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I. INTRODUCTION --------_-____ 

The promise shown by the results of Skylab I and II and the ASTP ex- 

periments, 132 on materials science are in confirmation of the possibility of 

processing of materials in space on a routine basis. These results have 

logically placed an emphasis on simple crystal systems. The results of different 

flight experiments on various missions have shown excellent promise and have 

prompted a closer look at the opportunities for more complex and more valuable 

compound materials. 

The NASA materials processing in space (MPS) program is intended to 

develop applications of space flights in materials science and technology, 

including both research and manufacturing activities. Its initial goal is to 

demonstrate the value of space for materials work by achieving significant scien- 

tific results and/or developing specific useful materials and products. 

Many technologies are dependent on single crystal materials to varying 

degree. The materials can be processed for making efficient semi-conductors 

for use in the field of communications, materials which will make better super- 

conductors for control and distribution of energy, materials for energy con- 

version devices, materials for various kinds of detectors, and materials for 

non-linear optical devices. The eventual processing of materials in space is 

likely to become a major reality with the operational space shuttle in the 

80’s. 
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The advantages of weightless environment for materials processing include: 

a) absence of buoyant convection, b) absence of density segregation, c) ab- 

sence of sagging, and d) opportunities of containerless processing. With 

regard to the growth of crystals, the primary advantage is the absence of buoyant 

convection. A growing crystal extracts materials from and/or releases heat 

into the surrounding fluid, thereby lowering the fluid's density. So on earth 

under l-g conditions, a growing crystal is surrounded by a rising convection 

current. In most cases, this convection is unstable and gives rise to growth 

rate instabilities which cause impurity distribution fluctuations and defects 

such as fluid inclusions. 3-7 

It would, therefore, be expected that crystals grown in low-gravity en- 

vironment would be more uniform in composition and have fewer defects than 

their one-g counterparts. 
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II. OBJECTIVES __--- 

The objective of this investigation is to study the mechanism of 

crystal growth by the solution technique with special reference to 

materials for electro-optical devices. 

During this investigation, a flight experiment entitled, "Solution 

Growth of Crystals in O-Gravity," was proposed to NASA. The proposal 

was accepted by NASA in September 1977, and the experiment is now approved 

for flight on the SL-3 mission under a separate NASA contract. 
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.: III. ,BACKGROUND 

In recent years, new applications for non-linear optical devices have 

been found for ferroelectric single crystals such as Triglycine Sulfate (TGS) 

(NH2CH2COOH)3 H2S04 , crystals of iodate family and others. Single crys- 

tals of TGS may be used for infra-red image parametric up-conversion due to 

their phase match ability and for image tubes for television displays of 

thermal scenes using their large pyroelectric effect. There is, also, an 

increasing interest in detectors requiring less cooling or no cooling at all, 

even if they have low performance, which may lead to systems with greater cost- 

effectiveness. However, the undisturbed operation of these devices and tech- 

niques requires single crystals of high optical quality, i.e., of high purity, 

high homogeneity concerning the physical properties, low density of structural 

ions and strains. The long-durat ion orbital 

era will definitely allow growth of these crystals 

defects and free from inclus 

flights in the space shuttle 

using solution technique. 
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IV. CRYSTAL GROWTH FROM SOLUTION 

Crystal growth from solutions is simple in principle and has many 

applications. The technique is particularly useful for growth of materials 

which have high vapor pressure or decompose irreversibly at the melting point. 

Crystals will be grown from solution if the solution is supersaturated, i.e. 

it contains more solute than it can hold in equilibrium with the solid. 

The growth methods! are based on solvent used, because the equipment, range 

application, problems and approach are to a large extent determined by the 

choice of the solvent. However, the more fundamental delineation of the 

methods could be made on the basis of the methods of producing supersaturation. 

The growth methods can be divided on this basis. 

1. Isothermal methods (constant temperature methods) 

A. Solvent evaporation or solvent concentration change (mainly used 
in aqueous and molten salt growth) 

B. Temperature differential (mainly used in hydrothermal, aqueous and 
molten salt growth; also includes temperature-gradient zone melting 
when the gradient is moved through the sample). 

C. Chemical or electrochemical reaction (mainly used in aqueous growth) 

2. Non-isothermal methods (temperature variation.methods) 

A. Slow cooling (mainly used in aqueous, liquid metal solvent, and molten- 
salt growth) 

B. Temperature-gradient zone melting (when the gradient is imposed over 
the whole sample)? 

IV. 1. Advantages of Growth from Solution -- ___- 

In general solution growth can be accomplished at temperatures consider- 

ably below the melting point of the material, and the use of lower temperature 

alleviates many of the problems associated with the melt growth process. 
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The main advantages are listed below. 

1) The most important advantage of crystal growth from solution is the con- 

trol that it provides over the temperature of growth. This makes it possible 

to grow crystals that are-unstable at their melting points or that exist .in 

several crystal forms depending upon temperature. 

2) A second advantage is the control of viscosity, thus permitting crystals 

that tend to form glasses when cooled from melts to be grown. 

3) Crystals grown from solution usually have well-defined faces as compared 

with those from melts. 

4) It avoids strains, reduces vacancy concentration, and sometime reduces 

dislocations and low angle grain boundaries associated with high temperature 

growth. 

5) Solution growth or low temperature growth is experimentally more convenient. 

Higher temperature processes are often more demanding on equipment and diffi- 

cult to control, and harder to keep clean so that products are pure. 

Solution growth has had its main success in the preparation of bulk 

crystals. 

There are some disadvantages of a polycomponent growth and they are 

enumerated below. 

1) The additional component will be contaminant and will have solid stability 

in the grown crystal. 

2) Elimination of the additional component at the growing interface will 

setan upper limit on rate of growth. Diffusion will be important in this 

process. This may be an advantage in low-gravity and will be a dominant factor. 

3) Because of the concentration gradient at the growing interface, constitu- 

tional supercooling will often occur; facets effects, cellular growth and 

dendritfc growth can thus be problems. 

-6- 



The process of crystallization involves simultaneous mass and heat trans- 

port between the crystal surface and the surrounding fluid. In almost all 

cases, this causes a reduction in the density of the fluid. So a growing 

crystal is usually surrounded by a rising convection current. Chen et al.' 

have demonstrated this in a recent paper. Janssen-van Rosmalen et al. 10 have 

demonstrated the influence of hydrodynamic environment on the growth and forma- 

tion of liquid inclusions in large KDP crystals grown by solution technique. 

It was proposed that veils of liquid inclusions are not a result of starva- 

tion in the laminar boundary layer, as suggested earlier, but of depletion in 

the closed wake at the rear. Growing crystals from a fluid phase under 

normal gravity conditions involves coupling of the gravitational field with 

density variations in the fluid, resulting in the generation of convection 

currents. The spatial and temporal density variations in the fluid media are 

due to thermal and solutal variations. 

Nearly all crystal growth processes involve both a solid and a fluid 

component. Since internal binding forces in solids are much larger than 

l-g forces, only the properties of the fluid are expected to be significantly 

influenced by gravity. In the liquid state, intrinsic forces such as cohesion 

or surface tension are of the same order as l-g forces, and the familiar 

properties of liquids are the result of the interaction of intermolecular 

forces and the gravitational forces. If the gravitational forces are reduced 

considerably, the behavior of fluids will be determined by molecular forces 

alone. Thus, the environment of the orbital space-lab will have significant 

influence on the fluid behavior which is expected to affect the crystal growth 

process. In the absence of convection, diffusion will be much more significant 

for the mass transport process. 
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The process of crystallization from solutions represents a typical phase 

transition in a condensed system. This process is influenced by the creation 

and structure of the supersaturated solution. The proper crystal growth on 

the seed inserted into a supersaturated solution is influenced by various 

factors. 

(a) the degree of supersaturatior-bwhich determines the rate and also the 

mechanism of growth. 

(b) the hydrodynamic conditions in the solution, specially at higher 

degrees of supersaturation,which influences the transfer of the 

material from the solution to the crystal through the diffusion 

layer. 

(c) the temperature of crystallization. 

(d) the quality of the seed used and the chemical purity of the solution. 

(e) Another problem in the growth of large, high-quality single crystals 

is the strain induced during growth by the method used in holding 

the original seed. This is specially evident in solution crystal 

growth where strain induces optical inhomogeneities, cracks and regions 

of non-uniform growth rates. Recently, Loiacono et al!' have used 

a cylindrical seed method to the solution growth of large single 

crystals of TGS. The method permits the strain-free mounting of 

oriented seed crystals. 

(f) finally even the manipulation with the crystal as grown (taking the 

crystal out of equipment, etc.) can strongly influence its properties. 

To investigate the crystallization conditions of TGS in view of growing 

environment, a crystallizer is required which can be used for growing crystals 

in absence or with a minimum mechanical disturbance in the growing solution. 
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Growth of crystals on earth is always accompanied by gravity-driven convection 

currents as well as diffusion fronts. 

IV. 2. Effect of, Impurity Adsorption on Kinetics of Crystal Growth 
FromSolution. 

12 
Recently it has been reported by Davey, that a presence of a third corn; 

ponent can often have dramatic effects on the crystal growth kinetics (third 

component may be an impurity). Adsorption of impurities onto the crystal 

faces changes the relative surface free energies of the faces and may block 

sites essential to the incorporation of new solute into the crystal lattice. 

These effects may result in changes in growth kinetics and,hence, habit modi- 

fication of the crystalline phase. 

From the studies of Davey (lot. tit) it seems worth noting the following 

points in relation to the 'mechanism of growth rate reduction by impurity 

adsorption. 

a) Impurity adsorption results in the blocking of key sites on the 
crystal surface. 

b) Impurities which bear a structural resemblence to the crystallizing 
component may be most effective in kink and step sites, while im- 
purities which are structurally dissimilar to the crystallizing 
component may be limited to ledge sites. 

The following requirements of an experimental study may be elucidated. 

1. Substantiation of growth mechanism for pure solution. 

2. Measurement of growth rate as a function of impurity concentration 
at a fixed supersaturation. 

3. Observation of step systems on faces growing in pure and impure solu- 
tions. 

4. Measurement of adsorption isotherm of the impurity onto the crystal 
faces under consideration. 

5. The selection of experimental system in which the structural nature 
of the impurity in solution is known. 

The experimental data should then be correlated with different available 

models of crystal growth in solution. 
-9- 



IV. 3. Uncertainties Regarding Crystal Growth in Low-Gravity Environment 

For a detailed study of the crystal growth processes in low-gravity en- 

vironment, uncertainties about residual, transient and non-buoyant convection 

present and their effect on impurity distribution and the formation of defects 

in the crystal must be considered. Another area of uncertainty is caused 

by our poor understanding of the basic mechanisms of crystallization. 13-14 

Choices between competing theories depend on accurate measurements of growth 

rate as a function of the adjacent thermal and concentration gradients and 

on interface kinetics terms. All these measurements, when perfomed on earth 

in one-g, are distorted by the effects of convection. Measurement of such 

data in a fluid in a solution growth experiment will be extremely beneficial 

to the crystal growth theorists. 

Also, the effect of low-frequency g-levels on the crystal quality is a very 

important parameter. Displacements produced by low-frequency (~10 Hz) g-levels 

are most harmful to solution crystal growth and must be accounted very care- 

fully. 
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V. EXPERIMENTAL PROCEDURE* 

A low temperature solution growth system for growing TGS was designed 

and fabricated (fig. 1.). The system includesan outside bath 27.5 cm x 27.5 cm x 

17.5 cm made out of 0.9 cm plexiglass. The bath is heated with two vertical 

quartz heaters each of 350 watts. The fluid in the outside bath,which is 

distilled water, is stirred with two stirrers running at 20 rpm using a.c. 

synchronous motors. The input to the heaters is controlled using a Fisher 

proportional temperature controller with an accuracy of +O.Ol'C. The actual 

accuracy of the bath is measured at present only to +Q.l'C using NBS cali- 

brated thermometers. The growth solution is kept in a 10 x 10 x 10 cm3 

cell made out of 0.6 cm thick plexiglass. The growth cell is surrounded on 

all sides (except top) by the outside constant temperature bath. The seed 

crystal is mounted on a specially designed sting which is inserted in the 

inner cell at a proper time. Details of the sting are given in fig. 2. A 

stainless steel tube is encapsulated by a plexiglass tube machined to fit the 

stainless tube. A narrow outer jacket is left between the plexiglass and the 

stainless tube. A desired flow of high-purity argon gas can be maintained 

between this narrow jacket. The desired flow of argon gas is monitored through 

a flow meter. 

*This work was done in conjunction with other NASA Contract NAS 8-32945. 
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This serves the purpose.of cooling the sting and the seed crystal. The 

seed crystal is mounted using RTV silicone adhesive at the end of the stain- 

less tube which barely projects out of the plexiglass rod. Two copper-constan- 

tan thermocouples have been installed in the sting. One is behind the seed 

crystal inside the rod and the other on the outside wall of the sting mounted 

flush to the surface of the sting. The emf of the two thermocouples is 

measured using a Keithley 610C electrometer. Omega company copper-constantan 

O°C temperature compensator is used for O°C reference junction. 

The inner growth cell is tightly covered with a plexiglass cover to avoid 

any appreciable loss of liquid due to evaporation. 

An overall picture of the experimental setup is given in fig.3. 
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v. 1. Test of Thermal Stability of the System 

The thermal stability of the growth system was tested for a desired set 

temperature (between 30°C - 50°C) over a period of 8-12 hours. The stability 

of the cell temperature greatly depends upon the stirring provided to the 

outside bath. In the initial run,commercially available Fisher Scientific 

stirrers were used. It was found that there was a large variation of temper- 

ature ( t4'C) between the lowest and the top level of the water in the outside 

bath. The design of the stirrers was modified so that they can stir about 

4" of vertical depth of water below the top surface. The bath temperature 

was then maintained within less than tO.l'C between different layers of water 

all around the growth cell. The growth cell was also tested for cool-down and 

heat-up rates. The outside bath can be brought to a desired temperature with- 

in +O.l'C in a period of 20 minutes. Due to the poor conduction of plexiglass, 

the inner cell takes about 2 hours to reach a steady-state temperature,which 

was found to be l°C below the outside bath for a particular cell. 
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v. 2. Growth-of TGS Crystals 

Initially seed crystals of TGS were grown by spontaneous'nucleation and 

grown in about 2 or 3% supersaturated solution. Saturated solutions of TGS 

were prepared from BDH high-purity crystalline Trigylcine sulfate using double- 

distilled water. Solution is filtered at a temperature of a few degrees centi- 

grade above the saturation temperature. At the present time crystal growth 

experiments have been performed in the ferroelectric range,which is below 

the transition temperature of TGS (.Tc = 49'C). 

before the start of the experiment,the outer bath was set at 37'C. The 

inner cell was filled with 800 ml of 36'C saturatedsolution of TGS. The pH of 

the solution was measured as 2.4 kO.1. The cell was left for two hours in 

the constant temperature bath till its temperature reached a steady value of 36'C. 

The experiment was initiated by inserting the sting, mounted with a poly- 

hedral seed of TGS using RTV silicone adhesive, in the solution. A slow 

purge of prepurified Argon at 2 p.s.i. was maintained through the sting. In 

this initial run no thermocouple was mounted at the tip of the sting so no 

temperature reading of the tip and the growth solution were recorded during 

the growth of the crystal. The Argon gas provided a constant cooling of the 

sting and a constant supersaturation near the seed crystal. The growth process 

continued for 26 hours. The crystal grew about four times the size of the 

seed. The total mass deposited in 26 hours was 2.79679 g. This gives an 

average growth rate of 0.15 mm/hour, but no precise calculation of average 

mass transfer coefficient (k) has been made at this time. This growth rate 

is appreciably faster than required for a laminar growth. In this growth, 

an under-cooling of l°C was maintained on the tip of the sting. At the end 
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of the experiment the crystal was removed from the growth solution, dried 

and stored. Due to some inaccuracy in the saturation curve there were 

some crystallites seen at the bottom of the growth cell. 

No evaluation of the grown sample has been done at this time. It is 

planned that measurement of dielectric constant, specific heat and domain 

structure studies will be performed. Crystalswill be grown at different 

supersaturation, growth temperatures and by varying the pH of the solution. 
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v. 3. Evaluation Plan 

a) Transitiion Temperature 

The transition temperature Tc can be determined for each sample by plot- 

ting the temperature variation of the dielectric constant using a General 

Radio model 1620-AP capacitance measuring assembly. 

b) Domain Structure 

The dielectric properties of TGS as defined by the electric permittivity 

E" and E" and the spontaneous polarization, Ps, depend strongly on the con- 

ditions in which the crystals are grown. Crystals grown above the Curie point 

at a constant temperature and the onesgrown below the curie point have been 
-- 

found to show different domain structure.'5 Domain structure will be studied 

in crystals grown in ferroelectric and paraelectric range. 

c) Specific Heat Measurements 

The relative perfection of ferroelectric crystals can be assessed by 

the evaluation of the specific heat (c,) curve in the vicinity of a phase 

transition. In particular, the width and displacement of Cp curve at the 

transition is significant. Crystalline defects and/or gross impurities pro- 

duce internal electrical fields and stresses which can cause broadening of the C 

11 
P 

curve and a reduction of C at the transition. 
P 

The specific heat (C,) for a crystal grown earlier was measured with a 

Perkin Elmer (DSCI) differential scanning calorimeter.* The measured value of 

Cp = 0.3155 cal/g'C corresponds to values reported earlier. The precisiion 

of the instrument was not adequate to detect any changes in C 
We are trying to improve the sensitivity of 

P 
for O.l'C change 

in temperature. measurements.* 

*These measurements were made at the Physics Department of the University Of 
Alabama in Huntsville. 
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