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FREE-STREAM DISTURBANCES, CONTINUOUS EIGENFUNCTIONS,

BOUNDARY-LAYER INSTABILITY AND TRANSITION

SUMMARY

The research conducted under this project has been directed toward the

double objectives of providing (1) a rational foundation for the application

of the linear stability theory of parallel shear flows to transition

prediction and (2) an explicit method for performing the necessary

calculations.

The fundamental discovery upon which our subsequent work is based

was that the solutions of the linearized, three-dimensional, incompres-

sible Navier-Stokes equations u,p and the adjoint solutions u,p

satisfy a "continuity" equation

•	
where p is a pseudo-energy density (the dot product of u* and u) and

is a pseudo-current. This result is derived and discussed in detail

in Appendix A.

We next considered (see Appendix B) the expansion of an arbitrary,

two-dimensional solution of the linearized stream function equation in

terms of the discrete and continuum eigenfunctions of the Orr-Sommerfeld

equation in the half-space, y E[O, m): that is, we considered boundary-layer,

wake, jet or free-shear layer flows. We used equation (1) to derive a

biorthogonality relation between the solutions of the linearized stream

function equation and the solutions of the adjoint problem. This is the

biorthogonality relation for the mixed initial-boundary value problem.
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For the case of temporal stability, we used equation (1) to derives

the formal solution of the initial value problem as a sum over the discrete

modes plus an integral over the continuum functions and showed that this

expansion is complete. We found that the vorticity distribution at the

initial time is sufficient information to determine the expansion coef-

ficients and gave explicit formulas to calculate these coefficients.

For the spatial stability problem, we showed that the continuum has

four branches. We used equation (1) to derive the spatial biorthogonality

relation and the formal solution to the boundary value problem. We have

(seb Appendix Q also derived the Fourier (in t), Laplace (in x) transform

solution of the spatial stability problem and used it to show that our

spatial expansion is complete.

The boundary conditions for the spatial problem are the Fourier

transforms, in time, of the stream function and its first three partial

derivatives with respect to x, evaluated at x = 0. As it stands, this

formal solution will not give a physically acceptable solution because,

given an arbitrary variation with y and t at x = 0 of the stream function

and its first three partial derivatives with respect to x, disturbances

which lies on all four branches of the continuum will be excited. Therefore,

as we show in Appendix a, the spatial wave packet will contain, in addition

to waves propagating toward x - -, waves propagating upstream from x = m

and standing waves whose amplitude increases towards x =

A condition must be imposed that, for .r > 0, all propagating dis-

turbances are traveling in the positive x-direction and all standing waves

have amplitudes which decay in the positive x-direction. It appears that

this should be done by requiring that the stream function and its first

three partial derivatives with respect to x, evaluated at x = 0, be

orthogonal, using the spatial inner product, to all eigenfunctions on

branches 2 and 4 of the continuous spectrum.

It is easy to see that these two orthogonality conditions reduce the

number of boundary conditions at x = 0 from four to two. This means that,

for the spatial stability problem, the proper boundary conditions at x = 0

are the specification of the temporal Fourier transforms of the velocity

components u and v, for all y. Although these boundary conditions

were derived from consideration of the continuum eigenfunctions, they
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apply as well to the discrete, Tollmien-Schlicting modes. We have not

yet carried out a detailed investigation of the implications of imposing

this orthogonality requirement on the boundary conditions; however, the

immediate result that the boundary conditions at x 0 are the specifi-

cation of the temporal Fourier transforms of u and v for all y appears,

on physical grounds, to be correct.

We have presented preliminary numerical results of the application of

this expansion method at the Fifteenth International Conference on

Theoretical and Applied Mechanics (Appendix R). We considered the temporal

stability problem and a simple initial disturbance. We assumed that at

t = 0 the vorticity C was given by

iaox
C Co e	 a (y Yo)

a periodic layer of vorticity at a distance y o from the boundary.

The stream function is then given by equation (S5) of Appendix B.

and it is easily soon that the expansion coefficients are (from equations

(56a, b) of Appendix 0);

An (a) - Co;n (Yo) SO - ao)	 (3a)

k (a) - 404k (Ya7 S (a - MO)	
(3b)

F

	

	 The solution of this simple problem, which is in effect the Greens function

in y of the initial value problem, shows that the amplitudes of discrete,

Tollmien-Schlicting modes and the continuum functions are the products of

the magnitudes of the corresponding adjoint functions, evaluated at yo,

the height of the initial disturbance from the boundary and the vortex

strengths.

We applied this result to two different flows. The first is a slip

flow past a bounding plane at y_= 0. Although the base flow velocity

does not vanish at the boundary, we required that the disturbance velocity

vanish at y - 0. We forand (Appendix B) that, because of the simple form

of the base flow, all the calculations could be carried out analytically

(2)
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and the stream function could be expressed as a finite sum of exponentials

and error functions. We found that the disturbance retains its identity

as a periodic array of vortices for all time, but as time increases it

diffuses, the vortex strength decays, and the centers of the vortices
drift away from the boundary.

The second flow we considered is the Blasius boundary layer. The
velocity scale was taken to be the free-stream speed U  and the length
scale was vx/Uo. We chose o n 0.179 and R = S80.0. At this a and R,

there are seven discrete Tollmien-Schlicting modes, one of which is
unstable. We'numerically calculated the seven eigenfunctions and adjoint

eigenfunctions and normalized them so that

< nn , 0m	 dnm	 (4)

Plots of the amplitude and phase of the normalized eigenfunction and

adjoint eigenfunction of the seven modes as a function of y, the dimen-
sionless distance from the boundary, are given in Appendix Q. Those

modes are numbered in order of increasing stability with mode l the

unstable mode and mode 7 the most damped mode.

The amplitude of a mode, say 0n , excited by the vortex sheet at

y = ye, is proportional to the amplitude of n evaluated at yo . it is

clear from an examination of these figures that when the vortex layer at
t = 0 is in the inner portion of the boundary layer, say y S 2.0 (the top
of the boundary layer is at y a 5.02), there will be a relatively strong
excitation of the discrete Tollmien-Schlicting waves. Modes 1, 2, and

3 will have the largest amplitudes, and the higher modes will have sub-

stantially smaller amplitudes. Tt is also quite clear that, when the
initial disturbance is more than about four boundary-layer thicknesses
from the wall at t = 0, the discrete Tollmien-Schlicting modes excited

by the disturbance will have extremely small amplitudes. Ile believe that

this result is a theoretical explanation of the experimental Observation

of Kachgnov, gozlov, and Levchenko (1978) that vorticity disturbances

passing above a boundary layer are very inefficient generators of Tollmien-

Schlicting waves in the boundary layer.
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CONCLUSIONS

We believe that we have created a rational foundation for the appli-

cation of the linear stability theory of parallel shear flows to transition

prediction and given an explicit method to carry out the necessary cal-

culations. We have shown that these expansions are complete. We have

also carried out some sample calculations which show that a typical

boundary layer is very sensitl 4 t to vorticity disturbances in the inner

boundary layer, near the critical layer; vorticity disturbances three or

four boundary-layer thicknesses above the boundary are nearly uncoupled

from the boundary layer in that the amplitudes of the discrete Tollmien-

Schlicting waves are an extremely small fraction of the amplitude of

the disturbance.

After the completion of this grunt we intend to continue these

calculations. We will continue the calculations of temporal disturbances

in typical boundary layers and begin calculation of spatial disturbances.

LITERATURE CITED

Kachanov, Yer S.; Kozlov, V.V.; and Levchenko, V. Ya.. Occurrence of
Tollmien-Schlicting Waves in the Boundary Layer Under the Effect
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a

5
I

s



i
i

t

6

APPENDIX A

EXPANSIONS IN SPATIAL OR TEMPORAL EIGENMODES OF THE

LINEARIZED NAVIER. STOKES EQUATION

Submitted to Journal of Fluid Dynamics
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Expansions in Spatial or Temporal Eigenmodes of the

Linearized Navier-Stokes Equation

by Harold Salwen

Department of Physics and Engineering Physics

Stevens Institute of Tochnology, Hoboken, N. J. 07030

The expansion of an arbitrary flow field in terms of the temporal or

spatial eigenmodes of the linearized Navier- Stokes (LNS) equations for an

incompressible fluid is developed from a unified perspective. It is sbrown that,

for (v,p) a solution of the LNS equations for a given base flow and (u,q) a

so;lutior, of the corresponding adjoint equations, a scalar "density",

E(u,v), and a vector "flux", t' (u ,q,v,p), may be defined such that E and r
are bilinear in (u*,q*) and (v,p) and satisfy the "continuity" equation,
Zat + v•r - 0. This equation is then used to derive biorthogonality relations
between the eigenfunctions and adjoint eigenfunctions of the LNS equations for

a general translationally;invariant problem. In the temporal case, the inner

product is M dT _ Iffhpu*•v dT which is the natural extension of Schensted's

inner product for two-dimensional disturbances and satisfies the requirements
for an inner product in a Hilbert space. In the spatial case, the "inner
product" is fff rx dydzdt which is not positive definite. The formal solution
of the OS equations is derived, in terms of the eigenfunctions and the initial
or boundary conditions, for the temporal and spatial cases. It takes the form

evolution of a three- or six-dimensional vector ---(v, v y , v Z ) in the

1 case or (vx , vy , Vz , avy/ax, avZ/ax, p) in the spatial case.
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1. Introduction

A few years ago, Grosch and I. after showing that the Orr-Somnerfeld

equation for unbounded flows such as the Blasius boundary layer possesses both

temporal and spatial continuous spectra (Grosch and Salwen, 1975, 1978), set

out to find the form of the wave-packet expansion for the temporal or spatial

evolution of the stream function of an arbitrary two-dimensional "infinitesimal"

disturbance in terms of the corresponding temporal or spatial eigenfunctions.

We sought to prove a biorthogonality relation between the eigenfunctions

of the Orr-Sommerfeld equation and of its adjoint and, thereby, to solve for

the coefficients of the expansion in terms of the inner products of the adjoint

eigenfunctions with the stream function at the initial time or position.

This worked out easily in the temporal case, with an inner product equivalent

to Schensted's (1960) and only minor complications due to the infinite domain

and continuous spectrum. In the spatial case, on the other hand, we found that

we didn't know the appropriate inner product and we couldn't find any papers

dealing with the problem. I therefore undertook the spatial expansion problem

and, eventually, was rewarded with the result reported here — a unified treat-

ment of the spatial and temporal expansion problems for solutions of the

linearized Navier-Stokes (LNS) equations for an imcompressible fluid.

Section 2 is devoted to the derivation of a "continuity" equation which

is used, in Section 3, in the definition of the inner products and the derivation

of the biorthogonality relations. These, in turn, are used in Sections 4 and 5

to derive the formal solutions of the (temporal) initial value problem and

the (spatial) boundary value problem, respectively. The application of these

results to two-dimensional disturbances of a boundary layer has been presented

in a separate paper (Salwen and Grosch, 1980).
8



In order for the formal solutions der i ved in Sections 4 and 5 to be

actual solutions of initial and boundary value problems, the eigenfunctions

used in the expansions must; form complete sets. Not all the eigenfunction

sets one might want to use have been proven-to be complete but there are,

by now, proofs of completeness for large clM,sses of temporal eigenfunctions

for bounded flows (Yudovich, 1965 and DiPrima and Habetler, 1969) and temporal

(Salwen and Grosch, 1960) and spatial (Salwen, Kelly, and Grosch, 1980)

eigenfunctions for unbounded flows.

2. "Continuity" equation

I start with the LNS equations for an incompressible fluid with a base

€ ow a,

o.	 0	 (la)

P
 [
L

Ui +
t^• v v

i
 + v̀ •v i J

N 172 vi- ^ , i a 1,2,3,	 (lb)

and the corresponding adjoint equations 

ti

v•u = 0	 (2a,)

_ 3U^	
*ti*P	 at " n	

to 
ui) + ax.	 u

u 7ui + a	
i : 1,2,3.	 (2b)

1

# The complex conjugate,*, is used here in order to obtain the correct formal

expressions. In most applications, q will be real, so ^* = ^.

9



For any solutions (v,p) of (1) and (u,^) of (e

Then

.1, 

3 

u* ate#acvat
i=
	i at	 at	 i

3
v vi + Yi v

dui* v)
	 o Ui 	 ax i 	^u* vi)

+ (^i* 
n2 y i _ '

` i U2Ui*^ _ GUi* 
a^.p + a

`^ , I*'i	 i

so, with
3

^i+^v 
yi^ + 2 rU*P + r- v]
	

()

we get

The constant factor, 2 p , is included in order to emphasize the

relation between £ and the energy density, 2 a v2.
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which has the form of a continuity equation relating the time derivative of

the "density",	 , to the divergence of the "flux", c	 for any fixed

volume V bounded by a surface S , the "continuity" equation (6) may be put

into integral form,

TEtrt £(uov) dT + it n-? (u,q,v,p) dS = 0
V	 s

3. Application to a steady. translationally- invariant base flow.

Biortho9onality relatio ns

In this section, Equation (7) will be applied to the case in which the

base flow and boundary conditions are independent of x and t . For all x

and t, the base flow q(y,z)	 disturbance velocity and pressure (v,p) and
N

adjoint velocity and pressure CUM are assumed to be defined in a closed,

bounded area, A , of the y,z plane and to satisfy the boundary conditions

ti

v(x ►y,z,t) : 0	 a(x,y,z,t) = 0 for (y,z)ec ► 	 (8a,b)

on the boundary, c, of A. In this case, the temporal and spatial eigenfunctions

discussed below will form discrete sets. (The extension to an unbounded area

is not too difficult (see, e.g., Salwen and Grosch, 1980) but it requires the

relaxation of the boundary condition (8 1, and the consideration of continuum as

well as discrete modes.)

Because of the choice of base flow and boundary conditions, (1) and (2)

are now invariant with respect to translations in x-and t and, therefore,

possess solutions of the form

I(x,y ► z,t) - 1lo (y,z)e i(ax	 wt) ,

(7)

(9a)
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P(x,YIZ)t) : Po(Y,Z)ei(ax - wt),
	

(9b)

u(x,Y,Z,t) = uo(Y,z)ej(x - 
vt),	

(10a)

q(x,Y,z,t) = 
go(Y,Z)ei(sx - vt) 	

(10b)

Because of (8), ry = r  = 0 on S. Then evaluation of (7) over a thin slab

perpendicular to the x-axis for functions of the form (9) and (10) gives

i(v* - w) 
fj
	 u,v) dydz at ff £ (u ' v) dydz

A	 A

ti

- ax	 r  (u,q,v,p) dydz

= 1(^* - 
a) JJ r  (

u 9gbv $ p) 	 dydz s
	

(11)

which will be used here to prove bio'rthogonality relations for the spatial

and temporal eigenmodes.

The temporal eigenfunctions are the solutions of (1_) and (8a) having the

p	 form (9) with a real. These may be denoted by (V an , pan ), corresponding to

the x,t variation 
e
i(ax - wn(a)t), For each such solution, there is an adjoint

ti
eigenfunction 

(Uan, 
qan) which is a solution of (2) and (8b) having the variation

i(ax - v (a)t)
e	 n	 with vn (a)	 wn (a). Application of (11) to these functions.

gives

ti
k (W (a) " wn(a))

 f1	 (dam ' 
Van) dydz	 0

A

a

r so that the integral vanishes when w m (a)	 wn (a) and, with appropriate

normalization,

(12)

12



a(uam' v0,n) 
dydz	

mn 
/2n	 (13)

(The expression is a function of x and t but is constant because the exponentials

in the two factors cancel.) This biorthogonality relation for fixed a leads to

the result for the full set of temporal eigenfunctions,

00

(( ^(u	 v ) dydz dx`uam0 v$1? '	 11	 "'am 'Sn
-00	 A

w

= f e i(O " )x dx ff E(uam v5n )	 dydz
-)	 A	 +	 ( x=0

ti

2xd(a-) ff
j

	dyd`

A	 x=0

	

d(a -a) dmn	
for all t .	 (14)

The spatial eigenfunctions and adjoint eigenfunctions are the solutions of

(1), (2), and (8) having the forms (9) and (10) with w and v real. These may

be denoted b' 4mn	 wn, wn	
1 (a^i (w) x = wt

,^	 (v	 p ), with the variation a	 ,and.
nu	

)	
t)(i(a v x - v

`vm = (uvm, wm), with the variation e m As in the temporal case,

the eigenfunctions and adjoint eigenfunctions may be paired, with n {w) = an*(w)

in this case. The analogous results to (12) and (13) are

(am (w) - an(w)) 
ff 

r x (UWM$ gwn,vwn,pwn ) dydz = 0	 (15)

and

ff r (u	 q	 v	 p ) dydz = d ./27r ,	 (16)
X	 wm, wn, wn , wn	 mn

A
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which lead to the biorthogonality relation for the full set of spatial

eigenfunctions

u q V p
wln, i vnj	

T (
x	 ^will,wnl, vn, vn ) dydz dt

j i (^► -v) te	 d  j^ x
( wni,gRam,vvn,pvn),	

dydz
_	

A	
tzo

.y

x 21t4(w-v) ff 
r  (uwm, gwm vwn,pwn)It-0dydz

A

S(W-V) Smn for all x

We thus see that, with appropriate "inner products" <,y and I , I ,
the temporal and spatial eigenfunctions satisfy biorthogonality relations with

the related ad5oint functions. The temporal inner product <,> satisfies all

the conditions ordinarily required of an inner product. The spatial inner

product I , I , on the other hand, is not positive definite. This is related
to the fact that disturbances can propagate in bath the downstream ( *x) and

upstream ( -x) directions.

4. Temporal expansion of a ^j arbitra „solution of the LNS equations

(17)

^1

The temporal inner product introduced in (14),

IQu' 
vl sl	

f^ u*
(x,y , z )	 v (x,y ,z) dydz dx

 f
_M A



is defined for any pair of ordinary vector functions of position. In

particular, when applied to a solution (v, p) of (1), it involves the

velocity, v, but not the pressure, p. It is natural then, in seeking an

expansion solution in terms of the temporal eigenfunctions, to expand v

alone in terms of the velocity part (van) of the eigen Nnctions.

Let (v,p) be a soluticn o f (1), satisfying the boundary conditions (8a).

Assume that v can be expanded in the form

v(x.Y.z,t)	 f can (t) On (x,Ysz,t) da	 (19)

n=1

Then, by (14), the coefficients are

ti

an (t} _ `uotn, v: '	 (20)

so that (using (7) )

f
ddtn 	 f1 at	 {uan,v) dyd2 dx

_0,	
A

(21)

1J v^r(u
	 a	 vs p) dydz dx = 0an, an,

_m a

and

ru

6n (t)	 'can (0)	 `uan, v')	 {22)

t= 0.

1s
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The result is

jV(x,Ytz•t)	 <uan, 
v>	 v4n (x ►Y,z,t) do

n=1	 t=o

On the assumption that the expansion can be differentiated term-by-term,

a	 ; uY2vi - P ^

av

at i
 + u vvi + v	 Uii

w

<uan,v' ^ 	
{UV2 van.

n=1 -00t=o

avant

+ `̂ wpv	 + v	 v U	 }aC at	 ani	 an	 i	 d•

f<U V>	 span

axida

	 (24)

n=1	 I t=o

so that, except for an additive function of t only,

^r AU

p(x,y,z,t) _	
J 

eu,v>i	 pan(x,ypz,t) dot	 (25)

n=1 --	
t- o

Equations (23) and (25) are the formal solutions for v and p in

terms of the initial velocity, v(x,y,z,0).

5. Soatial ex pansion of an arbitrary solution

The spatial inner product,	 ,^	 introduced in (16), cannot be eval-

	

uated in terms of the values of u , q 	 v , and p at a fixed x because

a	 r 
	 involves x-derivatives associated with the second derivatives in (lb) and

(2b). To get around this problem, one can regard the flow field at a given x

4	 as a 6-vector and make use of the fact that the velocities under consideration
16
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iponents

av 	
111Z

ax R ^ 5 
a v

z - a x ' ^6 : p

au	 auz	 _

ax ,n 5 =u z 	 ax n6	 q

(36)

(27)

have vanishing divergence ((la) and (2a)).

Let 4 and n be 6-vectors with con'

vx , E2 • vy $ ;3 " vz' t 4	 v 

n l	 uX . n2 . uy , n3 . u z , n4 = u 

and let a u = I v 2 Q . Then, in terms of these components,

,q,v,p) _ } a (ux*vX + uy*vy + u z*vrx (u	 Z) Ux

* 
a 

+ av
z	auy* + au z* )

u tux ( ay	 az) - vx By	 az

+ (v
y uY

 '* - u
Y 
*v
Y
 ') + (v

z u
z '* - uz*vzi)3

+ i, (u *p + q*vX)	 (28)

so that

(f
rx (u. q •v + p ) dydz dt	 (29)

may be evaluated in terms of the components of & and n at fixed x .

This choice of coordinates also eliminates second derivatives from (1),

which becomes

avx 	
Ll 

av z	 (30a)
ax	 ay	 az

a v„	 ! inh l , .,



•

1xZ m v
z '	 (30c)

.^ p-

	

_: 3̂  v	 } U	 + U
3x	 u ax x 

+	 +
^, at	 y 3y 	 az	 3 y vy)

y

ay	 ^z ,	 N 3z z u x y	 u By

IVZ'
	 3U	 3 U 	 3v	 3v	 3v	 Wz	 P. _z v +^ z v +	 ^( z +U	 z +U	 z +? v)

ax	 u ax x u By y	 u at y 3y	 z 3 z	 3z z

_ ( z + Z)	 + e. U v I + L P	 (30e)Ty	 BZ4 I	 u x z	 a az

	

3 2 V	 32v	 3v	 3v_	 3v .	 3U_

ax 	 u( 3y + 3—=) - P (atx + Uy ay  + Uz az
x
 + lux vx^^

k

3v	 aU	 av	 3u	 3v '
	

Dv

+ P (UX 	 - 3yx vy ) + P (Ux -	 -	vz ) - u ( 3y	 + azZ	 (30f)

It is now straightforward to carry out the formal solution for the

spatial expansion. The expansion is

&(X,y ,Z,t) '

	

	 CW11 ( x) 
fwn (x,y,z^t) dm ,	 (31)

n=1 -m

with coefficients

S._

cwn(x) _	 nWn
	 (32)

18



de	
^.	 .

dX	 r L0X 

A

- J 1J	 2Y ^y I

ti
+ as rt (

uwn

=0

Then

so

c^,n(X) = cwn(0) _	 non,	 I	 (34)
I X-0	 i

The solution is then

« 	 I

9(X,Y, z ,t) =	 f	 n.
 ^ w►t	 (X_ ^ n (x,y,z,t) dw	 (35)

n= l	 0 W
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ABSTRACT

The expansion of an arbitrary two-dimensional solution of the
linearized stream function equation in terns of the discrete and continuum
eigenfunctions of the Orr-Sommerfeld equation is discussed for flows in
the half-space, y c t 0, -). A recent result of Sarlwen is used to derive
a biorthogonality relation between the solution of the linearized equation
for the stream function and the solutions of the adjoint problem.

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted for bounded flows. This relation-
ship is used to carry out the formal solution of the initial value problem
for temporal stability. It is found that the vorticity of the disturbance at
t n 0 is the proper initial condition for the temporal stability problem.
Finally, it is shown that the set consisting of the discrete eigenmodes
and continuum eigenfunct.ions is complete.

For the spatial stability problem, it is shown that the continuous
spectrum of the Orr-Sommerfeld equation contains four branches. The biorthogon-
ality relation is used to derive the formal solution to the boundary value
problem of 'spatial stability. It is shown that the boundary value problem
of spatial stability requires the stream function and its first three partial
derivatives with respect to x be specified at x - 0 for all t. To be appli-

cable to practical problems, this soluticrA will require modification to
eliminate disturbances originating at x =	 and travelling upstream to
x	 0.

For the special case of a constant base flow, the method is used to
calculate the evolution in time of a particular initial disturbance.
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1. Zatroduction

Recent calculations of the discrete eigoc=des of the Orr-Somnerfald

equation (Jordinson, 1971; MAck, 1976; Houston, Connor, and loss, 19%;

Murdoch and Stevartson, 1977) have indicated that, for a given Reynolds

number and 
wave number (frequency), the Orr-Semmerfol3 equation for 31asius

f_ov has only a finite number of discrete temporal (spatial) eigenfunctions.

Since a finite set of unctions cannot be complete, these calculations

raised the question of how to expand the stream ;`section of an arbitrary

disturbance in terms of the none&' modes. :'hose authors suggested that

in addition to the finite discrete spectra, which they found, there is

a continuous spectrum.

'sn ?art 2 (Oroach and Salaen, 1978&), we dea?t with the existence of

the continuous spectr= and the fors of the related eigenfuncticas for

both the temporal and spatial problems. -We shoved that the Orr-Scm@erfeld

equstion,_for any mean shear flow approaching a constant -rolocitf in the

far fieldfpOSiesae2 a continuous spectrua; we gave formulae for the

location of the temporal and spatial continua in the complex wave-speed

plane; and we calculated the temporal coat II,4u;;m eiaen',metiers for some

particular cases. in this paper, we turn our attention to the use of the

discrete and centiauum eigentuncticns of the Orr-Scmmerfeld equation to

cs.lculate the temporal or spatial evolution of an a-bitrarl solution of

the t --*ar disturbance equations.

A, i



xn a recent oritiue of the application of stability theory to the

prediction of transition, Berger and Aroesty (19TT) point out; that, on

the basis of the limited experimental evidence that is available, the

coupling of free stream disturbances to disturbances in the boundary

layer appows to be extr aordinarily weak and extremely selective in

fr eqwacy and ',ravenumber, :lack (1977) makes the same point in a different

,•ay, ae points out that 1140 there were no disturbances Einside the

boundary layer], there would be no transition and the bcundary _ayes ++ould

remain laminar. Consequently, it is futile to talk about transition

without in some .,ray bringing in the disturtances Mons cause it .. ".

}itch aids, "... t o precise mechanism by which, say , free stream turbulence,

sound, and different tyres of roua^.ness cause transition remains to be

discovered."

'1'Ye most detailed discussion of this problem appears to be that of

Obremski, Horkovin, and Landahl ( 1969). They consider various possible

mechanisms by vhich sound or vorticity waves in the free stream mi ght

interact with the Younda v layer and cause transition. On the basis of

the available experi=ntal evidence, they conclude that only a small

portion of the external disturbance field excites Tol en-Schlichting

(T-S) :raves in the bounda.-y layer and a siasifi _ant portion appears to

travel within the boundary layer with Ut.le or no interaction. The

(unstated) conclusion seams to be that the mechanism which couples free

stream disturbances to a boundary layer and, thereby, initiates transition

is unknoxn.

i



The central problem here is the solution of the general, initial

and boundary value problems for disturbances to boundary layer flow— how,

given the form of the disturbance at a time t n 0, to find its variation

with time and how, given the form of the disturbance at all times on a

plane, x n 0, perpendicular to the boundary laver, to find out how it

propagates downstream. In this paper, we approach these problems, in the

approximation obtained by assuming parallel flow and linearizing with

respect to the disturbances, by .expressing the solution as a sum over the

discrete normal modes plus an integral over the continuum eigenfunctions

of the Orr-Sommerfeld equation. If the (discrete plus continuum)

eigenfunctions corm a complete sat, this approach will yield a valid

solution of the problem.

Starting with Haupt (1912), a number of authors have dealt with the

completeness of the set of temporal eigenfunctions in a 'bounded domain.

Haupt showed that the eigenfunctions for two-dimensional disturbances to

plane Couette flow form a complete set and Schensted (1960) proved

completeness for the eigenfunctions for two-dimensional disturbances to

plane Poiseuille flow and for axi-symmetric ,disturbances to Poiseuille

flow in a circular pipe. Yudovich (1965) and DiPrima and Habetler (1969)

have proven completeness of the eigenmodes for a large class of bounded

flows. We are unaware of any work on the completeness of the spatial

eigenfunctions or, previous to this paper, on the completeness of the
temporal eigenfunctions in an unbounded domain.

`	
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In Section 2 we formulate the stability problem for two-dimensional

disturbances to a parallel shear flow, i1(y), 0 c y -c m, in terms of the

linearized equation for the stream function and boundary conditions.

We next formulate the adjoint problem, A new result of 5alwen (1979) is

then used to derive a pseudocontinuity relation involving solutions of

the linearized equation for the stream function and the adjoint solutions.

This relation is then used to find the ge ►ieral biorthogonality condition

for wave-like disturbances to the flow. The biorthogonality relation is

specialized to the cases of temporal and spatial stability. The orthogonality

relation for the temporal stability problem is that derived by Schensted (1960)

and discussed by Reid (1965).

The temporal stability problem is considered in detail in Section 3.

The solution is Fourier analy ed with respect to x. Then the formal solution
of the initial value problem for the temporal stability of a two-dimensional

disturbance to a parallel shear flow is expressed as an expansion in terms

of the eigenfunctions. The expansion coefficients are determined by inner

products between the initial disturbance and the eigenfunctions of the adjoint

equation. We show that the disturbance vorticity at t n 0 is the proper initial

condition for the temporal stability problem,

In Section a we examine the question of the completeness of the set of

expansion functions for the temporal stability problem. Very recently,

Gustaysson (1979) has treated the temporal initial value problem by using

Fourier-Laplace transforms, He finds poles in the transform plane which

correspond to the discrete T--S modes and a branch cut which corresponds to

27



the continuous spectrum. We show in this section that the Fourier- Laplace

transform solution of Gusta ysson is identical to our Fourier transform,

eigenfunction expansion solution for the initial value problem of temporal

stability. We therefore conclude that our expansion set is complete.

The spatial stability problem is considered in detail in Section S.

The solution is Fourier analyzed in t, The formulae for the four, branches

of the continuous spectrum of the spatial stability problem are derived and

discussed. The formal solution of the boundary value problem for the spatial

stability of a two-dimensional disturbance to a parallel shear flow is

expressed as an expansion in terms of the spatial eigenfunctions. The

expansion coefficients are determined by inner products between the boundary

conditions at x * 0 and the eigenfunctions of the adjoint equation. The

boundary conditions at x n 0 are discussed. We have not yet been able to

prove completeness for the set of expansion functions of the spatial stability

problem.

In Section 6 0 we apply the results of Section 3 to the simple case of a

constant base flow. In this case, we find the eigenfunctions and calculate

and discuss the temporal evolution of a particular initial disturbance.
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2. The linearized, two dimensional Yavier- Stokes equations: the

biorthosonality relation.

2.1 Formulation of the problem
^'

	

	 1
The basic flow under consideration is a parallel shear flow, U(y), is

the semi-infinite region, y > 0. We are concerned with the temporal
j

or spatial development of an "infinitesimal;", two-dimensional distur- j

bane• to this flow, Wx, y, t), v(x, y, t), 0). In this case, u and
i

v can be expressed is terms of a stream function, P(x, y, t), by

alp	 (1)
i

a (2)

and the linearized tavier-Stokes equations reduce to a single partial

differential equation,

2

(at + U 3x) ° - i a R °i^ - x^ - o(3)
dy

where

2	 =	
4

ax_	
ay-
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In addition, ^? must satisfy two boundary conditions at y - 0,

all 	 -v(x, 0, t) - 0	 (S)
^x x,0,t

and

°	 - u(x, 0, t) - 0,	 (6)

7 x,0,t

ad a "finiteness" condition

m

ro
E l 41

2 
+ I 1 2 ]dy - 

fo
 ^ I ul 2 + I V I 27dy <	 (7)

As a consequence of eq. (7), ^P must satisfy boundary conditions at

infinity,

3S^ 2T -0- 0
	 as	 y ++ m .	 (8)

3x ' oy

For fixed x and t, P(x, y, t) belongs to a manifold, M l of functions,

VY), satisfying

d^ d? d b da^It
ay, dy2 ,	 , 

dye
all defined on G. ^), 	 (9)
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d d
2	 3

^, dy
, d72, 

dy3 , continuous on CO, 0),

W) - 0	 and	 V(0) n 0

and

J 1gy)J 2dy 	 and	 }dy12dy	 both exist.
0	 TO

The continuum aigenfunctions which will be discussed in Sections 3 and 5

1
q	 do not satisfy eq. (12).. Instead they belong to a manifold M' s 6 of

i
functions satisfying eqs. (9) - (11) and a weakened condition,

^(y)	 and	
dy	

bounded in CO, ^). 	 (13)

(14)

(11)

(12)

'do define an inner product,

(f, 8) = F
O 

f*(y) 8(y)dy ,	 (14)

in M. The star denotes the; complex conjugate. This inner product is

defined for the full Hilbert space of functions satisfying eq. (12) and,

in that space, has the usual properties of inner products.



and the finiteness condition

The definition of the adjoint used here yields an adjoint operator which

is identical to the formal adjoint (Friedman, 1969, pp. 2,3).

An adjoint stream function, ^(x, y, t), is a solution of the

adjoint equation (with U* M U),

,^+	 (a + U 3 )7I + 2 dU a 21 + 1 74P • 0,	 (16)
Wt ax	 dy ax y R

with the boundary conditions at y • 0,

a	 a^	
* 0

3x^ x9 o ft	ayjxW0vt

2,2 The adjoint problem

For functions f, ; c M

usual way by

C^J {f(x,y,t) Z+f(x,y,t)Idxdydt

111 W f(x,y,t)}e(t(x'y,t)ldxdydt + boundary Terms. 	 (15)

(17)
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s (a#I2 + I#1 -)ay

	

 
0

F ((u1 2 + 1 9 1 2Idy <	 (1e)

As above, equation (19) implies that ^ mus t satisfy boundary conditions

10 a"& 0	 as	 y ^ ^..	 (19)
ax ' ay

'When, as below, we look for solutions to the linoarised stream

function equation (3) which have a wavelike behavior in x, and c,

equation ( 3) reduces to the Orr-Sommerfeld equation and equa tion (16)

reduces to the adjo$ ,nt Orr-Sommerfeld equation. Our adjo nc Orr-

Sommerfeld equation is the complex conjugate of the adjoinc equation

derived by Schensted (1960) and quoted by Paid (1965). The reason for

this difference is that we define the inner product in the usual way,

(14) while Schensced ' s definition of the inner product ( f, g) involves

f instead of P.
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2.3 biorthogonality

Salwaa (1979)- has shown that the solutions of the linearized,

three dimensional wavier-Stokes eg4utions, u, p and the adjoint

solutions 'u, I satisfy a "continuity" equation

+9
,
J0, (20)

where

p•ue • u	 (21)

3
J	 of 6 • u) U + R E C (9'ui) ui. - at (7ui)

i•1

+U4P+uP* ,	 (22)

and, as before, the star denotes a complex conjugate.

For the two dimensional disturbances considered here we will

introduce two new inner products. Let I be any solution of the original

a and	 be any solution oz the adjoinc problem, then define

4i 	 ^ 
p dy . 1 (a a + y ) dy ,	 (23)

0	 0

}
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and

{
E

I ATM a 
ro 

Jx dy I

0

with 3x , the % component of J, Usin g (2:) and expressing u, p and

in terms of P and	 , it can be shown that

FO R	 ax 	 x ax  ax  
T 

ax 3

a2; * aq joa2o
2 a-	 ay 

2 Ty- axog

3 2 + a2+ *
=tax  atax

UCH 
ax

_ 
ax ax + ax2

t of a2^*

ay

(24)

1

4

The form of these inner products has been determined by the equations

for the stream function and the adjoin stream function. However, we

can use equations (23) and (25) to calculate inner products <f, g> and

evaluated at fixed x and t, of any functions f(c, y, t) and

&NO y + t),

35 {
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it is straightforward to show that <f, g> is defined for the full

Hilbert space of functions which satisfy equation (7) and, in that space,

has the usual properties of inner products. On the other hand, ',Ar f, SM

is not positive definite. This is due to the fact that it is possible to

have wavelike solutions to equation (3) which propagate in either the upstream

(-x) or downstream (+x) direction.

With these definitions it is easy to show that

T 4
' f> + 3x 1^ ,^^ 0	 (26)

for any solutions of the original and adjoint problems.

If T and 5̂ are wave disturbances of the form

T 
a 

I 
W I ` 

$n I W ► We i (CI , x  - W , t) P
	 (27)

a if We i (Ox  - Wt)	 (28)

equation (26) reduces to

(w, - w*) < ^ . Tj I I>	 W - u*) a 9 . n̂ , ".' 3 .	 (30)
aw

This equation may be used to derive biothogonality relations for the

eigenfunctions of both the temporal and spatial stability problems.
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For the temporal stability problem. at is real and given and a 

equals a. The orthogonality relation foir the temporal stability problem

is then

(w' • Wk) < ^zwV T aw s n 0 ►
	

(30)

so the solutions of the temporal stability problem and the sdjoint

solutions are orthogonal unless w' w w*, The orthogonality condition,

equation (30). can be recognized as being essentially equivalent to

that derived by Schenstad (2960; pg. 27, eq. (2.2.3)), and discussed

by Mid (1963). The only difference is that Schensted's adjoiat solution

is the c^mples conjugate of ours.

In the case of spatial stability, w is real and given and w' , w and

the orthogonality relation is

Thus. unless a' 0 a* the spatial eigenfunctions and adjoint eigan-

functions are orthogonal with the inner product defined by equation

(S).

(31)

11
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3. The Temporal Stability PToblem

3.1 The EiEanvalues and EiEenfunctions

For the temporal stability problea we modify the finiteness condition,

equation (7) to

F(l.1
2 + ,112 )Udy <
	

(1 ► )

This ensures that the Fourier integral expansion of tD ,

LP (x, y ► t) F 4a (v, t)aiax da ►

exists. If we assume that Ya is of the fora

a(Y ► t) ^,,We- iwt ►

then ^a is a solution of the Orr-Sommerfeld equation

7	
d

tL - iaRC (U - c) La - d.U3}¢a 
0

dy,

with

c a w/a ►

and

d22
La dy2 ' ct

(32)

J

Y

N

38

(33)

(34)

(33)

(3b)



4(0)	 (0) •^ (0)(0)	 0 (41)

39

Similarly we &souse that the adjoint solution, % i also satisfies

equation (7 1 ) thus ensuring that the Fourier integral expansion of

(x+ Y, t)

	

	 VIVY, 
t)siax da	 (37)

.a.

exists. It is assumed that ^a is of the fora

ft

fa (Y. t)	 We-'(O *t
	

(3a)

N
with 4a the solution of the adjoint Orr-Somm•rfaid equation

	

tL2 + icLRC (U - c*) La + 2 d d^] } 4a • 0
	

(39)

with

c* • w*/a.	 (40)

M
Both	 and ^a 

satisfy the boundary conditions



%* 0a'0 %
♦ a .+0	 u	 y.► • 	(42)

T.if 
0a 

and Ta are in M, or the weaker condition

.	 9

0	 '^^	 $	 Iwo	 bounded &s	 y	 a.^	 (43)

i
a

a

if a and 0
,, are in M^. Those eigenfunctions which belong to K will be

gilled discrete eigenfunctions. Those which belong to 
M,. 

but not M will
j

be called continuum eigenfunctions. 	 j

It has been found (Mack, 1976, Grosch and Salwen, 1975, 1978&) that,

in general, there is a finite number of discrete eigenfunctions, (^.(y))

with eigenvalues ( w amand a set, (yak}, 
of continuum eigenfunctions

with eigenvalues (wak
)
 which depend continuously on a real parameter, k,

in the range CO, -). (Note that the k of this paper is equal to ak of

Part 1.)

The number of discrete modes, which we shall denote by N(a), depends

not only on a but also on R and on the form of U(y) and can, in some cases,

ti
be zero. The adjoint eigenfunctions also include a finite set, of

discrete	

i
s#

discrete eigenfunctions and a continuum,(yak}, with eigenvalues ( ,4*lmt and	 ti
i

{yak}, respectively (see discussion following (30)). For given k, yak	 {i

and 0 vary like a linear combination of s"iky as y +	 We therefore	 i
ak

1

find that

k+£ Oa

k ' (Y)dk^	 and	
k+
E ^ak'(Y)dk^ E M	 (44)

^k-c	 ^k-E

v
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and that, for any square-integrable f,

Oak
	 d 

IM

( f^ ok) 0 (f ► yak) ► (f, d ), (f, d ) all exist.	 (45)

-
Inner products between continuum functions, such as <;ttk , Ookf> do

not exist in the ordinary sense but are definable in terms of the Dirac

o-function ('Lighthill, 2960 0 pp. 10-21).

The discrete eigenvalues must be searched for (Mack, 1975), but the

continuum eigenvalues follow from the asymptotic fora (Oak, yak linear

combination of a" iky) of the aigenfunctidns as y — a and U + U1 • U(m):

(-k2 - s2 ) 2 - (iaRU1 - 'P"ak)(-k2 - a2) 0 0 ,	 (46a)

(-k2 - a2 ) 2 + (iaRUl - iRW* ) (-k2 - a2)	 0 ,	 (46b)
ak

so that both equations yield

a

yak	 ( ) 2
(k + a2 + iCAUl)	 (47)



ft

tloan1

k,

`;atk' Ik  `yak'
l

and

With proper labelling and normalization, it is then possible to choose

the eigentunctions in such a way that

4
r1n Onn'> • 4nn„	

(49a)

.Coa<n' ^a<k'	 "yak' f an' >	
0 ,	 (49b)

and



^^aa•a(Y^ t)>` nE 1 any (a, t)d,	>a (CI, t), (51a)	 1

ak' ^a (Y ' t)> '	 ak^(a, t)6(k - k')dk' ` ak(a, t). 	(Sib)	 s
i

We then find that

3a (a, t)3 O
an— 3_ t Tan at

-iWan <^an' Y'a (y ' t)> -	 an an (a, t)

►rly,

3.2 Expansion of an arbitrary disturbance.

if the eiEenfunctions form a complete set, then, for any time, t,

we may expand ^#a (Y, t) as a linear combination,

N(a)
a (Y ► t) - E	 aa (a, t)O= (Y) 

}a
k (a, t)(Pak(Y)dk	 (S0)

n-1	 FO

of those eigenfunctions. To find the coefficients (a n) and (ak} we may

make use of eq. (49) to tike inner products



aak(a+ t)Ow	 3w

	

. 
<`^ak0 3ta	 -JWak ak (a, t),at

so that

aa(a, t) . An( O 
inaat

ak(a , t) - Ak(a)•-iWQkt

where

Ow
as (a) = an (a, 0)	 Loan, Y' (Y ' 0)>

ak (a) = ak (a, 0)	 <;ak' (^a(Y,O)>

Then, referring to equations (32) and (50), we find

Y (a)
t)
	 J

{ E An(a)^an(.	 iwant
n-1

+
 TO

`^k (a)Oak(Y)! i^ktdk}eiaxda,

OWN

(52b)

(53a)

(53b)

(54a)

(54b)

41 1
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(COAn 	
<-can' TCY ► 0)>

• ^ r :, (Y) L T(x, Y. 0)a ioxdxdy
(36a)

	

r
4an (Y)	 [^'^ 3t^0 a laxdxdy,

0

and, similarly,

	

A (CL) - 2n 1 Oak (Y)	 C'72 3'0 
e-iaxdXdY.	 (56b)

0	
^

 -a+

If the discrete and continuum sigenfunctions fora a complete set,

then equation (55) constitutes an expansion of the stream function of an

arbitrary disturbance in terms of the discrete (Tollmien-Schlichting)

and continuum wave solutions,

^aa (Y)0
1((%x-went)	

and ^ak (Y)ei(°x-wakt) .

of the disturbance equation, (3), with coefficients determined by the

initial form of the disturbance T(x, Y , 0). In the next section we will

show that the discrete and continuum eigenfunctions are a complete set.

N1

(
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One interesting and signific

initial distribution of vorticit,

r 0 N, Y) = f(x, 7, 0)

is suf.icitnt information to dot

and, therefore, the subsequent d
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er to simplify reference to the equations in Gusta ysson's paper

1 hereafter use the prefix G. Page references are also to Gustaysson's

47

j

4. Completeness of the Temporal Expansion Functions

Gustaysson (1979) has carried out a formal solution of the initial value

problem of temporal stability for three dimensional disturbances. He uses

the same coordinate system as we. do with the addition. of the z coordinate

in the cross stream direction. The formal solutionis obtained by taking

Fourier transforms in both x and z and a Laplace transform in t, formally

solving the Orr-Sommerfeld equation in the transform space, and formally

inverting the transforms. If we eliminate the z-variation of Gustaysson's

solution and his 'Fourier transform in z (replacing his k by (al) the two

solutions should be identical. Both Gusta ysson and we express the solution

in physical space as an inverse Fourier transform over a, the transform

variable in the x direction. In order to show that these two methods yield

identical results it is therefore necessary to show that his formal solution

in Fourier space, v as given in (G13) * , is equal to the factor in curly

brackets in our equation (55).

In order to do this we must first translate Gusta ysson's notation into

our notation. Setting s = 0, after 03) it is easily seen that we have the

following correspondence,
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i

This paper,	Gustaysson

i v/a

lal	 k

W	 is

k	 o

U l 	1

in (G3) and thereafter.

Gustaysson gives the formal solution in Fourier space in equation (M).

It consists of a sum of the residue values at the poles plus a contour

integral along a branch cut. Using the definitionSof W as the Wronskian',

i" the DJ)given after (G5)i and the oj , equation (G7), it is quite straight-

forward to show that the residue, R v , at a pole sv is

RV = (esvt/W) lim ((s -s,) Ca l (s)^ 1 (y ►s) + a2(s)42(y,$)]}.	 (58)
s-}sv

Therefore the residue consists of a linear combination of it, and 02

the solutions of the Orr-Sommerfeld equation that approach zero as y

i.e. they satisfy (G4) and (42). At s - s , Ol and 0 2 satisfy the usual

eigenvalue condition at y - 0 for the discrete modes of the Orr-Sommerfeld

equation, condition (Gb) (at the bottom of page 1603). This linear combination

thus satisfies (41). Therefore the residue at s v is proportional to our discrete

eigenfunction `bav(y) with eigenvalue w.., and

esvt a-iWavt .



It is well known (Coddington and Levinson, 1955, p. 101, problem 19)

that C0i/W]* , the complex conjugates of the functions used in (G6), are

solutions of the adjoint equation (39). It can be seen from the form of

011) and the definition of our inner product (23) that

a3 ' X03 900> 	j • 3.4,
	

(59)

so that the coefficient of ^av(y) in the residue is the inner product, of

some solution of the adjoint equation with q(y,0). Finally, some straight-

ford	 Iand but tedious, algebra shows that the: particular linear combination

of the D 	 satisfies the boundary conditions (41) and (42) and

therefore is a multiple of our 
0av . 

We thus find that the residue at s  is

RV - day 
AV(a) 

oav a-iwavt ,	
(60)

with day independent of y ,,,nd AV
(a) given by (54a). Before determining dxv,

we turn to the contribution of the branch cut.

Using the fact that our w = is, it is clear from 014) that the branch

cut in the complex s plane is our continuous spectrum in the complex

w (or c) plane and that the branch point, u - 0, corresponds to the limit

point of our continuous spectrum at c = U 1	i a2/R, with U 1 = 1. the function

F(a.k: y) in (GlM is, by (G17)and (G19) a linear combination of the so-Yuttons

Orr-Sommerfeld equation which are, as y -r 	 asymptotic to a-ay,

and 
a+iky. 

It can be shown, using (G19), (G20), (G21), and (G22), that

F(a,k;0) - %-') - 0 .



and so F(a,k y) is some multiple of our continuum eigenfunction oak(y).

Further, it is obvious that, in (55),

e- iwakt 	 s e-iaul t e- (Q2+k2)t/R	 (62)

in (G18) with U l = 1.

Just as for the discrete modes, the: Ca l ) , v - 2,3,4 in (G21) are the

inner product of some solutions of the adjoint equation with ^ o . Using the

definition of the Emn in (G22) and the definitions of the T m as given
in the next to last paragraph on page 1604 some algebra shows that the

particular linear combination satisfies the boundary ^onditlons at y - 0

and so the inner product in (G20) is a multiple of the inner product of our

continuum adjoint, oak (y), with the initial condition. Therefore, the integral

term in (G18) is

iI '	 dak Ak (a) OA(y) a-
im

ak t dk ,	 (63)

0

with Ak (a) given by (54b) and dak independent of y. Gusta ysson's result (G18)

thus takes the form (in our notation)

N(a)	 -iw t
i+a (y,t) ' vEl day Av (a) Oav (y ) a	 av

+ ,	 dak Ak(a) Oak(y) a
-im

ak t dk	 (64)

0

Both Gustaysson and we may choose our initial condition arbitrarily,

provided that the various integrals of this function with the adjoint functions

exist. If we choose tie initial condition that 0, (y,0) is one of

%11
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the discrete eigenfunctions, say 4
Qm

(y), then in (55)

An(0) a 
d"M
	 (654)

Ak (a) • Q .	 (65b)

In Gusta ysson's formulation (63) we have

day AV(a) 6V	 (66a)

Ak (a)	 4 .	 (66b)

k

We thus see that

day	
1	 (67)

If we then choose the initial condition

k+e

v (y,G) 
s 

k e	
ak l(y ) dk'	 (68)

°`	 - 

a similar argument shows that

dak = 1 .	 (69)

Substitution of 
daV	

dak =- 1, (67) and (69), makes eq. (64), derived from

Gustaysson's solution, identica 10 to the curly bracket in our expansion

solution (55). We have thus shown that the formal solution obtained by

Gustaysson frc,n the Fourier-Laplace transform is identical, term by term, to

our formal expansion solution.

k

zi
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I

Since any square.-integrable solution possesses a Fourier-Laplace

expansion, we have shown that our expansion (55) is complete whenever it
e

is valid to separate the Fourier-Laplace transform solution into a sum over

theoles plus an into ral over the branch cut -- that fi 	 wheneverP	 P	 9	 h t s, wh	 r the sum

over the poles (discrete eigenvalues) converges. This is, of course, ilso

the condition for the validity of Gustaysson's solution.

For the Blasius boundary layer, the numerical evidence (Mack 1970

indicates that, at a given R and a , the number of discrete modes is finite,

so that the sum over the poles is a finite sum. If this is so, then the

above condition is certainly satisfied and our expansion functions form a

complete set.

We have shown that the Fourier-Laplace transform result and the eigen-

function expansion result are different forms of the same solution of the

initial value problem to be chosen according to convenience in a particular

case. The eigenfunction expansion formulation gives explicit formulae

(S4 a,b) to calculate the expansion coefficients. This allows one to calculate

the amplitudes of the discrete modes (TS modes) and the continuum functions,

given the initial  distribution of vorti ci ty.
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S. The spatial stability problem

5.1 The ei;envalues and eitenfunctions

The finiteness condition,squation (7), is

stability problem to

53

o

F-M( 3x.12)dtdy < ^.	 (7„)

 FO

This ensure @ that the Fourier integral expansion of

( 
v t t)	 ^(x, 

y) a-icutdw
	 ( 70)

exists. If we assume that WW is of the fo =

WW (x, Y)
 - ow(Y)aiatx ,
	 (71)

then ^ W is the solution of the Orr-Sommorfeld equation

{La - iRC (ciU - w)L^ -	
2 
U3}0w ' 0 ,	 (72)

dy

with La liven by (36).



Similarly, we assume that the adjoint solution, ^p , also satisfies

equation ( 7") thus ensuring that

S (x. Y. t) • F Ŵ (x• Y)e
-iwtdw 	

(73)A

exists. We assume that

(PW(x. Y) . $W(7)aio*x
	 (74)

Thee " is the solution of the adjoint Orr-Sommerfeld equation

{La*+ i
,.q
C(a*U - 

W) L.*
 + 22* dy dy's} ^ 0	 (75)

The boundary conditions are

0
W
(0) . ^

W
(0)	 ^(0) . 0^(0) 	 . 0 ,	 (76)

and

OW + 0W ^W f 0W 0	 as	 y	 (77)

if ^^ and ^^ are in M, or
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^,+, ^^ 4w	 bounded as	 v + ^• ,	 (78)

if 0  
and aW are in a ` . As above, the eigenfunctions which belong to

M are the discrete eigenfunetions and those that belong to M' but not M

are the continuum eigonfunctions.

Jocdinson (1971), Corner, Houston, and Rosa ( 1976), and Murdock and

Stavartson (1977) have shown that there is only a finite set of discrete

eigenfunctions, (^
wn

(y)}, with eigenvalues (awn ). 'the sat of discrete

adjoint eigenfunctions, 
(0Wn), 

with eigenvalues 
(a* 

is also finite.

The number of discrete modes, Y(w) depends on R as well as w and can be zero.

In part 1 we showed that, in an unbounded domain, the spatial

stability problem always has a conti aupus spectrum. Since than we have

discovered (Grosch and Salwan, 1978b), that the spatial continuum of

Part 1 is only one branch of a four branched spatial continuum. It is

quite easy to show the exia"once of the four branches of the spatial

continuum. We look for solutions to equations (72) and (75), v wk (y) and

IV (y) 0 for a given real k, which vary like. e -iky as y ^ ^ (the k used

in discussing the spatial continuum in Part 1 is 21R times the k used here).

;toting that, as y + -, U + Ul , a constant, and U^, U it + 0, we have

a	 a	 ^
(-a2 - k`)(-a` - k`

a
 - iaRU1 + iWR) - 0 ,

(—x*2- k2 ) (-a *2- k2 + is *RU B - iwR)	 0.

that equations ( 79a and b) are complex conjugates.)
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It is obvious that there are four roots, (a' }, j - 1 1 	, L with

at and a  the roots of

a2 + iRU laj + k2' - iwR A (80)

and

a3 • ik , a4 • -ix	 (81a,b)

The eigenvalue al , the root or equation (80) with positive real part,

is the continuum eigenvalue discussed in ?art 1. As was discussed in

Part 1, the eigenfunctions of this branch of the spatial continuum

are waves propagating in the downstream ( +s) direction and decaying in

amplitude as they travel. In the same way it can be shown that a2 is

the eigenvalue of a continuum eigenfunction which is a wave traveling in

the upstream (-s) direction and decaying as it travels.

The free stream speed, Ul , can be taken to be unity for a boundary

layer, crake, or free shear flow. In most cases of interest w/R < < 1.

It is easy to see that, with U l r 1, and w/R < < 1,

3
a1 ^2 n =(w/ y) - iR[2(1 + Y) + (w/R)`/'t3] + 0(W3

R	
(82)

with
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y	 (1 + 4k2/R2) 1/2	(83)

Define, as usual, the phase •peed c  by

	

cj - a*W/1,xj 2 	 (84)

Than as k - 0,

l w + ME (w2 + k2 ) /R2

	

 ► 	 (85^)

,
al = -w - iRCl + (w2 + k`)/R`],	 (85b)

c1 = 1 - iC(w2 + k
2
)1R231(w/R),	 (86a)

C:	 -(w/R) 2 + 3(w/R)C1 + (w 2 + k2)/R2]. (86b)

While as k ^► ^,

i

ctl r (wR/ 2k) + ik ► (87a)

► 	 a2 - -011 (87b)

c	 = wZR/2k3 - iw/k , (884)1

°2 
.. .`1 (88b)I

S7
l

. ^,



The damping rata, for the spatial; eigenfunctions, is :m(a) and the

phase speed is Re(c). The equations given above show that the eigenfunctionx

on branch two of the spatial continuum, for boundary layers, wakes, and

free shear flows, always-have both a very large damping rate and a very

small phase speed. This is in marked contrast to those of branch one,

which, as was shown in Part 1, or can be seen from the above rasults,

contains lightly damped eigenfunctions soma of which have a very slow

phase speed and some of which have a phase speed nearly equal to the free

stream speed.

The spatial continuum eigenfunctions of branches 3 and 4 are standing

waves in x because they vary like

e ia3x a e -ioc	 aia4x . e+kx.	 (a9a,b)

As in the temporal case, the inner products between the spatial

continuum eigenfunctions do not exist in the ordinary sense but can be

defined as 5 !unctions. Then with proper labeling and normalization,

it is possible to choose the eigenfunctions such that (with the super-

script i or j indicating the branch of the continuum)

I T
wn

► own s 1 n d ,= + ,	 (90s)

Town' `^wk )	wk) awn	 0 ►	 (90b)

(L	 ) ► O^'M - e(k - k')d^ 1	(90c)

i
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4

59	 3

where

r i(a ^ +a J

own • 'awn + ^ = 
^- ^nRmn I^(a^+

2"*	
±1d^9wn+ 1

+ awl " iwR)O,, 4W + + - dY dy

UE (%n
+ + awn+ 

%n + aWn Wn awn+

4* do + d•
+ : dyn ,
	

+	 dYn urn + ' } dY ►

and there are analogous expressions for the inner products in (90b)

and (900 -



5.2 Expansion of an arbitrary Disturbance.

If the spatial eigenfunctions form a complete set, than, for any

x, we may expand WW (x, Y) as

41W
 (Z ' Y) n E	 an (W, x) ^,^n(7) + 

E FM 
aki) (W. x)OwkY.(92)in! 

In order to find the coefficients(an (w, x)) and (% (W, x)) we use

equation ( 90) to take the inner products

V
;'Wn' WW (X, Y)^	 ^E	 an `(w, x)o nn l n 

an (W, x)	 (93a)
a +I

T; (i) . 4P (x. Y)11

	

	 ak^)(w, x)8(k - k')dij dk^ n aki) (W, x). (93b)
TO

Then

ax	
iCL it TW"
Wn

3a (W, x)	 ,,	 8V^

n ia
Wn
 an (W, x) , (94a)

and.
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Saki) (w, x)	 aw	
(i>'x	 . R wk' ax s7 ia^k Q ;wk. Wy3

"3 k> %i) 
(W' x).	 (94b)

so that

i

aQ (w. x)	
^n(W)a WA*	

(95a)	 t

i
1

(i)	 (i)	 Ini
ak (W • x) ' ` 	 (^> a	 (95b)	 a

Where

j	 .►n (w) = an (w, 0)	 can 	 W ( 0	(96a)

I
a

Aj (W)	 ai (w ► 0) ` `^^k) ► 	 w(0. Y) D .	 ( 96b)

From equations ( 73), (92), and (95), we have the formal solution to

the spatial stability problem for the two dimensional, linearized

wavier-Stokes equations

I, (W)

(x. y, t)	 { E	 an(^)on(Y)eiax

n-

	

+ 4
	

A i 
(W)(DWk)(Y)eia,^ 

) x dk)e imt dw
	 (97)i•1 ro

I
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Define

w0) (Y)	 w(0, 7) ' 2t	 ^(0, Y, t)a dt '	 (98a)

aw	 '(_. Y)(1) -	 w	 1	 3 (x	 t ) 	 ^iwt
 dt,	 (98b)

ww (Y)	 (	 ^ two	 7Z.-̂ T ^(	 x	 x-0

(2)(Y) _ (a2w—	 —)	 1	 (82 (x. Y. t) ) 	 /iwt dt, (98c)
w	 2	 2.t ^^	 3x2

a^	 x^0	 X-p

^ (3)
CY) - (a3 ^W(x. r))	 . ^	 ( a 3 p(x. 3. t) ) 	 0iwt dt. (98d)

w	 ax	 x-03 	'°'	 ax	 x^0

Aa(w)TWn , w (0 R Y)
r

r-*	 (3) .^ is	 *	 (2) - a 
2	 *<1)

wn w	 wa wn w	 wn wn w

dd* aw(^)
w ill 3 * ^(0) - i2a	

wn	 w	
j.

Wn wn w	 Wn dy QY

dj* djw ) 	C1)	 ^'*	 (0) s2 wn w }	 iwC'* ^'W 	 is ¢,w ^wn	
'.

dy dy	
n

- UC4*	 (2) + is	 * Cp(1)	 cx 2-
	 (0)

wn wn	 wWn w	 Wn Wn w-
0)	 2$*

- d wa d	 dw_ _ ^n wm dy ,	 (99)
dy	 dy	 dy-	 62
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and there is a similar expression for Aki>(W),
This is the formal solution.of the spatial stability problem

for an arbitrarily imposed boundary condition at x - 0. The boundary

conditions which must be specified are the Fourier transforms in time,

of the stream function and its first three partial derivatives with

respect to x, evaluated at x - 0.

As it stands, this formal solution will not give a physically

acceptable solution because, given an arbitrary T (0, y, 0 and derivatives,

disturbances which lie on all four branches of the continuum will be

excited. Therefore the solution will contain, in addition to the waves

propagating towards x - -* and the standing waves whose amplitude decays

towards x - w , waves propagating upstream from x	 and standing waves

whose amplitude increases towards x - -.

A condition must be imposed that, for x > 0, all propagating dis-

turbinces are traveling in the positive x direction and all standing

waves have amplitudes which decay in the positive x direction. It appears that this

should be done by requiring that ^P(0, y, 0 and its first three partial

derivatives with respect to x be orthogonal to all eigenfunctions on

branches ? and 4 of the continuous spectrum but we have not yet investigated

the implications of imposing this condition on the disturbance stream

function at x - 0.

i
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6. Application to the Temporal Development of a Model Flow

In this section, we apply the results of section 3. to the simple

bass flow,

U(y) - Ul , constant,	 y > 0 ,	 (100)

which is a slip flew past a bounding plane at y n 0. Though the base

flow velocity does not vanish at the boundary, we still require the

disturbance velocity to be zero at y • 0. Because of the simplicity of
the base flcw,, the expansion functions are elementary functions.

In 6.1, we find the expansion functions. In this case, there are no

discrete eigenmodes; all of the eigenfunctions are continuum functions.

In Subsection 6.2, we solve for the time -development of a particular

initial disturbance by expanding in terms of these eigenfunctions. The

initial disturbance chosen is a periodic layer of vorticity confined to a

plane parallel to the (y - 0) boundary. Because of the simple form of the

initial disturbance and the simplicity of the base flow, it is possible to

obtain the solution in closed form in terms of error functions.

The E:32n4unctions

Fo: the base flow of Equation(100) the differential equation, (34),

:he expansion functions becomes

2	 1

(-L- - a2 - iaR (U 1 - c)) ( d" ^- cc Z ) ^ ^ 0 .	 (101)
dy2	dy

is
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with the general solution (for a 0 0, c 0 VI),

As- (a 1Y + 3e jaiy + Cepy + Di py ,	 (102)

where

P2 a Cx 2 + otR(U1 - c).	 (103)

(In this case of constant U,	 must satisfy the same differential equation).

In addition, 3 must satisfy Eqs. (11) and (13); i.e., t and a' must

vanish at y n 4 and be bounded in CO, as). Since • lacy is unbounded,

S • 0. To satisfy the boundary condition at the origin, we must then have

Act-icily - cosh py + p Binh py3
	

(104)

which is unbounded as y + - unless p is purely imaginary. The solutions

are then giver by

p n ik;	 0 < k <	 (105)

wok * -i(a 2 + k2 + iaRUI )IR	 (47)

^ak(y)	 Mk(y)	 A k` (^ 

Icil
y  cos ?ry) + k sin k7],	 (106

f.i
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where the normalization constant,

yak • k2 +02 J	 ,	 (101)

is determined by the condition

x

<4ak 	 ^ak,> . d(k - k^).	 (108)

In this case, where the o A and pc,k are known explicitly, one may

show directly that, for F(y) any continuous, differentiable, square

integrable function in t0,x),

a

`1A ' F> o  (y )dk - F (y) - e- Wy F(0)
	

(109)

0

thus confirming that the set of 
(`yak} 

is complete for functions in M,

with F(0) = 0.
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6 2 The Temporal Evolution of An Initial Disturbance

In order to demonstrate the application of this expansion technique,

we consider the particular initial disturbance

-7 2 ^P(x, 'l, 0) * r(.ti r y , 0) n 7a Oispx (y - 70),	 (110)

a periodic layer of vorticity at a distance y 0 from the boundary.

ollowing section 3.2, we find that the stream function at any time will-I

be given by

' (x, Y, t) • )
	 110

 
A(a)Oak(Y) a='..:. t dk ei~x da ,	 (111

-a

where

'Ak(a)	 ;ak(y) 
F.M 

7(x. Y, 0)e
-iax dxdy.	 (112)

It is easily seen, by substituting Eq. (110) into Eq. (112), that

as (a) - ^ak (y0) a (a - ao) ,	 (113)

so that

jx

I
}	 1

a

I
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1

j;
i

1.

I (x . 7  t) " LTO . %k(YO)a (u -a0 )$nk (Y) a"Mkt dk 4"da

e iao(x - Ult) e-atOt /R 	 4 (YO )	 (Y) a-kZt/R dk.	 (114)
0

After using Egs.(106) and (107),for	 we find that each.term in the

integral is expressible as sums of error functions. The results are given

in an appendix. From these results, it can be shown that, for t ; with

y fixed,

P -	 e-t t/R cos C^x Ult) • (function of y>	 (115)
VP T

and, for y - d with t fixed,

P • e-"'dY + YO ) cos 00(x - Ult) • (function of t).	 (116)

Zt is clear that, even though the individual eigenfunctions used in the

expansion oscillate with constant amplitude as y ; m , the waveap cket behaves

like any as y + ^.

s
1

i

I

f5	 ^
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Figure l shows contour plots of the stream function for the disturbance,

in a ;frame of reference moving with the free stream velocity,at six different

times. We have chosen a0 1.0 and y0 a 1.0 for the example shova here.

Contours of the disturbance stream ;function have also been calculated

for other combinations of values of 
a0 

and y0 and, for these other values,

the evolution of the disturbance is time is quite similar to that shown

in figure 1.

in figure 1 the (+) and (-) indicate the position of the maximum and

minimum values of the stream function. These maximum and minimum values

are given in the captioti to the figure. The flow is counter- clockwise

around a maximum (+) and clockwise around a minimum C-).

It is clear from this figure that the disturbance, which is a periodic

vortex sheet a t - 0, retains its identity as a periodic array for all

time, but as time increases it diffuses, the strength decays, and the

centers of the vortices drift away from the boundary at y 4 0.

We could, of course, generalize this model problem by considering an

initial vorticty distribution in the y direction. 17e ;save not carried out

this calculation because our intent in solving this model problem was to

illustrate the expansion procedure and we do not think that it warrants

further elaboration.

ACKINOWLEr GEMEIM
	

izs

We wish to thank Kenneth M. Case, who referred this paper and
	

f.

suggested the approach which we used to prove completeness of the

temporal, eigenfunctions, and George F. Carrier, who convinced us that

we could carry out that proof.

The work reported in this paper was supported, in part, by the National

Aeronautics and Space Administration under Grants NSG 1619 to the first

author and NSG 1618 to the second author.

y

69



70

Figure Caption

Figure 1; Contours of the disturbance stream function for the model

problem in a frame of reference moving with the free stream

velocity at six different times. In this example 7 0 - 1.0,
a0 r 1.0, and y0 - 1.0. There are twenty contour lines on

each plot. The values of 	 on these contours art 0 . 95 P max,

0.35 T,^ max,	 , -0 . 95	 max.	 The (.+) and (-) indicate

the positions where	 !1%a and 
Amin' 

vote that

min r 
T 

max'

(a) t/R M 10-3 , Tnax n 0.625

(b) t/R * 10-2 ,	 max ' 0.359

(c) t/R	 10-1
	

` max - 0.212

(d) t/R • 1.0	
, (Pmax 

8 0.229 x 10-1

(e) t/R . 5 . 0	 , Pmax ` 0.108 x 10-3

(f) t/R	 10.0 , P ma c - 0.383 x 10-6
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(Al)1 60 I4(aO . 'T, y - YO ) - 2 a0 I4(ao ► T, Y T YO)},

Appendix: Solution of the aodel Problem

In section 6 we showed that the stream function for the model

problem is, equation (114).

	

(P(x. Y. t)	
eia4 (x - U l t)	 apt /R	

e-kZt/R or* (y0(Y)dk.
FO 	 0

where ^C, (y) is given by (106) and (107) . Substituting for 41(y) and
b	 0_

4(y.) in this integral it is straightforward to show that, with

T - t/R,

	

NO Y. t)	
Qiao(x - Ult)

( I 1 (a0 . 
T) - eaOY I 2 (aO , T, 7())

+ 010 i a0Y I 3 (aO , T . YO ) - e a0yq 1 2 (aO . T. Y)

+ 1 I 2 (aO , T, y + YO ) + 2 I2(aO . T o Y YO)

- a0 I 3 (aO ► T, Y + YO ) + a0 a 
aOYO I 3 (a0 . T. Y)



2	 ao	 ^

T3(a^ 
T ^ Z)	

I a 

^^ T (-c T^ 
2 
k 2 ^] sin ti3k

0	 (k + a ) 2

12 (2a 2T + az)e z arfc (acrk + az/2=T
4a

- (2ac 2T - az)e--az arfc (aT^ az / 2aTh)] ,

where the functions I  are given by

2	 2	 2
I1(a.T) 

n 
•-a T 

F .-k t	 Z k Z 2dk
 (k + a )

a- 1[ ( 2 + alt) arfc (a	
^T) -	 a-a

2
 T]

2	 2	 2
I 2 (a, T, Z) n 4-0 T 

F e

-k TC 
2k 2 2] cos kZdk0	 (k + a )

•	 C(1 + 2a 2T - az)e aZ arfc (aT4 - az/2=4

+ ( 1 + 2a2T + oz) eaz arfc (aT4 + aZ/2aTk)

4aTk a-a2T e-a 2 Z2/4a2T]

r

(A2)

(a3)

(A)

n
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arfc (Z) = 2 FZ 2
r 

and, as usual

r

2	 z
I4(a^ 

T ^ Z) _ T e a r (^ i k T[ 2 
1 

2 27 ,cos kzdk
0	 (k + a

n  
1 3X 

C(1 - 2a2T + az)•-az zrfc (aT4 - az / 2a^r4)

+ (] - 201 T - az) •a arfc (csT + az1 20LT4^

+ 4cdk a-a2T a-a2Z2/4a2T3	
( )

r
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Norfolk, V.A. 23505

and

Harold Salwen
Department of Physics and Engineering Physics

Stevens Institute of Technology
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ABSTRACT

In this paper we give the solution of the boundary-layer receptivity problem;
that of determining the amplitudes of the Tollmien-Schlichting modes and
continuum eigenfunctions of a boundary layer given the form of the velocity
profile and the disturbance, within the content of incompressible, linear
stability theory for a parallel shear flow. '.'.'e give the formal solution
to the initial value problem for temporal stability and give the proper
initial condition for this problem. The formal solution of the spatial
stability problem is also given and the proper boundary conditions at x s 0
and radiation conditions at x - a are discussed. We give examples of the
application of this method to the calculation of the temporal evolution of
a particular disturbance in two flows, a constant base flow and the Blasius
boundary layer.

*This work was supported, in part, by the National Aeronautics and Space
Administration under Grants NSG 1618 and 1619.
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EIGENFUNCTION EXPANSIONS AND BOUNDARY-LAYER RECEPTIVITY

IN THE THEORY OF HYDRODYNAMIC STABILITY

Chester E. Grosch
Department of Oceanography and Department of Mathematics

Old Dominion University
Norfolk, Va. 23508

and

Harold Salwen
Department of Physics and Engineering Physics

Stevens Institute of Technology
Hoboken, N.J. 07030

SUMMARY

The last ten years has seen an increasing use of the theory of hydro-
dynamic stability to predict transition in boundary layers. Mack (1977)
gives an excellent, up to date review of various transition prediction
methods. All of these methods include at least one unknown parameter
A 0, the initial amplitude of the disturbance in the boundary layer.
There are numerous discussions of the boundary-layer receptivity problem,
that is, the problem of determining A 0 given the velocity profile of the
boundary layer and the disturbance (0bremski. Morkovin, and Landahl, 1969;
Mack, 1977; Berger and Aroesty, 1977). All of these authors conclude
that the mechanism by which free-stream vorticity and sound disturbances
generate Tollmien-Schlichting waves in a boundary layer is unknown.

In this paper we give the solution of the boundary-layer recep-
tivity problem within the context of incompressible, linear stability
theory for a parallel shear flow. The expansion of an arbitrary two-
dimensional solution of the linearized stream function equation in terms
of the discrete and continuum eigenfunctions of the Orr-Sommerfeld
equation is discussed for flows in the half-space, y e[0, -). A recent
result of Salwen is used to derive a biorthogonality relation between the
solution of the linearized equation for the stream function and the
solution of the adjoint problem.

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted (1960) for bounded flows.
This relationship is used to carry out the formal solution of the
initial value problem for temporal stability. It is shown that the
vorticity of the disturbance at t = 0 is the proper initial condition
for the temporal stability problem.

For the spatial stability problem it is shown that the continuous
spectrum of the Orr-Sommerfeld equation contains four branches. The
modes on these brances are (1) waves propagating downstream, (2) waves
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propagating upstream, (3) standing waves whose amplitudes decrease down-
stream,, and (4) standing waves whose amplitudes decrease in the upstream
direction. The biorthogonality 'relation is used to derive the formal
solution to the boundary value problem of spatial stability, We show
that the boundary value problem of spatial stability requires the stream
function and its first three partial derivatives with respect to x be
specified at x = 0 for all time. The imposition of a radiation condition
downstream, i.e. at x = o+, eliminates disturbances which originate at
x - - and travel upstream to x - 0, The imposition of this radiation
condition reduces the number of independent boundary conditions at x - 0
from four to two.

We give two examples of the application of this method to calculate
the temporal receptivity of boundary layers to a disturbance. We specify
the disturbance at t = 0 to be a vortex sheet parallel to the boundary and
sinusoidal in the streamwise direction. We then calculate the evolution
in time of this disturbance in (1) a constant base flow, for which the
calculation can be carried out analytically and (2) in the Blasius boundary
layer for which we calr ,ilate the amplitudes of the discrete Tollmien-
Schlichting waves and of the continuum eigenfunctions numerically.

Berger, S.A and Aroesty, J., 1977. "e 9": Stability Theory and Boundary
Layer Transition. R-1898-ARRA. Rand Corporation.

Mack, L.M. Transition Prediction and Linear Stability Theory, AGARD
Conference Proceedings No. 224, Laminar-Turbulent Transition, Paper
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Obremski, H.J., Morkovin, M.J. and Landahl, M., 1969. A Portfolio of
Stability Characteristics of Incompressible Boundary Layers, AGARD
No. 134.
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Stability, Ph.D. dissertation, University of Michigan.
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