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Abstract 

14726 

In this paper a non-iterative method for the numerical generation 

of orthogonal curvilinear coordinates for plane annular regions between 

two arbitrary smooth closed curves has been developed. The basic 

generating equation is the Gaussian equation for an Euclidean space 

which has been solved analytically. The method has been applied in 

many cases and these test results demonstrate that the proposed method 

can be readily applied to a wide variety of problems. The method can 

also be used for simply connected regions only by obtaining the solution 

of the linear equation (19) under the changed boundary conditions. 

Details on the work reported in this paper are available in Reference [1]. 

*This work has been supported in part by the Air Force Office of 
Scientific Research, under Grant AFOSR No. 76-2922 and AFOSR No. 80-0185. 
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Fundamental Ideas of the Method 

All methods of numerical coordinate generation in a two-dimensional 

plane and classified under the method of "elliptic equations" (Refs. 

(2]-(10]), have depended invariably on the solution of Poisson equations 

for the curvilinear coordinates ~(x,y) and n(x,y): 

n2c ~ - l (g rl 2g rl + g rl) 
v S g 11 22 - 12 12 22 11 

g22 
= - - p (~ 11) g , CIa) 

gll 
- -g- Q(t;, 11) (lb) 

~here P(t;,I1), Q(~,I1) are arbitrarily specified control functions, the gij 

i are the fundamental metric coefficients, the r
jk 

are the Christoffel 

symbols of the second kind 

(2) 

and 

Implicitly equation (1) implies t~o things: (i) that the coordinates 

for the same domain can also be obtained by solving the Laplace equations 

(3) 



~-

i and (ii) since the r
jk 

have first partial derivatives of gij in them, 

equation (1) can also be interpreted as providing a set of constraints 

or relations among the g .. and their first partial derivatives. 
1.J 

In this paper we present another method based on elliptic 

equations and state the problem as follows. 

The three functions gIl' g12' g22 of the curvilinear coordinates 

~,n define an element of length ds in a plane if the Gaussian 

equation with zero curvature 

a Ig ri2 
a~ ( g ) 

11 
o (4) 

holds for every point in the plane, and then the Cartesian coordinates 

are given as 

x = x(~,n), y = y(~,n) 

Equation (4) is identically satisfied by a function a(~,n) defined as 

Specifically, a is the angle of inclination with respect to the x-axis 

of the tangent to the coordinate line n = canst. directed in the sense 

of increasing values of the parameter~. The first partial derivatives 

of x and yare 

x~ I gil cos a, y~ -/gn sin a 

= - I (;g cos a - gl2 sin 
Igu 
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Then 

The 

x = J[/g11 cos a d~ + _1_ (g12 cos a + ;g sin o.)dn] 
I g11 

Y =-j[/g11 sin a d~ _1_ (Ii cos a - g12 sin o.)dn] I
g11 

. 

a = -f Ii (r 2 d~ 
g11 11 

+ ri2 dn) 

inverse relations of (5) are 

~x = (Ii cos a - g12 sin a) / Iggu 

~y = -(g12 cos Ci. + ig sin a) /lgg11 

For the case of orthogonal coordinates, the coefficient 

g12 = 0, i.e., 

o 

~hich is satisfied by the equations 

~here F > 0 is a continuous function of gIl and g22 [ll] . 

Referring to Figure 1, let the boundary r 2 of a bounded region 

in an Euclidean t~o-dimensional space be a simple curve x = xoo(~)' 

y = y (~), ~ith a uniformaly turning tangent. In the region Q, let 
00 

(6) 

(7) 

(8) 

(9) 
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Q
s 

be an annular subregion bounded by the inner boundary r
l 

and the 

outer boundary r 2 . The region Q is to be mapped onto a rectangular 
s 

region R in the sn-plane by a transformation so as to have 

x = x(s,n) } 
where IlS and Iloo are the actual parametric values associated with the 

boundaries fl and f2' respectively, and x,y are periodic in the ~-argument. 

Substituting g12 = 0 in the fundamental equation (4) we get 

a [_l_~ (p2gll ) ] +~ 
1 agu 

0 
a~ Fgu aE; all [pg-- --an-] 

11 
(10) 

where 

g22 = F2g 

} 11 

g == (Fg
U

) 2 (11) 

Before we solve the problem of orthogonal coordinate generation 

based on the elliptic equation (10), we digress and state the following 

results: Following Potter and Tuttle [ 6] we assume that the E;-curves 

in the physical xy-plane are free from sources and sinks. This 

condition establishes a unique correspondence between the E;-points on 

each pair of Il = const. lines. In the absence of sources and sinks, 

we have 

div[grad ~(Il)] = 0 (12) 

where wen) is an arbitrary differentiable function of Il and grad w(n) 

is oriented along the normal to the curve Il == canst. Carrying out the 

differential operation in (12) and using the expressions 

Igrad III = 1/lg22 
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in (12), we obtain 

a d2 ljJ d~ an Un Ig ll / g22 )= - -/-d 
'I dn 2 11 

Writing ~ = liven) and denoting the arbitrary function of ~ due to 
dn 

integration by ~n~(~), we obtain the result 

= l/F 

This result shows that for the case of orthogonal coordinates the 

ratio gll/g22 is a product of the positive functions ~(~) and v(n). 

The result in (13) also provides the condition for the two distinct 

families of orthogonal curves 

~ = const., 11 = const. 

(13) 

to divide the physical plane in infinitensimal squares. (See Cohen [12)). 

We now introduce new coordinates ~'(~) and n'(n) as 

~' = J~(~)d~ n' = J ~ , v (n) 
(14) 

Thus 

so that 

Defining 
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it can be shown that 

2 ag 
a 2 p , a P' \I ( n) {a 1 a 2 )] +..l.. [_l_~]} 
-- + -- = -(t") 3F [Fg

ll 
~ (F gl1 an Fg

ll 
an 

a~,2 an'2 )J <, <, 

(15) 

Using (15) in (10), we get a much simpler equation 

Another important result can be obtained based on (13). Using 

the orthogonality condition g12 = 0 in (7), we have 

n = ~ IF n = - ~ IF Y x' x y 

so that 

a (~/F) + -!- (~ IF) = 0 
a~ x oy y 

(17) 

Carrying out the transformation (14) in (17), we get 

(18) 

Equation (18) provides the uniqueness condition for the solution of 

equation (16). 

Based on the preceeding analysis we can state that if an exact 

analytic solution of equation (10) can be obtained for F = 1, i.e., 

g22 = gIl' then the solution for any other coordinate system ~ and n, 

where ~ = ~ (~) and n = fen), can simply be obtained by the substitution 

of ~ and f in place ~ and n respectively. With this scheme in mind, 

we solve the equation 

(19) 

where 



P = 2n gll (20) 

under the boundary conditions 

= P (c) at n = n 
00 s 00 

I o ..::. f,; < 21T (21) 

where the subscripts Sand 00 denote the inner and outer boundaries, 

respectively. The periodicity requirement is that 

P(f,;,n) = P(f,;+21T,n) (22) 

Further, the f,;-coordinate must be such that the equation 

(23) 

is always satisfied. 

A general analytic solution of equation (19) under the boundary 

conditions (21) and the periodicity condition (22) is 

00 

+ L 1 sinh nn (c cos nf,; + d sin nO / sinh nno:> (24) 
n= n n 

where 

K = (c -a )/n 
00 00 

(25) 

and 

tThere is no loss of generality in setting the parametric value nS = o. 
The value n must be interpreted as the difference between the actual 

00 

~' values of n at the outer and inner boundaries. 
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27T 
I 

fa 
Ps(O cos ns ds, a n 7T 

I 27T 

c fa P (s) cos ns ds, n 7T 00 

For orthogonal Coordinates 

therefore for g22 = gIl 

and consequently 

1 ap 
a =-- a s 2 an' n 

I 
27T 

PS(O b = - fa n 7T 

I 27T 
d =-J P (0 n 7T a 00 

1 ag 22 
:;:: - ------

ZIg a~ 

cosh n(n -n) 
00 00 

sin ns ds 

sin ns ds 

a(Cn) = a(E;,o) + ~=l 2 sinh n n (b cos nE; - a sin nO 
n n 

00 

00 cosh nn 
+ ~=l 2 sinh n n (c sin nE; - d cos ns) 

n n 
00 

00 - [ 
n=l 2 sinh n v 

cosh n noo 
(b cos nE; - a sin ns) 

n n 
00 

00 1 
[ (c sin ns - d cos nE;) 
n=l 2 sinh n noo n n 

} 

Having determined gIl and a, ~e can find the Cartesian coordinates 

x(s,n) = x(s,o) + J; I g22 sin a dn 

y(~,n) = y(s,o) + f: I g22 cos a dn 

} 
The preceding solution is for the case ~hen g22 = gIl' i.e., 

(26) 

(28) 

F = 1. Ho~ever, as stated earlier, the solution for any other coordinate 

system E;,n in ~hich g22 ¥ gIl can be obtained by replacing E; and n 

in (24), (27) and (28) by ~(~) and fen). respectively. This feature can ~ 
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be used to redistribute the coordinate lines in the desired regions. 

Since the functions ~ and f are at our disposal, they play the same role 

as P and Q in equation (1). Further, since the Fourier coefficients 

(26) are invariant to a coordinate transformation ~ = ~(~), where 

~(~o) = 0, ¢(~m) = 2n and ~o corresponds to ~ = 0, ~m corresponds to 

2n, these coefficients need not be recalculated. 

The procedure of transformation from ~,n to s,n is as follows. 

On transformation from (~,n) to (~,n), the covariant metric 

coefficients transform through the equation 

so that, on using the relations g22 = gIl and g12 0, we have 

[(~) 2 
an 2 

) 
+ (--=) ] g11 

ae.; ae.; 

[ (a~) 2 an 2 
(29) + e--=) ] g11 

an an 

We now introduce the transformation 

n fen) 
} (30) 

where the functions ¢ and f are continuously differentiable and satisfy 

the conditions 

where e.; = 0 corresponds to e.; = sand n 
a 

Defining 

o 

o corresponds to n = nS. 
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~e obtain from (30) 

1 Comparing ~ith (13), ~e find ~ ~ A, V =-
8 

(31) 

The salient feature of the preceding analysis is that the solution 

for the case g22 = gIl can be used to obtain the solution for the case 

g22 I gIl by coordinate transformation. 

Before solving any specific problem, it is important first to 

establish an orthogonal correspondence between unique points of the 

inner and outer boundary curves. This condition is satisfied if we 

choose the ~-curves satisfying the equation 

(32) 

The inner and outer boundary curves are available either in tabular 

or functional form as 

y(x ) 
00 

(33) 

For equation (32) to be satisfied, ~e can take s as the angle traced 

out in a clockwise sense by the common radius of the concentric circles 

in a conformal representation of the inner and outer boundary curves. 

If a and A, respectively, are the radii of the inner and outer circles 

in the transformed conformal plane, then 

s]ds I 
s]ds (34) 

1 2TI 
A = -- f [x (s) cos S - y (s) sin 2n 0 00 00 

" . ",- -,-

n~··:' .. 
r .1 ' 



As is ~ell kno~n, the preceding scheme is an iterative numerical scheme. 

In lieu of this, ~e have developed a method ~hich is fast and direct, 

and is equivalent to satisfying equation (32). 

We circumscribe circles around the inner and outer boundary curves. 

T~o cases arise depending on whether the circles are concentric or 

nonconcentric. 

Case I: If the circumscribed circles are concentric (Fig. 2(a), then we 

select those values of the ordinates ~hich correspond to the abscissae 

(35) 

~here rs and r L are the radii of the circumscribed circles in the 

physical plane. 

~ Case II: If the circumscribed circles are nonconcentric (Fig. 2(b», 

then ~e first use the formula for the conformal transformation of non-

concentric to concentric circles, Kober [13] , and choose the ordinates 

corresponding to abscissae given by the formula 

~here 

xes) = [(1 - cy cos s) {xL(l - cy cos s) + cYYL sin ~ 

- r (c sin ~ + y sin(~-~»}J 
L 

rL,r
s 

= radii of outer and inner circumscribed circles 

(36) 
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(a) Concentric circumscribed circles Cl 
and C2 of radii rs and rL' respectively, 
with center at the origin. 

(b) Nonconcentric circumscribed circles Cl 
and C2 of radii rs and rL and centers 
at Zs and zL' respectively. 

Figure 2.- Circumscribed circles. 



---

c [(d 2 + r2 
L 

y = 1 for the outer boundary 

y ~ rLjd-tj for the inner boundary 
r t 

s 

t = cr 
L 

Having determined the appropriate sets (xs(~)' Ys(~» and 

(x (~), y (~», we use (34) to obtain the values of a and A. The 
00 00 

parametric difference n is connected in some manner with the "modulus" 
00 

of the domain which, however, by itself is a separate problem (see 

Burbea [14] and Gaier [15]). In this work we have defined n based 
00 

on the knowledge of a and A as discussed above by the formula 

A Q,n(-) 
a 

(37) 

For Figures 3 to 8, we have used the following functional forms 

of <P and f: 

fen) 

21T(~-t: ) 
o 

n -n 
00 6 

t: -~ m 0 

K(n-n@) 

K(nro-n S) 
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so that 

A = 21T 

[1 + 

where K > 1 is an arbitrary constant, and ~ = ~ , n 
m 

1100 correspond, 

respectively, to ~ = 21T and n = noo' We treat ~ and n as integers so 

that ~ = 1 ~ 
o 'm lMAX, 118 = 1, and noo = JMAX. Since 11 is known 00 

from (37), hence by specifying the numerical values to K and JMAX 

we can create the desired mesh control in the direction of T). The 

value of K between 1.05 and 1.1 is quite sufficient [16] to have a 

fine grid near the inner boundary. 

The number of terms to be retained in the series (24) is usually ~ 

small for convex inner and outer boundaries, though we have retained 

(IMAX-l)/2 number of coefficients in each computation. This number 

is the optimum number of terms in a discrete Fourier series [17] 

having lMAX number of points in one period. 

Figure 3 shows the classic case of confocal ellipses with coordinate 

contraction in n. The value of K is 1.05. The orthogonal correspondence 

between ~-points of the inner and outer boundary has been established 

by using Case I, Eq. (35). 



Figure 3.- Confocal ellipses. Semimajor axes 1.48, 5.0, 
and semiminor axes 0.5, 4.802, respectively. Only 
38 n = Const. lines shown for detail. 
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Figure 4 presents orthogonal coordinates for a blunt body with elliptical '-

outer boundary. Here K = 1.01. For orthogonal correspondence between ~-points, 

Eq. (35) has been used. 

Figure 4.- A blunt body section with elliptical outer boundary. 
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~ Orthogonal coordinates for nonconcentric circles are presented in 

Figure 5. Here K = 1.01. For orthogonal correspondence between F,-points 

between the inner and outer boundary, Eq. (36) has been used. Data shown on 

the figure. 

Figure 5.- Nonconcentric circles: rs 
Zs = (0,0), zL = (1,0). 

2.5, 
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Orthogonal coordinates for a Joukowsky's airfoil with slightly rounded '--

trailing edge are shown in Figure 6. Eq. (35) is used for orthogonal 

correspondence. Here K = 1.02. 
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Figure 6.- Joukowsky's airfoil with slightly 
rounded trailing edge. 



Figure 7 presents orthogonal coordinates for nonconcentric ellipses. 

Centers of the inner and outer ellipses are at (0,0) and (1,0), respectively. 

Here K = 1.01. For orthogonal correspondence Eq. (36) has been used. 

Figure 7.- Nonconcentric ellipses. Size data same as in 
Figure 3. Zs = (0,0), zL ~ (1,0). 
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Orthogonal coordinates for an arbitrarily deformed upper part of 

Figure 4 are shown in Figure B. The placement of outer boundary is limited 

to avoid intersecting normals (Eiseman [lBJ). This figure shows that we need 

some attraction near those sections of the outer boundary which face the 

concave side. 
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Figure B.- Generated coordinates for body having convex, 
concave and straight portions. Placement of outer 
boundary is decided by the radius of the osculating 
circles of the concave portions. 



Summary of Numerical Experimentation 

In the course of this investigation a number of cases of inner 

and outer boundary shapes and orientations have been tested through 

the developed computer program. The main conclusions are listed below: 

(i) The method ~orks very effectively for smooth and convex boundaries 

of any shape and orientation. 

(ii) For concave boundaries a method similar to that of Eiseman has 

to be used in the placement of the outer boundary to avoid intersecting 

normals. Another remedy ~ould be to introduce some type of 

attraction near the outer boundary facing the concave side of the 

inner boundary. 

(iii) Sharp turns and corners are not admissible and have to be rounded 

to avoid singularities in the metric data. 
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