NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-163919) EFFECT OF LOAD N81-16138 INTRODUCTION ON GRAPHITE EPOXY COMPRESSIOn SPECIMENS Final Report (Howard Univ.)

FINAL REPORT

NASA GRANT NAGl-23

EFFECT OF LOAD INTRODUCTION ON GRAPHITE

EPOXY COMPRESSION SPECIMENS

by

HOWARD UNIVERSITY
SCHOOL OF ENGINEEREING

DEPARTMENT OF MECHANICAL ENGINEERING
WASHINGTON, D.C. 20059

```
HOWARD UNIVERSITY
SCHOOL OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING
WASHINGTON, D.C. 20059
FINAL REPORT
NASA GRANT NAGI-23
EFFECT OF LOAD INTRODUCTION ON GRAPHITE EPOXY COMPRESSION SPECIMENS
by
Robert Reiss
Associate Professor of Mechanical Engineering
Principal Investigator
and
Tse-Min Yao
Graduace Research Assistant
```

January, 1981

Abstract

Compresston testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated in this report: (a) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (b) non-uniform gripping which induces bending into the specimen. This study has developed an analytical model capable of quantifying these foregoing effects. The model is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.

Page
NOMIENCLATURE v
Chapter I HITRODUCIIOA 1
A. Retionale 1
B. Background 2
C. Specific Objectives 5
Chapter II PROBLEM FORMULATION 6
A. Statement of the Problem 5
B. Nodelling Assumptions 6
Chapter III FORMAL SOLUTION 10
A. Pure Compression 10
B. Pure in-plane Bending 18
C. Lamina Stress 22
Chapter IV NIMERICAL SOLUIION TO EIGENVALUE PROBLEM 26
Chapter V NUMRFICAL RESULTS 28
A. Pure Compression 28
a. Quasi-Isotropic (Q-I)
Laminates 28

1. Generalized Plane Stress 28
2. Lamina Stress 35
b. Cross-Ply (C-P) Laminates 52
3. Generialized Plane Stress 52
4. Lamina St.ress 54
c. Unidirectional (U-D) Laninates 61
B. Pure Bending 65
a. Quasi-Isotropic Laminates 65
5. Generalized Plane Stress 65
6. Lamina Stress 68
b. Cross-Ply Laminates 75
7. Generalized Plane Stress 75
8. Lamina Stress 75
c. Unidirectional Laminates 82
Chapter VI SIGNIFICANCE 85
Chapter VII CONCLUDING RBMARRS 92
BIBLIOCRAPHY 95

NOMENCLATURE

det	Determicant
E	Toung's medulus
E_{x}, E_{y} or E_{1}, E_{2}	Young's modulus in the x, y or 1, 2 directions
0	Shear modulus
$G_{x y}, G_{12}$	Shear modulus in the $x-y$ or 1-2. plane ard their counterparts
M, C, X or	Matrices
[M], [C], [K]	
Q-I	Que3i-isotropic
C-P	Cross-ply
O-D	Unidirectionel
u°	Rigid axial displacement

Chapter I

INTRODUCTION

A. Raticnale

In compression tesing, it is difficult to determine purely compressive mechanical properties o: fiber-reinforced matrix laminates. Some of the experimental data showed that mechanical properties of the specimen depend strongly upon the compression fixture utilized [1]. Therefore, it is not surprising that some controversy has developed regarding acceptable techniques for compression testing.

Other than manufacturing non-uniformities in test specimens, compression data may be suspect due to uneven eripping of the tabs, poor alignment of the test machine and/or poor alisnment of the test firture. Fracture or .ultimate compressive stress may be difficuit to obtain because another mode of failure (i.e. buckisns; delamineztion) may occur :irst.
Many of the foregoing difficulties can be iessen-

of the iest fixture creates a complicated stress state by preventing transverse expansion．For sufficiently short grge lengths this constrained edge effect will be evident throughout the entire specimen．A size change of the specimen，therefore，may merely substitute one difficulty for another．

The constrained edge effect has been pointed out in Refs．［2－4］．However，only the present work provides a model capable of quantifying it．This is done through stress analysis by assuming perfect align－ ment and two different gripping mechanisms of the fixture：（a）uniform gripping（axial compression）and （b）small 1a－plane bending superimposed upon axial compression．

B．Background

Pageno and Kialpin［2］investigated the influerse of the end constraint，both experimer：jally and analyticaily，in tension tests of anisotropic bodies， £naiudさng on of̊ーangle graphite／epoxy laminate．Their anaiysis ins based upon the two－dinerstonal elastio compaこさこさこさご equations．They conclu̇ed that the Erさz＝ing

were the principal reasons for the non-existence of a uniform stress state. They also predicted a more serious influence of spipping in compression and torsion testing of anisotropic bodies. However, they did not quantify the end constraint. A photoelastic study of axially compressed rectangular sections, by Phillips and Mantei [3], gave some evidence of the effect of load introduction upon homogeneous, isotropic materials.

An investigation oi the effect of an end attachment on the strength of fiber-reinforced axisymmetric composite cyiinders was presented by Whitney, Grimes and Francis [4]. Thes pointed out that an end attachment which allows some deformation of the end (e.g. adhesive bond) will help allevizte the problem of high stress and strain concentration at the attachment end.

Another method of studying the edge effect in two dimensional stress analysis is based upon the Airy Iunction. Unfortunately, the mixed form of the boundary conditions precludes any jossibility of an exact solution Hess [5] uses separable foms of the Afsy function (whict. decay exporentiaily from ihe Ilxed end) to determine approximate solutions.
A reiated problea, rhose solution also
more attention in recent years，is the free edge effect． At the traction－free edge of a compression specimen，the mismatch in the material properties at laminate inter－ face causes a highly localized effect．

An example of the free edge effect for a blaxial stress state using methods deveioped in the present study would seem an interesting challenge．

The difficulty in estimating stresses in the area near the free edge，using the finite difference method presented by Pipes and Pagano［6］was pointed out by Wang and Dickson［9］．The finfte element procedure developed by Wang and Crossman［7．］has the same difficulties as the finite difference method．Both methods need certain artificial manipulations，specifi－ cally in the region very close to the free edge．The perturbation technique applied by Hsu and Herakovich［8］ grovided smooth continuous stress distributions in the vicinity of the iree edge and mathematical evidence of singular－．．terlaminar shear stresses for cross－ply g－aphite／epoxy leminates．Another method of estimating the freerlarinar shear siresses is based upon the コaier：：\＆method［9］．

In the subsequer：chaミニers，an anaju゙ニミa！

effect.

C. Specific objectives

The objectives of this study are:

1. To develop a closed form approximation to the stress distribution within each lamina of high-strength graphite/epoxy during compression tests.
2. To determine the effect of specimen geometry upon the measured compressive properties, including the determination of the minimun specimen gage length necessary for the existence of a uniform compressive state in the central region of the specimen.
3. To determine the effect of small in-plane bending upon the measured compressive properties.
4. To determine the optimal locaticn of strair gages for compression tests.

Chapter II

PROBLEM FOPMULLATION

A. Statement of the Problem

The primary objective of this study is to determine the effect of testing devices on the response of compression (tensile) specimens of laminate composites which are symetric about their middle plane. For the case of perfect alignment and perfect gripping in a rigid fixture, the ends of the specimen will undergo the rigid displecement shown 1. Fig. 1 , where u° and θ^{0} denote the uniform displacement and rotation of the constrained edges, respectively. Also, L and b are the respective half length and half width of the specimen, and x and y are Cartesian coordinates measured from the specimen's center.

B. Modelling Assumpticns

The Lam£nate thecry for fiber layups whict: are

state of stress whose Cartesian components are denoted by $\bar{\sigma}_{x}, \bar{\sigma}_{y}$ and \bar{T}. The bars above the stress symbols indicate quantities averaged across the laminate thickness.

With the assumptions of smail displacements and 2. Innear orthotropic constitutive response, the field tquations to be satisfied are:

1. equilibrium equations

$$
\begin{align*}
& \partial \bar{\sigma}_{x} / \partial x+\partial \bar{\tau} / \partial y=0, \\
& \partial \bar{\tau} / \partial x+\partial \bar{\sigma}_{\bar{y}} / \partial y=0 ; \tag{1}
\end{align*}
$$

2. straln-disolacement relations
$\varepsilon_{I}=\partial u / \partial x ;$
$\varepsilon_{y}=3 \nabla / 3 y$,

$$
\begin{equation*}
\gamma=\partial u / \partial y+\partial v / \partial x ; \tag{2}
\end{equation*}
$$

3. constitutive equations

$$
\begin{align*}
& \varepsilon_{x}=S_{11} \bar{\sigma}_{x}+S_{12} \bar{\sigma}_{y}, \\
& \varepsilon_{y}=S_{12} \bar{\sigma}_{x}+S_{22} \bar{\sigma}_{y}, \\
& \gamma=S_{44} \bar{F} ; \tag{3}
\end{align*}
$$

In Eqs. (2), u and v denote the displacements in the x (loading) and y (transverse in the plane of the specimen) directions, respectively. The material constants $S_{\text {if }}$ can be computed directly from the known material constants of the constituent laminae and their fiber orientations with respect to the x-axis [0].

The boundary conditions which are to be adjoined to Eqs. (1-3) are of mixed type. On the stress-free edges we have the static boundary condition

$$
\begin{equation*}
\bar{\sigma}_{y}=\tau=0, \quad \text { on } y= \pm b . \tag{4a}
\end{equation*}
$$

On the other hand, the kinematic boundary conditions, according to Fig. 1 , are

$$
\begin{equation*}
u(\pm L, y)=\mp\left(u^{\circ}+\theta^{\circ} y\right) . \tag{4b}
\end{equation*}
$$

Due to the linearity in the Eqs. (1-3) and boundery conditions (4b), the Principle of Superposition is appilcable and it surfices to solve the purely compressive case ($\theta^{\circ}=0$) and the pure in-plane bending ($u^{\circ}=0$) case, seperately.

A comon method of obtaining the sciution to Eqs. (1-3) is based upon the Airy stress function [1]). The resuiving founth order equation is generaliy solved by sevanミこion of :ariables. The mixed boundary conditions

MRIGINAL PAGE IS
OF POUR QUAJITY

An alternative approach involves reformulating the problem in terms of the complementary energy [7,8]

$$
\begin{gather*}
=\frac{1}{2} \int_{-b}^{b} \int_{-L}^{L}\left[S_{11} \bar{\sigma}_{x}^{2}+2 S_{I 2} \bar{\sigma}_{x} \bar{\sigma}_{y}+S_{22} \bar{\sigma}_{J}^{2}\right. \\
\\
\left.+S_{44} \bar{T}^{2}\right] d x \cdot d y \\
-\int_{-b}^{b}\left[u(L, y) \bar{\sigma}_{x}(L, y)\right. \tag{5}\\
\\
\left.+u(-L, y) \bar{\sigma}_{x}(-L, y)\right] d y .
\end{gather*}
$$

The Principie of Minimum Complementary Energy states that of all stress fields $\left(\bar{\sigma}_{x}, \bar{\sigma}_{y}, \bar{\tau}\right)$ that satisfy the equilibrium equations (1) and the static boundary conditions (4a), the exact solution actually minimize ©. Thus Eqs. (1-4) may be expressed simply $2 s$ $0 \Phi=0$.

F1g.1 Edge displacements due to perfect sripping and perfect allgnent.

Chapter III

FORMAL SOLUTION

A. Pure Comoression

Since, in this case, $\theta^{0}=0$, it is evident that axial stress $\bar{\sigma}_{x}$ must be an even function of y, and that the shear force along the edges, $x= \pm b$, must vanish. It is therefore clear that the stress $\bar{\sigma}_{x}$ may be represented by a Pourier series.

$$
\begin{equation*}
\bar{\sigma}_{x}=-\bar{\sigma}_{c}\left[1+\sum_{1}^{N} n \cos \frac{n \pi y}{b} F_{n}\left(\frac{\pi x}{b}\right)\right] \tag{6a}
\end{equation*}
$$

For N sufficiently large, and for fixed x, the series will unifomly approximate $\bar{\sigma}_{x}$ on all intervals for which $\bar{\sigma}_{x}$. is continuous. At points of discontinuity for $\bar{\sigma}_{x}$, the series converges to the average value of $\bar{\sigma}_{x}$. Here, $F_{n}\left(\frac{\pi x}{b}\right)(n=1, \ldots N)$ are the unknown Fourier coefficients, and $\bar{\sigma}_{c}$ is the average compressive stress across every x=censtant section.

The remeining stresses $\bar{\sigma}_{y}$, and $\bar{\tau}$ are obtained by
soiving the equilibrium equations (1), using the baundary
condition (4a). These results are

$$
\begin{align*}
& \bar{\sigma}_{y}=\sigma_{c_{1}}^{N} \frac{1}{n}\left\{\cos \frac{n \pi y}{b}+(-1)^{n+1}\right\} F_{n}^{n}\left(\frac{x}{b}\right), \\
& \bar{\tau}=\sigma_{c_{q}}^{N} \sin \frac{n \pi y}{b} F_{n}^{1}\left(\frac{\pi x}{b}\right) . \tag{6c}
\end{align*}
$$

In deriping Eq. (6c), the vanishing of shear
force

$$
\int_{-b}^{b i} \cdot \bar{\tau}(x, y) d y=0 .
$$

was used to deteraine the constant of integration. Also () 「 indicates differentiation with respect to indicated argument.

The unknown functions F_{n} may be determined by substituting Eqs.(6) into Eq. (5), that is

$$
\begin{aligned}
& \phi=\frac{I}{2} \cdot \sigma_{c}^{2} \cdot \rho_{-L}^{L} \int_{-b}^{b}\left\{S_{I I}\left[I+\sum_{I}^{M} m \cos \frac{m \pi y}{b} F_{m}\left(\frac{\pi \pi}{b}\right)\right]\right. \\
& -\left[1+\sum_{1}^{N} n \cos \frac{n \pi y}{b} F_{n}\left(\frac{\pi x}{b}\right)\right] \\
& +2 S_{12}\left[1+\sum_{I}^{N} m \cos \frac{m \pi y}{b} I_{m}\left(\frac{\pi x}{b}\right)\right] \\
& \text { - } \sum_{I}^{N} \frac{I}{n}\left[\cos \left(\frac{n \pi y}{b}\right)+(-I)^{n+I}\right] F_{n}^{i}\left(\frac{\pi x}{b}\right) \\
& +S_{22} \sum_{1}^{M} \frac{I}{I I}\left[\cos \frac{m \pi}{b}-(-I)^{m+I}\right] F_{m}^{\prime}\left(\frac{\pi x}{b}\right) \\
& \text { - } \sum_{1}^{N} \frac{I}{n}\left[\cos \frac{n \pi y}{b}+(-)^{i+1}\right] F_{n}^{\prime}\left(\frac{\pi x}{b}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+S_{44}\left[\sum_{1}^{N} \sin \frac{m \pi y}{b} F_{m}^{\prime}\left(\frac{\pi x}{b}\right)\right] \cdot\left[\sum_{1}^{N} \sin \frac{n \pi y}{b} F_{n}\left(\frac{\pi x}{b}\right)\right]\right\} d x d y \\
& +u^{0} \sigma_{c}{ }_{c}^{b}{ }_{-b}^{b}\left[I+\sum_{I}^{N} n \cdot \cos \frac{n \pi y}{b} F_{n}(\pi \xi)\right] \\
& +\left[1+\sum_{1}^{N} n \cos \frac{n \pi y}{b} F_{n}(-\pi \xi)\right] d y, \tag{i}
\end{align*}
$$

where $\xi=\mathrm{L} / \mathrm{b}$.
After intergrating over the y coordinate, applycation of standard techniques of Variational Calculus [13] renders the expression

$$
\begin{aligned}
& \delta=\frac{1}{2} \sigma_{c}^{2} \delta_{-L}^{L}\left[-2 S_{12} \sum_{I}^{N} F_{n}^{n}\left(\frac{\pi x}{b}\right)+3 S_{22_{1}}^{N} \frac{1}{n} n_{2} F^{I V}\left(\frac{\pi x}{b}\right)\right. \\
& +S_{22} \sum_{i}^{N} F_{n}\left(\frac{\pi x}{b}\right)+2 S_{22_{m}} \frac{\sum(-1)^{m+n}}{m \cdot n} P_{m}^{I \nabla}\left(\frac{\pi x}{b}\right) \\
& \left.=S_{44} \sum_{I}^{N} F_{n}^{\prime \prime}\left(\frac{\pi x}{b}\right)\right] \cdot\left[\delta F_{n}\left(\frac{\pi x}{b}\right)\right] d x \\
& +\frac{1}{2} \sigma_{c}^{2}\left[-S_{12} \sum_{1}^{N} F_{n}(\pm \pi \xi)+2 S_{12} \sum_{1}^{N} \frac{(-2)^{n}}{n}\right. \\
& +3 S_{22_{1}}^{N} \frac{1}{n^{3}} F_{n}^{n}(\pm \pi \xi)+2 S_{22_{m \neq n}} \frac{(-1)^{m+n}}{m \cdot n} \\
& \left.\cdot F_{m}^{\prime \prime}(\pm \pi \xi)\right] \cdot\left[\delta E_{n}^{\prime}(\pm \pi \xi)\right] \\
& +\frac{1}{2} \sigma_{c}^{2}\left[S_{12} \sum_{1}^{N} F_{n}^{\prime}(\pm-\xi)-3 S_{2} \sum_{1}^{N} \frac{i}{n^{2}} F_{n}^{\prime \prime \prime}(\pm \pi \xi)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+S_{44}{ }_{1}^{N} F_{n}^{r}(\pm \pi \xi)\right]-\left[\delta F_{n}(\pm \pi \xi)\right] \\
& \text {-0. } \tag{8}
\end{align*}
$$

It immediately follows from (8) that the Euler equations are

$$
\begin{align*}
& \sum_{1}^{N} \cdot\left[S_{22} \frac{3}{n^{2}} F_{n}^{I V}\left(\frac{\pi x}{b}\right)-\left(2 S_{12}+S_{44}\right) F_{n}^{n}\left(\frac{\pi x}{b}\right)+S_{22} F_{n}\left(\frac{\pi x}{b}\right)\right] \\
& +\sum_{m \neq n}\left[2 S_{22} \frac{(-1)^{m+n}}{\ln \cdot n} F_{m}^{I V}\left(\frac{\pi x}{b}\right)\right] \\
& =0 \tag{9a}
\end{align*}
$$

and the natural boundary condi=ions are

$$
\begin{align*}
& \sum_{i}^{N}\left[S_{22} \frac{3}{n_{2}^{2}} F_{n}^{n}(+\pi \xi)-S_{12} F_{n}(\pm \pi \xi)\right] \\
& +\sum_{m \neq n}\left[2 S_{22} \frac{(-1)^{m+\Omega}}{m \cdot n} F_{m}^{\prime \prime}(\pm \pi \xi)\right] \\
& =\sum_{1}^{N}\left[2 S_{22}(-1)^{n+1} / n\right] \text {, } \tag{bb}\\
& \sum_{1}^{N}\left[\left(S_{44}+S_{12}\right) F_{n}^{\prime}(\pm \pi \xi)-S_{22} \frac{3}{2} F_{n}^{\prime \prime \prime}(\pm \pi \xi)\right] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& =0 \text {. }
\end{aligned}
$$

With the introduction of the following definitions:

$$
\begin{aligned}
& S_{11}=1 / E_{x}, \quad S_{12}=-v_{x y} / E_{x}=-v_{y x} / E_{x} \\
& S_{22} \div 1 / E_{y}, S_{44}=1 / G_{x y}, \\
& I_{0}=\left(2 S_{12}+S_{44}\right) / S_{22}=E_{y} / G_{x y}-2 v_{y x}, \\
& \underline{\underline{M}}=\left[\begin{array}{cccccc}
\frac{3}{1^{2}} \frac{2}{1}\left(\frac{-1}{2}\right) & \frac{2}{1}\left(\frac{+1}{3}\right) & \cdots & + & \cdots \\
\frac{3}{2^{2}} & \frac{2}{2}\left(\frac{-1}{3}\right) & + & \cdots & \cdots & \cdots \\
\cdots & 3 & \cdots & \cdots & \cdots & \cdots \\
& 3^{2} & \cdots & \cdots & \cdots & \cdots \\
\text { Sym. } & & & & & \frac{3}{N^{2}}
\end{array}\right] \\
& \underset{K}{K}=\left[\begin{array}{llll}
1^{2} & & & \\
& 2^{2} & & 0 \\
& & 3^{2} & \\
0 & & & \\
& & & . N^{2}
\end{array}\right] \cdot E_{y} / E_{x}, \\
& \left.\underline{I}=\left[\begin{array}{cccc}
I & & & \\
\cdot & I & 0 \\
& & \cdot & \\
& 0 & & \\
& & & I
\end{array}\right], \quad \begin{array}{c}
F_{1} \\
F_{2} \\
: \\
\cdot \\
F_{N}
\end{array}\right] \text {, }
\end{aligned}
$$

Eqs. ($9 a, b, c$) may be convenientiy cast in the form

$$
\begin{equation*}
\underline{M} \underline{F}^{I V}-F_{0} \underline{\underline{P}} \underline{F}^{\prime \prime}+\underline{E}=0, \tag{10a}
\end{equation*}
$$

and

$$
\begin{aligned}
& K E_{n}^{\prime \prime}(\pm \pi \xi)+v_{y x} I E_{n}(\pm \pi \xi)=2 v_{y x} \underline{E} \quad(10 b) \\
& \left(r_{0}+v_{x y}\right) \underline{F_{n}^{\prime}(5 \pi \xi)-\underline{M} F_{n}^{m}(\pm \pi \xi)=0 . \quad(10 c) .}
\end{aligned}
$$

It is also necessary to determine the constant $\sigma_{c^{*}}$ After differentiating (Eq. 7) with respect to σ_{c} and simplifying the resulting expression with the ald of Eqs. ($9 \mathrm{a}, \mathrm{b}, \mathrm{c}$) and setting

$$
\frac{\partial \phi_{\partial}}{\partial \sigma_{c}}=0,
$$

we obtain

$$
\begin{equation*}
u^{0}=\frac{\sigma_{c}^{L}}{E_{x}}\left[I-\frac{v_{x y}}{\pi \xi} \sum_{1}^{N} \frac{1}{n}(-I)^{n} F_{n}^{\prime}(\pi \xi)\right] . \tag{II}
\end{equation*}
$$

It should be noted that if $\mathrm{F}_{\mathrm{n}}=\mathrm{O}(\mathrm{n}=1, \ldots \mathrm{~N})$, then Eq. (11) refuces to the elementary strerigth of materials formula [12].

The solutions for N :terns retained in the series (6), and the solutions to Egs. ($9 a, b, c$) give the "best" (1n the mean square sense) N-tem approximation to the true solution. Therefore, : i. s reasonable to expect that the approximate stresses nill be closest to their suue vaiues at locations mate inest true values are the
largest, that is, at the constrained edges.
Eq. (Ina) is a fourth order ordinary differential equation with corstant coefficients. Thus, we assume a soIution of the form

$$
\begin{equation*}
E=\underline{I} \cosh (a \pi x / b) . \tag{12}
\end{equation*}
$$

Substitution of Eq. (12) 1nto (10a) generates the elgenvalue: problem:

$$
\begin{equation*}
\left[\alpha^{4} \underline{-}-\alpha^{2} \Gamma_{0} \underline{I}+\underline{R}\right] \underline{n}=0 \tag{13}
\end{equation*}
$$

for the eigenvalues a and eigenvectors n.
Note that a and n are obtained independent of the boundary conditions, and bence they do not depend upon the manner in which the compression load is introduced. They depend only upon the number of terms N retained in the series, and the material constant. 「o. In the case of quasi-isotropic $[0 / \pm 45 / 90]_{s}$ lagups, $r_{0}=2$, and they are also independent of the material constants.

A necessery and sufficient condition for the existence of a non-trivial solution to Eq. (13) is

$$
\begin{equation*}
\operatorname{det}\left[\alpha^{4} \underline{M}-\alpha^{2} \Gamma_{0} \underline{I}+\mathbb{K}\right]=0 \tag{14}
\end{equation*}
$$

Eq. (14) is a polynomial of orier 4 N ; however all solutions must occur in equal and opposite paizs. And if the roots are complex, they musi aiso occur \leq : pairs of complex confugates.

If，for complex eigenvalues，the components of the p－th eigenvector are assumed as

$$
n_{p}=A_{p}\left[1 n_{p 2} \cdots \cdots n_{p N}\right],
$$

then the general solution to Eq．（10a）for even functions F_{n} becomes

$$
\begin{align*}
\mathbf{F}_{n}= & \sum_{p=1}^{N}\left\{A_{p} \eta_{p n} \cosh \left(\alpha_{p} \pi x / b\right)\right. \\
& +\bar{A}_{p} \bar{n}_{p n} \cosh \left(\bar{\alpha}_{p} \pi x / b\right) \\
= & 2 \cdot \operatorname{Re}\left\{\sum_{p=1}^{N} A_{p} \eta_{p n} \operatorname{coah}\left(a_{p} \pi x / b\right)\right. \tag{15a}
\end{align*}
$$

where bars above the symbols indicate complex conjugate．
For real eigenvalues $a_{p}^{2}, \alpha_{p}^{2}(p=1,2, \cdots N)$
the general solution is

$$
\begin{align*}
F_{n}= & \sum_{p=1}^{N}\left[A_{p}^{1} \eta_{p n}^{1} \cosh \left(\alpha_{p}^{1} \pi x / b\right)\right. \\
& \left.+A_{p}^{2} \eta_{p n}^{2} \cosh \left(\alpha_{p}^{2} \pi x / b\right)\right] \tag{15b}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
\eta_{p n}^{1}=A_{p}^{1}\left[\begin{array}{lllll}
1 & n_{p 2}^{1} & n_{p 3}^{1} & \cdots & n_{p N}^{1}
\end{array}\right], \\
\eta_{p n}^{2}=A_{p}^{2}\left[\begin{array}{llll}
1 & n_{p 2}^{2} & \eta_{p 3}^{2} & \cdots
\end{array} n_{p N}^{2}\right.
\end{array}\right] .
$$

The complex constants A_{p} or meal constants A_{p}^{1}

（ロゴ，c）．

The remaining possibility that some roots are real and some complex was.not encountered in the numerical calculations for the assumed data. Thus, athough this case is, as routine as the two foregoing cases, it will not be discussed further.

B. Pure in-plane Bending

For pure bonding, $u^{\circ}=0$, and the axial stress is an odd function of J. As before, the shear force along the edges $x= \pm b$ must vanish. However, it turns out that a Pourier Sine:series approximation to $\bar{\sigma}_{x}$ is not convenient. This is because application of the boundary conditions (4a) to the stresses abtained after integrating Eqs. (I) introduces side comstraints on the Fourier coefficients. In order to circumvent this difficulty, $\bar{\sigma}_{x}$ is expacded in terms of odd Legendre polynomials. One definition of the $N-t h$ Legendre polynomial is [13]

$$
p_{n}\left(\frac{J}{b}\right)=\sum_{k=0}^{N} \frac{(-I)^{k}(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}\left(\frac{y}{b}\right)^{n-2 k},
$$

where $N=\frac{\pi}{2}$. n : even

$$
\begin{equation*}
N=\frac{(n-1)}{2} \quad n: \text { odd. } \tag{16}
\end{equation*}
$$

Then the stress $\bar{\sigma}_{x}$ cay be represented by

$$
\begin{equation*}
\sigma_{x}=-\sigma_{b}\left[p_{1}\left(\frac{Z}{b}\right)+\sum_{3,5, \ldots}^{N} P_{n}\left(\frac{Z}{b}\right)\right] G_{n}\left(\frac{x}{b}\right) . \tag{17a}
\end{equation*}
$$

Here，$G_{n}\left(\frac{7}{b}\right)$ are the unknown generalized Fouriter coefficients；and σ_{b} is a constant．
ine remaining stresses $\bar{\sigma}_{y}$ ，and $\overline{\bar{T}}$ are obtained by solving the equilibrium equations（ 1 ）subject to the boundary condition（4a）．These resurts are

$$
\begin{align*}
& \bar{\sigma}_{j}-\sigma_{b} \cdot \sum_{3,5: \cdot}^{N}\left[\frac{P_{n-2}\left(\frac{Z}{b}\right)}{(2 n+1)(2 n-1)}-\frac{2 P_{n}\left(\frac{Z}{b}\right)}{(2 n-1)(2 n+3)}\right. \\
&\left.+\frac{P_{n+2}\left(\frac{7}{b}\right)}{(2 n+1)(2 n+3)}\right] G_{n}^{n}\left(\frac{x}{b}\right), \tag{17b}
\end{align*}
$$

$$
\begin{equation*}
\bar{\tau}=-\sigma_{b_{3,5}} \sum_{N}^{N} \frac{1}{\left(Z_{n}+1\right)}\left[P_{n-1}\left(\frac{\eta}{b}\right)-P_{n+1}\left(\frac{Y}{b} i\right] G_{n}^{\prime}\left(\frac{x}{b}\right) .\right. \tag{17c}
\end{equation*}
$$

In deriving Eq：（17c），the vanishing of shear force

$$
\int_{-b}^{b} \bar{\tau}(x, y) d y=0
$$

was used to determine the constant of integration．Also （ ）＇denotes differentiation with respect to the indi－ cated argiment．

The unknown functions S_{n} may be deternined by

$$
\begin{aligned}
& \text { substitu=ing iq. (17) 1ato Eq. (5), and intesnating } \\
& \text { over the y-cocminate. After applying the variaticnal } \\
& \text { 7ethoc anc collecだns terws, the Euler ecuaこさens Ere } \\
& \text { ここここさ! (: }
\end{aligned}
$$

$$
\begin{equation*}
\underset{\underline{M} G^{I V}}{\sim}-r_{0} \subseteq G^{\prime \prime}+\underline{K} G=0 \tag{18}
\end{equation*}
$$

where

$$
\underline{K}=\left[\begin{array}{lll}
\frac{1}{7} & & \\
& \frac{1}{1 I} & \\
0 & \cdot & 0 \\
& & \frac{1}{(2 N+1)}
\end{array}\right] \cdot E_{y} / E_{x}, \underline{G}=\left[\begin{array}{c}
G_{3} \\
a_{5} \\
\vdots \\
\\
\\
G_{N}
\end{array}\right]
$$

The natural boundary conditions associated with
Eq．（18）are

$$
\begin{align*}
& \left.M \underline{G}^{n}(\pm \xi)+v_{x y} \underline{G}(\pm \xi)=\frac{v_{v x}[100 .}{105} 10\right]^{T} \text {, } \tag{19a}\\
& \underline{M} \underline{G}^{\mathbf{\prime \prime \prime}}(\pm \xi)-\left(\Gamma_{0}+v_{y x}\right) \underset{\sim}{G} \underline{G}^{\prime}(\pm \xi)=0 . \tag{19b}
\end{align*}
$$

In addition，the condition $\frac{d \phi}{d \sigma_{b}}=0$ results in， after considerable manipulations，

$$
\begin{equation*}
A^{\circ}=\frac{3 M_{b} \xi}{E_{x} \cdot 2 b^{2}}\left[1-\frac{v_{x y}}{35 \xi} G_{3}^{\prime}(\xi)\right], \tag{20}
\end{equation*}
$$

where

$$
M_{b}=-\int_{-b}^{b} y \sigma_{x} d y=\frac{2}{3} \sigma_{b} b^{2} .
$$

It should be noted that in Sernoulli－Euler theory

$$
\begin{equation*}
\theta^{\circ}=\frac{3 M_{b} \xi^{5}}{E_{x} \cdot 2 b^{2}} \tag{21}
\end{equation*}
$$

The method of solving Eos．（ $-\hat{2}, 19$ ）is the same as in the pure compression proたごニ．\％o write

$$
\underline{a}=\Sigma \cosh \left(\frac{\beta x}{b}\right),
$$

where β and $\underline{\underline{c}}$ are the eigenvaluas and eigenvectors, respectively. 'Thus B and 5 are determined from

$$
\begin{equation*}
\left[\beta^{4} \underline{M}-\beta^{2} r_{0} \underline{C}+\underline{I} \underline{I}=0\right. \tag{22}
\end{equation*}
$$

If the components of the complex eigenvectors are

$$
c_{p}=B_{p}\left[I \zeta_{p 2} \cdot \cdots \cdot \zeta_{p N}\right]
$$

the solution for G_{n} is given by

$$
G_{n}=2 \cdot \operatorname{Re}\left\{\sum_{p=1}^{N} B_{p} \Sigma \cosh \left(\frac{\beta_{0} x}{b}\right)\right\} .
$$

For real eigenvalues, the counterpart to Eq. (15b) is

$$
\begin{equation*}
G_{n}=\sum_{p=1}^{N}\left[B_{p}^{1} \sum_{p n}^{I} \cosh \left(\frac{\theta_{p}^{I} x}{b}\right)+B_{p}^{2} \sum_{p n}^{2} \cosh \left(\frac{\beta_{p}^{2} x}{b}\right)\right] . \tag{23b}
\end{equation*}
$$

c. Lamina Stress

In the previous two sections (A, B), we formally obtained epproximate solutions for the average stress and as a. consequence of Eqs. (3), strain. The remaining: task is now to obiain the stresses within each constituent lamina. The approach tere will follow Jones [10].
For either quasi-isotropic or cross-ply
larinates, the stress-strain relations (3) nay be waiたer.

$$
\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\frac{\gamma_{\bar{I}}}{-\bar{L}}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{I}{E} & \frac{-v}{E} & 0 \\
\frac{-v}{E} & \frac{I}{E} & 0 \\
0 & 0 & \frac{I}{2 G}
\end{array}\right]\left\{\begin{array}{c}
\bar{u}_{\bar{x}} \\
\bar{\sigma}_{y} \\
\bar{\tau}
\end{array}\right\}=[Q]\left\{\begin{array}{c}
\bar{\sigma}_{x} \\
\bar{\sigma}_{y} \\
\vdots \\
\bar{\tau}
\end{array}\right\}
$$

where E is the Young's modulud $\left(E_{x}=E_{y}=E\right), v$ is the Poisson's ratio ($v_{x y}=v_{y x}=v$), and G is the shear modulus $\mathcal{G}_{x y}=G_{J x}=G$). Each constituent lamina of thelaminate sustains the same strain $\left[\varepsilon_{x}, \varepsilon_{y}, \frac{\gamma_{x y}}{2}\right]^{T}$ in the $x-y$ cocrdinate system.

However, the stresses differ from one lamina to the next. It is necessary, therefore, to determine the appropriate stress-strain relation for each lamina. Let us suppose that the principal material axes are incined at an angle θ to the x-aixis (see Fig. 2). Then the strains in the material coordinates are obtained from the laminate strain by

$$
\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
-\frac{Y_{12}}{2}
\end{array}\right\}=[T]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\frac{\gamma_{x y}}{2}
\end{array}\right\}, \quad[\underline{Z}]=\left[\begin{array}{ccc}
\cos ^{2} \theta \sin ^{2} \theta & \sin 2 \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & -\sin 2 \theta \\
\frac{-\sin 2 \theta}{2} \frac{\sin 2 \theta}{2} & \cos 2 \theta
\end{array}\right]
$$

Similarly, the stresses in the principal coordinates are given by

$$
\left\{\begin{array}{c}
\sigma_{1} \tag{26}\\
\cdot \\
\sigma_{2} \\
\sigma_{12}
\end{array}\right\} \quad[T]\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{J} \\
\tau_{x y}
\end{array}\right\}
$$

Now let the constitutive equation in the $1-2$. principal coordinate system be
where E_{1}, E_{2} are Young's moduli in the 1 and 2 directions, respectively, ψ_{12} fe Poisson's ratio for stresses applied in the fiber direction, $v_{21}=v_{12} E_{2} / E_{1}$, and G_{12} is the principal shear modulus.

After combining Eqs. ($24,25,26,27$), we obtain

$$
\left\{\begin{array}{l}
\sigma_{x} \tag{29}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[T]^{-1}\left[\operatorname{si[T][Q]}\left\{\begin{array}{l}
\bar{\sigma}_{x} \\
\bar{\sigma}_{y} \\
\bar{v}_{x y}
\end{array}\right\}\right.
$$

where

$$
[T]^{-1}=\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & -\sin 2 \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & \sin 2 \theta \\
\frac{\sin \theta}{2} & \frac{-\sin \theta}{2} & \cos 2 \theta
\end{array}\right]
$$

Following fundamental matrix algebra, Eq. (28)
can be simplified to the form

$$
\left\{\begin{array}{c}
\left\{\sigma_{x}\right. \tag{29}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[c]\left\{\begin{array}{c}
\bar{\sigma}_{x} \\
\bar{\sigma}_{y} \\
\bar{\tau}
\end{array}\right\},
$$

where

$$
[C]=[T]^{-1} \cdot[S] \cdot[T] \cdot[Q] .
$$

Clearly, the matrix [C] depends upon the lamina material properties and orientation.

$$
\begin{aligned}
\text { Fig. } 2 & \text { Principal material:. } \\
& \text { coordinate systems. }
\end{aligned}
$$

Chapter IV

NUMERICAL SOLUTION TO THE EIGENVALUE PROBLEM

We now take up the numerical solution to the polynomial of order $4 N$

$$
f(\alpha)=\operatorname{det}\left[\alpha^{4} \underline{M}-\alpha^{2} r_{0} \underline{C}+\underset{\sim}{\underline{E}}\right]=0 .
$$

Clearly $f(\alpha)$ has the form

$$
f(\alpha)=c_{1} \alpha^{4 N}+c_{2} \alpha^{4 N-2}+\ldots+c_{N} \alpha^{2}+c_{N+1},
$$

where C_{1} are functions of certain invariants of the matrices M, C and \mathbb{K} and their products. For example, $C_{\mathrm{K}+1}$-aet [K] and $\mathrm{C}_{1}=$ et $[\mathrm{M}]$. The other coefficients, however, are considerably more involved.

A numerical method for determining the set of C_{1} 's for given N relies on the utilization of a kish capacity computer. By reasonably choosing a set of arbitrary numbers ($\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$, . . . α_{N+1}^{\prime}) and evaluating $f\left(\alpha_{1}^{\prime}\right) N+1$ times, we obtain the simultaneous equations

$$
\begin{aligned}
& c_{1}\left(\alpha_{1}^{\prime}\right)^{4 N}+c_{2}\left(\alpha_{1}^{\prime}\right)^{4 N-2}+\ldots+c_{N+1}=f\left(\alpha_{1}^{\prime}\right) \\
& c_{1}\left(\alpha_{2}^{\prime}\right)^{4 N}+c_{2}\left(\alpha_{2}^{\prime}\right)^{4 N-2}+\ldots+c_{N+1}=f\left(\alpha_{2}^{\prime}\right)
\end{aligned}
$$

$$
c_{1}\left(a_{N+1}^{\top}\right)^{4 N}+c_{2}\left(a_{N+1}^{\prime}\right)^{4 N-2}+\cdots+c_{N+1}-\rho\left(a_{N+1}^{\prime}\right)
$$

The coefficients ' C_{1} may now be routinely obtained by solving the above set of simultaneous equations in which C_{1} 's are the unknowns. The numerical sensitivity of the procedure may be checked by choosing several different sets $\left\{\alpha_{i}^{\prime}\right\}$ and comparing the solutions. Furthermore, in our case, it is convenient to reduce the order of the polynomial from 4 N to $2 \dot{N}$, by taking $\left(\alpha_{i}^{\prime}\right)^{1 / 2}$ instead of a_{1}^{\prime}. This step also speeds up the process of obtaining the roots of the polynomial. These roots, i.e. the eigenvalues, were obtained by using a standerd subroutine based on the Newton-Raphson method.[14].

The elsentectors:, are determined from a set of linear aigebreic equations (13 or 22). Since the eigenvectors are not unique, a very convenient normalizetion procedure is to set the first component of eack eisenvector equal to unity: The coefficients A_{p}, deternened by the natural boundary conditions, are also coutinely cbtained by solving a set of linear aigebraic -quatさons.

Chapter V

NTUGERICAL RESULTS

A. Pure Compression

a. Quasi-Isotropic (Q-I) [0/土45/90]s Laminates

1. Generalized Plane Stress

According to elementary rod theory, the stresses, sufficiently far from the edges at which the load is instroduced, are assumed to be uniaxial, i.e.

$$
\begin{equation*}
\bar{\sigma}_{x}=-\sigma_{c}=\frac{-u^{0} E_{x}}{L}, \quad \bar{\sigma}_{y}=\bar{\tau}=0 . \tag{3!}
\end{equation*}
$$

Thus the specimen must have a sufficiently lorg gage length if Eq. (30) is to be applicable anywhere. Elementary theory; however, is able to provide neither the minimum gage length necessary for Eq. (30) to hold nor the stresses in the neighborhood of the clamped edses.

In the present approach, the general plane stresses $\bar{\sigma}_{x}, \bar{\sigma}_{y} \& \bar{\tau}_{x y}$ depend upon the material constanis $v_{y x}, \Xi_{y} / E_{x}$ and $\Gamma 0$, and the specimen geometry ratio ξ.

Por quasi-isotropic laminates, $\Gamma_{0}=2, E_{x}=F_{y}$, and hence the stress distributions merely depend upon v and ξ.

The stresses were calculated for a range of 5 from $1 / 4$ to 6 , and for $v=0.336^{*}$ which is a fairly typical value for graphite/epoxy quasi-isotropic laminates. It will be noted from Eqs. (10) that the stiesses are approximately propotional to v and therefore approximate solution for other Poisson ratio's mey be obtained by scaling the current solution.

Since $\Gamma_{0}=2$ for all Q-I laminates, the eigenvalues $\alpha_{1}(1=1,2, \cdots, N)$ computed from Eq.(14) merely depend upon the number of terms, N, retained in the sewies [Eqs.(6)]. The results of this computation, as explained in Ch. III, are shown in Table 1 for values of N ranging from 1 to 10. It will be noted that ell the eigenvalues for $n \leq i 0$ are complex values, and consequently the solutions for the Eunctions $F_{n}(n=1,2, \cdots, N)$ are given by Eq. (15).

The stresses [Eqs. (6)] were plotted for different values of N at various cross-sections $x / \mathrm{L}=$ constant in order to assess convergence for increasing N.

[^0]TABLE 1. Eigenvalues for Q-I laminate in pure ompression

\cdots		. 1	2	3	1.4	5%	6 .	7	8.	:9	10
1	Re	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0,6\%	0.67
	Im	0.35	0.36	0, 36	0.36	0.36	0.36	0.36	0.36	0.36	0,36
2	Re		1.70	1.70	1.70	1.70	1.70	1.70	1:70	1.70	1.70
	In		0.46	0.48	0.49	0.49	0.49	044911	0u49 :	0.49	0.49
3	Re			2.70	2.70	2.71	2.71	2.71	2.72	2.72	2.72
	Im			0.51	0.55	0.56	0.56	0.56	0.56	0.56	0.56
4	Re				3.70	3.71	3.71	3.71	3.72	3.72	3.72
	Im				0.53	0.58	0.60	0.61	0.61	0.61	0.62
5	Re			.		4.68	\%4.69	4.71	4.71	4.72	4.72
	Im					. 0.55	0.61	0.63	0.64	0.65	0.65
6	He						5.68	5.69	5.70	5.71	5.71
	Im						0.57	0.63	0.66	0.67	0.67
7	Re							6.67	6.68 .	6.70.	6.71
	Im							0.57	0.65	0.68	0.69
8	Re			\cdot					7.66	7.67	7.69
	Im								0.58	0,66	0.69
9	Me						.			8.66	8.67
	Im		.	-		-				0.59	0.67
10	Re		.		.						9.65
	Im										0.59

As shown in Figs. (4,6-8), converaence was excellent away from the constrained edges with just three terms retained in the series.. Naar; but: not at the clamped edges; coivergence was exciellent with.only six terms retained'In the Founfer:series solutions [see. Fig. 5; 14]. Another measure of the convergence 1s provided by Eq. (11). In Tabie 2 the ratio: $u^{\circ} E_{x} / \sigma_{c} I$ was evaluated for varfous values of N and ξ.

The convergence of $u^{\circ} E_{x} / \sigma_{c} L$ for inereasink N is evident from Table 2. Note that for large ξ, the value approaches unity, which is the result predicted from elementary rod theory, Eq. (30). The reciprocal of the entries in Table 2 represents the apparent percentage increase in average stiffness due to the constrained edges.

It is convenient to write the generalized plane stresses in the form

$$
\begin{aligned}
& \bar{\sigma}_{x}=-\sigma_{c}\left[1+\delta_{x}(x, y)\right], \\
& \bar{\sigma}_{y}=\sigma_{c} \delta_{y}(x, y), \\
& \bar{\tau}_{y}=\sigma_{z} \delta_{x y}(x, y) \\
& \text { clearly, for }\left|\delta_{x}\right|,\left|\delta_{y}\right| \text { and }\left|\delta_{x y}\right| \text { surficientiy }
\end{aligned}
$$

small, Ec. (31) :r ll closely asmoxinate Eq. (30). We
shail say that ite stress siatミ is appreximately untaxiá

TABLE 2. Values of $u^{\circ} E_{x} / \sigma_{c}$ for Q-I laminate in pure compression

$0^{\circ} E_{c^{2}} / \sigma_{c} \Sigma$						
$N \xi$	0.25	0.50	1	3	6	
1	0.9342	0.9545	0.9770	0.9926	0.9963	
3	0.9203	0.9443	0.9714	0.9907	0.9954	
5	0.9173	0.9422	0.9702	0.9903	0.9952	
6	0.9166	0.9417	0.9699	0.9902	0.9951	
7 -	0.9161	0.9413	0.9697	0.9902	0.9951	

at a given x-constant cross-secion i?

$$
\begin{array}{ll}
\left|\delta_{x}\right| \leq 0.02 \\
\left|\delta_{x}\right| \leq 0.02 \tag{32}\\
\left|\delta_{x y}\right| \leq 0.02
\end{array} \quad \text { for }|y| \leq b
$$

The 28 bound on the deviation of the true stresses from the uniaxial state is, although arbitrary, quite useful particularly for the experimentelist. By providing a definite bound, the ef:ect of the constrained edge can be quantified.

For gecantry ratio's E<1.5, (32) was not satisfied anywhere. Thus the effect of the constrained edges is observed everywhere in the specinen. Stresses distributions along the center line $x=0$ and at the edge $x=[$ are shown in Fifs.6-11 for $\xi=1 / 4, \xi=1 / 2$, and $\xi=1$, respectively.

Por $\xi>1.5$, there exists a region in which the stress state is approximately uniaxial, 1.e. Eq. (32) is satisfled. It was found that the domein of influence of the edge is limitec to 1.5 b (or 75% of the $w 1 d t h$), as depicted in Fig. 3.

As expected, the stresses in the shaded region
 Conseçuentiy, once the stresses are detemined for one

Increasing L, for fixed \dot{b}, merely increases the uniaxial stress domain. Results are shown in Figs. $(4,5,12)$ for $\xi=3$ and $x / L=0.75,0.9$ and 1.0 respectively. According to the foregoing discussion, the generalized stresses are the same for. $\xi=6$ and $x / I=0.875,0.95$ and 1 , respective y. [Figs. 13-15]

It should be observed that the stresses at the edge $x=1$ for $\xi=1$ [Fig.11] and $\xi=3$ [Fig.12] are aimost identical. The reason for this is because the stresses at $x=1$ are affected by the constrained condition at only that edge; the stresses at each edge $x= \pm$ it for both $\xi=1$ and $\xi=3$ are outside the domain of influence of the other edre $x=\mp$.

As indicated earlier, the stresses at the clamped edge appeared to be converging [Fig.12] quite well for $\mathrm{N}=6$. A closer examination of the tabulated values of $\bar{\sigma}_{x}(I, y)$ did indeed confirm convergence for $|y|<b \ldots$ Rowever, at the corners $y=b$, the stress $\bar{\sigma}_{x}$ appears to grow wethout bound. This apparent singularity is shown in Tabie 3.
2. Lamina Stress

$$
\begin{aligned}
& \text { Figures I6-i8 show =epresentative lamsnae stress } \\
& \text { EJ -he constainer edse of oll iaminate for the pizes }
\end{aligned}
$$

TABLE 3. Normalized stress at corners " $\sigma_{x}(L, b) / \sigma_{c}$ for Q-I laminate in pure compression

Pigure 7 Compression, $n-T$ Iaminate, $\xi=1 / 2, x / L=0, K=3,4$

vRIGINAL PAGE Is
OF PUOR QUALITY

sTriess pistmibution dianana

$x / L=0.95, N=6,7$
STRESS DISTRIBUTION DIAGRAM

STRESS DISTRIBUTION DIAGRAM

Pifgure 1.6 Compression, $Q-I$ lamina- $0^{\circ} ; \xi=1 / 4, x / L=1, N=10$

STRESS DISTRIBUTION DIAORAM

$\mathrm{N}=10$
$x / 1,=1$,
oriented at $\theta=0^{\circ}, 45^{\circ}, 90^{\circ}$ respectively. The particular plots are for $\xi=1 / 4$.
b. Cross-PIs (C-P) $[\pm 45]_{s}$ Laminates

I. Generalized Plane Stress

UnIfice Q-I laminates, C-P laminates have a negative material constant $\Gamma_{0}=-1.77^{*}$, and a relatively large value for poisson's ratio ($v=0.801^{*}$). As a result of the high value of v, the influence of the constrained edge should be expected to be much greater thar for Q-I. Laminates.

Just Ifke for Q-I laminater; the eigenvalues are again complex. [See Table 4]. Convergence was somewhat slower than For Q-I laminates; more terms were needed to obtain a reasonable approximation to the stress:distri-; butions at the edges. Figures 19 and 20 show the stress distributions at $x=L$, for $\xi=1 / 4$ and $\xi=3$, respectively, for $N=0$ and 10. However, for the region $x / L<0.9$, a.6'terw approximation showed excellent convergence. For exampie, see Fin. 21 for which $\xi=3$; stresses at $x / L=0.9$ マーe plotted for $N=6$ and $N=T$.

$$
\begin{aligned}
& \text { "This value was obtained ror: } \\
& \mathrm{E}_{1}=21 \times 10^{3} \mathrm{ks}, \quad \mathrm{E}_{2}=1.7 \times 10^{3} \mathrm{ksi}, \quad{ }^{2} 12=0.21, \\
& G_{12}=0.65 \times 10^{3} \mathrm{ksi}, \quad \Xi=7.05 \times 10^{3} \mathrm{ksi}
\end{aligned}
$$

TABLE 4,

${ }_{N} \alpha$		1	2	3	4	5	6	7	8	.9	10
1	Re	0.14	0.14	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
	Im	0.62	0.62	0.62	0.61	0.61	0.61	0.61	0.61	0.61	0.61
2	Re		0.88	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
	Im		1.53	1.52	1.51	1:51	1.51	1.51	1.51	1.51	1.51
3	Re			1.33	1.33	1.34	1.34	1.34	1.34	1.34	1.34
	Im			2.44	2.42	2.41	2.41	2.10	2.40	2.41	2.40
4	Re				1.78	1.79	1.79	1.79	1.79	1.72	1.79
	Im				3.34	3.32	3.31	3.30	3.30	3.29	3.30
5	Re					2.23	2.23	2.24	2.24	2.24	2.25
	Im					4.24	4.21	4.20	4.20	4.19	4.19
6	He						2,69	2.69	2.69	2.69	2.70
	Im						5.14	5.11	5.10	5.09	5.09
7	Re							3.14	3.14	3.15	3.15
	Im							6.03	6.01	6.00	5.98
8	Re								3.59	3.59	3.60
	Im								6.93	6.90	6.89
9	Re									4.04	4.05
	Im									7.83	7.80
10	Re										4.50
	IIn										8.72

Once again there appears to be a singularity at the corners $x= \pm \boxed{y}, y= \pm b$ ．The data，tabulated in Table 5, certainly do not suggest convergence．

In Table 6，the values of $u^{\circ} E_{x} / \sigma_{c}{ }^{\text {L }}$ are tabulated for C－P laminates，and the convergence for increasing N is slower．Also，observe that for ：very smail aspect ratios，the apparent stiffness increase is well over 100\％．

According to the aforedefined axial stress state ［Eq．（32）］，the domain influenced by constrained edge． tuans out to be precisely double that of Q－I laminates． Consequently，an aspect ratio for which $\xi=3$ is the smallest length－wicth ratio for which Eq．（32）is satisfied along the center ine $x=0$ ．For $\xi>3$ ，a iniaxial stress field will exist in a region around the center Ine $x=0$ ；the range of length 3 b ，the domain influenced hy the constraint has length $3 b$ ，measured from the edges $\boldsymbol{x}= \pm$ 士。

2．Lamfna stress

Since the iamina siresses are linear combinations Of the averaged stresses $\bar{\sigma}_{x}, \bar{\sigma}_{y}, \bar{\tau}$ ，［see Eq．（29）İ Iamina stresses will converge at the same rate as the average siresses．

The stresses at ine corners ミこ the caareed

TABLE 5. Normalized stress at corners $\sigma_{x}(L, b) / \sigma_{c}$ for C-P laminate in pure compression

TABLE 6. Values of $\operatorname{un}_{x} / \sigma_{c} L$ for C-P laminate in pure compression

stress distribution diamram

Pigure 19 Compression, C-P laminate, $\xi=1 / 4, x / L=1, N=9,10$
STRESS DISTRIRUTION DIAGRAM

$\begin{array}{cc}0 & -1 \\ y / b & \end{array}$

STRESS DISTMEIDUTION dIAOTAM

Pigure 21 Compression, C-P laminate, $5=3, x / L=0.9, N=9,10$

edges will exhibit sigularities. However, for the region away from the edges, the stress distributions appear rery weil behaved. For example, see Fig. (22) in which E=3, $x=0$ (at the center 11ne), $N=10,0=45^{\circ}$.
c. Unidirectional (U-D) [0]s Larinates

Since all fibers lie in the same direction, the generalized plane stresses and lamina tresses are the same. Also $E_{x}=E_{1}, E_{y}=E_{2} ; v_{x y}=v_{12}$ and $G_{x y}=G_{12}$. For the assumed data $G_{12}=0.65 \times 10^{3} \mathrm{ks}, v_{12}=0.21$, we compute $r_{0}=2.581$.

Onlike the previous two laminates, the eigenvalues of $0-D$ laminates were real. Takle 7 lists the eigenValues for up to 3 terms. Figure (23:) shows the resulting stress distributions at the edge for $\xi=3$. The vaiues of stress $\bar{\sigma}_{x}$ at the corners for difierent ξ are tabulated in Table 8 for N ranging from 1 to 3 . According to our definition, a uniaxial stress state does exist everywhere except at the corners.

Table 7. Elgenvalues for 0-D Ieminate in pure compression

N	1	2	3
$I-1$	0.181	0.181	0.181
$I-2$		0.362	0.362
$I-3$			0.547
$I I-1$	0.910	0.846	0.809
$I-2$		2.620	2.539
$I-3$			4.272

TABLE 8. Normalized stress at corners $\bar{\sigma}_{x}(L, b) / \sigma_{c}$ for U-D laminate in pure compression

B. Pure Bending

Convergence of the soiution in bending was faster than for pure compression for both the Q-I and C-P laminates. This suggested that the Legendre polynomial may be preferable to a Fourier series for similar mixed boundary value problems. Since the axial stress $\bar{\sigma}_{x}$. when reduced to elementary bending stress, is inear in y, it is apparent that Fourier series will take many terms to approximate $\bar{\sigma}_{x}$ in y-coordinate while the first order Lege.dre polynomial is equal to J .

> a. Quasi-Isotropic

1. Generalized Plane Stress

Elgenvalues are shown in Table 9 for N ranging from 1 to 8. Observe that the eigenvalues are increasing at a faster rate with the number of terms for $N \geq 5$ than the corresponding case in pure compression [see Table l]. This may account for the apparent faster convergence of these stresses. Fewer terms for approximation of the stresses are needed than for pure compression [compare $\bar{\sigma}_{x}$ in $\operatorname{Figs.12}$ and 24].

The erfect of the constrained edge is comparable to the pure compression case. Outside of the resion ot
TABLE 9: Eigenvalues for $0-1$ laminate in pure bending

STRESS DISTRIRU'TION DIAGRAM

$x / J=1, N=5,6$

Influence of the constrained edge, the axial stress is Iinear and the other stresses vanish [Fig.25] exactly as predicted by elementary theory.

Another measure of the constrained. edge effect is provided by Table 10, in which values for $\theta^{\circ} 2 b^{2} / 3 M_{b} S_{11} \xi$ are tabulated for various ξ and N. Again, note that as N increases, the value $\theta^{\circ} / M_{6} \therefore$ rapidiy converges. Also as ξ increases, the value $\theta^{\circ} 2 b^{2} / 3 M_{b} S_{11} \xi$ tends toward unity, the predicted value from BernoulilEuler deflection theory.

A possible stress singularity at the corners, $x= \pm[, y= \pm b$, is very much in evidence from the stress plots in Fis. 24. Alternatively, the value of $\bar{\sigma}_{x}(L, b)$ is tabulated for different N in Table ll. and shows no sign of converging.

2. Lamina Stress

Figures 26-28 show the laminae stresses at the constrained ed,se for the plies oriented at $\theta^{\circ}=0^{\circ}, 45^{\circ}$, 90°, respectively. It is interesting to observe from Fig. 28 that the greatest normal stress occurs in the direction of the fibers (i.e. the y-difection).

However, in the 0^{0} ianina (Fig. 26) the sreatest stress, except for the corners, occurs transvarse to the fibers

TABLE 10. Values of $\theta^{\circ} \cdot 2 b^{2} / 3{ }_{8} S_{2} \xi$ for $Q-I$ laminate in pure be?dins

TABLE 11. Nomalized stress at corners $\sigma_{x}(L, b) A \sigma_{b}$ for $Q-I$ laminate in pure bending

stress distribution diagram

$x / L=0.5, N=5,6$

STRESS DISTRIBUYION DIAGRAM

Pigure 28 Rending, A-I lamina $-90^{\circ}, \xi=1 / 4, x / L=1, N=8$
(also the $y-d i n e c t i o n)$.

b. Cross-Ply Leminates

1. Generalized Plane Stress

The eigenvalues for pure bending were once again complex valued and are tabulated in Table 12. The accelerating rate of increase of the eipenvalues is apparent from the Table, and is reflected in the rate of convergence of the stresses [see Fig. 29 j.

Table 13 provides values for $\theta^{\circ} 2 b^{2} / 3 M_{b} S_{11} \xi$ and is the counterpart. to Table 10 for Q-I laminates. As we observed for pure compression, the effect of the sonstrained edse upon apparent bending stiffness is considerably greater for C-P laminate than $0-I$ laminate in pure bending also.

Again, evidence of a singular stress state at the corners of the clamped edses is provided by Eig.29. Tabluated values of $\bar{\sigma}_{x}(\pm I, \pm b)$, as shom in Table $14 .$, Eiso appear to grow without boune Eor large N.
2. Lamina S=ress

TABLE 12, Eigenvalué for C-P laminate in pure bending

TABLE 13. Value of $\theta^{\circ} \cdot 2 b^{2} / 3 M_{b} S_{11^{5}}$ for $C-P$ - laminate in pure bending .

TABLE 14. Normalized stress at corners $\sigma_{x}(L, b) \% \sigma_{C}$ for C-P laminate in pure bending

STRESS DISTRIBUTION DIAGRAM

Bending, C-P Iaminar45 $, \xi=1 / 4, x / L=1, N=8$

 $\mathbf{y / b}$
STRESS DISTRIBUTION DIAORAM

Bendinfs, C-P Inmina-45 $, \xi=3, x / J,=1, N=8$

rigure 31

c. Unidirectional ($\mathrm{U}_{-\mathrm{T}} \mathrm{D}$ [$[0]_{3}$ Laminates

Figure 32 shows the axial stress is linear and the other stresses vanish, for $\xi=6, x=+$. exactly as predicted by elementary theory. Elgenvalues are real and are tabulated in Table 15, for up to three terms. Again, calculations for axial stress at the corners of the clamped edge suggest a possible singularity.
STRESS DISTRIBUTION DIAORAM

TABLE I5. Eigenvalues for $0-D$ laminate in pure bending

N	I	2	3
$I-1$	0.851	0.805	0.804
$I-2$		1.639	1.402
$I-3$			2.655
$I I-I$	5.260	5.132	5.005
$I-2$		10.230	10.220
$I-I$			15.500

Chapter VI

SIGNIFICANCE

A general method of solving the two dimensional stress analysis problem for rectangular laminates subject to mixed boundary conditions has been presented. For compression sepcimens, the kinematic boundery conditions define the manner in which the load is introduced. The analysis presented herein assumes Figid body motion of the clamped edge; this assumption represents a "worst case" condition. In any actual experiment there will almost certainly be some deformation and/or even slippage in the fixture.

Quasi-isotropic specimens respond uniaxially at locations at least $3 / 4$ of the specimen width awas from the edge; for cross-ply, the uniaxial range in 1.50 width away from the edge. Since specimens tested in the IITRI ifxture [1] have such short gase lengths, it may be conciuded that a uniaxial response can not be developed in specimens* using this fixture.

[^1]The constrained edge effect upon measured Young＇s modulus may be determined as follows．Let E_{x} and E^{*} denote，respectively，the actual modulus and experi－ mentaily determined modulus using strain gages at the location y along the center line．Thus

$$
\begin{equation*}
E^{*}=\frac{\sigma_{c}}{\varepsilon_{x}(0, y)} . \tag{33}
\end{equation*}
$$

Combining（33）with Hooke＇s law（3）to eliminate the $\operatorname{strain} \varepsilon_{x}(0, y)$ ，we obtain

$$
\begin{equation*}
\frac{E^{*}}{E_{x}}=\frac{\sigma_{c}}{\bar{\sigma}_{x}(0, y)-v_{x y} \bar{\sigma}_{y}(0, \bar{y})} \therefore \tag{34}
\end{equation*}
$$

The measured strain $\varepsilon_{x}(0, y)$ will nomaliy contain contributions from in－plane and out of plane bending． Since the stresses are odd function of y ，the bending effects may be eliminated by using several gages and averagins the results．

Equation 34 has been evaluated for quasi－isotropic and cross－oly ${ }^{1}$ laminates at several locations y ；the resu：ts are shown in Tables 16．and 17．Coluan（a）in each table 1ndicates．the predinted experfmental error if gages were placed at $y=0$ ．Sinifariy，columr（j）ise each table

[^2]shows the predicted error if gages were placed at $y= \pm b / 2$. Since, for each case, column (b) is closer to unity than column (a), placement of gages at $y= \pm b / 2$ is a better location for strain gage placement. In fact, calculations at other values indicate $y= \pm b / 2$ is the optimal location. Column (c) in Tables 16 and 17 is based upon the assumption of three strain gages, two at the quarter points on one face and the third in the center of the opposite face. Clark and Lisagor [I] took extensive. measurements of graphite/epoxy using strain gages at precisely these tbree points. Column (d) shows the experimental results based upon Clark and Lisagor's original data ${ }^{1}$. It will be observed that comparison of the theoretical resuits column (c) with the experimental result column (d) is exceptionally good for quasi-isotropic laminates. For cross-piy laminates, Table 17 shows a considerable discrepancy between predicted and actual error ${ }^{2}$. Whe experimental results confirm the greater sensitivity of modulus to aspect ratio for the cross-

[^3]TABLE 26. Eredicted experimental error of Young's modulus E for Q-I laminate

E^{*} / E_{x}				
	(a)	(b)	(c)	(d)
ξ	$\frac{E^{*}(0,0)}{E_{x}}$	$\frac{E *}{}{ }^{*}\left(0, \frac{b}{2}\right)$	$\frac{(a)+(b)}{2}$	E^{*} / E^{2}
0.25	1.091	1.063	1.077	1.083
0.50	1.026	1.007	1.017	1.018
1	0.962	0.986	0.974	0.970
3	0.999	1.000	0.999	-
6	1.000	1.000	1.000	-

TABLE 17. Predicted experimental exror of Eoung's modulus E for C-P laminate

$E^{\#} / E_{x}$				
\because	\therefore (a)	(b)	(c)	(d)
ξ	$\frac{E(0,0)}{E_{x}}$	$\frac{E^{*}\left(0, \frac{b}{2}\right)}{E_{x}}$	$\frac{(a)+(b)}{2}$	E^{*} / E_{1}
0.25	2.38.	- 2.32	2.35	1.13
0.50	1.93	1.43	1.64	1.01
I.	0.82	\therefore I. 19	0.97	-0.97
$\cdots 3$	$\because I .02$	$\therefore I .01$	I. 02	1.00
6.	I.00	1.00	1.00	1.00

plies, but not to the extent predicted. Presumably, the assumption of a rigid clamped edge is not appropriate for short gage lensth, high Poisson's ratio specimens In compression using the IITRI P1xture.

A more plausible explanation is that the Fathen bigh stress levels near the constrained edge place the material well into the non-linear rance of behavior. [Note the high stress levels at the edges in Figs 16,17]. Donsequentiy, it is possible that the width of the specimen near the clamped edge expands non-innearly, thereby greatiy diminishing the constrained edge effect.

For completeness, we point out that Clark and
Lisagor Fil Pound that the modulus of unidirectional Iaminates was independent of ξ; this is consistent with the resrits of Chapter V.

Although an explanation of compressive failure of composites was not one $0:$ the objectives of this study, some preifrinary results are obtainable directly from the stress analysis. Failure theories for single piles ray be applied direstly to the stress distribution witni: each individual lamiria.

Delamination wlll occur ifien the interiaminar
shear stresses $\tau^{2} x$ and $\tau_{z y}$ erceed the aliowable loads for the evoxy. These shear zEresses may be apanozan=ely
obtained from the three-dimensional equilibrium equations, i.e.

$$
\begin{align*}
& t^{1} \cdot\left[\frac{\partial \sigma_{z}^{1}}{\partial x}+\frac{\partial \tau^{1}}{\partial y}\right]+\Delta \tau_{z z}^{1}=0, \\
& t^{1} \cdot\left[\frac{\partial \tau^{1}}{\partial x}+\frac{\partial \sigma_{y}^{1}}{\partial y}\right]+\Delta \tau_{y z}^{1}=0, \tag{35}
\end{align*}
$$

where the superscript 1 refers to the i-th lamina, $\Delta \tau$ refers to the difference in value of shear stress across the 1-th Iamina, and t^{i} the thichness of the i-th lamina. For small t^{i}, these shear stresses are very small, except where the in-plane stress exhibit large gradients.

Chapter VII CONCLUDING REMARRS

Ifmitations of the Model

Insofar as the problem is analyzed as generalized plane stress, it will not provide an exact solution to the three-dimensional elasticity problem. In particular, the third equation of equilibrium (force-balance in the z-direction) will not be satisfied [25]. However, it is well known that the generalized plane stress solution is very close to the exact solution if the thickness of the laminate is small compared to the other two dimensions.

The Innearity assumption Eqs. (3) is a somewhat more serious limitation of this model. Compression tests of uniaxial [0]s high-strength graphite/epoxy laminates indicate linear behavior between load and axial compressive strain all the way to fracture [1]. Since the load is carried predorinantly by the graphite fiber, it may be inferred that graphite responds linearlig to compressive rupture. On the other hand, a cross-piy [4 45/干45]s stacking of the same laminae prociuces a
non-linear Sehavior, particularly near failure. It is important to note that although the ultimate axial strain for cross-ply. laminates exceeds the ultimate axial strain for undirectional laminates by a factor of in to 3 [I], the maximu compressive fiber strain is considerably Iower for the cross-ply than for the uniaxial layup. Indeed, these cross-ply laminates fail due to delamination and not fracture [1]. It may be inferred from the foregoing discussion, that the cross-ply laminate behaves non-linearly because the epoxy exhibits nonlinear behavior. Such non-linear effects may also be observed from transverse strain measurements on unidirectional laminates. Ashton [16] reports varying values for Poisson's ratio during axial compression.tests on high-strength graphite/epoxy composites. The inelastic bebevior of composites was also investigated by Foye.from the point $v \pm e w \cdot$ of micromechanics [17.].

The model is very difficult to validate empirically, since it is impossible to know the exact kinematic boundary conditiuns at the clamped edges. It is evident thet an edge constrained to respond rigidly is the severest case that might be encountered. The results obtained in this stuad should therefore be viewed as the "worst possible case".

Treatment of the constrained edge effect due to out of plane bending, while of technical interest, is not studied in this work. Such effects are expected to be small In comparison to in-plane bending because the Poisson retio $v_{i j}$ is generally much smaller than $v_{x y}$ and the thickess of most laminates is very small compared to their width. Noreorer, a study of these effects. would involve a considerably more complicated model.

Thus the developei model should only be considered a first approximation to an accurate description. It may be used by the experimentalist to corroborate only the inital portion of the stre=s-strain compressive data. At the other end of the data curve it may be used snif to sussest, rather than provide definitive explanations, for different modes of failure.

BIBLIOGRAPHY

1. R.K. Clark and W.B. Lisagor, "Compression Testing of Graphite/Epoxy Composite Materials, "Presented ASTM Symposium on Testing and Design Allowables for Flbrous Composites, October 1979, Dearbon. Also NASA Technical Memoriandum 81796.; Apr. 1980.
2. N.J. Pagano and J.C. Halpin, "Influence of End Constraint in the Testing of Anisotropic Bodies", Journal of Composite Materials, Vol. 2, 1968, pp. 18-31.
3. H.B. Phililips and C.L. Manti, "Two-Dimensional Study of Transverse Stresses in Axially Loaded Sections", Experimental Mechanics, Voi:i:9, Mar. 1969; pp.137-139.
4. J.M. Whitney, G.C. Grimes and P.E. Francis, "Eifect of End Attachment on the Strength of Fiber-Retinfored Composite ylinders", Exderimental Mechanics, VoI. 13,陏夺 1973: pp: 185-192.
5. M.S. Hess, "The End Effect for a Laminate ElasticStrip, I. The General Solution, II. Differential Expansion Stresses, "Journal of Composite Materiais Voi. 3, 1969, pp. 262-280, 63i-641.
6. R.E. Pipes and N.J. Pagano, "Interlaminar Stresses Under Unifor, Axlal Extension", Journal of Composite Materiais, Vol. 4, October 1970, pp. 538-548.
7. S.D. Wang and F.W. Crossman, "Some New Results on Edge Effect in Symmetric Composite Leminates", Journal of Composite Materials, Vol. 11, Jan. 1977, pp. 92-106.
8. P.W. Hsu and C.T. Herakovich, "Edge Effects in Angle-Ply Composite Laminates", Journal of Cimosize Materials, Vol. 11, October 1977, pp. 422-428.
9. T.S. Wang and J.N. Dickson, "Inte=laminar Stresses in Symetric Composite Laminates". Journal of Composite Materiais, Vol. 12, October 1978, DE. 390-402.
10. R.W. Jones, Mecharics of Composite Vateriais, Sixiza

Book Hashington, D.C., 1975.
11. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Eill, New York, 1970.
12. S.P. Timoshenko, Strensth of Materiais, Part, II, Van Norstrand, New York, 1956.
13. 'C.R. Wylle, Advanced Engineering Mathematics, 4-th Edition, McGraw-Hill, 1975.
14. B. Carnahan, Applied Numberical Methods, Wiley, New York, 1969.
15. I.S. Sokonikoff, Mathematicel Theory of Elasticity, McGraw-Hill, 1956.
16. J.E. Ashton, J.C. Halpin and R.H. Petit, Primen on Composite Materials, Technomic Publishing Compang, Stanford, Conn., 1969.
17. R.L. Foye, "Theoretical Post-Fielding Behavior of Composite Laminates. I, II-Inelastic Micramecharies", Journal of Composite Materials, Vol. 7, April 1973, pp. 178-193, 310-319.

[^0]: * This values was obtained for ine materiai groperties: $E_{2}=21 \times 10^{3} \mathrm{ksi}, \quad E_{2}=1.7 \times 10^{3} \mathrm{ksi}, \quad v_{2}=0.4$, $\mathrm{G}_{12}^{-}=0.65 \times 10^{3} \mathrm{hss}, \quad \Xi=7.05 \times 10^{3} \mathrm{Ks}$.

[^1]: * An exception is unidirectional laminates witi smail values of v_{21}.

[^2]: I Finese mesules are basei uñ．$v=0.336$ ミon テーニ

[^3]: \therefore Orisimal stress-strain curves weie available only for 5=0.25, 0. 50 and 1.0. Fcr O!-I specimens, a "best-fit" straigitt line was constructed over the strain range $\varepsilon=0$ to $\varepsilon=0.005$. Average moduli for the three aspect ratios were $7.09 \times 10 \mathrm{ksi}, 6.72 \times 10 \mathrm{kr}$, $5.39 \times 10 \mathrm{ksi}$. The actual modulus was assumed to be $5.59 \times 10 \mathrm{ksi}$ for puryoses of completing the colum.

