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FOREWORD

The cost/benefit studi es of advanced aircraft gas turbi ne materi al s
technologies described herein were performed by the Pratt &Whitney Aircraft
Group of United Technologies Corporation under the technical direction of
Charles P. Blankenship, Materials and Structures Division, NASA-Lewis Research
Center. This report was prepared by Guilford E. Stephens, the Pratt & Whitney
Aircraft Project Manager. Materials information was prepared by M. J.

Blackburn, D. S. Duvall, A. F. Giamei and K. M. Prewo and reviewed by H. A.
Hauser of Pratt &Whitney Aircraft. Overall direction of the Contractor's
effort was provided by S. S. Blecherman, the Pratt &Whitney Aircraft
Materi al s for Advanced Turbi ne Engi ne Program Manager.
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SUMMARY

The primary objective of the study described in this report was to analyze the

cost/benefits re 1ati ons hi ps whi ch potent i all y caul d res ult from the use of the

advanced.commercial gas turbine materials being considered for NASAls

Materi al s for Advanced Turbi ne Engi ne (MATE) program. These studi es update

previously published cost/benefit studies using the 1atest state-of-the-art

materials and engine cycle information. Canprehensive studies determined

estimated payoffs, de vel opnent costs, and probabil iti es of success f or each of

the selected technol ogi es and combi ned these parameters to establ ish

cost/benefit rankings. Cost/benefit sensitivities to projected material

properti es were obtai ned for each technology based on success-ori ented (full)

and less optimistic (sensitivity) goal levels. The goals are given in Table I.

The rel ati ve ranki ng of materi al s technol ogi es for either full or reduced

goals remained the same and are presented below:

(1) Thermal Barrier Coated Airfoils

(2) Dual Property Advanced Disk

(3) Engi ne/N ace 11 e Low Tem per at ure Canpos ites

(4) Silicon-Carbide Reinforced Glass Ceramic

(5) Advanced Fabricated High Pressure Turbine Vane Cluster

(6) High Strength, Low Expansion, Cast Cases

Relative Value* results for all study technologies are compared in Figure l.

Rel ati ve Val ue as used herein represents one way of assessing materi al

technology benefits and ranki ng the potenti al benefits of several materi al s

*Cost/benefits are measured primarily by "Relative Value" where

Relative Value =
Return on Investnent

Developnent Cost
X Probability of Success



TABLE 1

ADVANCED MATERIALS TECHNOLOGY GOALS

Full Goal s

Dual Property Advanced Disk

+20% bore LCF strength

• +5% yield &U.T.S. at +100oF
+5% rim stress rupture vs. MERL 80
strength

• HIP process cost 2.0X MERL 80
• Finished disk cost +5% > MERL 80

Thermal Barrier Coated Airfoils

Sensitivity Goals

\

-10% rim stress rupture
strength

• 0.015 inch coating thickness 0.005 inch coating thickness
• Insulative capability +200oF > NiCoCrA1Y
• Coating cost 1.5X to 2.0X > NiCoCrAlY
• Average coated airfoil cost +5% > NiCoCrA1Y

Advanced Fabricated High Pressure
Turbine Vane Cluster

•

•

•
•

2

+100% thermal fati gue
strength

+250oF coated oxida
tion resistance
+100oF creep ,strength

Clustered vane set cost
single vane set cost

Vs. PWA 647/
PWA 27

equal to PWA 647 Vane set cost +25% > PWA 647
single vane set cost



TABLE 1 (Conti d.)

Fu 11 Goal s

Engi ne/N ace 11 e Low Temperature COOlPOS ites

• Total component weight 100 lbs. <
aluminum/titanium systems

• Temperature capability to 5000F
• Total component cost equal to al urninum/

titani urn systems

High Strength, Low Expansion, Cost Cases

• Mechanical properties of Inco 718 at
12000F extended to 13000F

• Oxidation/corrosion resistance to 13000F
• 40% reduction in modulus X thermal expan

sion coefficient

• Finished diffuser case cost 5% > Inco 718
• Finished turbine exhaust case cost 85% >

AMS 5616 (Greek Ascology)

Silicon Carbide-Reinforced Glass Ceramic

Sensitivity Goals

Total component cost +10% >
aluminum/titanium systems

20% reduction in modulus X
thermal expansion coefficient

• 18000F temperature capability
• Total component weight 180 lbs <:

nickel-base alloys

• Finished parts cost 25% > PWA 1455,
PWA 655, MERL 220 finished part cost

Finished parts cost 60% >
PWA 1455, PWA 655, MERL 220
finished part cost
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technologies on the same relative basis. It should not be construed to
represent the sole or, necessarily, the prime basis for selecting materials
technologies for engineering development and engine application. Other
significant factors, which require engineering jUdgment and often playa major
role in program selection priorization, were not included in the Relative
Val ue equati on.

2.8

2.4
Dan Full technology goal

I

0

~'I""" 2.0 Sensitivity technology goal
X
Q) 1.6
~-m
> 1.2
Q)

>.+i
m 0.8-Q)

a:
0.4

1 2 3 4 5a 5b 6

1. Dual Property High Pressure Turbine Disk
2. Thermal Barrier Coated Airfoils
3. Fabricated High Pressure Turbine Vanes
4. Engine/Nacelle Low Temperature Composites

5a. High Strength, Low a Cast, Diffuser Case
5b. High Strength, Low Q! Cast, Turbine Exhaust Case
6. Silicon Carbide Reinforced Glass Ceramic

Static Turbine Components

Figure 1
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The most significant benefits in terms of Relative Value were obtained for
three materials listed below:

• Thermal Barrier Coated Airfoils
• Dual Property Advanced Disk
• Engine/Nacelle Low Temperature Composites

Projected economic benefits independent of the probability of success and
development cost were also noted for Silicon Carbide-Reinforced Glass Ceramic
turbine seals, low turbine airfoils and burner segments. Economic benefits
expressed in terms of "Return on Investment" are compared in Figure 2.

en....
c:.-
0 0.6

DQ. Full technology goal
l.... 0.5 E(}j Sensitivity technology goalc:

Q)

E 0.4....en
Q)

> 0.3c:.-
c:
0 0.2
c:...
:;:,.... 0.1Q)

a:

<I 0
1 2 3 4 5a 5b 6

1. Dual Property High Pressure Turbine Disk 5a. High Strength, Low a Cast, Diffuser Case
2. Thermal Barrier Coated Airfoils 5b. High Strength, Low a Cast, Turbine Exhaust Case
3. Fabricated High Pressure Turbine Vanes 6. Silicon Carbide Reinforced Glass Ceramic
4. Engine/Nacelle Low Temperature Composites Static Turbine Components

Figure 2 Comparison of Advanced Materials Technologies on the Basis of

WReturn on InvestmentW Parameter
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INTRODUCTION

NASA and industry have recognized the need to investigate and evaluate
advanced materials technologies for improved commercial transport engines of
the 1980's. Because of concern for the efficient use of our petroleum
resources, applications which wil I make the propulsion system more energy
efficient have been given high priority. Also, environmental considerations
dictate that the propulsion system be clean and quiet. At the same time, it
has been recognized that it is extremely important to thoroughly understand
the economic impact on the airlines resulting from these increased energy and
environmental constraints.

To help fulfil I these needs in the area of materials technology, NASA
conceived the MATE (Materials for Advanced Turbine Engine) Program, a
cooperative effort with industry, to accelerate the introduction of new
materials technologies into advanced aircraft turbine engines. Prior to the
initiation of the MATE program, NASA sponsored Pratt &Whitney Aircraft in the
"Cost/Benefit Study of Advanced Materials Technologies for Aircraft Turbine
Engines' program as reported in NASA CR-134701 (Reference 1). Under that
earlier study, Pratt &Whitney Aircraft developed the methodology for
calculating the cost/benefits and relative values of new materials technology
programs. Cost/benefits were established for twelve advanced materials
technologies in that study and subsequently six additional materials
technologies in the follow-on cost/benefit study reported in NASA CR-135107
(Reference 2). The technologies evaluated applied to fan blades and cases,
compressor and turbine disks, burner liners and turbine blades, vanes and
outer airseal/blade tip treatment systems in engines for aircraft of the
1980's. A recent, brief cost/benefit study has demonstrated the potential of
erosion resistant coatings on compressor stators and of turbine vane
fabrication methods. The results of these studies provided input to select the
programs being pursued in the MATE effort.

6



NASA and Pratt &Whitney Aircraft have'recognized the need for periodic
updating of the cost/benefit studies during the performance of the MATE
program. As a result, the study program summarized in this report has again
established costs and benefits for several advanced materials technologies as
applied to specific components of an early 1990's technology turbofan engine
and a current turbofan engine in representative advanced commercial transport
aircraft.

STUDY APPROACH

Advanced materials technologies selected for this study are shown in Table 2.
These materials technologies were chosen because of their anticipated
potential benefits in the engine/aircraft application with particular emphasis
on their potential effects in reducing engine fuel consumption. Materials
which will offer significant benefits in combination with reasonable
development cost and risk will continue to be considered for incorporation in
the NASA MATE effort.

TABLE 2

SELECTED ADVANCED MATERIALS TECHNOLOGIES

• Dual Property Advanced Disk
• Thermal Barrier Coated Airfoils
• Advanced Fabricated High Pressure Turbine Vane Cluster
• Engine/Nacelle Low Temperature Composites
• High Strength, Low Expansion, Cast Cases
• Silicon-Carbide Reinforced Glass Ceramic

7



BENEFIT ANALYSIS

The materials technology cost/benefit study approach is shown schematically in
Figure 3. First, material property projections and goals were established for
the specified technologies. For each material, two levels of properties were
defined based on success-oriented (full) and less optimistic (sensitivity)
goals. These goal vari ati ons permitted a determinati on of cost/benefit
sensitivities in case the developllental phases for each technology were not
successful in achieving the expected full goals. The defined goals were then
used to estimate the materi al technology's developllent program risk and cost.
Technology developllent costs were based on defined program plans and represent
the funding estimated to bring a materi al from its present status through one
engine demonstration test and post-test materials analysis. Costs to run the
engine or general and administrative costs and fee were not included in these
estimates. Technology risk (probability of success) assessments were performed
on a uniform basis using a qualitative analytical procedure developed for this
purpose. The procedure assigned varying degrees of risk for each of several
factors as described in Table 3•

./TECHNOLOGY DEVELOPMENT COST

MATERIAL / .~ TECHNOLOGY DEVELOPMENT RISK
TECHNOLOGY -

PROJECTION ""

EFFECT EFFECT I - - - - - - - ..,
ON ON IAIRPLANE OVERALL I

ENGINE ~OVERALL-----I ANALYSIS ........ SYSTEM I
COMI"ONENT ENGINE L _ _ _ _1~A.5..T...J
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TABLE 3

TECHNOLOGY DEVELOPMENT RISK ASSESSMENT FACTORS

Degree of Risk

A B C

Primary Factors

1. Nature of Materi al Traditi onal Advanced Revo1uti onary

2. Design Approach/Application of Traditi ona1 Advanced Revol uti onary

Materi al

3. Current Status of Materi al Producti on Canponent Laboratory

Feasibility Feasi bility Feasibility

Secondary Factors

4. Number of Alternative Approaches 3 or More 2 1

for Application/Opportunities of

Incremental Success for Materi al

5. Required Technology Incorpora- 7 5 3

ti on Date of Materi al (Years)

6. Critical Nature of Canponent to Stati c-Low Stati c-H i gh Rotati ng

Whi ch Materi al is Applied Stress Stress

9



The degrees of risk for each factor were combined quantitatively to determine
an overall probability of success for each technology. In addition to cost and
risk, the property projections and goals were used to estimate the impact of
the technology on the engine component to which it was applied and, then, on
the overall engine. Overall engine effects, in terms of changes in
performance, weight, price, geometry and maintenance cost, were inputs into
the benefit analysis. The benefit analysis first determined the impact of the
engine effects on the airplane and then on the overall system. These analyses
utilized previously developed trade factors that reflect simulations of the
pertinent aircraft/economic system. The results of the benefit analysis were
expressed as changes in Return on Investment (~ROI), Direct Operating Cost
(~DOC), Life Cycle Cost (~LCC), and Present Worth (~PW). The ~ROI benefit
analysis result was then combined with the technology development cost and
risk to determine a Relative Value parameter. Finally, a recommended ranking
of the material technology was made based primarily on Relative Value.

The terms used in these benefit studies are defined as follows:

~ ROI:

~OOC:

~LCC:

10

the change in return on investment in an aircraft - ROI is
proportional to profit divided by investment; a change in profit
is due to changes in operating costs for a fixed revenue;
investment includes purchase price plus spares. (A positive
value is desired.)

the change in total direct operating cost - includes costs
associated with crew, aircraft/engine maintenance, fuel,
aircraft insurance, depreciation, burden. (A negative value is
desired.)

the change in the total operating cost of the aircraft over its
economic life - includes both direct and indirect operating
costs (IOC) and purchase price. (IOC is not affected by advanced
materials application.) (A negative value is desired.)



A PW:

Rel ati ve
Val ue

NOTES: (1)

(2)

the change in net present value of all initial and future cash
savings attributable to an advanced materials technology over
the economic life of the total aircraft system; same year
introduction for all technologies. (A positive value is desired.)

this is the primary cost/benefit ranking parameter; it equals the
benefit in terms of AROI times probability of success divided
by development cost.

Other abbreviations and s}1l1bols used in this report are defined

on page 42.

More details on the methodology used in this study are given in
NASA CR-134701, Reference 1.

Base Engines/Airplane

The base engines for the study are the Energy Efficient Engine (EEE), and the
JT9D-7A. The former, the STF505M-7E, is the flight propulsion system design
being utilized in the NASA Energy Efficient Engine Component Development and
Integration Program, Contract No. NAS3-206646. The parameters for both engines
are summarized in Table 4 and cross sections of the engines are shown in
Figures 4 and 5.

11
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TABLE 4

EEE TURBOFAN ENGINE PARAMETERS

Base Size
Thr ust - N (Lb.) *
Inlet Airflow (Corrected) - kg/sec (lb/sec)

Naninal Cycle
Fan Pressure Ratio
Bypass Rati 0

Overall Pressure Rati 0

Max. Canbustor Exit Temperature °c (oF)

Max. Cruise TSFC - kg/hr/N (lb/hr/lb)**

Weight and Dimensions
Base Engine Weight - kg (lb)
Fan Tip Diameter - m (in.)
Overall Length - m (in.)

Energy Efficient
Engi ne

161,240 (36,180)
623 (1373)

1. 74
6.51
38.6
1435 (2615)

0.0560 (0.550)

3640 (8025)
2.07 (81.35)
3.22 (126.36)

JT9D-7A

201,483 (45,210)
705 (1554)

1.57
5.13
24.7
1348 (2458)

0.0668 (0.656)

3960 (8730)

2.47 (96.98)
3.91 (153.58)

*Sea Level Takeoff 28.90C (84oF) ambient temperature

**10.6 km (35,000 ft.), 0.8 Mn. Standard day with custaner air bleed and power
extracti on.

An advanced domestic tri-jet was selected as the base airplane for the study.
The study definition airplane is from the Energy Efficient Engine Program.

Aircraft characteristics included high aspect ratio wings, supercritical
aerodynamics and advanced lightweight composite structures technology. This

aircraft and econanic system were exercised under the ground rules presented
in Table 5. The aircraft was sized for the design payload and range, but the
economic analysis was conducted for the typical mission payload and range.

14



TABLE 5

AIRCRAFT/ECONOMIC PARAMETERS FOR TURBOFAN EVALUATION

Energy Efficient
Engi ne JT9D-7A

Design Cruise Mach Number 0.80 0.80
Design Range - km (n. mi.) 5560 (3000) 5560 (3000)
Average Range - km (n. mi.) 1300 (700) 1300 (700)
Design Number of Passengers 440 440

Number of Engines 3 3
Takeoff Gross Weight - kg (1 b) 23,000 (510,000) 24,500 (545,000)
Load Factor - % 55 55
Economic Life - Years 15 15
Operation Hours per Year - hrs. 3580 3580
Hours per Average Flight - hrs. 2.01 2.01

Base Return on Investment - % 11.6 11.6
Fuel Cost - $/liter ($/gal.) 0.40 (1. 50) 0.40 (1. 50)

Debt Factor 0 0
Inf1at i on Rat e - % 10 10
Discounting Rate - % 10 10
Discounting Period - Years 15 15

ADVANCED MATERIALS TECHNOLOGIES

Six advanced materials technologies were evaluated by assessing the impact of
each technology on either the base Energy Efficient Engine or the base JT9D-7A
in an advanced domestic trijet, operating in accordance with the ground rules
listed in the preceding section. As previously stated, the advanced
technologies considered were:

15



• Dual Property Advanced Disk
• Thermal Barrier Coated Airfoils
• Advanced Fabri cated Hi gh Pressure Turbi ne Vane Cl uster
• Engi ne/N ace 11 e Low Temperature Canposites
• Hi gh Strength, Low Expansi on, Cast Cases
, Silicon Carbide-Reinforced Glass Ceramic Static Turbine Canponents

A brief description of these advanced technologies fol lows:

Dual Property Advanced Disk -- A high strength superalloy high pressure
turbine disk concept that features a high stress-rupture strength material rim
bonded to a high fatigue and tensile strength material bore. The fabrication
approach of the dual property disk configuration will utilize current powder
metallurgy and hot isostatic processing technology.

Thermal Barrier Coated Airfoils -- An extension of current thermal barrier
coating technology, with an expanded application from combustors and
augmentors to cooled turbine blade and vane platforms and airfoil surfaces.
This technology wi II provide additional reduced cooling benefits for turbine
airfoils and offers significantly improved coating spall resistance through
the application of the principles of ceramic structure control to
zirconia-based ceramic systems.

Advanced Fabricated High Pressure Turbine Vane Cluster -- A fabrication
approach to the economical use of advanced material high pressure turbine
vanes which have increased temperature capability over conventional alloys.
The proposed fabrication concept encompasses the attachment, either
mechanically or metallurgically, of conventional alloy platforms, clustered to
minimize leakage, to single crystal airfoils. In addition to allowing a much
simplified airfoil detail design, this concept also has the potential to al low
vane repair through airfoil replacement and/or platform repair or replacement.

16



Engine/Nacelle Low Temperature Composites -- An application of composite
material and manufacturing technology to major nacelle/engine system
components to achieve performance benefits and weight savings. Proposed is
the use of graphite/polyimide material for acoustic, aerodynamic and
structural application.

High Strength, Low Expansion, Cast Cases -- An al loy extending the 6490 C
(1200oF) mechanical properties and oxidation/corrosion resistance of Inconel
718 to 7040C (1300oF) was studied for use in advanced engine major cases
and structure. The alloy that combines these high strength/high temperature
properties with low thermal expansion coefficient provides not only structure
with improved compatibility of mechanical and thermal stresses but also cases
that contribute to improved tip clearance control~

Silicon Carbide - Reinforced Glass Ceramic -- A type of advanced fiber
reinforced glass matrix composite that provides a wide variety of unique
properties. Specifically, the silicon carbide fiber system has demonstrated a
combination of high strength properties and oxidation resistance. Despite the
early development status of this materials technology it promises extensive
hot section application in advanced engines and at a significant weight saving.

The baseline for comparing these advanced technologies was assumed to be those
technologies that exist in the Pratt &Whitney Aircraft Energy Efficient
Engine, a 161,240 N (36,180 lb) thrust engine and in the JT9D-7A, a 201,480 N
(45,000 lbs) engine, both assessed for use in an advanced domestic trijet.
Therefore, the dual property advanced disk was compared to MERL 80
(nickel-based powder metal disk); the thermal barrier coated airfoils to
NiCoCrA1Y coating; the advanced fabricated high pressure turbine vane cluster
(single crystal alloy airfoil, PWA 647 (Mar-M-509) platform) to a
conventionally cast PWA 647 vane; the engine/nacelle low temperature
composites to aluminum/titanium systems; the high strength, low expansion,
cast cases to Inconel 718 and AMS 5616 cases; and the silicon
carbide-reinforced glass ceramic to PWA 1455 (B1900 + Hf) combustor segments,

17



PWA 655 (Inconel 713C) outer airseal and PWA 655 and MERL 220 (specially heat
treatable nickel alloy) low turbine vanes. All advanced materials technologies
except the advanced fabri cated vane cl uster and the hi gh strength, low
expansion, cast turbine exhaust case use technologies that exist in the Energy
Efficient Engine as the basis for comparison.

ADVANCED MATERIALS TECHNOLOGY PROJECTED GOALS

Specific full target goals and sensitivity analysis goals were established for
each of the advanced materials technologies under consideration. These goals

were based on applying historical developmental experience to projections of
current state-of-the-art technology. Projected goals for each technology are
summarized in Tables 6 through 11. The percentages and numbers given first are
full target goals; the sensitivity (less optimistic) goals are shown in
parentheses.

TABLE 6

DUAL PROPERTY ADVANCED DISK TECHNOLOGY
(Energy Efficient Engine Application)

Proj ected Goal s:

+20% bore LCF strength

• +5% yield &U.T.S.
+5% (-10%) rim stress rupture strength

• HIP process cost 2.0X > MERL 80

• Fi nished disk cost +5% > MERL 80

Estimated Development Cost:

} at +100oF vs. MERL 80

Probability of Success:

• $1,600,000

18
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TABLE 7

THERMAL BARRIER COATED AIRFOILS TECHNOLOGY
(Energy Efficient Engine Application)

Proj ected Goal s:

• 0.015 in. (0.005 in.) coating thickness
• Insul ati ve capabil ity +200oF > NiCoCrA lY
• Coating cost 1.5X to 2.0X > NiCoCrA1Y
• Average coated airfoil cost +5% NiCoCrA lY

Estimated DeveloJll1ent Cost: Probability of Success:

• $1,500,000

TABLE 8

• 5~

ADVANCED FABRICATED HIGH PRESSURE TURBINE VANE CLUSTER TECHNOLOGY
(JT9D-7A Application)

Proj ected Goal s:

•
+100% thermal fatigue strength 1
+2500F coated oxidation resistance
+100oF creep strength

vs. PWA 647/PWA 27

• Cl ustered vane set cost ~ (25%) > PWA 647 si ngl e vane set cost

Estimated DeveloJll1ent Cost: Probability of Success:

• $2,000,000 • 50%
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TABLE 9

ENGINE/NACELLE LOW TEMPERATURE COMPOSITES
(Energy Efficient Engine Application)

Proj ected Goal s:

• Total component wei ght 100 1bs < al Lminum/titani um systems
• Temperature capability to 5000F
• Total component cost 0% (lO%) > al uminum/titani urn systems

Estimated Developnent Cost: Probability of Success:

• $2,000,000

TABLE 10

• 50%

HIGH STRENGTH, LOW EXPANSION, CAST CASES TECHNOLOGY
(Diffuser Case: Energy Efficient Engine Application)

(Turbine Exhaust Case: JT9D-7A Application)

Proj ected Goal s:

• Mechanical properties of Inco 718 12000F extended to 13000F

• Oxidation/corrosion resistance to 13000 F

• 40% (20%) reduction in modulus X thermal expansion coefficient

• Finished diffuser case cost 5% > Inco 718;

• Finished turbine exhaust case cost 85% > AMS 5616 (Greek Ascoloy).

Estimated Developnent Cost: Probability of Success:

• $2,000,000
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TABLE 11

SILICON CARBIDE - REINFORCED GLASS CERAMIC TECHNOLOGY
(Energy Efficient Engine Application)

Proj ected Goal s:

•

•

o1800 F temperature capability

Total component weight 180 lbs < nickel-base alloys

• Finished parts cost 25% (60%) > PWA 1455, PWA 655, MERL 220 finished
part costs

Estimated Development Cost: Probability of Success:

• $3,500,000 • 25%

TECHNOLOGY DEVELOPMENT COST AND RISK ASSESSMENT

Based on the established goals, development costs and probability of success
were estimated for each materials technology. Development costs were defined
as all costs required to take the technology item from its present status
through rig test and one engine demonstration test. Costs to run the engine
were not considered. Probability of success was based on a risk analysis that
was conducted for each technology. It quantifies, in percentage, the
likelihood of achieving the technology goals. The development cost and
probability of success values were considered the same for both full and
sensitivity analysis results, since both the cost and risk analyses
essentially address mean values of the two levels of property projections and
goals. Resulting values of these parameters for the technologies under
investigation are included in Tables 6 through 11.

Risk assessment methodology details are described in Table 2 of NASA
Cr-134701, Reference 1. Risk assesment results for the current study are given
in Table 12.
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TABLE 12

TECHNOLOGY DEVELOPMENT RISK ASSESSMENT SUMMARY

Materi al Technology Risk Factors Prob. of
(as defined in Table 2) Success

1 2 3 4 5 6 %

Dual Property Advanced Disk B B C B B C 50

Thermal Barrier Coated Airfoils B C C A B C 50

Advanced Fabricated High Pressure Turbine B C C B B B 50
Vane Cl uster

Engi ne/N ace 11 e Low Temperature Canposites B B C B A A 50

High Strength, Low Expansion Cast Cases B B C C B B 50

Si1 icon Carbide Reinforced Glass Ceramic C C C A A B 25

TECHNOLOGY COMPARISON STUDY APPROACH

The base engines for this study are the Energy Efficient Engine, a 1984 start
of-development advanced technology engine, and the JT9D-7A, a current
production engine. The benefit of each advanced materials technology was
determined by substituting it for the base engine current materials. The
application of the full goal level technology to the base engine was done
assuming that technology is the critical or limiting technology. The effects
on the engine components were then determined. Overall engine effects were
subsequently established based on these component changes. These benefits were
then used to establish aircraft system economic parameters.

An identical approach was used for the reduced technology level sensitivity
analysis goals. Results were then compared to full goals for each materials
technology .
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TECHNOLOGY IMPACT ON COMPONENTS/ENGINE

Following the approach outlined above, the impact of each advanced technology
item as a component and the engine was established. Table 13 summarizes these
impacts for the full materials technology goals, with sensitivity analysis
results presented in parentheses.

TABLE 13

IMPACT OF ADVANCED MATERIAL TECHNOLOGY ON EEE OR JT9D

PERFORMANCE, WEIGHT, COST AND DIMENSIONS

Perfonnance A Engine A Engine Mii ntenince AEngine

Materials (TSFC) Wei ght Price Cost Length

Applicition Technology Percent Percent Percent $/OP. HR. Percent

:j:
-I{).81(+1.20)A DUi 1 Property -0.9(-0.9) +1.10(+1.17) -0.56(-0.49) +3.09(+3.09)

Advanced Disk

A Thermal Barri er -2.1(-1.8) -2.2( -1.22) -I{).22(-I{).59) -1.36( -0. 64) +0. 95( +1. 58)

Coated Ai rfoil s

B Advanced Fabri- -0.2(-0.1) o (0) -I{).59( -I{). 95) -0.15(+1.80) o (0)

cated High Pres-

sure Turbine Vane

Cl uster

A Engi ne/N ace 11 e -0.5(-0.5) -1.25( -1.25)* o (-I{).22) o (-0.05) o (0)

Low Temperi-

ture Composites

A High Strength, -0.08(-0.06) -0.19(-0.19) -I{).15(-I{).15) -0. 56( -0. 56) o (0)

Low a Cist

Diffuser Cas e

B High Strength, -0.2(-0.1) -I{).46(-I{).46) +1.83( +1.83) -I{).20(-I{).20) o (0)

Low a Cist

Turbi ne Exhaust

Cise

A Sil icon Carb- -1.1( -1.1) -2.2(-2.2) +2. 34( +4.17) -I{).27(+2.18) +3.09(3.09)
i de-R ei nf or ced

Gl iSS Cerimi c

NOTES :j: Sensitivity study goal results are shown in parentheses

0 A decrease in any parillleter is i benefit.

* -0.92(-0.92) based on engine + nicelle weight

A Energy Effi ci ent Engi ne

B JT9D-7 A
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MATE materials technologies, offering improved properties, permit cycle
changes that result in increased high spool rotor speed and/or increased
compressor or combustor discharge temperature relative to the Energy Efficient
Engine base. Cycle sensitivity studies were conducted which showed that the
maximum potential for improved cycle performance is associated with increased
cycle pressure ratio rather than increased combustor exit temperature. This
becomes most apparent when the effects on component performance of scaling the
engi nes to constant thrust are accounted for. The effects of a cycl e pressure
ratio increase on the benefits of the advanced technologies are given in
detail in the following paragraphs.

(1) Dual Property Advanced Disk -- (Figure 6)

When the proposed advanced disk replaces the current technology MERL 80 disk
in the Energy Efficient Engine single stage high pressure turbine (HPT) an
increase in cycle pressure ratio to 45:1 from the base engine level of 38.6:1
was used. Small cycle pressure ratio increases beyond 45:1 could have been
assumed without exceeding the property targets of the advanced material but
the increasingly smaller blades of the high compressor rear stages would
create significant efficiency penalties •• The increased compressor discharge
temperature that accompanies the increased cycle pressure ratio dictated
increased airfoil coolant flows, hence some high pressure turbine efficiency
penalty and increased blade cooling dilution effect. The impact of the cooling
airflow increase diminished but does not, however, counteract the cycle
pressure ratio benefit.

The increased cycle pressure ratio, accomplished by supercharging the low
pressure compressor, increases primary airflow which, for the same fan
di ameter and fan pressure rati 0, decreases bypass rati o. The i ncreased primary
airflow results in increased primary jet velocity, hence increased jet noise
and mixing losses. Increasing fan size (bypass ratio), returning the primary
jet velocity to the base engine level, overcomes these deficiencies in the
advanced technology engine but the resultant total airflow increase causes the
cruise thrust to be excessi vee The enti re engi ne is therefore scal ed down at
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constant bypass ratio to the base engine cruise thrust t since t to maintain
aircraft systems consistencYt the engine must be sized to the same cruise
thrust.

As indicated above t the increased cycle pressure ratio had a beneficial effect
in lowering fuel consumption; it had the opposite effect on engine weight. At
the full goal condition the weight reduction derived from the smaller primary
stream size was more than offset by the weight increases of an additional low
pressure compressor stage t longer inter-turbine transition duct and a longer t
larger diameter low pressure turbine. The net weight increase was more
pronounced at the sensitivity goal level because of rim width increase
reflecting a loss of critical properties. The engine price is the result of
balancing the increased processing cost of the two-powder HIP concept vs. the
cost decrease associated with a smaller engine. Engine maintenance costs t
assuming no change to high pressure turbine design life t were reduced by the
sma11 er engi ne •

Figure 6

(A)

RIM ATTACHMENT
(CREEP, STRESS RUPTURE)

RIM COOLING HOLE
(NOTCHED LCF)

BORE
-*"- (TENS ILE STRENGTH,

SMOOTH LCF)

Dual Property Advanced Disk

(A) Property Requirement vs. Location

(B) Enlarged View of Proposed Joint Location

(B)
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(2) Thermal Barrier Coated Airfoils -- (Figure 7)

Adding thermal barrier coating to the single stage high pressure turbine vane
and blade airfoils of the base Energy Efficient Engine adds an insulative
capability not available before. To realize the maximum potential performance
benefit for this technology at the full goal level, the cycle pressure ratio
was increased to 45:1 and the cooling airflow reduced to match the airfoil and
coating lives of the base engine. Although a greater increase in cycle
pressure ratio (smaller cooling airflow reduction) is possible with this
technology, 45:1 was seen as a practical limit for the reason stated in the
advanced disk discussion. As a result of the reduced cooling airflow, high
pressure turbine efficiency was improved and since combustor exit temperature
has been held constant, there was a decrease in the blade and vane cooling
dil uti on effect and an increase in hi gh pressure turbi ne exit temperature.

The efficiency improvement and decrease in dilution effect when added to the
increased cycle pressure ratio resulted in substantially more energy being
available in the engine primary gas stream. Like the disk technology above,
but to a greater degree, application of the thermal barrier coating technology
resulted in a smaller core engine (higher bypass ratio). Unlike the disk
technology, a net weight reduction was realized. The sensitivity goal level,
reflecting reduced insulative capability (reduced coating thickness), required
increased cooling airflow but retained the increased cycle pressure ratio.
Measurable fuel consumption savings and weight savings resulted from these
less optimistic goal levels. The cost increase of the higher cycle pressure
ratio exactly offset the cost decrease of the smaller core, constant thrust
engine; the reported price increase recognizes the cost of the coating and the
labor to apply it. Maintenance costs, reflecting the base engine scrap lives
and strip/recoat frequency, are decreased due to the substantial effect of
scaling to constant cruise thrust.
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(3) Advanced Fabricated High Pressure Turbine Vane Cluster -- (Figure 8)

Substituti ng cl ustered fabri cated vanes f or con venti ona11 y cast PWA 647 vanes

results in cost/benefit factors which are influenced most heavily by raw

material, processing, and maintenance costs in addition to sane modest

performance improvement. The JT9D-7A was selected as the base engine for this

advanced technology that highlights the performance advantage of clustered

vane sets. The 66 vane cascade of the -7A allows the clustering of 3 vanes (22

clusters) within a small circumferential arc (160
). To cluster the 24 vanes

of the Energy Efficient Engine into 2 vanes per cluster encompasses 300 of

arc, introducing potenti all y hi gh pl atf orm stresses. The full technology goal

concept, the use of a soft braze to bond the 3 si ngl e cyrstal vanes to si ngl e

PWA 647 inner and outer platforms introduces, at the present time, a

measurable price increase. The fabrication cost of even a simple single

crystal airfoil exceeds the current raw material cost of cobalt-rich PWA 647;

the projected increasing cobalt cost trend and the decreasing cost of single

crystal airfoils to be expected with continued process developnent should

ul ti matel y el imi nate the cost difference.

The processing cost impact of the single crystal airfoil works to counter

beneficial maintenance cost factors (i.e. independent platform life,

simplified strip and recoat, etc.) resulting in modest maintenance cost

savings at the full goal condition. A small performance improvement is

realized from reducing inter-platform leakage and from reducing airfoil

cooling airflow (increased temperature capability single crystal material).

The inability to develop an acceptable soft braze procedure, resorting instead

to a permanent airfoil-to-platform bond eliminated the economical, individual

vane replacement technique. The sensitivity goal level is therefore based on a

configuration of 66 individual vanes with single crystal airfoils permanently

bonded to PWA 647 platforms.
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Figure 8 Advanced Fabricated High Turbine Vane Cluster Schematic

Representation of TWo Basic Design Approaches

(4) Engine/Nacelle Low Temperature Composites -- (Figure 9)

The substitution of a fiber-reinforced polyimide composite system for the
aluminum/titanium system in the structural core cowl of the Energy Efficient
Engine resulted in performance and weight savings. Composite materials used in
the core cowl created an increased stiffness component compared to the current
aluminum construction, thereby reducing engine ovalization and backbone
bending through improved core cowl load sharing. Increased concentricity
between rotating and stationary components and decreased case deflections will
lead to improved blade tip clearances and improved thrust specific fuel
consumption.

A weight reduction recognizing both the low density of the composite system
and some influence of load sharing on engine backbone weight has been
identified. Further study, optimizing the cowl load sharing capability of a
composite of 2 to 3 times the metallic system stiffness, would reveal
additional weight saving from the engine backbone. Further study is also
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needed to establish a clearer component cost picture. The study would give
attention to su~h things as fabrication to near net shape and, most
importantly, reduction of labor intensive operations in the manufacturing
process. The attainment of full goal level benefits were measured solely by
the ability to produce the composite core cowl at no cost increase over the
aluminum/titanium component it replaces. The sensitivity goal level recognized
a 10% component cost increase (.22% engine price increase). Maintenance cost
trends followed the engine price trends and for the same reason.

The introduction of a composite core cowl to the Energy Efficient Engine
created weight, cost, and maintenance cost impacts on aircraft economics that
were modest when compared to the performance impact. Load sharing, a feature
unique to the core cowl, was the most significant benefit. Potential for
greater economic benefits exists through the use fiber-reinforced composite
systems. Figure 9 identifies some of the many engine and nacelle locations
where composites can result in a weight reduction of approximately 600 pounds.

~PROPOSED APPLICATION
_ OTHER APPLICATIONS

-TAILPIPE
GRAPHITE/POLYIMIDE

~FAN DUCT CORE COWL
AND BIFURCATION
GRAPHITE/POLYIMIDE

-FAN EXIT CASE
GRAPH ITE/ EPO XY

-FAN CASE
GRAPHITE/EPOXY

-INNER BARREL
KEVLAR~ GRAPHITE
HYBRID/EPOXY

Figure 9 Engine/Nacelle Low Temperature Composites-Energy Efficient

Engine Applications
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(5) High Strength Low Expansi on Cast Cases -- (Figure 10)

The use of such a material to replace Inco 718 in the Energy Efficient Engine
diffuser case and AMS 5616 in the JT9D-7A turbine exhaust case was to improve
the compatibility between thermal and mechanical stresses within the cases and
to improve blade tip clearances in nearby stages. The key to accomplishing
both objectives was to incorporate in the advanced technology material high
strength combined with low coefficient of thermal expansion; the JT9D-7A
turbine exhaust case application, in particular, benefits from these
properti es •

Figure 10 High Strength, Low Expansion Cast Cases - Energy Efficient

Engine Diffuser Case

The full goal level property target for this technology is to attain a 40%
reducti on in the product of the modul us of el asti city and the coeffi ci ent of
thermal expansion. A material with this characteristic creates reduced tip
clearances in the Energy Efficient Engine high pressure compressor rear stages
and in all stages of the JT9D-7A low pressure turbine. The extent of the
clearance benefits to performance, however, was small. The sensitivity goal
level, relying on only 20% reduction, of course, produced even smaller
performance benefits.
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The diffuser case, being of cast Inconel 718 in the current Energy Efficient

Engine, experienced a modest weight decrease due to increased strength in all

case elements. An equally modest cost increase accompanied the corresponding

raw materi al cost increase. The JT9D-7A turbi ne exhaust case is wel ded and

mechanically assembled of AMS 5616. The weight increase of the proposed case

came exclusively frOOl casting the mounting flanges. The raw material cost

increase, the penalty that must be accepted to gain stiffness and thermal vs.

mechanical stress cOOlpatibility, overshadowed the casting cost decrease.

(6) Sil icon Carbide Reinforced Glass Ceramic -- (Figure 11)

The high specific strength fiber reinforced, glass ceramic technology

represents an alternative approach to the fabrication of Energy Efficient

Engine critical parts. The use of this 18000F temperature capability

materi al to replace nickel-base alloys created not only a measurable wei ght

reduction but, if it is assumed that combustor segments are the limiting area

of the engi ne, it al so introduced the opti on to increase the cycle pressure

ratio. Increasing the cycle pressure ratio to 45:1 produced results similar to

those noted for the dual property disk'technology. As ai rfoil cool ant flow

increased, a high pressure turbine efficiency penalty was imposed and the

increased cooling air dilution resulted in a decrease of high pressure turbine

exit temperature. These effects were counteracted, however, by the cycl e .

pressure ratio benefit.

As indicated above, a substantial weight reduction occurred with the

substitution of the fiber reinforced glass matrix cOOlposites; the density of

the composite is one-third that of the critical materials it replaced. The

density effect on weight cOOlbined with the offsetting effects of cycle

pressure ratio weight increase and constant cruise thrust scaling weight

decrease resulted in a beneficial net weight reduction.
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Figure 11

_---r- COOLANT INLET
HOLES

~~~r----=:::~~~COOLANT CHANNELS
/'~,

Silicon Carbide-Reinforced Glass Ceramic-Energy Efficient Engine

Combuster Segment

The early development status of fiber-reinforced glass ceramic technology

makes estimating costs difficult. Because of this uncertai nty the goal level

criterion must be based on costs, hence engine price. The magnitude of the

full goal level price reflected the projected minimum cost of fabricating the

sel ected hot section el ements pl us the cost increase of cycl e pressure rat i 0

bal anced agai nst the cost decrease deri ved frOO1 scal ing to constant cruise

thrust. The sensitivity goal level price differed only in the estimate of a

more conservative ceramic fabrication cost. Maintenance cost trends followed

the engine price trends and for the same reason.
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The following conrnents are made to highlight the similarities in component and

engi ne impacts that resulted from the greatl y di verse technol ogi es s tudi ed:

Three of six technologies resulted in substantial reductions in fuel

consumpti on due in 1arge part to increased cycle pressure rati o. The hi gher

temperature capabilities of these advanced materials make possible the

increased cycle pressure ratio. Of the three, the thermal barrier coated

airfoils afforded the largest improvement because of the insulative capability

of the coating and the accompanying impacts on hi gh pressure turbi ne

efficiency and cooling airflow dilution discussed earlier. The fuel

consumption benefits of the other two technologies were somewhat less; the

dua 1 property di sk and silicon carbi de-rei nforced gl ass cerami c were debited

due to the increased coolant airflow required by the airfoils having only an

oxidation-resistant coating. The small fuel consumption advantage credited to

the fabricated high pressure turbine vane cluster, the engine/nacelle low

temperature composites, and the high strength, cast case technologies were due

to reduced leakages and/or decreased rotor tip clearances.

Engine weight changes due to technology incorporation were most pronounced

where fuel consumption savings were attained. The weight increase associated

with increased cycle pressure ratio was balanced against the weight decrease

effect of scaling to constant cruise thrust. The silicon carbide-reinforced

glass ceramic has, in addition to the above weight change effect, a clear

weight reduction due to its 10// density. The potential use of low temperature

composite in the core cowl application provides opportunity for asfgnificant--

weight reduction.

Engine prices associated with the technologies studied were higher than for

current technology engi nes either because the advanced technology components

have a greater initial cost or because there were cost penalties associated

with increased cycle pressure ratio. Also, technol ogi es with sensiti vity cost

goals that were much higher than the cost of current technology resulted in

significant engine price penalties, e.g., the silicon carbide reinforced glass

cercrni c, and the f abri cated hi gh pressure turbi ne vane cl uster.
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In general, engine maintenance cost trends followed engine price trends and
for the same reasons. The fabricated vane technology was the exception.
Greatly reduced maintenance cost resulted from the individual replacement of
airfoil or platform, the platform increased scrap life, and the ease of strip
and recoat.

Table 13 shows that there are engine length increases associated with those
technologies that use cycle pressure ratio increases as the major performance
improvement method. The lengths were increased to accommodate the added low
pressure compressor stage, the longer inter-turbine transition duct and the
longer, larger diameter low pressure turbine. The lengths were decreased in
proportion to the smaller engine diametral scaling.

AIRCRAFT BENEFIT ANALYSIS RESULTS

The impact of these overall engine effects on the operation of the domestic
trijet base airplane was established and the results are presented in Table 14
for the full materials technology goals, with the sensitivity results shown in
parentheses.

The following comments pertain to these results:

The thermal barrier coated airfoils technology showed the best economic
benefit of the technologies studied. This was true for both the full goal and
sensitivity goal levels. The best economic benefits occurred because this
technology had the largest performance and maintenance cost benefits due to
engine size down scaling which also resulted in a significant weight benefit.
The small price increase incurred does little to detract from the otherwise
superior economic picture.

The silicon carbide reinforced glass ceramic technology generally showed the
next largest benefit primarily because of significant performance and weight
reduction benefits due to down scaling. Full goal and sensitivity goal level
price increases, though the largest encountered with any technology, were not
so large as to overshadow the benefit factors.
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Applicition

A

A

B

A

A

B

A

TABLE 14

COST/BENEFIT ANAlYSIS RESULTS FOR ADVANCED MATERIALS

TECHNOLOGY IN EEE/TRIJET AND JT9D/TRIJET AIRPLANES

dLCC dPW

Materiil s dROI dDOC -$ X 103/ _$ ~ 103/

Technology - poi nts ~ engi ne engi ne

of
DUi1 Property -t{).20 (-t{).18) -0.56 (-0.53) - 99 (- 94) +183 (+170)

Advanced Disk

Thermal Birri er +0.65 (-t{).52) -1.73 (-1.40) -309 (-256) +633 (+500)

COited Ai rfoil s

Advinced Fibricited -t{).05 (-0.015) -0.15 (-t{).05) - 26 (+ 7) +47(-23)

Hi9h Pressure Turbine

Vine Cluster

Engi ne/N ace 11 e Low +0.17 (-t{).I7) -0.44 (-0.43) - 82 (- 81) +168 (+164)

Temperiture

Composites

High Strength, Low +0.04 (-t{).03) -0.10 (-0.08) - 18 (- 15) + 33 (+ 30)

a Cast Diffuser Cise

High Strength, Low +0.02 (-0.01) -0.08 (0) - 14 (+ 1) + 7 (+ 22)

a Cast Turbi ne

Exhiust Cise

Sil icon Cirbide- +0.29 (-t{).24) -0.79 (-0.64) -147 (-123) +273 (+203)
Rei nforced

Gl iSS Cerimi c

NOTES * Sensitivity study goal results are shown in pirentheses following full miteriils technology

gOil results

o An i ncreise inc. ROI ind C. PW is i benefit, whil e i decrease in

c. DOC ind C. LCC is a benefit.

A Energy Efficient Engine
B JT90-7~
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The dual property high turbine disk and the engine/nacelle low temperature
compos i tes were the next most benefi ci al technol ogi es, but for somewhat
different reasons. The significant perfonnance improvement displayed by the
disk technology more than offsets weight and price increases. A measureable
perfonnance improvement combined with a weight reduction due to engine down
scaling overshadowed even a sensitivity goal price increase to account for the
composite technology benefit.

A11 other materi al s technol ogi es studi ed had 1imited economi c benefits. The
modest performance improvements that accompanied these technologies were not
sufficient to overcome the economic penalties of price increases, however
small •

It is apparent from Table 14 and from comments above that for most of the
technologies studied the sensitivity goals detracted little from the full goal
economic benefits. Of the two exceptions, the fabricated high pressure turbine
vane cluster and the silicon carbide reinforced glass ceramic technologies,
only the failure to provide an acceptable soft braze, which was the key to a
maintenance cost advantage for the fabricated vane concept, was severe enough
to lower the ranking of that candidate.

RELATIVE VALUE

The economic results discussed above were difficult to compare on a realistic
basis in that they did not consider the relative costs to develop the
technologies or the risk associated with achieving the projected goals. In an
attempt to temper the economic results, a "Relative Value" parameter was
introduced. It is the change in an economic parameter (Do ROI was used here
because it is considered to be the most complete economic parameter)
multiplied by the probability of success, divided by the development cost.
Probability of success was the result of the risk analysis that was conducted
for each study technology. Development cost was the sum of all costs required
to take a technology from its present status through rig test and one engine
demonstration test. The probability of success and development cost factors
were the same for both full and sensitivity analysis results, since both the
cost and risk analyses effectively address mean values of the levels of
property projections and goals.
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Relative Value analysis results are surnnarized in Table 15 for the full

materials technology goals t with the sensitivity analysis results presented in

parentheses.

TABLE 15

RELATIVE VALUE OF ADVANCED MATERIALS TECHNOLOGIES

IN EEE OR JT9D ENGINES FOR DEVELOPMENT COSTS AND

PROMe ILITY OF SUCCESS FACTORS SHOWN

Applicitions Miteriils Technology

Reliti ve

Vil ue
10-5

L1ROI

poi nts

Deve1opment

Cost

$ X 106

Probibil ity

of Success,

percent

A

A

DUil Property

Advinced Disk

Thermi1 eirri er

COited Airfoil s

Advinced Fibri cited

High Pressure Turbine

Vine Cl uster

+0.63 (+0.56)* +0.20 (+0.1~)

+2.25 (+1.73) +0.65 (+0.52)

+0.12 (-0.04) +0.05 (-0.015)

1.60

1. 50

2.00

50

50

50

Requires i decreise

in core di iIIIeter

ind in i ncreise in

length to ichieve

miximlJl1 benefi ts

Requires i decreise

in core di iIIIeter

ind in i ncreise in

length to ichieve

miXimlJl1 benefits

A Engine/Nicelle Low +0.42 (+0.42) +0.17 (+0.17) 2.00 50

Tempenture

Composites

A High Strength, Low +0.10 (+0.08) +0.04 (+0.03) 2.00 50

'" CiSt Diffuser Cise

High Strength, Low +0.05 (+0.05) +0.02 (+0.02) 2.00 50

'" CiSt Turbi ne

Exhiust Cise

A Silicon Cirbide- +0.21 (+0.17) +0.29 (+0.24) 3.50 25 ~equi res i decreise

Rei nf orced in core di iIIIeter

Gl iSS Cenmi c ind in i ncreise in

length to ichieve

miximlJl1 benefits

NOTES of Sensitivity study gOil results ire shown in pirentheses following full miteriils technology gOil results

o An increise in ~elitive Vilue ind L1ROI is i benefit.

A. Energy Efficient Engine

e. JT9D-7A
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The conversion from ~ROI to Relative Value severely reduced the benefit of
the silicon carbide reinforced glass ceramic technology because of the high
development cost and low probability of success of this technology during its
early stage of development. Further advances in this technology will not only
increase its probability of success but introduce other applications thus
enhancing Relative Value in more than one way. No other technology was
affected by the convers ion from ~ ROI to Rel ati ve Val ue.

RANK ING SUMMARY

Table 16 summarizes the position of each technology item for each of the
economic parameters considered. Full goal positions are presented first with
sensitivity analysis positions shown in parentheses.

A final ranking was determined by considering the Relative Value, ~ROI,

~DOC, ~LCC, and D.PW parameter positions for each technology. In this
procedure, Relative Value position was weighed more heavily than the other
economic factors, since it is the primary cost/benefit parameter in this
study. The full and sensitivity goal positions were however, treated equally.
The final recommended ranking of the material technologies (based on their
current state of development) evaluated in this study is given below:

(1) Thermal Barrier Coated Airfoils
(2) Dual Property Advanced Disk
(3) Engine/Nacelle Low Temperature Composites
(4) Sil icon Carbide Reinforced Glass Ceramic
(5) Advanced Fabricated High Pressure Turbine Vane Cluster
(6) High Strength, Low Expansion, Cast Diffuser Case
(7) High Strength, Low Expansion, Cast Turbine Exhaust Case

A surrrnation of the position results in Table 15, weighing the Relative Value
position, led to this final ranking. Contrary to earlier studies where the
Relative Value ranking for most technologies was very different from the
ranking due to the economic parameters, the current study produced only one
ranking change. The silicon carbide reinforced glass ceramic technology was
reduced from a second place to a fourth place rank mainly due to the risk
associated with its early development status.
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TABLE 16

BENEFIT PARAMETER RANKING - POSITION SUMMARY

Relative
Mater; al s Technology Do ROI Do DOC DoLCC DoPW Val ue

Dual property advanced disk 3 (3) 3 (3) 3 (3) 3 (3 ) 2 (2)

Thennal barrier coated airfoils 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

Adv. fabricated high pressure 5 (6) 5 (6) 5 (6) 5 (7) 5 (7)

turbi ne vane cl uster

Engine/nacelle low temperature 4 (4) 4 (4) 4 (4) 4 (4) 3 (3)

ccxnpos i tes

High strength. low a cast 6 (5) 6 (5) 6 (5) 6 (5) 6 (5)

diffuser case

High strength. low acast 7 (7) 7 (7) 7 (7) 7 (6) 7 (6)

turbine exhaust case

Silicon carbide reinforced 2 (2) 2 (2) 2 (2) 2 (2) 4 (4)

glass ceramic
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CONCLUSIONS

(1) Four of six material technologies included in this study showed
significant benefits for the specific engine/airplane combinations
selected.

(2) Technologies resulting in the most significant cost/benefits in terms of
Relative Value were thermal barrier coated airfoils, dual property
advanced disk and engine/nacelle low temperature composites' (Energy
Efficient Engine ).

(3) Sensitivity analyses indicated that, with the exception of the advanced
fabricated high pressure turbine vane cluster technology (JT9D engine),
benefit levels were quite insensitive to reduced goals.

(4) Fuel price emerged as the dominant economic factor in the cost/benefit
analysis of the material technologies studied.
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Brighton, MI 48116
Attn: D. Weaver

Kelsey Hayes
Utica, NY 13503
Attn: M. Ziobro

Kelsey Hayes Co.
Heintz Div.
Front St. and Olney Ave.
Philadelphia, PA 19120
Attn: W. G. Koby
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Ke 1sey Hayes Co.
Heintz Div.
Front St. and Olney Ave.
Philadelphia, PA 19120
Attn: M. Lopacki

Ladish Company
Cudahy, WI 53110
Attn: R. Daykin

Lockheed-California Co.
Dept. 75-4, Bldg. 63
Pl ant A-1
P.O. Box 551
Burbank, CA 91503
Attn: T. Sedjwick

Lockheed-Georgia Co.
Dept. 0/72-79
Marietta, GA 30060
Attn: R. H. Lange

McDonnell-Douglas East
Dept. E452, Bldg 106
P.O. Box 516
St. Louis, MO 63166
Attn: R. A. Garrett

MCIC
Battelle Memorial Inst.
Columbus, OH 43201
Attn: H. Mindlin

Marti n Mari etta
15 N. Windsor Rd.
Arlington Hts
IL 60004
Attn: C. H. Lund

METCO Inc.
1101 Prospect Ave.
Westbury, L.I., NY 11590
Attn: J. Dailey

METCO Inc.
3400 A Oak Cliff Rd.
Atlanta, GA 30340
Attn: C. Lewis
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Nuclear Metals, Inc.
229 Main St.
Concord, MA 01742
Attn: P. Lowenstein

Pan American World Airways
Pan Am Bu i1 di ng
New York, NY 10017
Attn: W. B. Hibbs

Rand Corp.
Washington Research Div.
2100 MSt.
Washington, DC 20037
Attn: J. Richard Nelson

Rocketdyne Division
Rock we 11· Internat i ana1
6633 Canoga Ave.
Canoga Park, CA 91304
Attn: J. Frandsen

Rocketdyne Division
Rockwell International
6633 Canoga Ave.
Canoga Park, CA 91304
Attn: D. A. Pearson

Rocketdyne Division
Rockwell International
6633 Canoga Ave.
Canoga Park, CA 91304
Attn: S. Macaluso

Rockwell International
Columbus Aircraft Div.
P.O. Box 1259
ColumbUS, OH 43209
Attn: W. B. Palmer

Rockwell International
Columbus Aircraft Div.
P.O. Box 1259
Columbus, OH 43216
Attn: E. E. Culp

Rockwell International
Columbus Aircraft Div.
P.O. Box 1259
Columbus, OH 43216
Attn: D. Rosenbaum



Rock we 11 Internat i ona1
Science Center
Thousand Oaks, CA 91360
Attn: N. Paton

Rockwell International
Science Center
Thousand Oaks, CA 91360
Attn: A. G. Evans

Rockwell International
General Aviation Div.
5001 N. Rockwell Ave.
Bethany, OK 73008
Attn: G. E. Mathwig

Sandi a Labs
Org. 5934
P.O. Box 5600
Albuquerque, NM 87185
Attn: H. O. Pierson

SCM Glidden Metals
11000 Cedar Ave.
Cleveland, OH 44106
Attn: K. M. Kulkarni

Sorcery Metals
Box 1600
Delray Beach, FL 33444
Attn: P. Hanson

Special Metals, Inc.
Middle Settlement Road
New Hartford, New York 13413
Attn: S. Reichman

Special Metals, Inc.
Middle Settlement Road
New Hartford, New York 13413
Attn: C. J. Burton

Special Metals, Inc.
Udimet Powder Division
2310 S. Industrial Hwy
Ann Arbor, MI 48104
Attn: W. Castledyne

Special Metals, Inc.
Udimet Powder Division
2310 S. Industri al Hwy
Ann Arbor, MI 48104
Attn: G. Creeger

Stellite Division
Chabot Corporation
1020 West Park Ave.
Kokomo, IN 46901
Attn: R. Herchenroeder

Stellite Division
Cabot Corporation
1020 West Park Ave.
Kokomo, IN 46901
Attn: E. Bickel

Sundstrand
9841 Airport Blvd
Los Angeles, CA 98045
Attn: N. C. Evans

Sundstrand
4747 Harrison Ave.
Rockford, IL 61101
Attn: D. Augustine

Swearingen Aviation Corp.
Box 32486
San Antonio, TX 78284
Attn: J. E. Kirkpatrick

Te1edyne All vac
P.O. Box 759
Monroe, NC 28110
Attn: F. Elliott

Teledyne A11vac
P.O. Box 759
Monroe, NC 28110
Attn: r. Kennedy

Teledyne A11vac
P.O. Box 759
Monroe, NC 28110
Attn: Wm. Thomas
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TRW Inc.
23555 Euclid Ave.
Cleveland, OH 44117
Attn: 1. Toth

TRW Inc.
23555 Euclid Ave.
Cleveland, OH 44117
Attn: J. McCarthy

TRW Inc.
23555 Euclid Ave.
Cleveland, OH 44117
Attn: T. Piwonka

TRW Inc.
23555 Euclid Ave.
Euclid, OH 44123
Attn: C. Cook

Turbine Support Co.
4430 Director Drive
P.O. Box 20148
San Antonio, TX 78220
Attn: K. Spei rs

Turbine Support Co.
4430 Director Drive
P.O. Box 20148
San Antonio, TX 78220
Attn: M. Dean

Union Carbide Corporation
Carbon Products Division
P. O. Box 6116
Cleveland, OH 44101
Attn: M. S. Wright

Union Carbide Corporation
Carbon Products Division
P. O. Box 6116
Cleveland, OH 44101
Attn: L. Nelson

Union Carbide Corporation
Applications Mgr.
P.O. Box 6087
Cleveland, OH 44101
Attn: H. J. Wilder
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Union Carbide Corporation
Linde Division
441 Sackett Pt. Rd.
North Haven, CT 06473
Attn: E. B. Cook, Jr.

United Airlines, Inc.
P.O. Box 66100
Chicago, IL 60666
Attn: Mr~ R. M. Brannon

United Airlines - SFOEG
San Francisco Airport
CA 94128
Attn: J. K. Curry

United Airlines - SFOEG
San Francisco Airport
CA 94128
Attn: R. E. Coykendall

United Tech Rsch Center
East Hartford, CT 06108
Attn: B. Thomson

United Tech Rsch Center
East Hartford, CT 06108
Attn: Library

Universal Cyclops
Mayer St.
Bridgeville, PA 15017
Attn: L. Lherbier

Universal Cyclops
Mayer St.
Bridgeville, PA 15017
Attn: Wm. Kent

Vought Corp.
P.O. Box 5907
Dall as TX 75222
Attn: W. R. Boruff 2-53220

Vought Corp.
P.O. Box 5907
Dallas, TX 75222
Attn: O. H. Cook 2-53400



Vought Corp.
2-50370/TL 7-67
P. O. Box 5907
Dallas, TX 75222
Attn: Library

Hampton Technical Center
3221 No. Armistead Ave.
Hampton, VA 23666
Attn: W. A. Lovell

Westinghouse Rand D Ctr.
Beul ah Rd.
Pittsburgh, PA 15235
Attn: E. F. Sverdrup

Westi nghouse Rand D Ctr.
Beul ah Rd.
Pittsburgh, PA 15235
Attn: T. J. Vojnovich

Westinghouse R&D Center
Beul ah Rd.
Pittsburgh, PA 15235
Attn: D. Moon

Westinghouse Electric Co.
P.O. Box 10864
Pittsburgh, PA 15236
Attn: R. L. Ammon

Westinghouse Electric Co.
P.O. Box 251
Concordville, PA 19331
Attn: E. Crombie C-210

Wyman-Gordon Company
N. Grafton, MA 01536
Attn: J. Coyne

Wyman-Gordon Company
N. Grafton, MA 01536
Attn: W. Couts

Wi 11 i ams Research
2280 W. Maple
Walled Lake, MI 48088
Attn: Library

NASA Scientific and Technical Information
Faci 1ity
P.O. Box 8757
Balt/Wash International Airport
Maryl and 21240
Attn: Accessioning Department (10)
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