no t   r e su l t   i n  
i nc reased   de l ays  or h igher   insurance  rates. 

Af t e r   t he   pe r fo rmance   func t ion  had   been   eva lua ted ,   the   op t imizer   ca l led  
a s e c t i o n  of computer  code  which  evaluated  the set of c o n s t r a i n t s   b e i n g   a p p l i e d .  
The list of ava i l ab le   i nequa l i ty   cons t r a in t s ,   wh ich   have  upper and lower bound- 
aries, is shown i n   t a b l e  11. The c o n s t r a i n t s   t h a t  were s e l e c t e d   a n d   t h e  limits 
t h a t  were imposed were t h e  means by which  the  design was spec i f i ed .   The re  were 
b o t h   o p e r a t i o n a l  or d e s i g n   c o n s t r a i n t s   a n d   f l y i n g - q u a l i t y   c o n s t r a i n t s .  

A modified cost f u n c t i o n  was formed by add ing   pena l ty  terms to t h e  perfor- 
mance index   func t ion  for e a c h   c o n s t r a i n t   f u n c t i o n   t h a t   v i o l a t e d  its upper or 
lower limit. Each   pena l ty  was p r o p o r t i o n a l  to the   squa re  of t h e  amount of t h e  
v i o l a t i o n  times a l a rge   we igh t ing  factor. When the   op t imizer   min imized   the  
modified cost func t ion ,  it f o r c e d   t h e   c o n s t r a i n t   v i o l a t i o n s   t o w a r d   z e r o  i f  t h e  
weight ing   fac tor  was s u f f i c i e n t l y   l a r g e .   C o n s t r a i n t s   t h a t  are on or nea r   t he  
boundary are s a i d  to be a c t i v e .  

C o n s t r a i n t   f u n c t i o n s   t h a t   i n v o l v e d   t h e  a i r c ra f t  ope ra t ion   du r ing  cruise 
u t i l i z e d   d a t a   s a v e d  in' the   da t a   base   du r ing   t he  cruise p o r t i o n s .  The a i rc raf t  
aerodynamic moments and forces were determined,  and it was a l t e r n a t e l y  trimmed 
o u t  i n  take-off or l and ing   conf igu ra t ions  a t  t h e  appropriate speeds to d e t e r -  
mine the   per formance ,   s tab i l i ty ,   and  trim c h a r a c t e r i s t i c s .  The nondimensional 
s t a b i l i t y   d e r i v a t i v e s  used for t h e s e   a n a l y s e s  were s a v e d   i n   t h e   d a t a   b a s e  for 
approach  and  cruise   configurat ions.   These were converted to  dimensional   der iv-  
a t i v e s  ( ref .  3 3 ) ,  and a fou r th -o rde r   ana lys i s   o f   t he   l ong i tud ina l   dynamics  was 
performed  using  system  rout ines  a t  Langley  Research  Center.  The roots o f   t hese  
d i f f e r e n t i a l   e q u a t i o n s  were used to e v a l u a t e  many of t h e   f l y i n g - q u a l i t i e s  param- 
eters which were part  of t h e   c o n s t r a i n t   f u n c t i o n s .  

The o p t i m i z a t i o n   c o n t i n u e d   u n t i l   s a t i s f a c t o r y   c o n v e r g e n c e  was obta ined .  
Typical ly ,   convergence  required  on  the  order  of 1500 to  2200 calls  of t h e  per- 
formance  funct ion to genera te   an  optimum augmented   func t ion ,   which   resu l ted   in  
t h e  set  of independen t   des ign   va r i ab le s   w i th   t he  minimum performance  index  that  
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sa t i s f ied  t h e  selected c o n s t r a i n t   f u n c t i o n s .   T h i s   r e q u i r e d   a b o u t  1600 seconds 
O f  execu t ion  time using  the  Langley  Research  Center   canputer  facilities. 

Method o f   C a p a r i s o n  

The r e s u l t s  were normalized  using a b a s e l i n e  set o f   des ign   spec i f i ca t ions .  
These   spec i f i ca t ions  were primarily the   mi s s ion   i npu t s  of table I a long   w i th  
t h e   m i l i t a r y   l e v e l  I f l y i n g - q u a l i t i e s  cr i ter ia  for t r a n s p o r t  aircraft  (ref. 3 4 ) .  
F i n a l   v a l u e s  for both  the  independent   and  dependent   design  var iables   which 
resulted f r a n   t h e   o p t i m i z a t i o n  of the   base l ine   mi s s ion  are Shawn i n  table I11 
along  wi th  a number of  performance indices .  A s  ment ioned  previously,   the  modi- 
f ied  direct o p e r a t i n g  cost per b l o c k  hour was the   f igure-of -mer i t  to which   the  
conf igu ra t ion  was opt imized.   Although  the  level  I a i r c r a f t  was obvious ly  much 
more stable than   cu r ren t   des igns  (static margin   o f   near ly  43 percen t )  it 
r e p r e s e n t s  a good b a s e l i n e ?   s i n c e  it used  the most conse rva t ive   o f   t he  proposed 
cri teria for t h e   u n a u g n e n t e d   f l y i n g   q u a l i t i e s  of t r a n s p o r t s .  

S ince  modified direct o p e r a t i n g  cost per b l o c k  hour was the  opt imized per- 
formance  index, a l l  r e s u l t s  are shown i n  terms o f   t h i s   q u a n t i t y   n o r m a l i z e d  by 
the b a s e l i n e  airplane performance. S p e c i f i c a l l y ,   p e r c e n t   s a v i n g s   i n  modified 
direct  o p e r a t i n g  cost is the  parameter  tha t  is p l o t t e d  as a f u n c t i o n  of t h e  
various f l y i n g - q u a l i t i e s  cr i ter ia  be ing   cons idered   here in .  I t  was calculated 
as follows : 

RESULTS AND DISCUSSION 

Fly ing-Qua l i t i e s   Sens i t i v i ty   S tudy  

Static margin,  or the  degree   o f   s t ick- f ixed  s ta t ic  s t a b i l i t y ?   h a s   b e e n  the  
parameter by which most ana lyses   o f   s t ab i l i t y   augmen ta t ion   sys t ems   fo r   t r ans -  
ports w i t h   a c t i v e   c o n t r o l s  have  been  evaluated.  Figure 3 shows the  normalized 
modi f ied-d i rec t -opera t ing-cos t   sav ings  as a func t ion   o f  s ta t ic  margin  during 
landing .  The lower c u r v e   i n c l u d e s   t h e  impact of adding a f l i g h t   c o n t r o l  cow 
puter for augmen t ing   t he   s t ab i l i t y?   wh i l e   t he   uppe r   cu rve   r ep resen t s   no t   ca r ry -  
i n g  an augnenta t ion  canputer. The d i f f e rence   be tween   t he  t w o  curves  is n e a r l y  
cons t an t   s ince   t he   canpu te r  is no t  scaled on   t he   deg ree  of i n s t a b i l i t y ;   t h e r e -  
fore? it r e p r e s e n t s  an i n i t i a l   i n v e s t m e n t   p e n a l t y  for the  development,  certifi- 
c a t i o n ?  and  maintenance  of a required a u t a n a t i c   f l i g h t   c o n t r o l   s y s t e m .   A l t h o u g h  
t h e   i n c l u s i o n  of a l a r g e   f l i g h t   c a n p u t e r  is expec ted  to p r o v i d e   t h e   c a p a b i l i t y  
fo r   s ign i f i can t   improvemen t s   i n   o the r  areas such as s a f e t y ,   o p e r a t i n g   e f f i -  
c iency?  and cost management, i n   t h i s  case it is c h a r g e d   e n t i r e l y  to t h e  RSSAS 
system. 

The s a v i n g s   i n  modified direct o p e r a t i n g  cost between an unaugnented 
stable aircraft  r e p r e s e n t a t i v e   o f   c u r r e n t   c o n f i g u r a t i o n s  (20 percen t  s tatic 
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margin)  and an augmented  unstable aircraft (-1 0 p e r c e n t  s tatic margin) is 
approximately  1 .4   percent .   Since f u e l  cost makes  up a b o u t  40 pe rcen t  of t h e  
m o d i f i e d   d i r e c t   o p e r a t i n g  cost per b lock   hour ,   the   fue l   sav ings   be tween  these  
two a i r p l a n e s  is about  4.2 pe rcen t ,  as can   be   s een   i n   t ab l e  111. This  compares 
favorab ly   w i th   t he  3- to  5 -pe rcen t   s av ings   p rev ious ly   e s t ima ted   fo r   t h i s  class 
of aircraft  wi th  similar r e d u c t i o n s   i n  s ta t ic  s t a b i l i t y  (refs. 1 and   2 ) .   I n  
terms of 1 9 7 9   d o l l a r s  as compared  with  the  unaugmented  20-percent s tatic margin 
design case, t h i s  is e q u i v a l e n t  to a savings  of   about   $86,400 per yea r ,  or $1 .21 
mi l l i on  over   the lifetime of t h e  aircraft  i n  MDOC. A s  f u e l  cost rises over  
t h e  $0.20 per  l i t e r  ($0 .75   pe r   ga l lon )   u sed   i n   t h i s   s tudy ,   t he   s av ings   p ro j ec t ed  
w i l l  be   even  greater .  

These   sav ings   inc lude  a b e s t  estimate of   the   incrementa l  costs from  the 
e x t r a   e n g i n e e r i n g ,   f l i g h t   t e s t i n g ,   a n d   q u a l i t y   c o n t r o l   r e q u i r e m e n t s   t h a t   y i e l d  
the   subsequen t   i nc rease   i n   pu rchase   p r i ce .   Add i t iona l ly ,   t he   i nc rease   i n  main- 
tenance costs is also r e f l e c t e d .  The f a c t   t h a t   s u c h  a l a r g e   s a v i n g s  is still  
poss ib l e   g ives   c r edence  to t h e   p o s s i b i l i t y   t h a t   t h e   t e c h n o l o g i c a l  and s a f e t y  
b a r r i e r s   t h a t  impede t h e  use  of RSSAS can  be  overcome in   an   economica l ly   f ea s i -  
b l e   f a sh ion .  

The improvements  noted  in  this  comparison came pr inc ipa l ly   f rom  r educ t ions  
i n  maximum take-off   gross   weight   and  in   an  improvement   in  maximum CL/CD. Sche- 
matic d iagrams  of   the  t w o  a i r c r a f t  are shown i n   f i g u r e  4 ,  and key des ign   da t a  
are compared i n   t a b l e  111. The take-off   gross   weight  was reduced 22 000 N 
(4946 l b f ) ,   w i t h  7300 N (1 641 l b f )   o f  it a t t r i b u t a b l e  to  the   32-percent   reduct ion  

of   the  t a i l  area. The 3.9-percent  improvement  in maximum CL/CD was due p r i n -  
c i p a l l y  to a 17-pe rcen t   r educ t ion   i n  t o t a l  t a i l  drag  (wet ted  and  induced) .  

Another   parameter   that  is o f t e n   c o n s i d e r e d   d u r i n g   f l y i n g - q u a l i t i e s   a n a l y s e s  
is manuever  margin, or the   degree   o f  maneuver s t a b i l i t y   ( r e f .  4 ) .  Maneuver 
s t a b i l i t y  is p r o p o r t i o n a l  to t h e   e l e v a t o r   d e f l e c t i o n   r e q u i r e d   p e r   u n i t   g r a v i t y  
normal   acce le ra t ion .   S ince  it can  be shown t h a t   t h e   d i f f e r e n c e   b e t w e e n  s ta t ic  
margin  and  maneuver  margin is approximate ly   cons tan t  for a g i v e n   a i r p l a n e  
( r e f .  21 ) , t h e   f a c t   t h a t   s a v i n g s   i n   m o d i f i e d   d i r e c t   o p e r a t i n g  cost have a similar 
t r end   fo r   bo th  s ta t ic  margin  and  maneuver  margin is n o t   s u r p r i s i n g   ( f i g s .  3 
and 5 ) .   S i n c e   p i l o t s  would be unable  to c o n t r o l   a n   a i r c r a f t   w i t h  a nega t ive  
maneuver  margin,  allowing  negative  maneuver  margin as a d e s i g n   c r i t e r i o n   f o r  
unaugmented f l y i n g   q u a l i t i e s  would be tantamount to  a s s u m i n g   t h a t   t h e   a i r p l a n e  
would  be los t  i n   t h e   e v e n t   o f  a cont ro l   sys tem fa i lure .  

Time to  double   the   ampl i tude   o f   the   longi tudina l   d ivergent   dynamics  is 
sometimes s p e c i f i e d   i n   f l y i n g - q u a l i t i e s  cr i ter ia  and  considered  in   handl ing-  
qualities s tud ie s   o f   uns t ab le   a i rp l anes   ( r e f .   7 ) .   S ince   t ime- to -doub le   va lues  
resul t  f rom  unstable  root l o c a t i o n s   o f   t h e  dynamic equa t ions ,   t hey  are c r i t e r i a  
appropr i a t e   fo r   s tudy ing   t he  unaugmented  motions  of  the  airplane.  The sav ings  
i n   m o d i f i e d   d i r e c t   o p e r a t i n g  cost as a f u n c t i o n  of time to double   ampl i tude   in  
approach are shown i n   f i g u r e  6. I n i t i a l l y ,  as t h e  time to double  is reduced 
from a marginal ly   unstable   value  of   55  seconds,  small d e c r e a s e s   i n   d i r e c t  oper- 
a t i n g  cost are obta ined .  However, as t h e  time to doub le   dec reases   fu r the r ,   t he  
s a v i n g s   i n   d i r e c t   o p e r a t i n g  cost i n c r e a s e   r a p i d l y   u n t i l  a va lue   o f  2 seconds 
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for time to double anplitude. A t  t h i s  point,  the  data show that  other con- 
straints becane c r i t i ca l  and prevent any other improvenents to be made i n  
savings of modified direct  operating  cost  fran reducing the time-to-double 
constraint. 

Flying-Qualities Design Criteria 

Generally, when flying-qualities design cr i ter ia  or regulations  are devel- 
oped, they encanpass a variety of parameters i n  several  flight  oonditions,  for 
example, references 7 to 1 2  and 34. To provide  the  appropriate aerodynamic con- 
tribution  to the stabil i ty,  the unaugmented flying  qualities must be specified. 
These inherent  characteristics  are  significant when consideration is given t o  
potential  failure modes  of the autanatic f l i g h t  control system. Philosophi- 
cally, it becanes a canpromise  based on the minimun acceptable handling 
qualities. 

One set of longitudinal-flying-qualities criteria  that  designers have 
applied  to  the design of transports configured wi th  RSSAS is the military 
flying-qualities  specifications  (ref. 34). The short-period frequency require- 
ment i n  approach is one  of the active  constraints i f  these  military  specifica- 
tions  are  utilized as  design criteria.  Short-period  frequency is plotted i n  
figure 7 w i t h  the narrow  range of applicability, i n  terms of n/a, for t h i s  
s tudy  shown. Assuming constant n/a, the  sensitivity of optimal direct oper- 
ating oost to  short-period frequency constraint is shown i n  figure 8. 

As expected, substantial  benefits were init ially  realized when relaxing 
the  short-period frequency criterion  fran  level I to  levels I1 and 111. The 
economic  improvenent was anticipated because it is generally  accepted  that 
level I for transports is extremely  harsh (ref. 35). Observing the  large t a i l  
surfaces of the  baseline  configuration  (level I )  i n  table I11 helps to i l l u s -  
t rate t h i s  point. I n  fact,  reference 35 points out that modern transports do 
not, i n  general, satisfy these cr i ter ia  without augnentation, i n  spite of their 
generally  acceptable f l y i n g  qualities. 

The problem w i t h  the  military  specifications and a nunber  of other 
- longitudinal-flying-qualities design cr i ter ia   ( refs .  1 0  and 1 1 )  is that they 

rely upon specifying modal  damping ratios and frequencies. I n  the  case of 
unstable  airplanes,  discussion of the dynamic longitudinal modes i n  terms of 
damping ratios and frequencies  loses its meaning. Therefore, new longitudinal- 
flying-qualities design criteria  are needed for  transports  configured w i t h  a 
reduced s t a t i c  margin. 

The c r i te r ia  proposed i n  references 8 and 9 have parameters which could 
be useful  for imposing flying-qualities  specifications  for  longitudinally 
unstable  airplanes  at the preliminary  design  level. These cri teria  are shown 
i n  figure 9. The abscissa and ordinate  are  coefficients of the  characteristic 
polynanial  that  results  fran a linear  analysis of the  short-period mode, enabl- 
ing  easy consideration  as  constraint  functions. However, the  region  indicated 
i n  the figure by a dashed line is where  unaugmented transports designed wi th  
RSSAS are expected to   fa l l ,  which is outside  the  area  containing  the  flying- 
qualities  data. This  lack of appropriate  data  illustrates another problem i n  
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designing  transports  with  RSSAS.  Although  the  representation of flying  quali- 
ties  in  figure 9 would  be  useful  for  developing  longitudinal-flying-qualities 
design  criteria,  there  is  a  need  to  collect  simulator  and  flight  test  data  with 
respect  to  the  minimum  acceptable  handling  qualities of transports. 

Impact  of  Related  Design  Constants 

Landing  gear  location.-  Several  design  constants  that  were  input  for  the 
baseline  mission  have  a  significant  impact  upon  stability  and  control  charac- 
teristics.  One  such  factor  is  the  main  landing  gear  location.  Current  practice 
requires  that  its  structure  be  located  such  that  the  loads  are  carried  in  the 
wing  spar.  Industry  estimates  that  the  maximum  aft  position  that  is  structur- 
ally  feasible  is 65 percent  of  the  mean  aerodynamic  chord  (ref. 5) .  Since  a 
margin  between  the  center of  gravity and  landing  gear  is  necessary  to  insure 
enough  nose-wheel  steering  traction,  and  since  the  supercritical  airfoil  data 
used  in  OPDOT  assume  large  pitching  moments  in  cruise,  the  main  gear  position 
usually  constrains  the  most  aft  allowable  center-of-gravity  position  for 
transports  with  reduced  static  stability. 

Figure 1 0  shows  the  impact  of  relaxing  this  constraint  for  each of the 
three  levels  of  military  flying  qualities.  Nearly 1 percent  savings  in  modified 
direct  operating  cost  per  block  hour  could  be  realized  by  allowing  the  main  gear 
to  be  located off the  spar,  provided  that  the  structural  weight  penalties  asso- 
ciated  with  the  relocation  would  be  negligible.  Since  this  corresponds  to  a 
fuel  savings  of  about 3 percent, it suggests  a  possible  area  for  further 
research. 

Loadabi1ity.-  Another  factor  that  had  a  bearing  upon  the  results  reported 
herein  was  an  assumption  that  the  allowable  center-of-gravity  range  be  at  least 
1.2 meters ( 4  feet). The  impact  of  reducing  the  required  loadability  from 
1  .2 meters  to 0.61 meter ( 2  feet)  to 0 meters  is  shown  in  figure 11 . It is 
readily  apparent  that  the  biggest  improvements  came  from  the  first  reduction  to 
0.61 meter.  Only  modest  improvements  were  possible  with  further  reduction,  and 
this  analysis  ignores  the  cost of installing  and  operating  a  center-of-gravity 
control  system  that  would  certainly be necessary  in  this  region of loadability. 
However,  since  the  benefits  in  modified  direct  operating  cost  were  slightly 
greater  than 1 percent ( 3 . 2  percent  savings  in  fuel),  it  may  be  worthwhile  to 
pursue  schemes  to  allow  such  reductions.  The  new  generation  of  transport 
designs  already  incorporate  load  cells  in  the  gear  with  computer  monitoring  for 
the  optimal  placement of  cargo  at  the  gate. 

Take-off  stabilizer  trim  angle.-  Manufacturers  have  been  expected  to 
demonstrate  that  their  transports  are  capable of  satisfying  the  nose  gear 
unstick  requirement  with  the  horizontal  stabilizer  in  the  most  adverse  trim 
position.  This  constraint,  which  is  satisfied  at  the  forward  center-of- 
gravity  limit,  was  shown  to  be  extremely  harsh. In  fact,  savings in  direct 
operating  cost of over 4 percent  were  indicated  when  the  stabilizer  was  allowed 
to  be  trimmed  to  the  position  anticipated  for  climbout.  It  seems  highly  rea- 
sonable  that  for  the  corresponding $3.9 million  that  could  be  saved  during  the 
lifetime  of  the  airplane,  a  suitable  compromise  between  added  complexity  and 
safety  could  be  reached  to  insure  proper  tail  positioning  during  take-off. 
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Related  Observations 

Useful  information  for  the  aircraft  designer  would be a  list  of  the  design 
constraints  that  tended  to be active  at  the  optimal  design  point.  It  was  deter- 
mined  from  studying  the  program  output  that  virtually  without  exception  the 
following  constraints  were  active  at  the  converged  solution  point: (1 )  cruise 
thrust: (2)  second-segment  climb  gradient: ( 3 )  landing  field  length: ( 4 )  nose- 
wheel  steering  traction;  and (5) passenger  volume.  The  first  two  were  most 
sensitive  to  changes  in  thrust  and  wing  aspect  ratio,  while  landing  field  length 
was  most  influenced  by  wing  area.  Nose-wheel  steering  traction  was  a  function 
of  aft  center of gravity,  and  passenger  volume  required  a  minimum  fuselage 
length. As anticipated,  the  chosen  flying-qualities  constraint  parameters  were 
also  active  at  the  design  point,  and  the  solution  was  principally  affected  by 
this  constraint  through  adjustments  to  the  horizontal-tail  area  and  aspect  ratio. 

Reference 36 predicts  that  the  optimum  tail  load, in  terms  of  drag,  would 
be  a  download  for  high  downwash  gradients.  The  low-tail  geometry of this  study 
was  located  in  regions of high  downwash;  therefore,  it  was  no  surprise  when  the 
optimum  design  points  for  all  configurations  had  tail  lift  coefficients  ranging 
between -0.05 and -0.12. This  result  was  not  assumed  in  the  formulation,  but 
a  model  of  downwash  and  multiple-lifting-surface  interference  effects  was 
included  in  the  performance  evaluation.  The  optimizer  adjusted  the  design 
variables,  principally in  this  case  those  which  impacted  tail  volume  and  center 
of  gravity,  to  obtain  the  minimum  cost  in  the  presence  of  control  and  stability 
constraints.  This  result  helped  to  validate  the  conclusions of reference 36. 

As indicated  in  references 1 2  and 13, an  analysis  was  performed  to  insure 
that (1 ) the  unaugmented  configuration  was  capable of being  augmented  to  good 
flying  qualities; (2)  the  control  deflections  required  for  augmentation  would 
be sufficiently  small  to  avoid  significant  control  surface  drag  contributions: 
and ( 3 )  the  control  surface  deflection  rates  commanded  by  the  automatic  control 
system  would be sufficiently  low in  turbulence  to  be  achievable.  These  goals 
were  accomplished  by  simulating  a pitch-attitude-hold/pitch-rate-command auto- 
pilot  in  heavy  turbulence. 

The  following  factors  were  then  available as inequality  constraint  func- 
tions  in  cruise  and  approach: (1)  pitch  attitude  feedback  gain, (2)  pitch  rate 
feedback  gain, ( 3 )  variance of elevator  deflection  in  turbulence,  and ( 4 )  vari- 
ance of elevator  deflection  rate  in  turbulence.  However,  except  for  when  the 
unaugmented  configuration  was  designed  for  extremely  low  time-to-double  and 
maneuver  margin,  all  configurations  that  the  optimization  generated  satisfied 
these  constraints.  This  was  an  indication  that  for  the  range of values  con- 
sidered  in  the  research,  the  resulting  configurations  could be augmented  to  good 
flying  qualities. 

Since  the  price  of  fuel  has  already  matched  the $0.20 per  liter ($0.75 per 
gallon)  used  in  this  study,  a  series of design  runs  was  performed  with  higher 
fuel  prices.  When  the  baseline  was  reconfigured  to  reflect  the  inflated  fuel 
prices,  it  was  observed  that  the  same  trends  existed  with  slightly  greater  mag- 
nitudes  in  savings  with  respect  to  the  flying-qualities  parameters.  This 
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indicates  that the  benefits of utilizing new active  controls  technologies  to 
reduce the  inherent s ta t ic   s tab i l i ty  should be increasingly  significant  as  fuel 
price  escalates. 

CONCLUDING REMARKS 

A series of design runs u t i l i z i n g  a computer progran for  the  optimal pre- 
liminary  design of transport  aircraft was used to s tudy  the impact of  unaug- 
mented flying-qualities design c r i te r ia  and the  influence of u t i l i z i n g  relaxed- 
static-stabil i ty augnentation systems. Transports  optimally  configured w i t h  
relaxed s t a t i c   s t ab i l i t y  showed a potential  savings i n  direct  operating  cost 
of 1.4 percent when canpared wi th  transports wi th  conventional s t a t i c  margins. 
This  translates  into a fuel savings of 4.2 percent  for  the 5600-kilaneter 
(3000-nautical-mile)  range, 200-seat transport w i t h  a cruising Mach nunber  of 
0.8 which is considered i n  t h i s  report.  Similar  trends of savings can be 
observed when evaluating s t a t i c  margin, maneuver margin, or  time to double 
anplitude  as  the  constraining  handling-qualities parameter. 

It was observed that  the same trends of savings i n  direct  operating  cost 
were expected for  large  variations i n  fuel  price. It was also shown that 
efforts  to remove the maximun rearward position  constraint on the  landing gear 
would  be rewarded wi th  gains of nearly 1 percent i n  modified direct  operating 
cost.  Additionally, a reduction of allowable  center-of-gravity range from 
about 1.2 meters  to about 0.6 meter could  save nearly 1 percent i n  modified 
direct  operating  cost. A constraint  to  require  the  elevator  to  rotate  the 
ai rcraf t  during  take-off wi th  the  stabilizer i n  its most adverse  position was 
found to be very harsh i n  terms  of  economic profitability,  penalizing  the  air- 
craft  over 4 percent i n  direct  operating  cost. 

Constraints  to  insure enough thrust i n  cruise,  to  satisfy second-segment 
climb gradients,  to f u l f i l l  landing field  length  requirments,  to provide enough 
traction  for nose  wheel steering, and to allaw enough volme  for passengers were 
shown to be active  at  the design point along w i t h  the critical  flying-qualities 
cri teria.  The  optimum airplane tended to f l y  the  cruise mission w i t h  a download 
on the t a i l  as was predicted  for an airplane w i t h  the  horizontal t a i l  i n  the 
influence of a strong downwash field. 

I n  the  course of the s tudy,  it was determined, through the  hypothetical 
design and evaluation of a simple autopilot,  that  the designs  considered were 
practically augmentable to good flying  qualities. The  rms deflections and rates 
of deflection of the  elevator due to heavy turbulence were acceptable  as were 
the feedback gains  required  to achieve satisfactory augmentation. 

Most  of the  flying-qualities  criteria proposed for unaugnented transports 
proved to be inappropriate,  since  trying  to  specify a modal frequency and damp 
ing  ratio  loses its significance  for  unstable  airplanes. I n  particular, it was 
shown that the military  specifications, when used for unaugmented airplane 
flying-qualities design cr i ter ia ,  were particularly harsh for t h i s  category 
of aircraft .  
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It is recanmended t h a t   s y s t e m a t i c   f l i g h t   a n d   s i m u l a t i o n   r e s e a r c h  be under- 
taken to provide a data base   for   deve loping  u s e f u l  unaugnen ted   f l y ing -qua l i t i e s  
design cri teria f o r   t r a n s p o r t s   c o n f i g u r e d   w i t h   r e l a x e d  s ta t ic  s t a b i l i t y .  Fur- 
t he rmore ,   an   i n t eg ra t ed   e f fo r t   be tween   t he   des igne r  and the hand l ing -qua l i t i e s  
specialist is required i n  order (1)  to e n h a n c e   t h e   a p p l i c a b i l i t y   o f  new cri teria 
to design  methodologies;  (2) to m a i n t a i n   s u f f i c i e n t   m a r g i n s  of f l i g h t   s a f e t y ;  
and (3)  to i n s u r e   t h a t   e c o n a n i c   p r o f i t a b i l i t y  is considered as any new cr i ter ia  
are developed. 

Langley  Research  Center 
Nat ional   Aeronaut ics   and  Space  Adminis t ra t ion 
Hampton, VA 23665 
November 18,  1 980 
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TABm 1.- KEY DESIGN  ONSTANTS UTILIZED FOR DESIGN OPTIMIZATION 

(a) Mission 

Cru i se  Mach number . . . . . . . . . . . . . . . . . . . . . . . .  0.80 
Divergence Mach nunber . . . . . . . . . . . . . . . . . . . . . .  0.84 
Design  range. lan . . . . . . . . . . . . . . . . . . . . . . . . .  5600 
Nunber of seats . . . . . . . . . . . . . . . . . . . . . . . . .  200 
Cargo. N . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 400 
Maximum l i f t   c o e f f i c i e n t  . . . . . . . . . . . . . . . . . . . . .  3.15 
Land ing   f i e ld   r equ i r emen t .  m . . . . . . . . . . . . . . . . . . .  2440 
Take-off f i e ld   r equ i r emen t .  m . . . . . . . . . . . . . . . . . .  3050 

(b)  Geanetr y 

Wing sweep angle.   deg . . . . . . . . . . . . . . . .  
Wing t h i c k n e s s  ratio . . . . . . . . . . . . . . . . .  
Wing taper ratio . . . . . . . . . . . . . . . . . . .  
Wing incidence  angle .   deg . . . . . . . . . . . . . .  
Wing g e a n e t r i c  twist. deg . . . . . . . . . . . . . .  
T a i l  t h i ckness  ratio . . . . . . . . . . . . . . . . .  
T a i l  sweep  angle.  deg . . . . . . . . . . . . . . . .  
Tail  taper ratio . . . . . . . . . . . . . . . . . . .  
Vertical- t a i l  sweep.  deg . . . . . . . . . . . . . . .  
Ratio of rudder area to v e r t i c a l - t a i l  area . . . . . .  
Ratio of   e leva tor   chord  to h o r i z o n t a l - t a i l   c h o r d  . . .  
Ratio o f   f l a p   s p a n  to wing span . . . . . . . . . . .  
Maximun f l a p   d e f l e c t i o n .   d e g  . . . . . . . . . . . . .  
Fuse lage   d iane ter .  m . . . . . . . . . . . . . . . . .  
Height of aerodynamic  center  above  c.g. ,   fraction MAC 
Height of t h r u s t   v e c t o r   a b o v e   c . g . ,   f r a c t i o n  MAC . . 
Height of h o r i z o n t a l  t a i l  above c.g. . . . . . . . . .  
N u m b e r  of engines  . . . . . . . . . . . . . . . . . .  

. . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . .  . . . . . .  . . . . . .  

26.4 
0.12 
0.38 
. 2  
. 5  
0.10 
. 3 0  
0.4 
. 3 5  
0.30 
0.25 
0.6 
. 4 5  
5.08 
0.08 

-0.1 2 . 0 
. 2  
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TABLE I .. CONCLUDED 

(c) Economics 

Fuel cost. $/L . . . . . . . . . . . . . . . . . . . . . . . . . .  0.20 
Load factor . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.55 
Passenger revenue . #/seat-km . . . . . . . . . . . . . . . . . . .  4.9 
Utilization  rate. hr/yr . . . . . . . . . . . . . . . . . . . . .  3200 
Depreciation  period. yr . . . . . . . . . . . . . . . . . . . . . .  14  
Residual  value. % . . . . . . . . . . . . . . . . . . . . . . . . .  12  
Tax rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.48 
Year  of study . . . . . . . . . . . . . . . . . . . . . . . . . .  1979 
Assuned annual inflation  rate . . . . . . . . . . . . . . . . . .  0.07 
Nmber  of prototype aircraf t  . . . . . . . . . . . . . . . . . . . .  2 
Aircraft  fleet  size . . . . . . . . . . . . . . . . . . . . . . .  250 
In i t i a l  production rate. per month . . . . . . . . . . . . . . . .  0.5 
F u l l  production rate. per month . . . . . . . . . . . . . . . . . .  5 
Engineering rate (1 974) . $/hr . . . . . . . . . . . . . . . . .  19.55 
Tooling rate (1 974)  . $/hr . . . . . . . . . . . . . . . . . . .  14.00 
Labor rate (1 974) . $/hr . . . . . . . . . . . . . . . . . . . .  10.90 
Engines for test   aircraft  . . . . . . . . . . . . . . . . . . . . .  3 
Ratio of manufacturer's  airframe weight to take-off weight . . . .  0.75 

(d) Miscellaneous 

Maximun  dynamic pressure. N/m2 . . . . .  
Pressurized volume. m3 . . . . . . . . .  
Nunber  of pilots . . . . . . . . . . . .  
Number  of attendants . . . . . . . . . .  
Air conditioning flow rate. kg/min . . .  
Autopilot channels ( w i t h  multiplexers) . 
Generator capacity. kV-A . . . . . . . .  
Maintenance ccmplexity factor . . . . .  
Hydraulics volune flow rate. L/min . . .  
Nmber  of iner t ia l  platform systems . . 
Ratio of auxiliary-power-unit on-time to 
Ratio of f i rs t   c lass   to  economy seating 
Maximun speed. m/s . . . . . . . . . . .  
Airfoil design l i f t   coef f ic ien t  . . . .  
Baseline engine . . . . . . . . . . . .  
Elevator  servo time constant.  sec . . .  
Curved windshield 
Supercritical  airfoil technology 
Sane nonlinear aerodynamics terms 

. . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  
engine on-time . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  

. 5.13 
178.2 . .  3 . .  8 . 200 . .  5 . 750 . 1.6 . 300 . .  1 . 0.1 . 0.15 
248.5 . 0.5 . CF-6 . 0.1 
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TABLE 11.- SAMPLE  MEQUALITY  CONSTRAINT  FUNCTIONS AVAILABLE 

DURING DESIGN OPTIMIZATION 

Mission 
C r u i s e   t h r u s t  
Second-segment climb g r a d i e n t  
Missed-approach  climb  gradient 
Landing f i e l d   l e n g t h  
Take-off f i e l d   l e n g t h  
Passenge r   vo lme  
C r u i s e  a l t i t u d e  
F u e l  volume 
C r u i s e  l i f t   c o e f f i c i e n t  

C o n t r o l  
Nose g e a r   s t e e r i n g   t r a c t i o n  
Nose gear   unst ick  during  take-off  
T a i l - l i f t - c o e f f i c i e n t  s t a l l  margin  in   approach 
E l e v a t o r   d e f l e c t i o n a  

S t a b i l i t y  
Stat ic  margina 
Maneuver  margina 
Shor t   per iod   f requencya  
S h o r t   p e r i o d  dampinga 
Phugoid  frequencya 
Phugoid  dampinga 
Mode frequency ratioa 
Time-to-half  (double) a 
Vertical r e s p o n s e   f a c t o r a  

A u t o p i l o t  
P i tch   feedback   ga ina  
P i t c h  rate feedback  gaina 
Eleva tor   var iancea  
E leva to r  rate va r i ancea  

aAvai lab le  for both cruise and  approach  configurat ions.  
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TABLE 111.- CBARACTERISTICS OF SAMPLE 

Design case 

. " 

Level Ia ( b a s e l i n e )  
L e v e l   I I a  
Level  I I I ~  
S t a t i c   m a r g i n  = '20% 
S t a t i c   m a r g i n  = -10% 
S t a t i c   m a r g i n  = -5% 
S t a t i c   m a r g i n  = 0% 
S t a t i c   m a r g i n  = 5% 
S t a t i c   m a r g i n  = 10% 
S t a t i c   m a r g i n  = 20% 
S t a t i c   m a r g i n  = 20%b 
Maneuver  margin = 0% 
Maneuver  margin = 1 0 %  
Time to double  = 55 sec 
T h e  to double = 40 sec 
Time t o   d o u b l e  = 20 sec 
Time to double = 3 sec 

199.3 

188.6 
188.7 

184.1 
183.6 

185.9 
184.6 

186.3 
185.5 

186.8 
187.4 

184.3 
185.4 
184.5 
184.0 
183.7 
181.6 

Independen t   des ign   va r i ab le s  
~ 

ARIl 
__ 
10.75 
1 1  .66 

12.55 
11.65 

12.46 
12.45 
12.50 
12.28 
12.10 
11.90 
11.94 
12.37 
12.20 
12.19 
12.10 

1 
~ 

Lf I 

m 

52.7 

t 

103.6 

84.1 
84.4 

43.0 
49.7 
51 .8 
53.9 

66.4 
58.2 

73.4 
73.3 
54.5 
60.4 
59.1 
59.1 
56.8 
43.8 

6.38 

5.15 
5.1 6 

5.16 
5.34 

5.71 
6.41 
6.33 
5.06 
5.61 
5.55 
5.1 1 
5.54 

4.61 
4.63 

4.88 
4.95 

~ 

T, 
kN 

338.4 
31 3.2 
313.2 
292.6 
294.7 

297.1 
295.8 

302.5 
300.2 

307.6 
306.7 
298.1 
300.2 
299.3 
299.7 
299.9 
296.8 

a M i l i t a r y   l e v e l   s p e c i f i c a t i o n s  from MIL-F-8785B ( r e f .   7 4 ) .  
h o  a c t i v e   c o n t r o l   s y s t e m s   i n c l u d e d   i n  cost or weigh t   e s t ima tes .  

Wk, 
." 

. . " 

145.5 
149.4 
149.1 
154.8 
153.9 
153.9 

154.8 
157.1 

151.2 

1 
153.7 

151  .4 
152.8 

149.8 
150.4 

147.3 
~. . 

- 
W t t  , 
kN 

44.2 

34.3 
34.4 

24.5 
25.9 
28.1 
30.8 

29.8 
31 .8 

33.5 
33.2 
27.0 
29.9 
26.6 
26.6 
26.9 
23.6 
- 

Wte , 
kN 

677.7 
657.0 
656.4 
640.0 

646.9 
641 .7 

654.0 
654.1 
647.9 
655.2 

644.6 
652.3 

641 .9 
648.6 

640.1 
640.6 

630.2 

.. . 

Wtto, 
kN 

1230 
1 1  92 
1 1  91 
1 1  55 

1167 
1 159 

1177 
1 1  75 

1173 
1 1  85 
11 81 
1164 

1163 
1172 

1161 
1162 

1146 

- 
Fue l ,  
1 

. .  

26 033 

24 223 
24 235 

22 501 
22 569 
22  709 
22  970 
23  197 
23  402 
23  807 
23  716 
22 907 
23  198 
23  077 
23 080 

22 599 
23 027 

. " 

S m e  

CD,O,W 

0.0078 
.0079 
.0079 
.0080 

~. . 

1 
.0079 
.0080 

t 
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dependent  design  variables _ _ _  
' D , O , t  

0.0037 
.0032 
.0032 
.0018 
.0020 
-0021 
.0022 
.0024 
.0026 
.0029 
*0029 

-0024 
0022 

.0023 

1 
.0018 

~. " 

*D,o, tot 

0.01 93 
.0190 
.0190 

.0179 

.0177 

.o l eo  

.o le1  

. 01 85  

.0182 

.0187 

.0187 

.o le1  

- 
.0177 
.0181 

-~ 

CL, t 

-~ 

-0.124 
- .112 
- .112 -. 206 

-. 173 
-. 179 

-. 166 
-.154 

-. 123 -. 135 

-. 123 -. 1 64 -. 149 -. 1 51 -. 150 -. 156 -. 1 99 
~ 

. .. 

cD, t 

I. 0045 
.0039 
.0039 
.ooze 
.0030 

" 

1 
.0031 
.0034 

.0036 

.0036 

.0031 

.0033 

1 
.0032 
.0029 
" " 

" 

19.1 
20.1 
20.1 
21.4 
21.2 
21.2 
21 .2  
21 .o 

20.4 
20.6 

20.4 
21 .o 
20.8 
20.8 

1 
20.9 
- .. 

15.87 
15.36 
15.35 
14.94 
14.98 
15.06 
15.16 
15.19 
15.14 
15.28 
14.96 

15.13 
15.05 

15 .03  
15.02 
15.02 
14.86 ___ 

.. . .  " 

736 
685 
685 
635 
642 
645 
649 
655 
661 
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Figure 1.- Schematic diagram representing  the  constrained parameter 
optimization  logic. Nunbers i n  parentheses  are nunber  of 
parameters available i n  OPDOT (ref. 1 3 ) .  
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Figure  3.- P e r c e n t   s a v i n g s   i n   m o d i f i e d   d i r e c t   o p e r a t i n g  cost wi th  respect 
to  t h e   b a s e l i n e   c o n f i g u r a t i o n  as a func t ion   o f  s t a t i c  margin   requi red  
dur   ing  landing . 

2Oo/o STATIC M R G I N  -lO"/o STAT1 C MRG I N 

sw = 186.8 m (2016 ft 1 2  2 

ARw = 11.94 
st = 73.3 m (789 ft ) 

2  2 
3 

T = 306.7 kN (69 x 10' Ibf) 

Sw = 183.6 m (1976 ft 1 2  2 

ARw = 12.46 
st = 49.7 m (535 ft ) 

2  2 
3 

T = 294.7 kN (66 x loJ Ibf) 

Figure  4.- Sketches of two opt ima l ly   des igned  airplanes. The l e f t  a i r p l a n e  
is representative of a t r a n s p o r t   s i z e d   w i t h   c o n v e n t i o n a l   f l y i n g '  
q u a l i t i e s ,   a n d   r i g h t   t r a n s p o r t  was s i z e d   w i t h   r e l a x e d  s ta t ic  s t a b i l i t y  
and   requi res  an RSSAS sys t en  for a d e q u a t e   f l y i n g   q u a l i t i e s .  
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Figure  5.- P e r c e n t   s a v i n g s   i n   m o d i f i e d  direct o p e r a t i n g  cost wi th  respect 
to t h e   b a s e l i n e   c o n f i g u r a t i o n  as a f u n c t i o n  of minimun  maneuver  margin 
required in   approach .  It should  be no ted   t ha t   unaugnen ted   a i r c ra f t  
with  negative  maneuver  margins  would be u n c o n t r o l l a b l e .  
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Figure  6.- P e r c e n t   s a v i n g s   i n   m o d i f i e d  direct o p e r a t i n g  cost w i t h  respect 
to t h e   b a s e l i n e   c o n f i g u r a t i o n  as a f u n c t i o n  of minimum time to double 
amplitude in   approach.  
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Figure 10.- Impact of maximun a f t   l o c a t i o n   o f   l a n d i n g   g e a r  upon pe rcen t  
s a v i n g s   i n  modified direct ope ra t ing  cost wi th  respect to b a s e l i n e  
conf igu ra t ion .  
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Figure  11.- S e n s i t i v i t y   o f   p e r c e n t   s a v i n g s   i n   m o d i f i e d  direct o p e r a t i n g  
cost wi th  respect to base l ine   conf igu ra t ion  to allowable center-of-  
g r a v i t y   t r a v e l  as a func t ion   o f  required s ta t ic  margin  in   approach.  
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