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ABSTRACT

A solution method has been developed for calculating compressible Inviscid

w	 flow through a linear cascade of arbitrary blade shapes. The method uses
advanced surface singularity formulations which were adapted from those found
In current external flow analyses. The resulting solution technique provides
a fast flexible calculation for flows through turbomachinery blade rows. The
solution method and soma examples of the mathod's capabilities are presented.

NOMENCL.AME	 S

As,Bs,Av.Bv,	 a
Ad,Bd	 source, vortex, and vortex dump influ-

ence coefficients	 to

C	 blade chord
o.y.6

e curvature parameter

i.j unit vectors

it a control point on the cascade surface

n.t surface unit normal and tangential
vectors

P arbitrary point in space

S cascade pitch or gap

s surface distance from center of panel

V velocity relative to the blade

v disturbance velocity

X, y e(x - E)/S. e(y - O /S

x,y coordinate system associated with the
point where the velocity is to be
calculated

a flow angle relative to axial direction
TE

t

U.L

onset

cascade stagger or blade setting angle

element or panel chord length

coordinate system associated with cas-
case elements

source. vortex. and vortex jump singu-
larity strengths

total velocity potential

component of total velocity potential

orientation angle of panel or velocity
point coordinate system with reepazt
to reference coordinate system

fluid density

gradient vector operator

incompressible and compressible

exit and inlet conditions

panel indices for source, vortex. and
vortex jump singularity strengths

normal and tangential component on
blade surfaces

trailing edge quantity

stagnation or total condition

upper and lower surfaces

mean undistrubed flow

•

0

e

0

0

Subscripts:

i.c

E.I

i,j.k

N,T



Overbarst
_	 P + pV2 - constant - Pt 	(2)
( )	 vector quantity

(-)	 averaged quantity

INTRODUCTION

Current design of turbomachtnery blade rove re-
line n the use %,f computer codes to model the flow
or tt:de-to-blade surfaces. Most of the codes cur-
rt •• 'P used for blade designs model the flow as
inviscid, irrotational and compressible. The flow
field is solved using finite difference or finite
element numerical techniques. The solutions given
by these codes can be quite accurate. However, it
has been the experience of the author that use of the
field techniques can require an experienced user to
manipulate input data and control parameters. and
that these codes my also limit a designer in the
types of blade geometries, cascade configurations,
and flow conditions that can be considered. The
designer can therefore spend a considerable portion
of his effort in making a preliminary design conform
to the requirements and eccentricities of a particu-
lar flow analysis code. In order to accelerate the
blade design process and give the designer more free-
dom in developing blade shapes. a simple blade-to-
blade flow code has been developed. The objective of
the code is to provide a versatile, stable, and effi-
cient calculation which has sufficient accuracy to
determine the basic merits of a particular blade row
design. The simple code provides a means of rapidly
screening blade designs for analysis by more complex
codes which have better accuracy.

The panel or integral equation solution tech-
nique was selected as a basis for the simple design
code. This technique meets the requirements of being
a versatile, stable. and efficient calculation
scheme. It is however an Incompressible solution and
requires the use of a compressibility correction to
account for compressible flow effects.

Panel solutions have been used for several years
by external aerodynamlciets who have developed and
refined them into one of the primary design tools of
the aircraft industry. In the past, internal flow
aerodynamicists such as Martensen [1], Getsing [2].
and Hess and Stockman [3] have made use of integral
solutions. but the basic technique has not been pur-
sued extensively for internal flow problems.

In this paper a panel solution is described for
Inviscid compressible flow through a plane cascade.
An incompressible solution is developed using
advanced integral equation formulations. Compress-
ibility effects and stream channel vartatons are
Included by ads tang the Lieblein-Stockman correc-
tion technique [4] from engine inlet calculations
to the cascade problem. Several example solutions
are given to demonstrate the capabilities of the
method.

ANALYSIS

The general cascade problem is shown in fig-
ure I. The governing equations and boundary condi-
tions for an inviscid incompressible cascade flow are
the following;

V - V- 0	 (1)

V 4edy 	- 
VNbodY	

(3)

surface	 surface

V+VI as x+ -+	 (4)

V+VB as x++ •	(5)

The solution is developed using a velocity potential
which is the sum of a constant velocity potential plus
a disturbance. The constant velocity potential is
determined from the mean of the upstream and downstream
velocities. The disturbance quantities are unknown.

-+
Vonset 4

V - - w - Vonset + v	 (6)

The constant or onset velocity and potential satisfy
continuity (eq. (1)) exactly. The disturbance poten-
tial and velocity are to be determined so that contin-
uity is satisfied.

V v-V20-0	 (7)

Vonset - constant	 (8)

The flow field is determined by solving equations (6),
M. and (8) subject to boundary conditions (3), (4).
and (5). The momentum equation (2) does not enter
into the calculation except to relate the pressure to
the velocity field.

The equation for the disturbance potential (eq.
(7)) is Laplace's equation. Since it is a linear
equation, superposition of known simple solutions of
Laplace's equation may be used to develop more complex
solutions. A general solution to flow over a body or
cascade of bodies may be developed by using basic in-
compressible potential flow solutions for source and
vortex flown distributed along the body surfaces, and
varying the strength of the source and vortex singular-
ities so that the problem's boundary conditions are
satisfied. This 1s the beets of the panel method as
described by Hess and Smith M.

In practice the surface of the body is represented
by inscribing a polygon as shown in figure 2. The
simple source and vortex singularity solutions are de-
scribed over each element, and a control point to
selected on each element where he normal velocity
boundary condition is to be applied. There will be n
element end points and n - 1 control points. The
first and nth element end points are coincident.

The simplest form of the solution would be to use
flat elements with constant source and vortex ainular-
ity strengths over each element and the control points
located at the center of the flat element. However,
Hess [6] demonstrated a means of developing higher
order accurate panel solutions by using curved elements
with varying singularity strengths and locating the
control points closer to the true body surface. Build-
ing on Hess's work. a higher order accurate panel solu-
tion is developed for linear cascades.



Cascade panel formulation. A single cascade
panel is shown in figure 3. The panel hoe associ-
ated with it a cartesian coordinate system with unit
vectors 1.1. The coordinate system is centered on
the panel. Its origin is located at the panel con-
trol point and the x or E axis is aligned with
the panel chord. The velocity at any point P due
to the singularity distribution along each cascade
panel is to be determined. The coordinates for
point P are denoted as x.y and those for points
on the panel as E.n.

Hess showed that the velocity at any point P
sue to a single panel with a source strength distri-
bution, o (s). is given by

e/2
r

V - 2 

	 12 r2

i + y ĵ o(a) aE A(9)
-e/2 L

where

r	 (x - E) +(y-n)2

For a cascade problem a aeries of these integrals is
needed.

A/2

y. 2	 x E	 (Y =_I,)!

f-2re/

+
t 

(. - E)i+ (y - (rt - kS)).f
^ (x - E) 2 +(y - (n - kS))2
k-1

where

rf -r(x

The factor c appearing to the series expansion is
related to the panel curvature and is determined by a
three point curve fit using the averaged element slopes
at the end points of the panel. The expansion of 1/0
is needed for numerical stability. As point P ap-
proaches the path of integration the integrand become
very large and the resulting expression for velocity
becomes divergent. The expansion in tens of rf
alleviates this problem.

In the present study equation (11) was integrated
numerically. The series expansions for n.s.o in
terms of E were substituted into the integrand. The
resulting expression was evaluated using a three point
(E - - e/2.0.02) Simpson's rule. Again. numerical
difficulties were encountered in calculating the Into-
Brands as the velocity point approached the path of
integration. However, from equation (10; it can be
seen that only the first term in the series is causing
the difficulty and that this term is identical to the
velocity equation for an isolated body (eq. (9)).
Therefore. the numerical problem may be avoided by sub-
tracting the first term of the series from the into-
grand. integrating, and adding Hose's analytical
expression to the integral. Equation (11) becomes

_ 2* 
t e/2 

sinh(X)cosh(X)i + sin(Y)c_os(Y)^

V 
S e/2	

sinh2(X) + sin2(Y)

- xi + Yj j (00 + c lE )(1)dE 
+ VSsolated	

(13a)
11X2 + Y2	 body

Equation (13a) has been developed for a source
+ (x i+ y M _o_ks^ 1 o(s) 

as dE	 (10) singularity distribution. It can also be used for the
(x - E) 2 + (? - (n + kS)) 2 )	 dE	 vortex singularity distribution since from incompress-

ible potential flow theory the source and vortex sing-
where k is the summation index for cascade bodies.	 ularities are related. The vortex equation would be
This series is the cascade potential velocity which 	 similar to equation (13a) except o would be replaced
was shown in reference 2 to be	 by Y, the velocity components change. The resulting

e12	
equation is

	

e/2	 _
2e	 r rsinh(X)cosh(X)i+ain(Y)cos(Y),1	 ft2f

	
sin'Y)coe(Y)1 - sinh(X)cosh(X)1

S	 aInh2(X) + sin 2(Y)	
dE	

Se/2	
sinh2(X) + sin2(Y)

-e/2
(11)

_
 {Y!

	
(Yo + YlE)(1)dE

X2 + Y2
where

X - S (x-E). Y - S ( y - n)

Hess [6] developed the higher order panel for-
mulas by integrating equation (9) using series expan-
sions for the different terms in the integrand.
These expansions for a second order accurate panel
solution are

n - cc  + 0(E3)

a - 00 + O le + 0(e2)
a . E+3 c2E2+NO

2
2 . -2 + 2CYC + o(E4 )	 (12)

r	 rf	 rf

+ 2

e/2	 _

(Y 'J' )i rZ (x - 
E)^ Y(e) dC A(13b)

-e/2

Integral equation formula ion. The integral equa-
tion formulation of Bristow [7j was used in the present
cascade panel solution. The primary feature of thi
formulation is the use of Green's third identity [83.
Bristow demonstrated that by using this identity for
two dimensional flow a direct relationship can be de-
veloped between the onset flow. and the source and
vortex singularity distributions. Along the body sur-
face the tangential and normal velocity will be given
by



V
T 0 Vonset e + Y	 (144)

VN - Von;eta + a	 (14b)

These relationships scan that the singularity
strengths will remain bounded regardloas of he floe
boundary conditions or geometry. Bristow ^7 showed
that the mild singularity strength distribut n gen-
erated by using Green ' s third identity will result
In panel solutions which are less sensitive to coor-
dinate smoothness and thin airfoil geometries.

Before making use of Green's third identity. an
approximation of equation (6) is needed. This can
be written in scalar components as

U-1

Vxp - Voaset cos(ep - a) + Z Aspial

i-1

+ j 

	

jAvpJYJ + 	 Adpk6k	 (15a)
J-1	 k-1

Vyp - Vonset sin(ep - a) +	 Bap jai

1

n

+ L BvpJYJ + i Bdpk6k	 (15b)

J-1	 k-1

The first terms in the equations (15) are the
contribution of the constant or onset velocity to the
total vel^^_ ity vector in equation (6). The angles e
and a are the orientations of the coordinate system
associated with point p and the onset velocity vec-
tor with respect to a reference direction. The
summation terms represent the disturbance velocity
v in equation (6). Each term in the suemation is
an integration of equations (13s) or (13b) over one
of the elements which sake up the cascade body. The
A's and B ' s in the summations are coefficients of
the singularity strength values from the element
integrations. These influence coefficients depend on
the geometry of the problem and must be recalculated
for each point where a velocity calculation is to be
made. The source strengths o which are assumed to
vary linearly over the element surface are defined
in terms of the element control points using a three
point curve fit. The vortex strengths y also are
assumed to vary linearly, but they are defined in
terms of the element end points using four point
divided differences. The additional singularity
strengths 6 are part of the vortex singularity
distribution. They represent a Jump in the vortex
strength which Green's identity, equation (14a).
Indicates will occur it discontinuities in surface
slopes. Such discontinuities are encountered for
example at sharp leading and trailing edges of
blades. When a surface slope discontinuity is en-
countered in the calculation, one sided curve fits
and differences are used for the source. vortex, and
geometry terms on each side of the discontinuity.

Normalising equations (14) and ( 15) by the onset
velocity magnitude, applying equation (15) to a con-
trol point t on the body surface, and resolving the
calculated velocity into tangential and normal v*loc-
ity components, expressions for the surface velocity
may be written which relate Green's third identity
to the integral equation approximation.

VTt - 
cos(et - a) + YR	 (166)

VNt • - sim(et - a) + of	 (16b)

a	 n-1	 n

VTi - cos(el - a) +7 Mtiei + Z AVLJYJ + 7, bik61
L
E
I	 J-1	 k-1	 (160

a	 a-1	 n

V41  - sia(et - a) +	 Ballot + (,
r

r lutJY J + F Bdtk61
-	 J-1	 k-1

(16d)

where y with an a denotes that the vortex strength
Is evaluated at a panel control point while Y with-
out an * is evaluated at the panel and point.

A system of linear algebraic equations to calcu-
late the singularity strengths my now be constructed.
This system of equations is similar to those developed
by Bristow [7] for isolated bodies. Thee* equations
are generated by using the normal velocity surface
boundary condition, farstreas boundary conditions, and
a tangential velocity error minimisation equation.
The normal velocity boundary condition is first used
with equation (16b) to solve for the source strengths.
and then with equation %16d) to give n - 1 equa-
tions. The farstreas boundary conditions, the given
Inlet and exit flow angles. are used to calculate the
circulation of the cascade. This is used with equa-
tion (16c) to provide one equation. The tangential
velocity error minimisation equations are needed if
there are surface slope discontinuities. and vortex
Jump strengths are to be calculated. One m inimisa-
tion equation will be added to the system for each
surface slope discontinuity. The tangential velocity
error function is the sum of the squares of the dif-
ference between equations (16a) and (16c) multiplied
by the local panel chord length.

This system of equations satisfies all the prob-
lem boundary conditions and includes all the unknown
singularity strengths. However, there is one more
equation than unknowns. This occurs becauec the
first and last element end points are coir.cident for
a closed body and therefore Yl and Yn are equal.
The additional unknown used to complete the system
is an seemed uniform error in the normal velocity
boundary conditions. The uniform error variable is
denoted as t and is included in the normal velocity
equations.

In final form the equations to be solved for the
singularity strengths and uniform error are:

1. Normal velocity surface boundary condition

at - sin(e i - a) + VNi	 (17a)

n	 m	 n-1

ZBviJYJ +c +F Bdik6k- VNt+siu(ei-a)-F Bstiol
J-1	 k-1	 i-1

2. Circulation

r - S cos (a) L a(al ) - tan((&B )^ 	 (17b)

+ A VTds	 (17c)

body
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m
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e

l
L./ Av iJYJ + t ^ik6k el T

101 	 k-1

n-1	 a-1

cos(8 1 - a) +	 Asliof et	 (17d)

t-1	 lei

3. Tangential error minimization

	

n-1	 2

	

a 
r	

-

8dt Lj (VTlbc - VT16a} e1
	 0

r
A 

nn-
-I 

r
.L.s LI 

\e1AdltAvij) - (AjAd't + eJ-lAdJ-lt)/ YJ2
J-1 1-I

m n-1	 n-1 n-1

+	 elAditAdlk 6k - - FelAditAalJ of

k-1 1-1	 J-1 i-1

(17e)

If only the upstream flow conditions: are giveno
the circulation cannot be calculated directly and
equation (11d) is replaced by a Kutta condition. An
Iteration procedure is then used to find the proper
onset flow direction and circulation. The Kutta con-
dition fr sharp trailing edges is the same as
Bristow t7l used, that is, flow normal to the trail-
ing edge bisector is zero. For the round trailing
edge found In turbomachinery, this condition is mod-
ified. Two-line segments are constructed parallel to
the trailing edge bisector from the trailing edge
circlo tangency points of the upper and lower blade
surfaces. At a point on each line Just downstream of
the trailing edge, the normal flows to these lines
are required to be equal and opposite. The two types
of Kutta conditions are illustrated in figure 4. The
Kutta condition equation is written as

n

F(BvTE,U + BVTE.L) J Y J + 2E - 2 sin(9 TE - a)

J-1

+n-1

	

L (BsTE.0 + BBTE.L)ioi	 (18)

i-1

In the iteration procedure equations (17a). (17b).
(18). and (17e) are solved using a guessed value for
a. The resulting singularity strengths are used in
equation (17d) to determine the circulation. The
calculated circulation and onset flow angle a are
then used in the following relation to determine the
upstream flow condition

atan 1 
Csin(a) + f/(2S)J	

(19)

	

I -	 L	 coo (a)

If the calculated valueof a l differs from the
specified inlet value, the onset flow angle a is
updated and the procedure is repeated.

This system of equations is Solved using a direct
method. The technique used is known am Qwlasky•s
method. It resolves the coefficient matrix into upper
and lower triangular matrices So that additional solu-
tions for variations in surface normal velocities and
farstream boundary conditions require only a back sub-
stitution. This property is used in the iteration
procedure for the Kutts condition and in the calcula-
tion of multiple inlet and exit flow eagle cases.

Compressibility o re io . The internal flow
compressibility correction of Lieblein and Stockmen V3
Is used in this study. This correction has been used
successfully for a amber of years to calculate engine
inlet flows. The correction is expressed in the fol-
lowing form

Vi/01

	

Vc - Vi (p i5c )	 (20)

where Vc is the corrected compressible velocity. Vi
is the local incompressible velocity from the panel
solution, p i is the incompressible density taken to
be the stagnation density pt.ac is the average com-
pressible density. and V1 is the average incompress-
ible velocity across the flow passage. The average
compressible density is found by solving the following
expression derived from the one-dimnslonal continuity
equation and the isentropic relations.

c hi Ac

	 Y-1	
Vi

Pp t) 	I - 
\ —Pt )	 - Vcr

where Y is the ratio of specific heats and Vcr is
the critical velocity. The average incompressible
velocity is calculated on planes which are normal to
the mean flow and which contain the local velocity to
be corrected.

For inlets with little stresmwise turning of the
flow, the application of the compressibility correction
is straightforward. *he mean flow direction can be
assumed to be approximately normal to axial stations
and the average incompressible velocities are calcu-
lated using the axial station flow areas. However, for
cascade flows with significant amounts of flow turning.
the mean flow direction cannot be assumed and must be
calculated. In this study, the components of the mean
velocities are fitst calculated at axial stations by
using continuity and circulation equations. Next the
mean flow direction through the blade passage is de-
termined from the axial station velocity components.
Planes normal to the mean flow are then constructed
for each surface velocity to be corrected. Finally,
the average incompressible velocity on the normal
planes is found by interpolation of the axial station
values.

Stream channel variation corrections. A simple
correction for given stream channel variations is made
during the compressibility correction calculation. The
incompressible surface velocities and mean flow are
calculated asatuing a uniform stream channel height
using the inlet flow conditions as a reference. These
velocities are then scaled by the ratio of the inlet
to local specified stream channel height. The result-
ing scaled velocities are used in the compressible
corrections of equation (20).



SAMPLE CALCUUTIONS AND DISCUSSION

Pour sample calculations are presented to
demonstrate the solution method. Table I shows the
general flow and solution conditions for each calcu-
latiom. All examples were calculated using the
IBM 3033 computer at Lewis Research Center. A
FORTRAN computer code of the solution method was
developed for the calculations. Most blade shapes
were approximated by wing 40 to 60 slaments and the
solution required less than 4 seconds of computer
time. While this computation time is very rapid, it
should be noted that compressible field methods have
been re rted which have run times an the saw
order 9	 In the Gostelow and Sans cases. the cas-
cade a roil shapes were described directly using
discrete points. However, in tta Katsanis and Robson
cases, the cascade body shapes were generated by
using spline fits for the upper and lower st:faces.
and circles or ellipses for the rounded leading and
trailing edges.

Incompressible cascade flow. The exact incom-
pressible solution of Gostelow 0j is compared with
the present solution in figure . The large velocity
gradients in the leading edge region and the flow
past the thin trailing edge are well modeled by the
panel solution. The overall agreement between the
two solutions is very good.

Compressible cascade flow. In figure 6 a com-
parison is shown between thepanel solution and the
finite difference solution of Katsanis (11) for a
turbine stator. Blade surface velocities are in the
high subsonic range. The overall solution agreement
In good, but differences do occur along the pressure
surface and near the suction surface trailing edge.
These differences are attri l utable to the compres-
sibility correction, since the two solutions were
found to be identical for incompressible flow through
the same cascade.

The general accuracy of the panel method is also
shown in figure 6. Two panel solutions are shown
with a different number of panels used in each case.
The less accurate solution with fewer panels differs
slightly from the more accurate solution. Most of
this difference occurs in the leading edge region
where large variations in surface curvature occur.
The coarser paneling is unable to resolve the rapid
change in curvature and as a result the curvature
effect on the flow is smeared over a larger surface
area. By considering the terms used in developing
the cascade panel solution, the accuracy of the solu-
tion should be on the order of the panel sire
squared; although this accuracy has not been
verified.

Transonic cascade flow. Comparisons with tran-
sonic hodograph solutions are shown in figures 7
and B
solution 1121, and in figure 8 the comparison is with
a Sang cascade blade design using the hodograph solu-
tion technique of Bauer, Garabedian, and Korn 133.
The panel solution compares well with the hodograph
solutions for the sophistication of the computation
involved.

Descrepancies in the solutions are caused pri-
eerily by the compressibility correction which cannot
be expected tv exactly prydict the flow at such a
high level of compressibility. The large velocity
spike at the leading edge of the compressor stator is

due to the lack of blade geometry information given im
the region. and the extraneous velocities downstream
of the blade trailing odes are caused by an ousasion
of the blade downstream to account for the blade wake.

KUTTA CONDITION AND STREAM CHANNEL VARIATION

in the sample calculations just presenteds the
downstream flow angle was given. These calculations
have also been made using the inlet condition and a
Rutta condition to determine the downstream flow con-
dition. The calculated downstream flow angles were
31.190 (Gostelow), -67.880 (Kateanie. 32). -67.230
(Katsants. 96). -44.160 (Hobson), and -31.00 (Sans).
In the first two cases. Gostelow and Kateanis. the
flow leaves the blade surface smoothly with little
deviation from the trailing edge blade angle and the
Kutta condition works well. However. in the Hobson
and Sane cases there is significant flow deviation at
the blade trailing edge and the Kutta condition re-
sults are poor. Some improvements in these results
could be made by including a deviation model in the
Kutta condition formulation.

The effect of stream channel variation on the
flow has not been studied extensively. Soma compari-
sons have been made with the finite difference code of
Ksteanie [11) for subsonic flows and the agreement was
good.

CONCLUSION

Current external aerodynamic integral equation
techniques may be adopted for use in internal flow
calculations. The inherent computational speed and
flexibility of integral equation solution can make
than very useful for design calculations. The present
cascade method is a versatile design tool that will
allow a designer to explore many preliminary blade
designs in a short period of time. Although the
method does not give exact solutions for compressible
flows, example calculations do demonstrate that it is
sufficiently accurate to provide a means of selecting
blade designs for further analysis.
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TABLE I. - SAMPLE CALCULATIONS

Case Inlet Exit Gap Number CPU sec
of IBM TSS/370Chord

V/Vcr oI V/Vcr OE panels

Gostelov 53.5 -- 30.025 1.239 49 2.42

Katsanis 0.231 0 0.727 -67.00 0.747 32/98 1.54/7.30

Hobson 0.610 46.123 0.610 -46.123 0.526 61 3.43

Sanz 0.826 44.61 0.529 3.91 0.863 51 2.61



ME

•
•

•

l

v
al

-T 1" -
^ONSET	

QONSET

Y

Lx

•

FIguro L - CasWe problem



I-1

n

T

• CONTROL POINT	
2 1

Figure Z - Panel representation of turbomachinery blade.

•
•
•

+S	 Y.In PIX,YI

7	 r
T	 ^£

n	 S
A/2	 Af2

-S

•

•

Figure 36 - Cascade panel elements`



O
P4

N

` _

QQN+
8 d

0

W% gel

O^
V ^Q
^ E

$

7

O	 p	 ^7	 N	 O	 N	 t
...i	

1N310133300 3dnSS38d - Id0

^ J	 ^
=	 1

cli

	

J 1	 ^

Ji g ^ig^v ^l °	 + 1> e

^	 g
d	 d

O

	 d

d	 ^

Z	 '
f

le a °

8 e

q 4 d



.9

.8

,7

,6
tv
0
^.5
JtV
►_ , 4
ocv

3

5

.2

- KATSANIS
FINITE DIFFERENCE SOLUTION

O O PANEL SOLUTION
98 PANELS

• n PANEL SOLUTION
32 PANELS

.1

0	

0	 .01	 .02	 ,03	 .04	 .05

X - AXIAL DISTANCE

Figure 6. - Compressible cascade flaw.

9



O

4A

31

CD

I
40

OUVH A 13013 IVOUISO 83AJA

0--o

E

wig
4c
CL

0
0

0 0 0

00

MON H3VW W

C%a

im

oDSZ

ti


	1981006464.pdf
	0057A02.TIF
	0057A03.TIF
	0057A04.TIF
	0057A05.TIF
	0057A06.TIF
	0057A07.TIF
	0057A08.TIF
	0057A09.TIF
	0057A10.TIF
	0057A11.TIF
	0057A12.TIF
	0057A13.TIF
	0057A14.TIF




