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w ABSTRACT

A finite element code for analysis of inviscid subsonic flows over
arbitrary non-lifting planar or axisymmetric bodies is described. The code
solves a novel primitive variable formulation of the coupled irrotationality
and compressible continuity equations. Results for flows over a cylinder, a
sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows
over an axisymmetric boattailed afterbody compare well with finite difference
results and experimental data. Iterative coupling with an integral turbulent
boundary layer code shows strong viscous effects on the inviscid flow. Im-
provements in code efficiency and extensions to transonic flows are discussed.

INTRODUCTION

Modern tactical aircraft usually have one or two jet engines within the
fuselage, with the jet exhausts exiting through axisymmetric nozzles at the
rear. Integration of the afterbody and nozzle, or boattail region (fig. 1),
with the fuselage can strongly effect aircraft performance [1]. Indeed, the
boattail drag can be as much as 20% of the total aircraft drag at transonic
speeds [4].

Several flow phenomena contribute to the boattail drag. The boattail is
immersed in the thick turbulent boundary layer that develops over the fuse-
lage. The flow undergoes a drag producing expansion onto the boattail followed
by a recompression onto the jet wake, with possible shocks and separation add-
ing to the drag. Finally, the high velocity jet displaces and entrains the
external flow, thereby modifying the boattail pressure distribution. If the
jet entrainment is neglected, the jet may be modeled as a solid body or sting.

This paper describes a new finite element (FE) method for solving the
primitive variable equations of inviscid subsonic flow about arbitrary
axisymmetric or 2-D symmetric bodies. Subcritical flow over a boattail
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model, including viscous interaction using an integral boundary layer method,
served as the primary test of the method.

Many computational methods for the boattail problem have been published.
Here they are grouped by the method used for the inviscid flow. An integral
equation method for incomprssible inviscid flows was coupled with an integral
1;.,i.:,dary layer method in 21. The classical axisymmetric 	 ansonic full poten-

1 fin t^ difference (FD4 boattail solution is given in Lt3	 References
L4 and 5j built on [3] by adding boundary layer and a haunt plume effects.
Similar but independent methods were used in L6 and 7^. Reference [8] is an
extension of [6] to three dimensions and angle of attack. The axisymmetric
Navier-Stok,es equations were solved by FD methods in 19 and 101 and by a FE
method in [11]. A 3-13 Navier-Stokes FD solut on for supersonic flows over
ogive cylinder-boattails was presen ed in [12J. Additionally, an experimental
study of boattail drag is given in r13]. To our knowledge, reference [11] is
the only other FE solution of the boattail problem.

Many applications of FE methods to other inviscid flow problems have been
published recently. Incompressible potential flows were considered in [14]
and[15] - Sub ritical potential flows were solved in 2-D in [16 and 17] and
in 3-D in r18 . References L19 through 22^ solved 2-D transonic potential
flows and	 3 included 3-D transonic flows. Primitive variable FE methods
are described in [24] for sbcritical flows and in [25] for transonic flows.
The method described in 251 is somewhat similar to the one described here.

In the present work a FE method was used to solve a novel formulation of
inviscid flow. The equations solved here, referred to as the nonhomogeneous
Cauchy-Riemann equations in [26]. consist of a compressible continuity equa-
tion and the irrotationality condition. Both are first order equations for
the velocity components. Steady first order equations are difficult to solve
by FD techniques but simplify the FE formulation by allowing first order in-
terpolation functions. The form of the compressible continuity equation used
reduces to the incompressible equation as Mm -+ 0. Compressible flows are
solved iteratively, starting with the incompressible solution. The iterative
scheme converges rapidly for subsonic flows.

Flows over simple geometries have been computed and are presented to
verify the method. Boattail solutions are compared to a surface source solu-
tion for incompressible flow and to a FD solution [6] for compressible flow.

An integral boundary layer method [27] was coupled iteratively with the
inviscid calculation. Viscous boattail results are compared to experimental

data from [13]. Finally, methods for improving the computational efficiency

of the scheme and for extending it to transonic flows are discussed.

EQUATIONS AND BOUNDARY CONDITIONS

As derived in [28]. the axisymmetric inviscid continuity equation for
isentropic flow is:

i
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Flu + 1v + v - M2 f Ct - . ) + SY .^. ^.. u2 + 11—:__^..). vJ .141
ax ay	 y 	 2	 2	 2	 J ax

+ C(l 2 Y) +.^ u2+ 1̂) v^ ay + (=2 1) (U2 V2 - 1) j y+ 2uc , ay } U 0
JJJ	 (1)

where all velocities are normalized by the free-stream velocity and all
lengths by an arbitrary length scale. The axisymmetric terms are multiplied
by a switching integer j, such that i - 1 gives the axisymmetric equation
and j - 0 gives the two-dimensional equation.

This equation is solved simultaneously with the normalized irrotation-
ality condition:

su - av - 0	 (2)
ay ax

The normalized boundary conditions are the free-stream conditions:

	

As x,y 4 ±'", u -* 1, v -* 0	 (3)

and the tangency condition at a solid surface:

	

Vnb = vbcos eb - ubsin eb - 0	 (4)

where ub and vb are the x and y velocity components on a surface at
angle eb to the x-axis. Equations (1) and ( 2) are equivalent to the non-
conservative full potential equation. Note that (2) is linear and (1) is of
the form:

linear continuity equation - Mm * non-linear terms - 0

so that as k 4 0 the equation set becomes linear.

FINITE ELEMENT FORMULATION

The dependent variables u and v, and for axisymmetric flow the inde-
pendent variable y, are approximated within arbitrary quadrilateral F:'s by
interpolations of the form:

u = RNuN	 v = QNvN	 Y = QNYN	 (5)

where S1N are bilinear interpolation functions dependent on element geometry,
uN , vN , and yN are values of u, v, and y at node N, and the summation
convention is implied.

Substitution of the approximations ( 5) into the equations of motion (1)
and (2) results in residual errors which are minimized by the Galerkin method,
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a subclass of the method of weighted residuals. The Galerkin formulation of
(2) results ia:

QN - yJ dydx uM - f ON dx YJ dydx vM - 0	 (6a)
A	 A

which may be written as:

ANWM + BNWM - 0 	 (6b)

Similar application of the Galerkin method to (1) gives the system of equa-
tions:

C - MZ CF(un-l,vn-1)' (D + JE) - M! (H(un-l .vn-1 )	 un

+ G(un-l,vn-1)3
	

+ 31(un-l,vn-1)	 vn - 0
	

(7)

A
	

B

where subscripts N and M have been omitted for clarity.

Equation (7) represents eight algebraic equations in eight unknowns -
the eight velocity components 

CuM,vM^ 
T at the four nodes M of an element.

Terms A-I are (4x4) coefficient matricies given in the appendix and are
evaluated numerically by two point Gaussian quadrature. Superscripts ( )n
refer to iteration number. Equations (7) may be written for each element of
a flow field, then assembled into a global matrix equation. It can be shown
that the assembled equations are second order accurate.

NUMBERICAL TREATMENT OF BOUNDARY CONDITIONS

Inflow and free stream conditions on u and v (3) are applied at a
finite distance from the body by direct substitution into the global matrix
equation. Elimination of these terms would have been computationally more
efficient but was not done. Along symmetry axes and the outflow boundary the
v velocity component was set to zero and the u component was solved far
from the flow equations. Resulting values of u along the outlet were within
a fraction of a percent of the free-stream values. However, when the u com-
ponents at the outlet were fixed at exactly their free stream values, the
global matrix equation became singular.

Flow tangency conditions (4) were applied using a LaGrange multiplier
technique discussed in [29]. This technique introduces an auxiliary con-
straint equation with a non-physical unknown at each body node. Because of
the extra unknowns, the technique is inefficient and would not be recommended
for future work.
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ITERATIVE SOLUTION METMD

Terms F(u,v) - I(u,v) in (7) are non-linear functions of the nodal
unknowns and are evaluated interatively. For the first iteration (n a 1)
the termm F - I are met to zero and the resulting act is solved using a
Guass elimination scheme for banded matrices, giving the incompressible
solution. In subsequent iterations the non-linear terms are evaluated from
the previous values of u and v. This scheme is equivalent to lagging the
density calculation, and is unconditionally stable for subsonic flows. Con-

.	 vergence is extremly rapid, with all un+l - un and vn+1 - vn less than
10-4 in five to seven iterations.

VISCOUS-INVISCID INTERACTION

The FE inviscid flow code was coupled iteratively with a Sa man-Cresc

127 type integral boundary layer code by the classical method of augmentation
of the body by the displacement thickness. Compressible inviscid calculations
were allowed o fully converge before the viscous corrections were made. It
was shown in N that considerable computational time can be saved by using
partially converged inviscid solutions to update the boundary layer, but this
was not attempted.

COMPUTATIONAL GRID

Sheared grids, as illustrated at the tops of figures 4 and 6, were used
for each FE solution mentioned below. The bandwidth of the global matrix that
must be stored and solved is proportional to the number of nodes along a vert-
ical grid line; so the vertical extent of the grid was kept small. Solution
"wiggles" were often noted on highly elongated elements. These could presum-
ably be avoided by using a less distorted grid such as the wrap around grids
described in (30]. In this paper, solution wiggles have been minimized by
plotting flow quantities evaluated at element midpoints using interpolation
equations (5).

VERIFICATION RESULTS

Figures 2 and 3 show calculated pressure coefficients on a sphere and a
cylinder, respectively. The symmetric solutions are shown only over the
second quadrant, although both solutions were computed over the upper half
plane. The same coarse 9x53 node grid (17 points on the body) was used for
both calculations. Incompressible FE solutions agree well with the analytic
solutions. Compressible results at Mm s 0.5 for the sphere and M„ - 0.38
for the cylinder, both near their critical Mach numbers, agree reasonably well
with those predicted by a Gothert rule compressibility transformation of the
analytic incompressible solution.

Flow over a non-lifting NACA 0012 airfoil at M. = 0.7 was computed on
the 18x47 node grid shown at the top of figure 4. Nineteen points were dis-
triuted over the body at the locations tabulated in Abbot and VonDoenhoff
311. The lower half of figure 4 shows the computed Mach number contours at

i
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M,. a 0.7. Computed incompressible and compressible pressure coefficients are
compared with experimental data from [31 and 32] respectively in figure So
with good agreement in both cases.

BOAriAIL RESULTS

Computed pressure distributions for a boattail model are compared with
experimental data from [13] 91

 which also gives details of the geometry.
Briefly, the boattail model, which is sketched in figure 7, starts with a
loo half angle conical nose followed by a long cylindrical centerbody. The
boattail region, which makes up about nine percent of the model (excluding
the sting) consists of a sphericbl section that smoothly joins the centerbody
to a 151 conically necked-down se,-tion. The model is mounted on a long cylin-
drical sting representing a propulsive jet.

Figure 6 shows a 10x102 node grid (85 points on the body, nine over the
boattail region) used for the boattail computations. The lower half of the
figure shows computed Mach number contours at M. s 0.8.

Incompressible results for the boattail are compared with a surface
source solution in figure 7. Agreement is good over the entire body except
near the nose. A good incompressible FE solution is important since it acts
as a starting point of the compressible iteration.

A subcritical solution over the boattail region, both with and without
viscous interaction, is compared with experimental data in figure 8. The
free stream Mach number is M.,,- 0.7 and the Reynolds number based on body
length excluding sting is Rel. - 1,3413x107 . The viscous solution unuerpre-
dicts the initial expansion but agrees well with the data in the recompres-
sion over the boattail and onto the sting. The figure illustrates the strong
effect that a thick boundary layer can have on an inviscid pressure distribu-
tion. At the bottom of the figure the actual body is shown with the equivalent
displacement body, illustrating the smoothing effect the boundary layer has on
the boattail-sting juncture.

A small trick was needed to compute the viscous flows shown in figures 8
and 9. In the first iteration of the inviscid-viscous interaction, the bound-
ary layer code invarably predicted separation in response to the strong
inviscid pressure gradient near the end of the boattail. However, the con-
verged interaction shows no separation. To avoid separation at the first
iteration, the inviscid solution was first converged at M. - 0.2. The bound-
ary layer did not separate in response to this pressure field, so an equivalent
displacement body could be determined. Subsequent inviscid solutions at the
desired Mach number but over the current displacement body were enough smoothed
that the boundary layers did not separate, and the inviscid-viscous interaction
could be converged.

Another boattail solution at Mn, - 0.8 and Rel, - 1.4181x10 7 is shown in
figure 9. (Mach number contours ft: the inviscid solution are shown in fig. 6.)
The inviscid solution is interesting in that it shows supersonic velocities at
four nodes. The FE formulation is purely elliptic and contains no upwind bias
in supercritical regions. Without special treatment Fn relaxation schemes

t
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typically diverge for supercritical flows. In fact, the FE solution also
diverges at slightly higher M.. it is thought that the direct solution of
the FE equations over the entire flowfield is responsible for the method's
ability to converge with slightly supercritical flow.

Also shown in figure 9 is Chow, Bober, and Anderson's FD non-conserva-
tive transonic potential solution for the same problem. The FD solution,
which includes upwind differencing in supersonic regions, predicts a strong
shock recompression on the boattail. This shock is completely eliminated
when the viscous interaction is considered. The FE and FD codes use the
same boundary layer code, but the FD solution shows better agreement with
the viscous data. This may be due to differences in treatment of the free-
stream boundary, which is mapped to infinity in the FD code but is placed
about 10 body radii away in the FE code.

COMPUTER REQUIREMENTS

Both the FE and FD codes were run on an IBM 370/158 computer. CPU times
for inviscid solutions like those shown in figure 9 were 760 seconds for the
FE solution and 260 seconds for the FD solution on similar grids. The FE
code has since been cleaned up and run on an IBM 3033. The inviscid solution
in figure 9 took about 34 seconds and the interaction solution took about
170 seconds. The FE solution required over one million words of storage,
about 13 times that required by the FD code, principally for storage of the
global coefficient matrices. Storage requirements are not much of a problem
on a virtual storage computer, as page faults can be minimized by accessing
the global matrix only columnwise.

DISCUSSION AND CONCLUSIONS

A FE solution of the first order equations of inviscid, irrotational
compressible flow has been developed, verified, and applied to the analysis
of subsonic flow over a boattail. Reasonable agreement with experimental
boattail data was obtained when the inviscid code was coupled with an integral
boundary layer code. Two-dimensional inviscid-viscous interaction calcula-
tions were made quickly, and thus appear to be useful tools for screening
boattailed afterbody designs prior to more extensive calculations or wind
tunnel testing.

Certain aspects of this FE algorithm are appealing. First, FE methods
are able to fit arbitrary boundaries, with the mapping to computational space
contained in the element formulation rather than in transformation of the flow
equations. Incidentally, the interpolation functions for the flow variables
are also useful when flow variables are needed at off-node points, for example
when calculating a detailed pressure distribution for boundary layer coupling.
Secondly, the primitive variable formulation allows use of bilinear interpola-
tion functions, guarantees a continuous velocity and density solution, and
eliminates the need to differentiate a potential function. However, solving
two equations per node lengthens solution time. Finally, the ability of the
method to model the first order primitive variable equations even at sonic
velocities and without convergence problems suggests that direct solvers may
be useful for other two-dimensional problems.
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The FE code was slower than an existing FD code, but CPU times for the
FE code could be reduced by code refinement. Time spent in Gaussian solution
of the global matrix equations could be reduced by vectorization for a vector
computer.

The artificial compressibility technique developed by Hafea [19] could
be used to extend the present method to transonic flows. Here the continuity
equation would be written in conservative form. The density calculation is
lagged, and upwinded at supersonic nodes. Since the conservative form of the
continuity equation has many fewer terms than (1), the artificial compressi-
bility technique should also improve the computational efficiency of the
method.
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APPENDIX

Terms ANM - INM in equation (7) are (4x4) coefficient matrices result-
ing from the Gslerkin FE formuiation of the irrotationality and continuity
equations, and are given by:

a
Array-	 ON	 yJdydx

A

BNM - - f ON !—QM!—QMM yJ dydx
A

CNM - - BNM

DNM - ANM

ENM - J QMONdydx
A

FNM = J L 	 + 2 1 (OLUL ) 2 + ^-1) (S2LvL) 2]ON a^ yJdydx
A

CTS! - 2 f (RKuK)(QLvL) ay ONYJdydx
A

a

HNM - 
J L --^ +	 ^ 62LU L ) 2 + 2 1 ) (:2LvL ) 2]ON a! yJdydx

A
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INM . (Y 2 1) f POLUL) 2 + (SILVL) 2 - 1] ONrgOydx
A

K,L,M,N - 1,2,3,4

Terms ANM - ENM are functions of known interpolation functions OW
Terms FNM - INM also include the nodal unknowns uL and vL and must be
evaluated iteratively. All integrals were evaluated numerically in the
present work; however, computer time could probably be saved by evaluating
some of the integrals analytically.
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Figure 4. - Top: NACA 0012 airfoil grid. Bottom: Mach number
contours, M. - 0. 7.
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