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ABSTRACT

Compression testing of modern composite materials is affected
by the manner in which the compressive load is introduced. Two
such effects are investigated in this report: (a) the constrained
edg§ effect which prevents transverse expansion and is common to
all compression testing in which the specimen is gripped in the
fixture; and (b) non-uniform gripping which induces bending into the
specimen. This study has developed an analytical model capable of
quantifying these foregoing effects. The model is based upon the
principle of minimum complementary energy. For pure compression,
the stresses are approximated by Fourier series. For pure bending,

the stresses are approximated by Legendre polynomials.
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NOMENCLATURE

a, B Eigenvalues
Ny, § Eigenvectors
€y ey or €;, €, Strain in the x,y or 1,2 directions
Y.o or vy Shear strain in the x-y or l-2
xy 12 plane
ax,.cy or ¢,, 0, Stress in the x,y or 1,2 directions
i g ' Stress averaged across laminate
y thickness
T T Shear stress in the x-y or 1-2
xy? "12 . plane
Txy’ Tyo Averaged shgar st?ess
To Introduced material constant
(r,-Ey/ny-ZVXy-Ey/Ex)
v Poisson's ratio
\Y

, v Vo, Vv Poisson's ratio in the x-y, 1-2
xy’ yx’ 12° "2l plane and their ccunterparts

e Angle between principal material
coordinates and arbitrary body
coordinates

30 Ridgid body rotation

3 Partial differential

. Ccmrlementary EZnergy Tunctional

< . Geemetric ratio (Lenzth Widsn)

v




det
E

E, E_orE

x? "y 1’ E

2
G

G_.., G

Xy 12

M, C, Kor

(M1, e, (K]
Q-I
C-P
U-D

uO

Determirans

Toung's mcdulus

. Young's modulus in the x, y or

1, 2 directions

Shear mcdulus

‘Shear modulus in the x-y or l-2-

plane ard their counterparts

Matrices

Quazi-isotropic
Cross-ply .
Unidirectional

Rigid axial displacement




Chapter I
INTRODUCTION

A. Raticnale

In compression testing, it 1is dirfiéult to
deternine ﬁurely compressive mechanical properties of
fiber-reinforced matrix laminates. Some of the
experimen;al data showed that méchaﬁie&l properties of
the apeciﬁen depend strongly upcn the compression
fixture utilized [1]. Therefore, it i3 not surprising
that soxe controversy has devéloped regarding acceptable
techhiques far compression testing.

Other than manﬁracturing non-uniformities in
test specimens, compression data may be suspect due to
uneven gipping of the tabs, poor alignment of the test
machine and/or poor alignment of the test fixture.
Fracture or.ultimate compressive stress may be difficult
to obtain because another mcde of failure (i.e. buckling,
delamination) may occur first.

Many cf the feregoing difficulties can be lezsen-

ed by selecting a shor: gaze length specimen. AL tThs
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of the test fixture creates a complicated stress state
by preventing transverse expansion. For sufficiently
short gage lengths this constrained edge effect will be
evident throughout the entire specimen. A size change
of the specimen, therefore, may merely substitute one
difficulty for another.’

The constraihed edge effect has been pointed
out in Refs. [2-uj. However, only the.present work
provides a model capable of quantifying 1it. Tﬂis is
done through stress analysis by assuminé perfect align-
ﬁent and two different sripbins mechﬁnisms of the
fixture: (a) unirorm.gripping (axial compression) and
(b) small in-plane bending superimposed upon axial

compression.

B. Background

Pagano and Halpin [2] investizated the influen:ce

of the end constraint, both experimentally and
analytically, in tension tests of anisotropic bodies,

nciuding on off-angle graphite/eroxy laminate. Their

analysis wzs based upon the two-dinmensicnal elasti:z
compatitillity equations. They cencluied that the o»irsinz
mecharnlism 2nd the length to width rztis of the specimen

ORIGINAL PAGE IS
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were the principal reasons for the non-existence of a
uniform stress state. They also predicted a more serious
influence of ;ripping in compression and torsion testing
of anisotropic bodies. However, they did not quantify
the end constraint. A'photoelastic study of axially |
compressed rectangular sections, by Phillips and Mantei
(3], gave scme evidence of the effect of load intro-

duction upon homogeneous, isotropic materials.

An investigation of the effect of an end attach-
ment on the strength of fiber-reinforced axisymmetric
composite cylinders was presented by Whitney, Grimes and
Prancis [4]. They.pointed out that an end attachment
which allows some deformation of the end (e.g. adhesive
bond) will help alleviaste the problem of high stress
and straln concentration at the attachment end.

Anothér method of studying the edge effect in
two dimensional stress analysis is based upon the Alry
Sunction. Unrortunately, the mixed form of the boundary
conditions precludes any possibility of an exact soluticn
Hess [5] uses separable fcrms of the Airy function (which
decay exporentially from the fixed end) <o determine
approximate solutions.

A related orodlem, whose solutlion zlso
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more attention in recent years, is the free edge effect.
At the traction-free edge of a compression specimen, the
mismatch in the material properties at laminate inter-
face causes e.highly localized effect.

An example of ths free edge effect for a bfaxial
stress state using metheds deveioped in the present study
'would seem an interesting challenge.

The difficulty in estimating stresses in the area
near the free edge, using the finite difference method
presented by Pipes and Pagano [ 6 ] was pointed out by
wang and Dickson [9 ]. The finite element procedure
developed by Vans and Crossman [ 7. ] has the same
difficulties as the finite ditference method. Both
methods need certaln artificial manipulations, specifi-
cally in the region very close to the rree edge, The
berturbetion technique applied by Hsu and Herakovich [3:]
provided smooth continuous stress distributions in the
vicinity of the free edge and mathematical evidenee of
singula> .aterlaminar shear stresses for c:oss-ply
graphite/epoxy laminates. Another method of estimating
the Interlaminar shear stresses is based upon the

Saleriin method [ 9].

In the subsequent chacters, an anaiytical
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effect.

C. Specific Objectives

The objectives of this study are:
To develop a ‘closed form approximation to the'stress
distribution within each lamina of high-strength
graphite/epoxy during compression tests.
To determine‘the effect of specimen geometry upon the
measured compressive properties, including the
determination of the minlmum specimen gage length
necessary for the existence of a uniform compressive
state in the central region of the specimen.
To determine the erréct of small 1p-plane bending
upon the measured compressive p:operties.
To determine the optimal locaticn of straln gages

for coxzpression tests.




3 : Chapter I
| PROBLEM FORMULATION

) A. Statement of the Problem

: The primary objective of this study is to

l determine the effect of testing devices on the response

' of compression (tensile) specimens of laminate composites
which are symmetric about épeir middle plane. For the
case of perfeét alignment and perfect gripping in a rigid
, fixture, the ends or.the specimen will undergo tﬁe rigid
displacement shownlin Fig. 1, where u® and 6° denote the
uniform displacement and rotation of the c6hstrained
edges, respectively. Also, L and b are the respective
half length and half width of the specimen, and x and y
are Cartegian coordinates measured from the specimen's

center.

B. Modelling Assumpticns

The laminate thecry for fiber layups which are

symmet>lc about the =Zddle plane 1s arpllec here. Thus

i

- A vy - - - ? -~ - -p & - - - * - -
SoTcugstut The .zmin2ts there exists 2 generzliczced plzns
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state of stress whose Cartesian components are denoted by
-x’ G and T. The bars above the stress symbols indicate
quantities averaged across the laminate thickness.

With the assumptions of small displacements and

- a linear orthotropic constitutive response, the field

equstions to be satisried are:
‘1. equilibrium equations |
aax/ax + 3773y = 0,

AT/3x + aa'y/ayi.; 0; . (D

2. straln-displacemens relations

€ = au/ax,' )
y = 3v/3y, | |
Y= 3u/3y + av/Bx, O (2)

3. constitutive equations

+ Slzcy,

ex_= silcx

y = Suu? (3)




In Eqs. (2), u and v denote the displacements in the x
(loading) and y (transverse in the plane of the specimen)
directions, réspectively. The material constants Sij can
be computed directly from the known material constants of
the constituent laminae and their fiber orientations with
respect to the x-ﬁxis rol.

The boundary conditions which are to be adjoined
to Eqs. (1-3) are of mixed type. On the stress-free edges
we have the static boundary coﬁdition

gy =T = 0, ony=+Db. (%a)

On the other hand, the kinematic boundary

conditions, according to Fig. 1, are

u(+L,y) =+(u® + 6°y). (4v)

Due to the.linearity in the Eqs. (1-3) and
boundary conditions (4b), the Principle of Superposition
is applicable and it suffices to solve the purely
cozpressive case (8°=0) and the pure in-plane bending
(u®=0) case, saparately.

A cocmon method of obtaining the sclution to Egs.
(1-3) is based upon the Alry stress functien [11]. The
resulsing fourth order equation is generally solved bty
separzticn of variables, The mixed boundary ccnditicns

[N s, ' - & - hal boul
- - < .
{(¢2, 2) make =nis cuzberscnme
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An alternative arproach involves reformulating

the problem in terms of the complementary energy [7,8]

o = 178 s 08,52 + 28,,5,5, + S5
.+sun?é]dx-dy |
- 12, [u(L,y)3_(L,5)
+u(-L,y)3_(-L,y)1dy. (5)

The Principle of Minimum Complementary Energg'
states that of all s?ress fields (Ei, 3&, T) that’
satisfy the equilibrium equations (1) and the static
boundary conditions (ua{, the exact solution acfually
m;nimize ¢. Thus Egs. (1-4) may be expressed simply
as ‘ | ) |

&0 = 0.

™ n

g
R
]
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b d

Fig.l Sdge displacexen
cripping and perfect alignment.




Chapter III
FORMAL SOLUTION

A. Pure Compression

Since, in this case, 8°=0, it 1is evident that

X
the shear force along the edges, x=ib, must vanish. It is

axial stress g, must be an even function of y, and that

therefore clear that the st.ress Ex may be represented by
a Fourier series. -

) - ‘N :

G -ccfl + f n cosggz-Fn(1§)]; (62)
For N sufficiently largé, and for fixed x, the serles
will uniformly approximate Ex an all intervals for which
ax.is continpous. At points of discbntinuity for Ex, the
serles converges to the average value of G_. Here,

x
(n=1,...N) are the unknown Fourier coefficlents,
and 5c 1s the average compressive stress across every
x=ccnstant Section.

The remaining stresses Ey, and T are obtaines by

solving th

w
14

quilibrium equations (1), usinc the tcundary
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. Thaese results are
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N,

- . 1 n n+l X
. c{ (cos-§Z+ (-1)"*} # (-5) (6b)

- I, xx
1: = cei s:.n—E! F (). 4 (6¢)
In deriving Eq. (6c), the vanishing of shear
force: o |
fp-T(x,7)dy = 0.
was used to deternine the constant of integreation. Also
*
( )’ indicates differentiation with respect to indicated

- argument.

The unknown tunctions Fn may be determined by
substituting Eqs.(6) into Eq. (5), that 1s

| « o
l1 2 .} us ™=
=3% f—b{sll[l+ i m cosipL Fm('S)] '

N :
~[1+ tl n cosr-‘-gl Fn(%)]

N
nry X, 7
+2812[1+ § m COS— E’m( b).l
N 1 r+l ™
£ i feosED+(-1)™1] p (TD)
1 n
+ S DZII 1 [cosBIL «(-1)®*ly p (IX)
22 y m b v o
. I;;I}. [r‘osmw + (=2) "*l] (v‘c\
1 n -~ b - b’
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*suut : sinEEI-F ("‘)] C z sin-gl-? (1r }dxay

N
+u®a, Ih fi+ Zn cos-—z-F (RE)]

1
. N X
+[;+'§ n coaggz-Fn(-wE)]dy‘ R (7

' where E=L/b.

After intergrating over the y coordinate, appli-
cation of standard techniques of Variational Calculus
[13] renders the expression

N N
68 = 32/t (- 25,0 F (“*)+ 38,,L FIV( =2

£ =
1l 21 n2

N m+n .
TX (-1) PV (T
852 I Fn“s°*2szz-§7-1iﬁ?' )

N
=Syy F, (IX)1- [6F  (7F) Jax

N n
1.2 (-1)
+ 50, [-812 i Fn(:w€)+2s

n

12

(ol e B

N 4

n -1)BHR
+385,1 ;?»Fn(tvs )+2S,, I

“F_(+7£) 1 [67_(+76) ]

od

N
r = ) -
lez i ‘rn(t"s) 352

AV
H 1
3

] "
= F_(#7g)




-

.1 )20
-2822m!n m— F. (+w5 )
N
* suui.Fn(i?E)]'CGFn(:FE)]

=0. (8)
It immediately follows from (8) that the Euler

equations are

and the

. .
i-.cszziz FrV(XE)- (25, ,+5,,) P (%F TZy4s,, F_(X5)]
n
-1 m+n Iv
* I [zszzg"'b')?— Fp ()]
=0. | - (92)

natural boundary condltions are

HM

[S207% Foltre)= 57, (47€)]

. mén
) -1 "
¥ ok 28,50 — P (270)]

N
o [25,,(-1)"*"/a], (9b)
N
f [(S,,+S15) p (+7E) ..-.-} F_(+7£) ]
m+n ‘"
BT Al

m#n

=0. (%e)




With the introduction of the following definitions:

Lo = (2812 + 8,4)/5,5, = E,/Gx, - 2V,
1'( ) —(‘? -+ . ]
2,=1, . _ . .
g'z 5(_3-) -
E = * 3_ S ' - * ?
] 32
Sym. 3
Ne
22 0
= 2 U
K 3 Ey/Egs
o .
N2
- N o
1 A ) Fl"l
1l 1"‘2
J_- = . ’ E_ = . ?
0
! la L FN’
+1 & fw = 57
2, = ’)n O =%




Eqs. (9a, b, ¢) may be conveniently cast in the

form
MFV T, LE +EE =0, (10a)
M E (+wE) + v 1 E (4vE) = 2v B, (10b) -
. . ) A ’ |
(o + “xy) 1l Fn(kwf) -MF (+n£) = Q, (10¢c).
It is also necessary to determine the constant
Ooe After dirrerentiating ¢ (Eq. 7) with respect to g,
and simplifying the resulting expression with the aid of
Eqs.(92,b,c) and setting %3 -0,
i c
we obtain
ST > A

x . -
It should be noted that if ano (n=1, ...N), then Eq. (1l)

reduces to the elementary strerigth of materlals formula

[12].
The solutions for N:te:ms retained in the serles

(6), and the solutions to Egs. (%a, b, ¢) give the "best"

(in the mean square sense) N-term appreximation to the

true solution. Therefore, it s reascnable to expect

that the approximate stresses will be closest to the
Thelr true valueg are the

true values at locations where




largest, that is, at the constralned edges.
Eq. (10a) is a fourth order ordinary differential
equation with ‘constant coefficients. Thus, we assume a

golution of the form

g_ -n coeh(awx/b). o - (12)
Substitution of Eq. (12) into (102) generates the
eigenvalue problem.

[uum-czr 1+Kln=0 (13)

for'the eigenvalues-a and eigenvectora n.
' Note that o and n are obtained independent of the
boundary conditions, and hence they do not depend upon

the manner in which the compression load is introduced.

- They depend only upon the number of terms N retained in
- the series, and the material constant I's. In the case of

qna:i-ieotropic.[9/:35(§0]s layups, =2, and they are
also independent of the ﬁatefial constants. .

A necessary and eurficient condition for the
existence of a non-trivial solution to Eq. (13) is

2

det[ak Ii( -aTe l+K] =20 (14)

Eq. (14) is a polynomial of order UN; however all
solutions must occur Lﬁ equal and opposite pairs. And if
che rocts are ccmplex, they must also occur Iin pairs of
complex conjugates,

CUNAL PAGE IS
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If, for complex eigenva lues, the components of
the p-th eigenvector are assumed as

Dp - Ap [1 npzo . e npN]’
then the general solution to Eq. (10a) for even

functions fn'becomes

N

Pn - pil{Ap npncosh(apwx/b) :

+F = -
Kp npncosh(cpﬂx/b)

N :
= 2-Re{p£lAp npncoah(apwx(b) (15a)

where bars abtove the symbols }ndicaﬁe complex condﬁkate.
For rezl eigenvalues cé, °§ (p=1,2, - * N)
the general sclution is

N

3n = pil[A; ;n cosh(u wx/b)
+ Ag “gn cosh(agwx/b)], (15b)
where B;n A (1 "pz n;3 .. “gn]'
ﬂgn = Ag 1 "52 n§3 Lo ngN].

The complex constants AD or real constants Aé

- d

from the -cundary ccnélcicns

[\
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()
f
m
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The remaining possibility that some roots are
rel and some complex was not encountered in the
numerical calculations for the assumed data. Thus,
although this case is, as routine as the two foregoing
cases it will not be di;cused furtﬁer. |

B. Pure in-plane Bending'

For pure b~nding, u°=0, and the axial stress

is an odd functior of y. 4As before, the shear force

along the edges x=tb must vanish. However, it turns out

that a Fourier Sine.series approximation to Ex is not

convenient. This is because application of the boundary

eonditions (4a) to the stresses obtained after integrat-—
ing Eqs. (1) introduces stde constraints on the Fourier

coefficierxﬁ:s.' Ih order to circumvent this difficulty,
E"x is expanded in terms of odd Legendre polynomials.

' One definition of the N-th Legendre polynomial
is [13]

| S _
2 Czb )= T (;I) (2n=-2k)! ({ ya=2k
n =0 22kl (n-k)! (n-2k)!

where Ns—%— n: even
y={nzl) n: odd . (16)

18 |
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Then the stress ax ray be represented by

N
Bx-.ob [pl(ﬁ) + 3.§’ P (b)] G ( 2).  (1Ta)

Here, G (%) are the unknown seneralizgd Pourisr
coefficients, and a 13 a constant.

The remalining stresses [ v and T are obtained by
solving the equilibrium equations (1) subject to the
boundary condition' (4a). These results are

0’ -— z [ n-2(§) - ZPn(g)
% ,5..mm’5rr m

.N .
r."a ’Suqm[ 1( ) - n“'l( ’] G (b (173)

-

- Im deriving Eq. (17c¢), the vanishing or shear

‘force b =
g b T(x,y)dy = Q

was used to determine the constant of integration. Also
( )' denotes differentiation with respect to the indi-
cated argu=ent.

The unimown functlons Gn may be determined by
substitusing 3. (17) iato Eq. (5), and integrating
over the y-cocxinzte., After applying the variaticnal
method ané collectling terms, the Zuler ecguzticns are

- d .
covvels .5:.




" where

Ma© -T,ca +XxG=0 (18)

o

6 <4 S
3'5",.§QE m m ’
6 .

T

: M(N-2,N)
Sym.
M(N=1,N)
L ~ . M(N, N)
’ - 6 , -
(24-3) (N=1) (2¥+1) , "N+3) (2W5)
M(N-1,N) = =. —
(2N=5) (2M=3) (2n=1) (2+1) (2N+3)
WE-ZH) = L. ,
4 (2N-T) (2N-5) (2N-3) (N-1) (1)
- . : n
2 -1 '
573 T30 .
2. -
9-11-13 11-13-15
C= . ,
-1
= 42
2
_ (2N=-1) (1) (ehir3y




} Gs
K - . 0 Ef/E, » 8= .
"0 . .
TQRLIT Gy
e
L, C L 4

The natural boundary conditions assoclated with
Eq. (18) are
n

. wrY - v T . '
MG (_;) + vey C 8 (26) ;x[ 100. .01, (19a)
MG (26) - (Te#vy )€ @ (28) =0 . -(190)

In addition, the -condition %g—b--o results in,

after considerable manipulations,

R LI —3-5-—“"" G, (£)] (20)
- -
E.20° £3 e :
where
b 2 2
M, --J_b y o, dy- = -5 % b= |
It should be noted that In 3ernoulli-Zuler theory
3N, 8
§° = —_ (21)
E -2b L ]
x
The me<hod of solviag Z3z. (1%, 19) 1s the same
as in the pure compression prctlszm:. e write




respectively. Thus g and § are determined from

G=¢ cosh(-s-xg) :
where § and [ are the eigenvalues and eigenvectors,

[B"'g—azr;g;+i_(15_.o. | (2) | | ;

If the components of the complex eigenvectors are

A " R

the solution for Gp is given by _ i

G 2Re{§ osh(aai)}
=g (o] - .
2 ;p-LB"S >

For real eigenvaiqes , the counterpart to Eq. (15b) is

N 2 |
%= ¢ B <) cosh(?) +B2 ;gncosncfg—n__ (230)

c: Lamina Stress

In the previous two sections (A, B), we formally
obtained epproximate salutions for the gverage stress axd as
a. consequence of Eqs. (3), strain. The remaining task is

now to cbtain the stresses within each constituent lamina.

™
-—d

4

approach here will follow Jones [10].
For either quasi-isotropic or cross-ply

laminates, the stress-strain relations (2) may be written




&)

€x
<’ ‘y > = E- % 0 < ;yL = [Q]" .O-'.yL (24)

o 5%-;_? ‘Lta"

L

uI4
| -
4

o
L

-

where E 1s'the'Young's.modulud'(Ex- E = E), v'is the

. y
Poisson's ratio (vxy- vyx'ev), and G 1s the shear modulus
(Gpg= G o © ). "Each constituent lamina of thelaminate

sustaipns the same strain [e, €y :;_y 3T in the x-y
cocrdinate system. '

However, the stresses differ from ore lamina to
the next. I¢ is necessary, therefore, to determine the’
'appropriate stress-strain relatibn for each lamina.’ Let
us suppose that the principal material axes are inclined
at an angle & to the x-axis (see Fig. 2 ). Then the
strains in the material coordinates are obtained from

: the laminate strain by

. L. ‘ * f
[ :l ) rex cosze sinze sinze-1
< €2 f' [T]J €y P (7] = sins cocs -sin2e
] -s5in208 sin26 cos28
N2 Yxy |72 2 Jd
L T4 - 2 =

- e m—— v e e st AP . 5 O . &




Similarly, the stresses in the principal coordinates are

given by
61 '1 ltﬂx 1
% 'ffT].1Q?
[12 =

(261”3

Now let the constitutive equation in the 1.2

principal coordinate system be

o

9
G2
F12

A

(s] =

’:1 -
= [S]‘ €,

Y12

r L 2 |
E,

vle

2

1=v129,;

Va1By

1=vi2va;

EZ-

v
o

~

1=vyova3

0

(27)
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where Ej, E; are Young's modull in the 1 and 2 directions,

respectively,vlzis Poisson's ratio for stresses applied

in the fiber direction, ”21'“1232/51 s and G12 is the

principal shear modulus.

After combining Egs. (24, 25, 26, 2T), we obtain
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where

o

,[T]-l = | 8in“e cos“e sin2e

cos

2

2

siné

L'I'

8 sin%8 -sin2e]

2

;sine cos26

-

?qllowing.tundanental matrix'algebra, Eq. (28)

can be simplified to the form

where

fox
oy b= fclt

T

xy

L

’ | t29)

[cI = [T %-[s1-[TI-[Q]-

Clearly, the matrix [Cj_depends upon‘tbe'lamina

material properties and orientation.

(A0 ]

Pig. 2 Principal material
’ coordinate systems.
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. Chapter IV
NUMERICAL SOLUTION TO THE EIGENVALUE PROBLEM

We now take up the numerical solution to the
polynomial of order 4N

£(a) = det [nng - 02

PG + K1 =0 -
Clearly f(a) has the form

uN BN-2 ' 2

where C4 are functions of certailn invariants of the

f(a) =C

'~ ' matrices M, C and K and their products. For example,
Cy+1=det [K] and Ci=det [Ml. Thz other coefficients,
however, are considerably more involved. |
© A mumerical method for determining the set of
Ci's for given N relies on the utilization of a high
capacity computer., By reasonably choosing , set of
1 4
arbitrary numbers (al, Qs » - - °N+l ) and evaluating
£( a ) N+1 times, we obtain the simultaneous equations
11}!-2 '
¢y ™+ ¢, (ap? e - ¥ Oy = flay)

UN-2

Uy '
+ C, (uz) e ..+ CN+1 = f(az)

Cy (az)




)RN

HN-2+

. T v . '
T Cylagyy)T + Clayyy) T ¥ Oy T Sloyy)

The goofricioﬁtg'ci may ﬁow'be;foufinely
cbtained by solving the above set of simultaneous
equations in which Ci's are the unknowns. .The numerical
sensitivity of the procedure may be checked by choosing

. ? .
several different sets (ai} and comparing the solutions.

" Purthermore, in our cise, it is convenient to reduce the

order of the polynomial from AN to 2N, by taking (a, IV/?
instead of a; « This step also speeds up the process
of obtaihihg the rootsior the ﬁolynoqial. .These roots,
i.e. the eisenvilués, were obtained by using a standard
subroutine qésed oﬁ fhe‘NewtonfRapbson method.[14].

The &lgenvecturs are determined from a set of
linear algebraic equations ( 13 or 22). Since the
elgenvectors are not unique, a very convenient
normalizetion procedure 1s to set the first component of
each elgenvector equal to unity. The éoerficients Aﬁ,
deterzined by the natural boundary conditions, are-also
routinely cbtalined by solving a szt of linear algebraic

equations.




" Chapter V
NUMERICAL RESULTS

| A. Pure Compression
* a. Quasi-Isotropic (Q-I) [0/45/90]4 Laminates
L. Generalized Plane Stress

Lccording to elementery rod theory, the stresses,

'surr:.ciently far from the edges at which the load is

1nstroduced ere assumed to be uniaxial il.e.

e T G e

x ¢ (31)
Thus the specimen must have a sutticiently long gage
length if Eq. (30) s to be applicable anywhere.
Elementary theory,. however, is able to provide neiﬁher
the minimum gage length necessary for Eq. (30 ) to hold
nor the stresses in the neighborhood of the clamped
edges. |

In the tresent approach, the general plane
stresses oy, By & ?xy depend upon the material constants

-

Vyx s Ey/Ex and 'o, and the specimen gecmetry ratio 3.

T e




*x
the stress distributions merely depend upon v and §.

Por quasi-isotropic laminates, =2, E_=E_, and hence

The stresses were calculated for a range of §
from 1/4 to 6, and for v-0.336'wh1ch is a fairly typical.
value for graphite/epoxy quasi-isotropic laminates. It
will be noted rrbm'Eqs.(lo) that the st:esses are
approximately propotional to v and thererofe approxi-
mate solution for other Polisson ratio's mazy be obtained
by scaling the current solution.

Since I',=2 for ail Q-I laminates, the eigenvalues
CH (1=1,2,+-+,N) computed from Eq.(1l4) merely depend upon
the number of terms, N, retained in the sevies [Eqs.(G)];
The results of this computation, as expleined in Ch. ITI,
are shown in Table 1 for values of N ranging from l.to
10. It will be noted that 2ll the eigenvalues for.nglO
are complex values, and consequently the solutions for
the functions F_ (n=1,2,°°*,N) are given by Eq. (15).

The stresses [Eags. (6)] were plotted for
different values of N at various cross-sections x/L =

ronstant in order to assess convergence for increasing N.

¥ This values was obtained for the material properties:

=21x10% kst, E,%1.7x10% ksi, v, =0.%,
=C.65x10° ksi, T=7.95210° kst.

4

-
-
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As shown in Figs.(4,6~8), conversence was excellent
avay from the constrained edges with just three terms
retained in the series.. Naar, hut:not at the.clamped
edges; . conwergenco was czcellant with.only six eerns
retainsd in the Fburior scries ‘solutions [see Fig. 5,
13]. Another measure of’ theﬂconvergenpe is provided by
Eq. (11). In Table Z the ratio u°E /o L was evaluated
for various values of N and §.

The convergence of uPEx/ch for increasing N 1s
evident from Table 2. Note that for large g, the value
approaches unity, which 18 the result predicted from
eldﬁentary rod theory, Eq. (30). The reciprocal of the
entries in Table 2 representé the apparent percehtage
increase in average stiffness due to.tpe constrained
edges. | .

. It 1s conveqient té write the generalized plane
stresses in the form

o, =0, [1+s_(x,y)],
5= 085 (x.7), (31)

?)F QQGXy(x,y).

Clearly, for [é[, (5.( and |6 sufficiently

xy!
small, Eg. (31) w11 cleosely aprroximate Eq. (30). We

shall say that the stress stats 1s appreoximately unlfaxial
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TABLE 2. Values of u°Ex/c°L for Q-I laminate
in pure compression

L utEg/e L

. ‘ ‘ R
E 0.25 0.50 -1 3 .6

0.9342

0.9545

0.9770

0.9926

0.9963

0.9203

0.9443

0.9714

0.9907

0.9954

%
§ 0.9173

L0.9322

0.9702

0.9903

0.9952

0.9166

0.9417

0.9699

0.9902

0.9951

) - 0.9161

0.9413

0.9697

0.9902

0.9951




}
‘L
|

3

at a given xmconstant cross-secsion i?f
I§x l<o.02 |
6120502 for 7] b (32)
el <0.02

The 2% bound on th; deviation of the true stresses from
the uniaxial state is, although arbitrary, quite useful
particularly for the experimentalist. By providing a
definite bound, the efr:=ct of the qonst:aihed edge can
be quantiried. |

Por: gecmetry ratio's €<1 5, (32) was not satisfied
anywhere. Thus the effeact or the constrained edges is
observed everywhere in the specinen. Stresses distribu-
tions along the center line x=0 and at the edge x=L are
shown in Figs.6-11 for E=1/4, E=1/2, and E=1, respectively.

Por E>i.5, there exists a region in which the
stresé state is approximately uniaxial, i.e. Eq. (32)
is satisfled. It was found that the domain o influence
of the edge 1s limited to 1.5 (or 75% cf the width),
as depicted in Fig. 3.

As expected, the stressa2s in the shaded regicn
02 Flg. 3 are independent 27 £ provided L>1.55.
Ccnsecuently, cnce the stressss are determined fcr cne

. - - . _
72lie of §>1.5, thev are unzwn foir 2ll values £>1.5.

- -
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Increasing L, fbr.fixed 5, merely increases the uniaxial
stress domain. Results are shown in Figs.(4,5,12) for
£=3 and x/L-OETS, 0.9 and 1.0 respectively. According
to the foregoing discussion, ths gensraiizedtstresses
are the same for E=6 and x/I=0. 875, 0.95 and 1, respec-
tive 7. [Figs. 13~15] ' .

It should be observed that the stresses at the
edge x=L for E=1 [Fig.1ll] and 5;3 [515.12] are almost
identical. The reason rof this is because the stresses
at x=L are arrected by the constrained condition at only
that edge; the stresses at each edge xstL for both &=1
and E=3 are outside the domain of influence of the other
edgé x=L. _

As indicased earlier, the stresses at the clamped
edge appeared to be sonverging [Fig.12] quite well for .

N=6. A closer examination of the tabulated values of

Ge(L,y) did indeed confirm convergence for |y|<b.,
Eowever, a2t the corners y=b, the stress Ex appears to

grow without bound. This apparent singularity 1s shown

in Table 3.
2. Lamina Stress

Figures 16-18 show representative laminaze stress

[
ot

<he consctrained edge of ©-I iaminate for <he plies

- -
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TABLE 3.

EEEN TR et St e gy o

Normalized stress at corners Gy(L,b)/ce

- for Q-I laminate in pure compression

R T
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- -:_-E cx(sti/cc
-s:;*x\gl]o.zs 0.50 1 3 6

1 0.97 | 1.05 | 1.12 |1.13 1.13
2 voor | 1.3 [ 1.22 1.23 | 1.23
3 b5 | 1.20 {2.31 [1.31 1.3
4 1.09 | 1.27 | 1.38 [1.38 | 1.38

. 5; {113 | 1.33 | z.as {1.as | 3.na
3 118 | 138, 165|150 | 1.56 |
7 1.21 | 1.42 | 1.50 {1.55 | 1.55
8 1.24 | 1.47 | 1.55 |1.60 | 1.60
9 1.27 | 1.51 | 1.59 [1.6t | 1.64
10 1.30 | 1.55 | 1.63 |1.68 | 1.68
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oriented at o=0°, 45°, 9Q° respectivéiy. The particular

plots are for E=l/4.
be CrdssfPly (c-P) [thS]s Laminates
l. Generalized Plane Stress

Unlike Q-I laminates, C-P laminates have a nega-
tive matérial constant r,-l.77.;‘and 2 relatively large
value for Polsson's ratio (v-0.801'). As a result of the
high value of v, the influence of the constrained edge
should be expected to be much greaﬁer thar. for Q-I
laminatgs; o | ) |

~Just like for Q-I laminates;-fhe eigeﬁvélues are
agaln complex. [See Table 4]. Convergence was somewhat
slower than for Q-I laminates; more terms were needed to
obtain & reasoﬁablelapproximation to.the_stfesSfdiStri—‘~
buticns at the edges. Fisure_3'19 and 20 show the stress
distributions at x=L, for E=1/4 and =3, respectively,
for N=9 and 10. However, for the region x/L<0.9,
| a'S:term'approximation showed excellent convergence. For
exanple, see Fig. 21 for which £=3; stresses at x/L=0.9

are plotted for N=6 and N=7.

¥ Tnis value was obtoined
E1=21x103 kst

6 2 st
Glz’o' 5x10- ksi
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Once again there appears to be a singularity at
the corners x=+L, y=+b. The data, tabulated in Table 5,
certainly do not suggest convergence.

In Table &, the values of u°E /o, L are
tabulated for C-P laminates, and the convergence for

- increasing N is slower. Also, observe that for ‘very

small aspect ratios; the apparent stiffness increase-
is well over 100%. |
According to the aforedefined axial stress state
[(Eq. (32)], the domain influenced by constrained edge
turns out to be precisely double,that of‘Q«I lamingtes.
Consequently, an aspect ratio for which £=3 1s the
smallest léngthpwidth ratio for which Eq. (32) is B
satisfied along the'center'line x=0. ‘For £>3 , a niaxial .
stress field will exist in a region -around the center
line x=0; the range of length 3b, the domain influenced
Ny the conétraint has length 3b, measﬁred from the edges

x=+L.

2. Lamina stress

Since the lamina stresses are linear combinations

of the averaged s:tresses g Ey, T, [see Eq. (29)],lamina
s

*z2me rate as the averacge

x’
stresses wlll converge at <the

~ - M -~ - - N - -
stresses. Tne Stresses at the ¢cornsrs =t the c.amred
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TABLE 5. Normalized stress at corners ¢ (L,bj/c,
| for C-P laminate in pure compression

| _a;<n.p>'/;;_ |
| > 3 0.25 |oso | 1 | 3 6
E 1 0.61 | 1.16 [1.58 | 1.48 |1.148
’t 2 oort | 12n [1s3 | 182 |1ee2
i . : 3 | o | 1.37. | 2.20 ."2.08" 2.08
| 4 :0193 1.50 |2.43 | 2.31 |2.:1
r 5 5~1.d3 1.62 |2.63 | 2.50 |2.50
| 6 | 1.10 | 1.73 |2.82 | 2.68 |2.68
7 1.16 | 1.83 |2.99 | 2.84 |2.83
8 1.22 | 1.92 3,35 2.99 |2.99
g 1.29 | 2.01 .3.30 3.12 | 3.12
10 1.3 | 2.09 |3.42 | 3.26 |3.26




TABLE 6. Values of u’E,/0_L for C-P lamlnate
: in pure c'ompression
© o WEgeL
X 0.25 | 0.50 1 3 6
1 0.4775 Jo.suaa 0.7727] 0.9335| 0.9668
3 ]o.4308 [0.5073 |0.7205| 0.9183} 0.9592
5- 0.4232 |o.n979 0.7082] 0.9147} 0.9573
6 0.4%2]2 |o.u956 0.7051! 0.9137| 0.9565
7 o.uéa lo.ngag 0.7029] 0.9131] 0.9565
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edges will exhibit sigularities. However, for the region
away from the edges, the stress distributions appear
very well behaved. For example, see Fig. (22) in which
E=3, x=0 (at the center line), N=10, 6=i45°,

¢. Unidirectional (U-D) [0]8 Laminates'

Since all fibers lie in the samc direction, the
generalized plane stresses and lamina -tresses are the

same. Also E_=E and G__=G For the

x B30 Ep"Egs Vap™via xy ~12°
assumed data 012-0.65x103 ksi, v ,=0.21, we compute
ro=2.581. | '

" Unlike the péefious two laminates, the eigenvalues
of U-D laminates were real. Tatle 7 1lists the eigen-
values for up to 3,terms.' Figure (23) shows the resulting
stress distributions at the edge for &£=3. The values of
stress Ex at the corners for different £ are tabulated
in Table 8 for N ranging from 1 to 3. Accerding to our

definiticn, a2 uniaxial stress state does exist everywhere

except at the corners.




Table 7.

Elgenvalues for U-D laminate
in pure compression

N 1 2 3
T-1 0.181 0.181 | o0.181
I-2 0.362 0.362
I-3 0.547 !
.A ’ .

I1-1 0.910 0.846 0.809
II-2 2.620 2.539
IT-3 4.272
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TABLE 8. Normallzed stress at corners dx(L,b)/o.
for U=-D laminate in pure compression

. @g(L,b)/d¢ ‘
NCE | o.2s | o.50 .1_ 3 | 6
N |
1 1.000| 1.004 | 1.008 | 1.010 1.011
2 | 1.002|1.009 | 1.016{1.020 | 1.020
3 | 1.005|1.018 | 1.023 1.028 | 1.028




B. Pure Bending

Convergence of the soiution in bending was faster ~?
than for pure:compressioﬁ for both the Q-I and C-~P
laminates. This susgé#tédfthat;tpe Legendre polynomial
) . may be preferable to a Fourier Series for similar mixed

boundary value problems. Since the axlal stress Ei, when
reduced to elementary bending stpess, is linear in y,

it is apparent that Fourler series will take many ternms o

'Lege“dre.polyndmial 1s equal to y.

a. Quasi-Isotropic

1. Generalized Plane Stress

]
. to approximate Ex in y-cdordipate while the first order
Eigenvalues are shown in Table 9 for N ranging
)

from 1 to 8. Observe that the elgenvalues are increasing

at a faster rate with the number of terms for N>5 than

the corresponding case in pure compression [see Table 1].
This may account for the apparent faster convergence of
these stresses. Fewer terms for approximétion of the
stresses are needed than for pure compression [conmpars
EX in Figs.12 and 24].

The effect of the constralned edge is comparable

to the pure ccmpression case. OQutside of the regicn of
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influence of the constrained edge, the axial stress 1s
linear and the other stresses vanish [Fia- 25] exactly as
predicted by elementary theory. |

Another measure of the constrained.edge effect
.is prosided by Table 10, in“which values ror |
g°2p2 /381 1§ are tabulated for various £ and N.
Again, note that as N increases, the value 9°/Mb rapidly
converges. Also asé increases, the value 9°2b2/3MbSllE
tends toward unity,'the predicted'value from Bernoullli-
Euler deflection theory.

A possible stress singularity at the corners,
x=tL, y-*b is very much in evidence from the stress h
plots in Fig. zu. Alternatively, the value of E L b)
is tabulated for different N in Table 11. and shows no

sign of converging.

2. Lamina Stress

Figures 26~28 show the laminae stresses at the
constrained edge for the plies oriented at 6°=0°, 459,

90°, respectively. It Ls Interesting to observe from

Fig. 28 that the greatest normal stress occurs in the
direction of the fibers (i.e. the y-direction).
However, In the 0° lamina (Fig. 26) the greatest stress,

ex~ept for the ccrners, occurs transverse to the fibers




TABLE 10. Values of 8°-252/3M

69

ORI

S,,E for Q-1
laminate in pure be?.dﬂlg

» e?-znzfsr S..E

- L ST
N E 'b'.és 0.50 1 3 6 -
1 |o0.965 | 0.982 |0.991 | 0.997] 0.999
2 0.955 | 0.976 | 0.989 | 0.996] 0.998
5 0.9%9 | o.978-10.987 | 0.996] 0.998
_ 7 lo.o48 | 0.973 |0.987 | 0.996| 0.998
| 8  }o.o48 |.0.973 }0.987 | 0.996| 0.998




TABLE 11. Normalized stress at corners 0x(L,b)/oy
for Q-I laminate in pure bending

R,

N § 0.25. | 0.50 | .1 3 | 6

1 1.01 1.08 | 1.10 | 1.10 1.10

2.  }|.1da2 1.21 | 1.22 |1.22 | 1.22

3 1.25 | 1.33 | .34 1.34 | 1.3%

y 1.37 | 1.5 | 1.85 | 1.46 | 1.46

6 Frss |1es |'res [1.68 1.68
T 1.68 | 1.79 1 1.79 | 1.79 | 1.79
8 1.77 |.1.88 | 1.89 | 1.89 | 1.89

i i, e, s s St 5 s A Awm.ah...*m.w:.w.r_\-r.._w“bw,wmg»mal_—;m‘aa&umm.wwﬁ-‘m s AN 55T
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(2l1so the y-direction).

b. Cross-Ply Lezminates

1. Generalized Plane Stress

The eigenvalues'for pure bending were once again
complex valued and are tabulated in Table 12. The
accelerating rate of increase of the eigenvalues is
apparent from the Table, and is reflected in the rate of
convergence of the stresses [see Fig. 29].

Table 13 provides values for 0°2b%/3MpS11E
and is the counterpaét.to Table 10 for Q-I laminates. .
AS we observed for pure compression, the effect of the
sonstrained edge upon apparent benéing sti:fness is
considerably greater for C-P laminate than Q-I laminate

in pure bending also.

Agaln, evidence of a2 singular séress stateAat
the corners of the clamped edges is provided by Fig.29.
Tabluated values of Ox(tL, tb), 2s shown in Table 14.,

elsc apprear to grow without bouni feor large N.
2. Lamina S<zress

Tpmes 30,30 show re;
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TABLE 13. Value of 6°-2b2/3MbSé}E for C-P

-laminate in pure bending .

o T a%eab 3 MeSypE s

0.25

0.50

3

‘10.624

0.786

0.918

0.972

0.986

0.563

0.744

0.897

0.965

0.982

-1 0.539 .

0.718

0.883

b,gsd

0.980

0.529

0.708

0.878

0.959

10.979

0706

0.958

. 0.979
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TABLE 1i. Normalized stress at corners dy(L,b)/0,
for C-P laminate in pure bending

g,

Eloas |osol 1| 3 6
N 1 .
1 0.76 | 1.82 | 1.37 | 1.38 | 1.38
2 1.26 '} 1.72 | 1.75 | 1.76 | 1.76
3 | 1.52 '} 2.09 | 2.12 | 2.12 | 2.12
5 |1.68 | 2.u4 | 2.58 | 2.8 | 2.u8
5 | 197 | 2.78 | 2.84 2.83 | 2.83 |
¢ |zaz | 3:12 |3.18 | "3."1'.8’ 3.18
7 2,83 | 3.5 [3.52 | 3.52 | 3.52
8 |2l 3-,78 3.86 | 3.85 | 3.85
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¢. Unidirectional (U-D) CO]s Laminates

Figure 32 shows the exial stress 1is linear and-
the other stresses vanish, for g=6, x=+L. exactly as
predicted by elementary theory. Eigenvalues are real and
are tabulated in Table 15, for up to three terms. Asain,
calculations for axial stress at the corners of the

clamped edge suggest a possible singularity.

82
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TABLE 15. Eigenvalues for U-D laminate

in pure bending

[ T3

| 10 2
-1 | o851 | o.805 0.804
1-2 1.639 1.1{02
-3 . | 2.655
IT=1 | 5.269 5.132 | 's.005
II-2 10.230 | 10.220

15.500

m




Chapter VI
SIGNIFICANCE

A general method of solving the two dimensional
stress analysis probiem for rectangular laminates
subject to mixed boundary conditions has been presented.

For compression sepcimens, the kinematlc boundery

conditions define the manner in which the load is

introduced. The analysis presentéd herein assumes
rigid body motion of the‘clémped edge; this assumpfion
represents. a "ﬁbrst case™ céndition. In any actual
gxperihgnt the;e will almost certainly be some défor-
mation and/or even slippage in the fixture.

Quasi-isotropic speciméns respond uniaxially at

. locations at least 3/4 of the specimen width away from

the edge; for cross-ply, the uniaxial range iIn 1.50
width away from the edge. Since specimens tested in thé
IITRI fixture [1] have such short gage lengths, it may
be concluded that a uniaxial response can not be de-.

velcped in specimens* using this fixture.

* An excepticn 1s unidirectiornal laminates with small

values of v.,.
[

PRECEDING PAGE BLANK NOT FiLMED
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The constrained edge effect upon measuredttoung's
modulus may be determined as follows. Let Ei and E¥*
denote, respectively, the actual modulus and experi-
mentally determined.modulus using straln gages at the
location y along the center line. Thus |

y L ,
€ (o> ¥) '

Combining (33) with Hooke's law (3) to eliminate the

E¥ =

(33)

strain ex(o, y), we obtain

E* _ _ Oe .
Ey G (0,Y) = v 6,(0,7) - 3h)

x Vxy%y

The_péasured §train ex(O,y) will normally contain
contributions from in-plane and out of plane bending.
Since the stresses are ddd function of y, the bending
effects may be eliminated by using several gages and
averaging the results. | | .

Equation 34 has been evaluated for quasi-isotropic
and cross-—ply1 laminates at several lccatlons y; the
resu’ts are shown in Tables 16. and 17. Column (a) in each
table indicates.the predicted excerimental error 1if gages

were placed -at y=0. .Similarly, columm (3) in each table

'_l
)
v Ly
oo
[
bt I ¢

L]

ults are baseZ uzcn v=0.
, and v=0.82075 znd T,=-

e e i - A it
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shows the predicted error if gages were placed at y=+b/2.
Since, for each case, column (b) 1s closer to unity than
column (a), placement of gages at y=+b/2 is a better lo-
cation for strainlgageAplacement. In fact, calculaﬁions

. at other values indicéte'y-tblz is thé optimgi location.

_ - Column (e¢) in Tabtles ;6 and 17 is based upon the
assumption of three strain gages, two at the quartgf .
hoints on one face and the third in the center of the
opposite face. Clark and Lisagor [1] tooklexﬁensive-
measurements of graphite/epoxy using strain gages at_pre-
cisely these three poiﬁts. 'Cinﬁn (4) shows the experi-
mental results based upon Clark and Lisagor's original
datal. It will be observed that comparison of the theo-
retical results column (9) w*ith the experimental resulé
column (&) is e;geptiona;;;‘good for quasi-isotropic
laminates. For éro:s;plj.iaminates{ Table 17 shows #
considerable discr&panéy ﬁetweeﬁ predicted and actual

2

error©. The experimental results confirm the greater

sensitivity of modulus to aspect ratic for the cross-

Origlnal stress-strain curves were available only for
£=0.25,°0.50 and 1.0. Fcr 9-I specimens, a "test-fit"
strazght line was constructed over the straln range
€=0 to €=0.005. Average modull for the three aspect
ratlos were 7.09x10 ksi, 6.71x10 k=i, 6.39x10 ksi.

The actual modulus was assumed %0 be 6.59x20 ksi for
purcoses of completing the column.

C e

"

Colimn (&) of Teble 17 uses datz as rescrted

o

v Clark end Lisageor.




TABLE 16. Predicted experimental error of
. Young's modulus E for Q-1 laminate
B4 E
@ | (e) ()
3 £00,00 | E"0,) | (a)+ )
. . E /E
Eg Ey 2 X
0.25 <1.,091: - 1.063 - 1.077 1.083
0.50 . 1.026 1.007 - 1.017 1.018
1 0.962- . | 0.986 . |. 0.97% 0.970
'3 | o999 | f.o00 | o0.999 —
6 1.000 1.000 1.000 —
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TABLE 17. Preciicted experimental error or.'
D Young's modulus E for C-P laminate

P O 72 R

(a) () (c) ()

E . E.(Q,O) E (0,9-) - (a)+'(b) '
| = | e,
E. B 2

0.25 | .2.38. | 2.2 C2.35 1.13

0.5Q 4 1.93 o 1.43 1.64 1.01

x| a8 | 19 | 0.7 - | o097

3 T2t xeelc | ordo2r | 1.00

6 Iv.’OO 1.00 1.00 1.00




plies, but not to the extent predicted. Presumably, the
assumption of a rigid clamped edge is not appropriate
for short gage length, high Péisson's ratio- specimens
in ﬂompreaaion using the IITRI fixture.

A more plausible explanation is that the rather high
st-ess levels near the constrained edge place the

material well into the non-linear rance of behavior.

[Note the high stress levels at "he edges in Figs 16,17].

Consequently,.it is possible that the width of the
specimen near the clamped edge expands non-linearly,
thereby greatly diminishins the constrained edge effect

For completeness, we point out that Clark and

Lisagor 1] found that the modulus of -unidirectional
laminates was independent of £; this 1s consistent with
the rasults of Chapter V.

Althougﬁ an explanation of compressive fallure of
conposites was not one of the objectives of this study,
some preliminary results are obtainzble directly fronm .
the stress analysis. Fallure theories for singie piles

may be applled directly to the stress distribution

" within each individual lamin

Delamination will cccur when the interleminar
shear stresses T-x 2and sz exce=2d the 2liowable loads

for the eToxy These shear :ztrasses may te artroximesely

et bty wed 2 sns b e

9(
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obtained from the three-dimensional equilibrium

equat;ons, l.e.

3 3a§ ari 3
t~-[ + ]+ Aty, = 0,
ax oy
1 ot -1 1 . 7
el - +*-—L]+A‘tz"0,
x 3y ‘ y . 1

where the superscript 1 refers to the i-th lamina, At
refers to the difference in value of shear stress across
the i-th lamina, and t' the thickness of the i-th lamina.
For small t",'these shear stresses are .very small, except

where the in-plane stress exhibit large gradients.
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Chapter VII
CONCLUDING REMARKS.

‘Limitations of the Model

Insofar as the broblem is analyied as senefalized
plane stress, it will not provide an exact solution to
the three-dimensional elasticity prdbleﬁ. In particular,
the third equation of eqnilibrium (force-balance in the
z-direction) will not be satisfied C15]. However, it is
well known that the generalized plane stress solution is
very clecse to the exact solution 1f the thickness of the
laminate 13 small compared to the other two dimensions.

. The Iinearity assumption Eqs. (3) is 2 somewhat
more serious limitation of this model. Compression
tests of uniaxial (0]s high-strength graphite/epoxy
laminates indicate linear behavior between load and
axial compressive strain all the way tc fracture [1].
Since the load is carried predominantly by the graphlte
fiber, it may be inferred that graphite responds linearly
to compressive rupture. On the cther hand, & cross-ply

[+45/7U5]s stacking of the same laminae prcéuces a
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non-linear behavior, particularly near failure. It is

important to note that although the ultimate axial strain
for cross-ply laminates exoeeds the ultimate axial strain
for'unidirectional laminates by a factor of up to 3 [IJ.-

‘the maximum compressive riher strain is considerahly

lower for the cross-ply than for the uniaxial layup.
Indeed, these cross-ply 1am1nates fall due to delami-

nation and not fracture [ 1]. It may be inferred from

the foregoing discussion; that the crbss-oly laminate
behaves'non-linearly.because the epoxy exhibits non-
linear'tehavior. Such non-linear erreots may also be
observed rrom transverse strain measurements on
unidirectional laminates. Ashton C16] reports varyins
values . for-Poisson s ratio during axial compression tests
on h.gh-strength graphite/epoxy composites. The in-
elastic behavier: of oomposites was" also investigated
by Foye from the point ‘view  of- micromechanics Bar].

The model 1is very dirficult to validate empiri-

-cally, since it is 1mpossible to know the exact kinematic

bounﬁary conditions at the clamged edges. It is evident
that an edge constralned to respond rigidly is the
seversst case that might be enccuntered. The results
obtained in this study should therefore be viewed as

the "worst possible case".




Treatment of the constrained edge effect due to
out of plane bending, while of technical interest, 1is |
not studied in this work. Such effects are expected to
hg amn}l in comparison to in-plane bending bdecause the )
Pa%:soh ratio vi3 1s generally much smaller than vxy &and

- the thickness of most laginatéa is very small compareé

to their width. Moreover, a study of these effects,
would involve a considerably more complicatéd model.
Thus the developcd model should only be considered

& first approximation to an accurate.description. It

‘may be used by the experimentalist fq corroborate only

the ihital portion of the streci-strain conpressive
data. At the other end of the data curve it may be used

only to suggest, rather than provide definitive

. explanations, for different modes of failure.

gy
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