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ABSTRAcr 

This paper presents a rapid procedure for generating C-type cascade grids 

suitable for viscous flow computations in turborr~chinery blade rows. The 

resulting mesh is periodic from one blade passage to the next, nearly 

orthogonal, and continuous across the wake downstream of a blade. The 

procedure employs a pair of conformal mappings that take the exterior of the 

~ cascade into the interior of an infinite strip with curved boundaries. The 

final transformation to a rectangular computational domain is accomplished 

numerically. The boundary values are obtained from a panel solution of an 

integral equation and the interior values by a rapid AnI solution of Laplace's 

equation. Examples of C-type grids are presented for both compressor and 

turbine blades and the extension of the procedure to three dimensions is 

briefly outlined. 
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Most of the coordinate systems in current use for turbornachinery flow 

computations are of one of three types. The channel grio has one family of 

lines starting upstream, passing through the blade rows, and continuing on 

downstream. The o-type grid has one family of lines that form closed loops 

around the blades. Finally, the C-type grid has one family of lines that wrap 

around the blade leading edge and continue on downstream. While the channel 

grid can be aligned with the flow and is fairly easy to generate, the 

resolution around the leading edge is usually poor and a choice usually has to 

be made between periodicity or near orthogonality for highly staggerea 

cascades. Although the o-type grid provides excellent resolution around 

leading and trailing edges and may be both periodic and orthogonal, in general 

there is no mesh line aligned with the downstream flow and, hence, it is 

unsuitable tor viscous computation. The C-type grid, on the other hand, 

appears to be a good choice for viscous flows. It provides good leading edge 

resolution, it can be both periodic and orthogonal, and it can be aligned with 

the downstream flow. This paper presents a rapid procedure for generating 

such c-type grids. 
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~ The procedure starts with a conformal mapping which takes the exterior of a 

cascade of semi-infinite flat plates in the Z-plane into the interior of the 

unit circle in the W-plane. Upstream infinity maps to the origin and 

downstream infinity to +1 on the real axis. This mapping is a limiting form 

of the standard mapping for a cascade of finite-chord flat plates (1). When 

this mapping is applied to a real geometry, such as the turbine cascade in the 

figure, the semi-infinite flat plate is taken to run tram a point Zl 

inside the leading edge through the downstream end of the wake. 
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z = Zo + A [e- iY (log W - inl - 2 cos Y log(l - WU 

A = 251f e iY , Zo = Zz + 2A[Y sin Y + cos Y log(2 cos Yl] 
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The mapping of the turbine cascade and wakes of the preceding figure produces '--

the highly 'iistorted "circle" in the adjacent figure. Note that the contour 

actually crosses the real axis twice between zero and one. The next mapping 

takes the interior of the unit circle in the W plane, with a branch cut from 

zero to one along the real axis, to the interior of the infinite strip between 

the real axis and (- i ~ ) in the l; -plane. The upper and lower sides of 

the wake at downstream infinity are mapped to plus and minus infinity, 

respectively, while upstream infinity maps to the origin. Since W is a 

function of l;; 2 , reflection of Z;; through the origin leaves W unchanged. 

CONTOUR IN W PLANE 
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V The irrage of the cascade of turbine blades and wakes in the Z; -plane is a 

pair of parallel straight lines cvlmected by a roughly S-shaped curve. In 

actual practice W is eliminated between the two functions and the transfor-

mabon from Z to s is obtained by Newton iteration proceeding from point to 

point around the contour. To insure that the branch cuts of the logarithms 

are never crossed, the imaginary parts of these logarithms are saved. 

Whenever the change in either of these quantities between adjacent points 

exceeds ± 1T , the computed value of the logarithm at the new point is 

incremented by +2 1T i, i.e. in the opposite direction. 

CONTOUR IN ~ PLANE 
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The final mapping transforms the infinite strip in the 7:; -plane, bounced \. 

by the blade-wake contour and its reflection through the origin, into a 

rectangular domain with coordinates F = ~ + in. If we let F be the 

complex potential for flow through the strip and require F{ s = -F(- s ) 

together with n = -1 along the contour, then we can write F as a contour 

integral. Here C,S , and h are, respectively, the complex velocity, flow 

angle, and normal channel width in the far fiela. The figure shows the 

formation of an integral equation for the unknown vortex density ~. The 

source density qn is set to cancel the normal component of the velocity 

C. Here s is distance along contour. A simple panel method, with flat 

panels and locally constant qt and qn' is used to solve for 

then to find 
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as a function of s along the contour. 

FOP~TrON OF INTEGRAL EQUATION 

CO~lPLEX POTENT! AL 

F(c) = -.lc f~ ~(t) log tt :-f dt + c~ 
21'fl _«> ..., 

WITH F=(+i~, 
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C = Fi e 

WITH qn (t) = 1m [c ~J 

Or-; CONTOUR ~ = -1 AND 

( = Re(C,) - in i: [qn Re 1 log ~ : ~ ! 
- qt 1m 1109 ~ : ! !}s 
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J Generation of the grid in the rectangular l; , T) space proceeas in tVtD 

stages. First points are located on the boundaries such that the grid in the 

cascade plane is periodic and continuous across the wake. Periodicity is 

enforced by distributing points symmetrically about the origin along the 

s -axis. Continuity across the wake, away from the trailing edge, is 

achieved by selecting a constant mesh size !::.E, for this region such that the 

spacing in the cascade plane is an integer fraction of the staggered distance 

s sin I Bw I , where s is the blade pitch and Bw is the wake angle. The 

values of ~ along the boundary are then found by inverse interpolation in 

the solution of l; vs ~ In order to enforce continuity near the 

trailing edge, a local straining is first introduced that places a point 

directly at the trailing edge. Then pairs of neighl:x:>r ing points across the 

wake are adjusted until their images in the cascade plane coincide. The 

distribution of points with at the two ends of the region is arbitrary. 

Uniform spacing can be used for inviscid flows, and boundary layer stretching 

can be used to cluster points near the blade surface ru1d wake for viscous 

flows. Once the boundary values of ~ are specified, interior values are 

found by solving the complex Laplace equation by a cyclic ADI relaxation 

s:::::heme which has the symmetry properties of ~ built in. Estimates of the 

maximum and minimum eigenvalues of the matrix are used to obtain near optimurrl 

values of the acceleration parameters (2). Convergence to the round-off error 

limit with seven place arithmetic is typically obtained in six to twelve 

iterations, even for cases where the maximum and minimum eigenvalues differ by 

five orders of magnitude. 
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GRID GENERATION 
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U This figure shows the grid distribution in the l;; -plane. Note that the 

upper boundary in the plot, which is found by the syrnrretric ADI solution of 

Laplace's equation, maps into the upper and lower periodic lines in the 

cascade plane. 

GRID IN l;; PLANE 
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The final grid in the cascade plane is obtained by conformal mapping of the 

solution in the s -plane using the two analytic functions previously 

introduced. This figure shows the grid distribution for the cascade of 

turbine blades. Note that the continuity across the wake was obtained at the 

exp=nse of a small arrount of nonorthogonali ty • The rounded cap at the 

upstream boundary was obtained by extrarx>lation fran the next two inner loops. 

Generation of this grid (99 x 7 points) required about 1.4 sec. of CPU time on 

an IBM 3033 computer. 

GRID IN CASCADE PLANE 
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~ The last figure presents C grids for a compressor stator and a turbine rotor. 

The stator was Jesigned to turn the flow to the axial direction, hence, there 

is zero stagger in the downstream boundary. The turbine rotor is a 

particularly difficult case as it was designed to produce 126 degrees of 

turning. In this case the imposition of continuity across the wake resulted 

in a significant change in slope. 

The extension of this procedure to the generation of three-dimensional 

turbornachinery grids should be relatively straightforward. First the spanwise 

direction is discretized by a number of coaxial, axisymmetric surfaces. Next, 

ana most difficult, the intersection of the blade with each of these surfaces 

is obtained in meridional ( m ) and tangential ( e ) coordinates. Since the 

geometry is per iOOic in e , these ( m , e ) coordinates can be fed into the 

current program to generate a C-grid on each of the axi-symmetric surfaces. 

--" For O-grids this has already been done by Dulikravich (3). 

COf'\PRESSOP. STATOR 

TURBINE ROTa? 
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