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ABSTRACT

A solution method has been developed for calculating compressible iaviscid

flow through a linear cascade of arbitrary blade shapes.

The method uses

advanced surface singularity formulations which were adapted from those found

in current external flovw analyses.

The resulting solution technique provides

a fast flexible calculation for flows through turbomachinery dlade rows. The
solution method and eome examples of the mathod's capabilities are presented.

source, vortex, and vortex jump influ-
ence coefficients

blade chord

curvature parameter

unit vectors

a control point on the cascade surface

surface unit normal and tangential
vectors

arbitrary point in space

cascade pitch or gap .

surface diastance from cangcr of panel

velocity relative to the blade

disturbance velocity

n(x - £)/S, n(y - n)/S

coordinate system associated with the
point where the velocity 18 to be

calculated

flow angle relative to axial direction

§on

STy

Y

v
Subscripts:
i,c

E,1

1,3k

N,T

TE
t
U,L

onset

cascade stagger or blade setting angle
clement or panel chord length

coordinate system associated with cas-
cane elements

source, vortex, and vortex jump singu~
larity strengths

total velocity potential

component of total velocity potential

orientation angle of panel or velocity
point coordinate system with respect
to reference coordinate system

fluid densicy

gradient vector operator

i{acompressible snd compressible
exit and inlet conditions

panel indices for source, vortex, and
vortex jump singularity strengths

normal and tangential component on
blade surfaces

trailing edge quantity
stagnation or total condition
upper and lower surfaces

mean undistrubed flow




Overbars:

O) vector quaatity
O) averaged quantity
INTRODUCTION

Current design of turbomachinery blade rows re-
1ie? o the use uf computer codes to model the flow
or :1l.de-to-blade surfaces. MNost of the codes cur~
Ty 2 used for blade designs model the flow as
inviscid, irrotational and compressidle. The flow
field is solved using finite difference or finite
elament numerical techniques. The solutions given
by these codes can be quite accurate. However, it
has been the experience of the author that use of the
field techniques can require an experienced user to
sanipulate input data and control parameters, and
that these codes may also limit a designer in the
types of blade geometries, cascade configurations,
and flow conditions that can dbe considered. The
designer can therefore spend a congiderabdble portion
of his effort in making a preliminary deaign conform
to the requirements and eccentricities of a particu-
lar flow analysis crde. In order to accelerate the
blade design process and give the designer more free-
dom in developing blade shapes, a simple blade-to-
blade flow code has been developed. The objective of
the code is to provide a versatile, stable, and effi-
cient cslculation which has sufficient accuracy to
deteraine the basic merits of a particular blade row
design. The simple code provides a means of rapidly
screening blade designs for analysis by more complex
codes which have better accuracy.

The panel or integral equation solution tech-
nique was selected as a baais for the simple design
code. This technique meets the requirements of being
a versatile, stabdle, and efficient calculation
scheme. It is however an incompressible solution and
requires the use of a compressidbility correction to
account for compressible flow effects.

Panel solutions have been used for several years
by external aerodynamicists who have developed and
refined them into one of the primary design tools of
the aircraft industry. In the past, internal flow
aerodynamicists such as Martensen [1]. Geising [2].
and Hess and Stockman [3] have made use of integral
solutions, but the basic technique has not been pur-
sued extensively for internal flow problems.

In this paper a panel solution is described for
inviscid compressible flow through a plane cascade.
An incompressible solution is developed using
advanced integral equation formulations. Compress-
ibility effects and stream channel variatons are
included by adapting the Liedblein-Stockman correc-
tion technique 6] from engine inlet calculations
to the cascade problem. Several example solutions
are given to demonstrate the capabilities of the
method.

ANALYSIS

The general cascade problem i{s shown in fig-
ure 1. The governing equations and boundary condi-
tions for an inviscid incompressible cascade flow are
the following:
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The solution is developed using a velocity potential
which 1is the sum of a constant velocity potential plus
a disturbance. The constant velocity potentisl is
deternined from the mean of the upstream and downstream
velocities. The diaturbance quantities are unknown,
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The constant or onset velocity and potential satisfy
continuity (eq. (1)) exactly. The disturbance poten-
tial and velocity are to be determined so that coantin-
uity 1s satisfied.

V. Vevd=0 @)

vonsct = constant (8)

The flow field is determined by solving equations (6),
(7). and (8) subject to boundary conditions (3), (4),
and (5). The momentum equation (2) does not enter
into the calculation except to relate the pressure to
the velocity fleld,

The equation for the disturbance potential (eq.
(7)) is Laplace's equation. Since it is a linear
equation, superposition of known simple solutions of
Laplace's equation may be used to develop more complex
solutions., A general solution to flow over a body or
cascade of bodies may be developed by ueing basic in-
compressible potential flow solutions for source and
vortex flows distributed along the body surfaces, and
varying the strength of the source and vortex singular-
ities so that the problem’s boundary conditions are
satisfied, This is the basis of the panel method as
described by Hess and Smith [S].

In practice the surface of the body is represented
by inscribing a polygon as shown in figure 2. The
simple source and vortex singularity solutions are de-
scribed over each element, and a contrnl point {is
selected on each element where .he normal velocity
boundary condition is to be app)ied. There will be a
element end points and n - 1 control points, The
first and nth element end points are coincident.

The simplest form of the solution would be to use
flat elements with constant source and vortex sinular-
ity strengths over each element and the control points
located at the center of the flat element. However,
Hess [6] demonstrated a means of developing higher
order accurate panel solutions by using curved elements
with varying singularity strengths and locating the
control points closer v the true body surface. Build-
ing on Hess's work, a higher order accurate panel solu-
tion is developed fur linear cascades.




Cascade panel formulation. A single cascade where
panel is shown in figure 3. The panel has associ~

frmm——r
ated vith it a cartesian coordinate systea with unit re = Yix - 02+ 92
vectors 1{,j. The coordinate system is centered on
the panel. 1Its origin is located at the panel con- The factor c¢ appearing in the series expansion is
trol point and the x or £ axis is aligned with related to the panel curvature and is determined by o
the panel chord. The velocity at any point P due thres point curve fit using the averaged element slopes
to the singularity distribution along each cascade at the end points of the panel. The expansion of i/e?
panel is to be determined. The coordinates for is needed for numerical stability. As point P ap-
point P are denoted as x,y and those for points proaches the path of integration the integrand becomes
. on the panel as §,n. very large and the resulting expression for velocity
Hess showed that the velocity at any point P becomes divergent, The oxpansion in terms of r¢
due to a single panel with a source strength diseri- alleviates this problem.
bution, o (s), is given by In the present study equation (11) was integrated
' numerically. The series expansions for 0n,8,0
8/2 terms of £ were substituted into the integrand. The
_ x - b1 - ds resulting expression vas evaluated using a thrse point
Ve2 [’"z 1+ 1'-5-'1 j]o(-) &« (9) (£ -4/2,0,0/2) Simpson's rule. Again, numerical
T 3 difficulties were encountered in calculating the inte-
-a/2 grands as the velocity point approached the path of
integration. However, from equation (10, it can bes
whera seen that only the first term in the serics is causing
—¥ 3 the difficulty and that this term is identical to the
re V(x -8+ (y-n) velocity equation for an isolated body (eq. (9)).

Therefore, the numerical problem may be avoided by sudb-
For a cascade problem a series of these integrals 18  tracting the firat term of the series from the inte-

needed. grand, integrating, and addiug Heas's analytical
A/2 ~ expression to the integral. Equation (11} becomes
Va2 L!.'_Qﬂ'_‘!’_lx_:_nﬁ al2 - -
L * Telr sinh(X)cosh(X)1i + sin(Y)cos(Y)§
-a/2 a2 sinh?(X) + sin(Y)
«»
. { x - i+ - kS))1 A+ YT
Z x - 0¥+ @y = (0~ ksp? i a1 [CRUUICTUEL ANWVE D)
kel body

- - Equation (13a) has been developed for a source
+ o010 (u-sm} o(s) -— P14 (10)  stingularity distribution. It can also be used for the
(x - 802+ (v - (n+k))? vortex singularity distribution since from incompress-
ible potential flow theory the source and vortex sing-
where k 18 the summation irdex for cascade bodies, ularities are related. The vortex equation would be

This series is the cascade potential velocity which similar to equation (13a) except o0 would be replaced
was shown in reference 2 to be by vy, the velocity components change. The resultang
equation is
8/2 - -
7=21 [ninh(xuw_mi +aln1Y)cosLY)1] OF de e dt Vel sin(Y)cos(¥Y)1 - sinh(X)cosh(X)}
s sinh?(X) + atn?(¥) SSoas stah?(X) + siad(Y)
'A 2 -4 2
(11)
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a/2 _ -'
+ z/ {y - mt z (x - mJyu) € (13b)

Hess [b] developed the higher order panel for- 2/2 r

X mulas by integrating equation (9) using series expan-
R sions for the different terms in the integrand.

These expansions for a second order accurate panel Integral equation formulation. The integral equa-
. solution are tion foreulation of Bristow |7i vas used in the present
2 cascade panel solution, The primary feature of thi
n=cgl+oed) formulation is the use of Green's third identity [8].
2 Bristow demonetrated that by using this identity for
o= o0g+oys+ 0(a) two dimensional flow a direct relationship can be de-
2 2.2 s veloped between the onset flow, and the source and
s =+ efgt +0(EY) vortex singularity distributions. Along the body sur-
3 face the tangential and normal velocity will be given
2 by
Lol o2y oh (12
r l’f re
3
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1 ° Vonaue®t * Y (14a) Vg, = cos(8y ~a) +v, (168)
VN * VonsetD * © (14b) Vu,' s=ain(6, - a) +g, (16d)

These relationships mean that the singularity
strengths will remain bounded regardless of the flow
boundary conditions or geomstry. Bristow [71.%
that the aild singularity strength distridbution gen-
erated by using Green's third identity will result
in panel solutions which are less sensitive to coor-
dinate smoothness and thin airfoil geometries.

Before making use of Green's third idemtity, an
approximation of equation (6) 1s needed. This can
be written in scalar components as

a=1

pr ® Vonger €08(8p - a) + E Aspioq
1=]

o L]
*E Avpyry * 2 My (152)
= kel
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n -
+ 2 Bvpyyy + 2 Bdpk 8k (15b)
j=1 k=1

The first terms in the equations (15) are the
contribution of the constant or onset velocity to the
total velo-ity vector in equation (6). The angles 6
and a are the orientations of the coordinate aystem
associated with point P and the onset velocity vec-
tor with respect to a reference direction. The
summation terms vepresent the disturbance velocity
v 1in equation (6). Each term in the summation is
an integration of equations (13a) or (13b) over one
of the elements which make up the cascade body. The
A's and B's 1in the summations are coefficients of
the singularity strength values from the element
integrations. These influence coefficients depend on
the geometry of the problem and must be recalculated
for each point where a velocity calculation is to be
made. The source strengths o wvhich are assumed to
vary linearly over the element surface are defined
in terms of the element control points using a three
point curve fit. The vortex strengths y also are
assumed to vary linearly, but they are defined in
terms of the element end points using four point
divided differences. The additional singularity
strengths & are part of the vortex singularity
distribution. They represent a juap in the vortex
strength which Green's identity, equation (léa),
indicates will occur at discontinuities in surface
slopes. Such discontinuities are encountered for
example at sharp leading and trailing edges of
blades. When a surface slope discontinuity is en-
countered in the calculation, one sided curve fits
and differences are used for the source, vortex, and
geometry terms on each side of the discontinuity.

Normalizing equations (14) and (15) by the onset
velocity magnitude, applying equation (153) to & con~
trol point ¢t on the body surface, and resolving the
calculated velocity into tangential and normsl veloc~
ity components, expressions for the surface velocity
may be written vhich relate Green's third ideatity
to the integral equation approximation.
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- =1 kel
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where y with an * denotes that the vortex strength
is evaluated at a panel control point while y with-
out an * {s evaluated at the panel end point.

A system of linear algebraic equations to calcu-
late the singularity strengths may now be constructed.
This system of equations is similar to those developed
by Bristow | 7| for isolated bodies. These equations
are generated by using the normal velocity surface
boundary condition, farstream boundary conditions, and
a tangential velocity error minimization equation.
The normal velocity boundary condition is first used
with equation {16b) to sclve for the source strengths,
and then with equation (16d) to give n - 1 equa-
tions. The farstream boundary conditions, the givea
inlet and exit flow angles, are used to calculate the
circulation of the cascade, This is used with equa-
tion (16c) to provide one equation. The tangential
velocity error minimization equatiors are needed if
there are surface slope discontinuities, and vortex
Jump strengths are to be calculated. One minimiza-
tion equation will be added to the system for each
surface slope discontinuity. The tangential velocity
error function is the sum of the squares of the dif-
ference between equations (16a) and (16c) multiplied
by the local panel chord length.

This system of equations satisfies all the prob-
lem boundary conditions and includes all the unknown
singularity strengths, However, there is one more
equation than unknowns. This occurs becaus. the
first and last element end points are coircident for
a closed body and therefore y; and vy, are equal,
The additional unknown used to complete the system
is an assuned uniform error in the normal velocity
boundary conditions. The uniform error variable is
denoted as ¢ and is included in the normal velocity
equations,

In final form the ecuations to be solved for the
singularity strengths and uniform error are:

1. Normal velocity surface boundary condition

og4 = 8in(8§ - a) + th (17a)
L w n-1
z Bvgjvytet 2 Bdguly= Vul'# siu(0; -a) -2 Bsg (04
3=l k=1 1e]

2. Circulation

I « 5 cos(a)[tan(ay) ~ tan(ag)] (17b)
+ f vods 17¢)
body
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3. Tangential error minimization
) n=1 2
%6, 2 (""m - "Tm) 4gp =0
=1 1
n {n-1
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i=1 i1
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(17e)

If only the upstream flow conditione are given,
the circulation cannot be calculated directly and
equation (17d) is replaced by a Kutta condition. An
iteration procedure is then used to find the proper
onset flow direction and circulation. The Kutta con-
dition for _sharp trailing edges is the same as
Bristow {7 ] used, that 18, flow normal to the trail-
ing edge bisector is zero. For the round trailing
edge found in turbomachinery, this condition is mod-
ified. Two-line segments are constructed parallel to
the trailing edge bisector from the trailing edge
circle tangency points of the upper and lower blade
surfaces, At a point on each line just downstreaam of
the trailing edge, the normal flows to these lines
are required to be equal and opposite. The two types
of Kutta conditions are illustrated in figure 4. The
Kutta condition equation is written as

n
z (BVTE,U + BVTE;L)JYJ + 2c¢ = 2 sin(8qg - a)

=1

n-1

- z (Bsrg,y + Bsrg,1) o1 (18)
1e1

In the iteration procedure equations (17a), (17b),
(18), and (17e) are solved using a guessed value for
a. The resulting singularicy strengths are used in
equation (17d) to determine the circulation. The
calculated circulation and onset flow angle a are
then used in the following relation to determine the
upstrean flow condition

— [-mga) + r/gzs1] a9

cos(a)

If the calculated value of ay differs from the
specified inlet value, the onset flow angle a is
updated and the procedure i8 repeated.

This systeam of equations is solved using a direct
method. The technique ueed is known as Cholasky's
method, It resolves the coefficient matrix into upper
and lover trianguler matrices so that additional solu-
tions for variations in surface normal velocities and
farstream boundary conditions require only a back sub-
stitution., This property is used in the iteration
procedure for the Kutta condition and in the calcula-
tion of multiple inlet and exit flow angle cases,

Compressibility correction. The internal flow
compressibility correction of Lieblein and Stoehn‘:‘;q
is used in this study. This correction has been u

successfully for a number of years to calculate engine

inlet flows. The correction is expressed in the fol-
loving form

v /¥
vc - v‘(ﬂilac) (20)

wvhere V. 1is the corrected compressidle velocity, Vi
is the local incompressible velocity from the panel
solution, py 1is the incompressible density taken to
be the stagnation density pg,bc s the average com-
pressible density, and V; 1is the average incompreses-
ible velocity across the flow passage. The average
compressible density is found by solving the following
expression derived from the one~dimensional continuity
equation and the isentropic relations.

/2
- -1 =
Sellrst LAY 1
YA L 1- Pt " Ver

where y 1s the ratio of specific heats and V.r 1s
the critical velncity, The average incompressible
velocity 18 calculated on planes which are normal to
the mean flow and which contain the local velocity to
be corrected,

For inlets with little streamwise turning of the
flow, the application of the compreasibility correction
is straightforward. The mean flow direction can be
assumed to be approximately normal to axial stations
and the average incompressible velocities are calcu-
lated using the axial station flow aress. However, for
cascade flows with significant amounts of flow turning,
the mean flow direction cannot be assumed and must be
calculatede In this study, the components of the mean
velocities are fiist calculated at axial stations by
using continuity and circulation equations. Next the
mean flow direction through the blade passage is de-
termined from the axial station velocity components.
Planes normal to the mean flow are then constructed
for each surface velocity to be corrected. Finally,
the average incompressible velocity on the normal
planes is found by interpolation of the axial station
values.

Stream channel variation corrections. A simple
correction for given stream channel variations is made
during the compressibility correction calculation. The
incompressible surface velocities and mean flow are
calculated assuzing a uniform stream channel height
using the {nlet flow conditions as a reference. These
velocities are then scaled by the ratio of the inlet
to local specified stream channel height., The result-
ing scaled velocities are used in the compressible
corrections of equation (20).
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SAMPLE CALCULATIONS AND DISCUSSION

Four sample calculations are presented to
demonstrate the solution method. Table I shows the
genaral flov and solution conditions for each calcu-
lation. All exasples were calculated using the
IBN 3033 computer at lLewis Ressarch Center. A
FORTRAN computer code of the solution method was
developed for the calculations. MNost blade shapes
ware approximated by using 40 to 60 elements and the
solution required less than 4 seconds of computer
time. While this computation time is very rapid, it
should be noted that compressible field methods have
been reported which have run times cn the same
order (;o‘ In the Gostelow and Sanz cases, the cas-
cade airfoil shapes were described dirvectly using
discrete points. However, in tte Xatsanis and Hobson
cases, the cascade boly shapes were generated by
using spline fits for the upper and lower au-faces,
and circles or ellipses for the rounded lead{ag and
trailing edges.

Incompressible cascade flow. The exact incom-
pressible solution of Gostelow 0] is compared with
the present solution in figure 5. The large velocity

gradients in the leading edge region and the flow
past the thin trailing edge are well modeled by the
panel solution. The overall agreement between the
two solutions is very good.

Compressible cascade flow. In figure 6 a com
parison i{s shown between the panel solution and the

finite difference solution of Xatsanis [}i] for a
turbine stator. Blade surface velocities are in the
high subsonic range. The overall solution agreement
is good, but differences do occur along the pressure
surface and near the suction surface trailing edge.
These differences are attriltutable to the compres-
sibility correction, since the two solutions were
found to be identical for incompressible flow through
the same cascade.

The general accuracy of the panel method is also
shown in figure 6. Two panel solutions are shown
with a different number of panels used in each case,
The less accurate solution with fewer panels differs
slightly from the more accurate solutfon. Most of
this difference occurs in the leading edge region
wvhere large variations in surface curvature occur.
The coarser paneling is unable to resolve the rapid
change in curvature and as a result the curvature
effect on the flow is smeared over a larger surface
area. By considering the terms used in developing
the cascade panel solution, the accuracy of the solu-
tion should be on the order of the panel size
squared; although this accuracy has not been
verified.

Transonic cascade flow. Comparisons with tran-
sonic hodograph solutions are shown in figures ?
and 8. Iy figure 7 the comparison is with Hobson
solution 'tll’ , and in figure 8 the comparison is with
8 San: cascade blade design using the hodograph solu-
tion technique of Bauer, Garabedian, and Korn [13 .
The panel solution compares well with the hodograph
solutions for the sophistication of the computation
involved.

Descrepancies in the solutions are caused pri-
marily by the compressibility correction which cannot
be expected t. exactly predict the flow at such a
high level cf compressibility. The large velocity
spike at the leading edge of the compressor stator is

due: co the lack of blade geometry information given in

the region, and the extraneous velocities downstream
o! the blade trailing edge are causad by an extension
€ the blade dovnstream to account for the blade wake,

KUTTA CONDITION AND STREAM CHANNEL VARIATION

In the sample calculations just presented, the
dowmstresa [low angle was given. These calculations
have aleo been made using the inlet condition and a
Kutta condition to determine the downstream flow con-
diction. The calculated downstream flow angles were
31.19° (Gostelow), =-67.88° (Katsanis, 32), -67.23°
(Ratsanis, 98), =-44.16° (Hobson), and -31.0° (Sanz).
In the first two cases, Gostelow and Ratsanis, the
flow leaves the blade surface smoothly with little
deviation from the trailing edge blade angle and the
Kutta condition works well. However, in the Hobson
and Sang cases there is significant flow deviation at
the blade trailing edge and the Kutta condition re-
sults are poor. Soms improvements in these results
could be made by including a deviation model in the
Kutta condition formulation.

The effect of stream channel variation on the
flow has not been studied extensively. Some compari-
sons have been made with the finite difference code of
Katsanis [11] for subsonic flows and the agreement was
good ..

CONCLUSION

Current externsl serodynamic integral equation
techniques may be adopted for use in interral flow
calculations. The inherent computational speed and
flexibility of integral equation solution can make
them very useful for design calculations. The present
cascade method is a versatile design tool that will
allow a designer to explore many preliminary blade
degigns in a short period of time. Although the
method does not give exsct solutions for compressible
flows, example calculations do demonstrate that it is
sufficiently accurate to provide a means of selecting
blade designs for further anslysis.
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TABLE 1. = SAMPLE CALCULATIONS

Case Inlet Exit Gap Number CPU sec
Chord of 1BM TSS/370
V/Vcr ay V/Vcr ag panela
Gustelow | === | $53.5 =—==w | 30.025 | 1.239 49 2,42
Katsanis | 0,231 0 0.727 1 -67.00 0.747 | 32/98 1.54/7.30
Hobson 0.610 | 46,123 | 0.610{ -46.123 | 0.526 61 3.43
Sanz 0.826 | 44.61 0,529 3.91 0.863 51 2,61
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Figure . - Cascade problem
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Figure 2, - Panel representation of turbomachinery biade,
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Figure 3 - Cascade panel elements,
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