
NASA Contractor Report 3369

Hyperbolic/Parabolic Developmen

for the GIM-STAR Code

L. W. Spradley, J. F. Stalnaker,
and A. W. Ratliff

CONTRACTS NASl-15783 and NASH-15795
DECEMBER 1980

NASA
CR
3369
c. 1

https://ntrs.nasa.gov/search.jsp?R=19810007900 2020-03-21T15:13:23+00:00Z

TECH LIBRARY KAFB, NM

NASA Contractor Report 3369

Hyperbolic/Parabolic Development
for the GIM-STAR Code

L. W. Spradley, J. F. Stalnaker,

and A. W. Ratliff

Lockheed Missiles G Space Company, Inc.
Huntsville, Alabama

Prepared for
Langley Research Center
under Contracts NASl-15783 and NASl-15795

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1980

.
: -

,. ‘.

CONTENTS

Section Page

1 INTRODUCTION AND SUMMARY 1

2 CALCULATION OF TWO-DIMENSIONAL INLET
FLOWS WITH SPILLAGE 7

2.1 Introduction 7

2.2 Development of the Solution 9

2.3 Results and Discussion 11

3 INVESTIGATION OF LINEARIZED BLOCK IMPLICIT
METHODS FOR THE GIM CODE 35

3.1 Introduction 35

3.2 One-Dimensional Unsteady Development 36

3.3 One-Dimensional Linearized Block Implicit Results ... 45

4 DEVELOPMENT OF GIM/STAR SPATIAL MARCHING
ALGORITHMS 51

4.1 Introduction 51

4.2 Classical Parabolic Approaches 52

4.3 The Quasi-Parabolic Idea 58

4.4 Results of Computation 66

5 REFERENCES 75

A ppendixe s

A Use of the GIM SE-2 Code 78

B Three-Dimensional LB1 Schemes for the Navier-Stokes
Equations. 104

C Multilinear Interpolants for GIM Marching Methods 136

D Vectorized Block Tridiagonal Equation Solver for the
GIM/STAR Code. 152

. . . 111

1. INTRODUCTION AND SUMMARY

The General Interpolants Method (GIM) code was developed to analyze

complex flow fields which defy solution by simple methods. The code uses

numerical difference techniques to solve the full three-dimensional time-

averaged elliptic Navier-Stokes equations in arbitrary geometric domains.

The equations are cast in strong Conservation law form and written in an

orthogonal Cartesian coordinate system. Included are a continuity equation

for global mass conservation, three components of momentum conservation,

total energy conservation and an equation for conservation of individual species

of a binary gas. Pressure is related to the conservation variables through

the ideal gas law for a binary mixture. A generalized geometry package is

used to model the flow domain, generate the numerical grid of discrete points

and to compute the local transformation metrics. Computation is done in

physical space by explicit finite-difference operators. The GIM approach

essentially combines the finite element geometric point of departure with

finite difference explicit computation analogs. This provides a capability

which takes advantage of the geometric flexibility of an element description

and the superior computation speed of difference representations.

The numerical analogs of the differential equations are derived by

representing each flow variable with general interpolation functions. The

point of departure then requires that a weighted integral of interpolants be

zero over the flow domain. By choosing the weight functions to be the inter-

polants themselves, the GIM formulation produces identically the classical

implicit finite element discrete equations. These forms are not used in

the GIM code due to their fully implicit nature and inherent inefficiencies.

Rather, the weight functions are chosen to be orthogonal to the interpolant

functions which produces explicit finite difference type discrete analogs.

By appropriate choice of constants in the weight functions, the GIM be-

comes analogous to such finite difference schemes as centered, backward,

forward, windward and multi-step predictor-corrector schemes such as the

MacCormack method. The GIM analogs, however, are automatically produced

for arbitrary geometric flow domains and,:h,ence is a-more general point of

departure and provides greater flexibility in choosing difference schemes.

I . . ’ _

A motivation for developing this code on these. principles was to pro- I

vide an analytical ,tool,tihich is more user ,orientedL than the basic research

tools which exist.. A. fully production-line code to solve the complex Navier-

Stokes equations .does not exist today. In dev.eloping the GIM code, an atte.mpt

was made to bridg.e the.gap somewhat between the pure research codes and

the ,ultimate production tool. The code was originally develpped for a CDC

7600 computer system. It has been subsequently converted to vector FORTRAN

for the CDC STAR-100 system at NASA Langley Research Center. Reference 1

provides documentation for the GIM/STAR code designated version SE-l (STAR-

Elliptic No. 1). This version of the code has been used to compute a number

of complex flow fields including nozzle flows for both subsonic and superson.ic

regimes, and.two and three-dimensional Scramjet exhaust fLow simulations

(Ref. 2).

The current contract work involves utilization and extensions of the

GIM/STAR code. The objectives of the study are to:

0 Compute flow fields in supersonic inlet configurations
using the SE- 1 code

l Upgrade the technical capability of the SE-1 code

l Develop a hyperbolic and a parabolic version of the GIM/
STAR code to supplement the elliptic capability.’

This report presents the progress to date on the development and application

of the GIM/STAR code.

Section 2 presents the res’ults of an application of the code to a two:

dimensional super sonic inlet. The calculation was started upstream of the

compression surface which turns at 25 deg to the-horizontal. ’ The Mach = 5

2

freestream flow generates a bow shock off the leading edge of the ramp. The

calculation involved t&o primary considerations’; (1) determine the &no&t ’

of flow captured and the amount spilled into the freestream and (2) c-ompute

the inlet flow field and predict the shock wave/boundary layer interaction.
:

The problem was run in ttio parts with the GIM code on the STAR machine.

The ingested flow was determjned,(invisc,idly) first and found to be 66% of

the incoming stream. This agrees well with the numbers for which the simu-

lated inlet was designed. The flowfield distribution at ‘the nozzle’entrance

was then used to drive the internal flow allowing the performance parameters

to be determined; The flow angularity produces a shock wave off the cowl

lip which propagates into the nozzle. The ultimate interaction of this shock

and the laminar boundary layer on the upper propulsion surface were com-

puted. All shock waves were determined using the “capture” mode of calcu-

lation. Section 2 shows the computed solution for the spillage part of the flow

and for the internal nozzle portion. The separation of the boundary layer due

to the adverse pressure gradient is clear from the velocity and pressure

contour plots. Radial distributions of the steady state flow field are given

and a “time” history of the shock/boundary layer interaction calculation is

also shown.

Section 3 of this report describes an investigation of linearized block

implicit (LBI) finite difference schemes for the GIM code. The current

explicit MacCormack schemes are relatively efficient for flows with in-

viscid boundary conditions. In anticipation of other requirements to com-

pute three-dimensional viscous flows, the, necessity of eliminating the explicit

stability limit becomes apparent. However, the extreme inefficiencies in-

herent in “fully I1 implicit methods, due to the large band-width matrices,

make them unrealistic for large three-dimensional viscous flow problems.

The most promising concept is the linearized block implicit (LBI), or approxi-

mate factorization, schemes. These methods retain the Conservation Law

equation form while *I splitting” the spatial dependence in the manner of the

AD1 schemes. The resulting matrix bandwidth is- once again small-(usually 3)

3

?and is practical to use. The study of LB1 schemes in this work was con-

centrated on:

l Stability requirements of the block tridiagonal scheme
of Beam-Warming (Ref. 3)

l Accuracy of the LB1 scheme itself and more precisely,
the accuracy and speed of linear equation solvers for
vet tor machines

l Shock wave resolution of LB1 schemes used in a capture
mode and artificial damping requirements

l Techniques to vectorize LB1 schemes for use on the
STAR- 100 machine.

‘The study was carried out with a one-dimensional code that uses the Beam-

Warming formulation.

Results of the LB1 investigation are discussed in detail in Section 3.

The stability of the scheme was found to be strongly coupled to the accuracy

of the linear equation solver used and to the artificial damping added to the

explicit side of the scheme. The “unconditional” stability indicated by the

theory could not be achieved numerically using centered differences. Schemes

based on one-sided windward differences did prove to be unconditionally stable.

The LB1 scheme was shown to be as good as the explicit MacCormack for reso-

lution of shock waves. The overall conclusion of this part of the study is that

LB1 schemes appear to be very promising for three-dimensional viscous flows

but they are not as outstanding as the literature indicates.

The third part of this study reported here is the development of hyper-

bolic and parabolic methods to supplement the elliptic code. Section 4 describes

the details of the work on the GIM maching algorithms and the current status

of the code. The basic idea of the GIM code marching scheme is to combine

the classical parabolized Navier-Stokes methods with a “quasi-time” relaxa-

tion. The term “quasi-parabolic” (QP) will be used to refer to this algorithm

although the scheme applies equally well to hyperbolic, supersonic inviscid

flows. The QP algorithm is contrasted to a fully elliptic method in that down-

‘stream effects cannot be felt upstream and that a full flow domain need not be

4

stored for the QP scheme. The QP algorithm is also contrasted to classical

parabolic methods in that mixed subsonic/supersonic flows do not produce a

multiple “decode” root and that real-wall no-slip boundaries can be treated

with the QP algorithm. The equations are the classical parabolized Navier-

Stokes but with a psuedo-time derivative added back to them. The solution is

known at upstream data planes 1,2,. . . . N-l and the solution is sought at plane

N with no influence from plane N+l. Time relaxation is used to solve for plane

N from only the (converged) solution at upstream planes. Backward differ-

ences (second order) are used, of course, in the quasi-marching coordinate,

As the algorithm is formulated, either explicit or linear block implicit time

relaxation can be incorporated.

The resulting algorithm then requires much less computer storage than

a GIM elliptic flow field calculation and does not have the “singularities11 in-

herent in classical parabolic marching algorithms. The QP scheme has been

coded and partially checked out on the STAR system. At the time of this

writing, the GEOMETRY,MATRIX and INTEG modules of the SP-1 GIM code

(STAR Parabolic, Version 1) have been run successfully for several sample’

cases.

Some details of the current contract work are appended. The most cur-

rent version of the GIM elliptic code (SE-2) is discussed in Appendix A authored

by L. W. Spradley. Differences in SE-l and SE-2 are described and reasons for

the changes explained. New INPUT data sheets for SE-2 are given to replace

the ones in the “Blue Book” (Ref. 1). This basic guide should be used in con-

junction with the Blue Book for inputting the GIM code on STAR. Appendix B

by Jiirgen Thoenes, contains a derivation and list of the complex linearization

Jacobians for three-dimensional LB1 schemes. The GIM-Marching code (SP- 1)

requires a special set of weight/shape functions. These are derived in Appendix

C, which is authored by John F. Stalnaker. The final item to be covered here is

a description of the vectorized linear algebraic equation solvers which were

developed on the STAR system for use with the LB1 schemes. The mathematical

development and performance of several techniques, both direct and iterative

are shown in Appendix D, authored by S. J. Robertson.

5

I

2. CALCULATION OF TW-&DIMENSIONAL INLET
FLOWS WITH SPILLAGE

2.1 INTRODUCTION

Figure 2-:l shows the model two’-dimensional supersonic inlet for

which the flow field was computed using the elliptic GIM/ST,AR code.

The compression ‘surface makes a sharp 25 deg turn at x= 0. It turns

50 deg through a circular arc centered about x= 5 into the 25 deg ex-

pansion surface. The expression surface and the lower cowl from the

nozzle. The freestream flight conditions are also shown in Fig. 2- 1.

All flor variables are made dimensionless with the freestream quantities.

For inlets with fixed geometry it is important to know the amount of

flow captured by the inlet.and the amount that spills into the freestream. Thus,

special emphasis was placed on calculating the mass flow rate at the inlet

throat (x = 5). The model inlet was designed inviscidly to capture 66.6% of

the incident flow.

It is felt that a brief history of the development and an outline of the

pitfalls incurred in obtaining the final solution would be of benefit to future

users of the GIM/STAR code. This discussion appears in Section 2.2. A

complete analysis of the final solution is given in Section 2.3. These dis-

cussions are divided into two parts: (1) the external flow field below the

compression surface and including the freestream flow which spills below

the cowl, and (2) the internal (nozzle) flow field.

Use of trade names or names of manufacturers in
this report does not constitute an official endorsement
of such products of manufacturers

istration.

_~- ___ -- .ym either expressed or 1
implied, by the National Aeronautics and Space Admin-

--

0.67 J

Freestream

y = 1.4

P= 1

p = 1.4

M = 5.0

t
1

.l

I I I I I I I I I I
1 2 8 9 10 3 4 5 6 7

x (axial)

Fig. 2-l - The Model Two-Dimensional Inlet

2.2 DEVELOPMENT OF THE SOLUTION

2.2.1 External Flow Field

To limit the problem size, the computational grid was constructed

originally with the input boundary lying along the 35.7 degree bow shock line.,

This resulted in computational difficulties with the grid points along a hori-

zontal line from the leading edge of the cowl to the shock line. In order to

wrap the grid around the cowl, a discontinuity in the shapes of the elements

arose along this line. Relatively uniform rectangular elements were mated

to severely skewed elements. It is believed that the computational problems

arose from the finite difference analogs generated along this line of nodes.

These improper influences were caused by either sharp discontinuities in

the transformation metrics or inadvertent extrapolation in the transformations.

As a result, the post-shock grid was abandoned and it was decided that

the geometry should be constructed to allow the bow shock to be captured. The

analogs for this grid were thoroughly examined using a coarsely spaced version

of the final computational mesh (shown in Fig. 2-2). A “double-valued” node (i.e.,

two nodes at the same spatial location) was used to allow the proper splitting of

the flow at the cowl lip, Due to the small shock angle at the bow which would not

permit a sufficient number of nodes between the shock and the surface, the first

eight nodes along the compression surface were held fixed at the inviscid post-

shock conditions. This eliminated numerical disturbances which were otherwise

generated at the bow and propagated downstream leading to instabilities.

2.2.2 Internal Flow Field

As originally modeled, the upper body of the inlet had a sharp 50 deg

expansion at x = 5. In the initial inviscid analysis of the nozzle it was found

that the flow overexpanded around this turn leading to pressure undershoot

and instability. The sharp turn was rounded to alleviate this overexpansion.

However, subsequent analysis revealed the problem to be excessive damp-

ing on the continuity equation. This resulted in an artificial dissipation

9

.Fig.2-2 - Computational Grid fsr External Flow in the Two-Dimensional Inlet :

of mass away from the wall. Reduction of this damping allowed successful

computation of the expansion; however, the rounded surface remained. The

primary difficulty with the nozzle calculation was with the inviscid treatment

of the expansion surface. This was first indicated by the failure of the in-

viscid SEAGULL code (Ref.4) to converge in the nozzle. Imposing a viscous

boundary layer on the upper wall allowed the GIM code to develop a strong

shock-boundary layer interaction which made evident the fallacy in the in-

viscid treatment.

In arriving at the final solution it has become increasingly clear that

solutions with the GIM code are strongly dependent on two factors: (1) the

structure of the computational mesh, and (2) proper modeling of the physics

of the problem.

2.3 RESULTS AND DISCUSSION

2.3.1 External Flow Field

The 3557 node computational grid for the external flow field is shown

in Fig. 2-2. The solid boundaries were treated inviscidly. The USERIP option

in the GIM/STAR code was used to initialize the flow field in order to lay in the

bow shock as closely as possible to the inviscid 35.7 degree line. The solution

converged to steady state in 900 iterations. The integrated mass flow rate

indicated that the inlet captured 66.5% of the incident mass flow which com-

pared almost exactly to the theoretical value. Figures 2-3 through 2-5 show

the velocity vectors, pressure and Mach number contours for the complete

flow field. Figure 2-6 shows a comparison of the mass flow rate (m=pu)

across the inlet plane as calculated by the GIM/STAR code to that calculated

by the inviscid SEAGULL code (Ref. 4) for a similar inlet with the same im-

posed capture rate. The agreement is excellent with the only apparent differ-

ences resulting from the different treatment of shocks in the two codes. For

computational economy the deteched shock effects at the cowl lip were not

treated here, Rather, after 100 iterations the values of the flow variables at

the lip node were held fixed at attached post-shock conditions determined

11

Fig. 2-3 - Velocity Vectors for the Two-Dimensional Inlet (Maximum Velocity = 5.0).

Fig.2-4 - Pressure Contours for the Two-Dimensional Inlet.

ID Mach

1 0.21
2 0.64
3 1.00
4 1.49

I?
1.91
2.34

7 2.76
8 3.19
9 3.61

10 4.04.

Fig. 2-5 - Mach Number Contours for the Two-Dimensional Inlet.

-2,

-2
*
d
0 .d 4-l .d
0”
n -2

?i .mo
a
k

z

-2

-2

.6-

.8-

.

l GIM

0 SEAGULL

I
10

I I

20 30
Mass Flow per Unit Area, Pu

I

40

Fig.2-6 - Mass Flow per Unit Area vs Vertical Position Across the Inlet
Plane - (St a t ion 5) Comparison with SEAGULL Solution (Ref. 4).

from conditions immediately upstream of the cowl lip, Further, when the

lip shock was allowed to detach, the blunt body effects did not extend beyond

one grid width from the lip.

2.3.2 Internal Flow Field

As noted in Section 2.2.2, it was necessary to impose a viscous boundary

layer on the upper wall of the nozzle to obtain the solution. The boundary

layer profile at the throat was estimated by a quadratic laminar profile with

a Reynolds number of 1 x 104. The inlet flow variables were input by linear

interpolation of the external flow results and the remaining nodes exterior

to the boundary layer were initialized via the USERIP option by an isentropic-

like area expansion along streamwise rows of nodes. It was found that allow-

ing the code to develop the shock in the nozzle was preferable to estimating

the shock position as was done in the external flow calculation. Figure 2-7

shows the 3000 node computational mesh for the nozzle. The solution con-

verged to steady state in 1200 iterations. The final velocity vectors, pres-

sure and Mach contours are shown in Figs. 2-3 through 2-5. Figures 2-8

through 2-20 show the time development of the solution from iteration 0

through 1200. Figures 2-21 through 2-24 show variations of the Mach number

and pressure in the nozzle compared with the available SEAGULL results. It

is apparent from these last figures that the boundary layer is artifically too

thick (a result of the choice of Reynolds number). However, the result ob-

tained provides considerable insight into the physics of the problem as well

as the reasons behind the failure of the inviscid analysis.

16

Fig. 2-7 - Computational Grid for Internal Flow in the
Two-Dimensional Inlet.

17

c- -

-cI * -e --- c)

CcI

Fig.2-8 - Nozzle Velocity Vectors (ITmax = 4.91; No Iterations).

18

--

c

c

-

--

Fig. 2-9 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 4.92; Iteration 100).

19

,

Fig. 2-10 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V - 4.98; Iteration 200).

max -

20

Fig. 2-11 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 5.00; Iteration 300).

21

Fig.2-12 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V

max
= 4.84; Iteration 400).

22

Fig.2-13 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max 7 4.88; Iteration 500).

23

Fig.2-14 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 4.82; Iteration 600).

24

Fig.2-15 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 4.87; Iteration 700).

25

11.-- CCL- - -
----4--o-- - - - -

Fig. 2- 16 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V

max = 4.90; Iteration 800).

26

Fig.2-17 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V

max
= 4.91; Iteration 900).

27

-
- -

Fig.Z-18 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V - 4.91; Iteration 1000).

max -

28

Fig.2-19 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 4.91; Iteration 1100).
.*

29

Fig.2-20 - Two-Dimensional Spillage Problem (Viscous Nozzle;
V max

= 4.91; Iteration 1200)-

30

. . . .
GIM

SEAGULL

No SEAGULL Results
T Upper Wall Available. Failure to

x = 6.0 Converge at xz 6.4 .

0 1 2 3 4 0 1 2 3 4 0 1 2
Mach Number Mach Number Mach Number

Fig.221 - Mach Number Variations Across the Nozzle.

Upper Wall

- /x=5.4
!LLu

I

I

GIM

0 l l SEAGULL

I
20

Pressure, P/P
co

Fig. 2-22 - Pressure Variations Across the Nozzle.

xx 6.0

GIM
l l l SEAGULL

-2.

No SEAGULL Results

Converge at x Z 6.4
J

I -3.
0 10 20

Pressure, P/P
co

10
Pressure, P/P 03

Fig.2-23 - Pressure Variations Across the Nozzle.
w
w

- GIM

0 a l SEAGULL

l.O- 0 SEAGULL fails to
Converge at this

0

0.5-

0.0, I . 9.. 1. . .~ooop ..I. l
l

, ,

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.
Axial Distance from Throat

0

F&.2-24 - Pressure Variation on Upper Nozzle Wall.

‘3. INVESTIGATION OF LINEARIZED BLOCK
IMPLICIT METHODS FOR THE GIM CODE

3.1 INTRODUCTION

Numerical solution of the unsteady Navier-Stokes equations by explicit

finite difference techniques has a number of disadvantages. The most serious

one, from a practical engineering viewpoint, is the small time steps which are

usually required to maintain stability. Computation of boundary layer flows at

high Reynolds number requires fine grids near solid boundaries, hence very small

time steps and long computer run times. One apparent cure for these difficulties

is the use of implicit methods some of which are unconditionally stable for any

size time step. These schemes are not without problems of their own in terms

of their practical use. Among the major difficulties are the following:

1. Implicit finite differences, in general, lead to systems of nonlinear
algebraic equations when applied to the Navier-Stokes equations.
These must either be solved directly or linearized in some manner.

2. Direct linearization, via classical ADI processes, will destroy the
Conservation Law Form of the Navier-Stokes equations and hence
shock capture algorithms cannot be used.

3. Multi-dimensional implicit methods lead to very large systems of
simultaneous algebraic equations. Even for linear systems, the
efficient solution is not practical due to large size of the matrix
coefficients.

4. Fully implicit methods cannot be programmed for efficient use on
advanced vectorized machines such as the STAR, ILLIAC, or NASF.

Numerical treatment of the steady state parabolic form of the Navier-

Stokes equations face many of the same difficulties as the elliptic form. The

spatial marching step size is constrained by the small grid required to resolve

boundary layers normal to a solid wall. Marching downstream great distances

can result in impractically long run times. Implicit finite differences have

the potential to eliminate the difficulties mentioned above.

35

3.2 ONE-DIMENSIONAL UNSTEADY DEVELOPMENT

The first item to be developed is the formulation of an implicit scheme

which results in a linear algebraic system yet retains the conservation law

form of the Navier-Stokes equations. This idea can be explored by consider-

ing the equations in one space variable, x, and the time coordinate, t.

t I
4tlx

4x

Direct linearization is usually done by “lagging” certain of the nonlinear con-

tributions by one time step. This destroys the conservation nature of the

Navier -Stokes equations .

The case considered here is an elliptic boundary value problem in space

and an initial value problem in time. The equations considered are:

Governing Equations

(1)

7 =

36

where

P = mass density

P= pressure

p = viscosity parameter

(2 ps + A)

t = time coordinate

v = flow velocity

6 = total energy

k = thermal conductivity

x = space coordinate

P = (y- 1) p [&- v2/2] ideal gas law

General Finite Difference Form --

This analysis will use the “delta” form of the flow variables

4Un = un+l - un

AEn = En+’ - En (2)

fG
n+l

= 7 - Tn

where n is the time step index. All data are assumed known at n= 0. Solving

for AUn then allows the data at level n to be advanced to level n + 1:

U n+l = un + 4un

The class of finite-difference schemes considered can be written as follows:

AUn = +$ s (AU”) + at 1 (U”) + -& 4U”-’ + 0
li-E at

(0-f -E) At2 t At3 1 (3)

The parameters 0, E are used to generate a specific type of scheme. For

8 = 0, the scheme is fully explicit; 8 > 0 gives an implicit method. If E = 0,

the schenle requires two data sets of storage at time levels n, n+ 1. If

E > 0, then three levels are required to be stored, n - 1, II, n+ 1.

37

IIf@= l/2 + E, the scheme is second order accurate; and is first order

otherwise. In this work, we are primarily concerned with

cl 1 E = l/2 =

which is a second order, implicit, three level scheme.

Development of the Scheme

The differential equation (1) is substituted into the general scheme (3)

to get the following form:

(-A.? t AT”) t +$ 1 [& (-En t 7n) t & .4Un-’ 1 (4)

By approximating the spatial derivatives, a/ax, by finite-differences, we get

a set of nonlinear algebraic equations. The incremental flow variables, AEn,

AT’~ are nonlinear functions (1) of the independent vector AUn.

For our implicit scheme, this would require a simultaneous nonlinear

algebraic equation solver. The best known methods are iterative ones which

require long computer runs.

For this work, we will perform a linearization as follows to obtain a

sot of linear algebraic equations and use matrix methods for their solution.

The main idea here is to linearize the algebraic equations, but retain the

fully conservative nature.

Expanding E, 7 in a Taylor series, we get

E
ntl

- U”) t O(At’)

38

or

and

or

d-.+- O(At2)

= An AUn + .0(At2)

n+l
T = 7”. + ($ AU” + ($) AU: t O(At2) (5)

.A? = Pn AUn t Rn AU; t O(At2)

where

U X = au/ax

The expression for A7 can be rewritten in a more convenient form by expand-

ing the x-derivative to get

A? = (P-Rx) AUn t & (R AU)” t O(At2)

where

R X = aR/ax

This form produces a linear system of equations with the same formal accu-

racy (At
2

) as the nonlinear set. It does however, require evaluation of the

Jacobians

(6)

and

aR/ax

39

Putting the Taylor series (5) into the scheme (4) gives the following

expression:

-An Aunt (P-Rx) AUn t +-(RAU)n
I

t e &(-En+ ~~)t -& AUn-'

The last two terms on the right hand side of Eq. (7) are all explicit at time

levels n, n- 1. Denote this by Dn, and write Eq. (7) as follows:

A$+ 2 (A-PtRx)nAUn-$$RAU)n
1

= Dn

For convenience, let

h = s B=A-p+R X

and write Eq. (8) as follows

Aunt h
a2 &(BnAUn) --

ax2
(RnAUn) 1 = Dn

(7)

(8)

(9)

To see that the form Eq. (9) may be useful, we will now write it for node point

l’it’ in space and use second order centered finite differences

af

I

fitl - fi-l
axi= 2Ax t O(x2)

(10)

a2f= fitl
- 2 fi t fi 1

ax2 i I
&2 - + O(h2)

40

With these difference expressions, Eq. (9) can be written as follows:

1

)I

= D; (11)

Combining coefficients of each AU:, AUrtl, AU:-1 terms gives

h n --
&2 Ri,l n Aui-l = Dr

(12)

(where I is the 3x 3 identity matrix)

Boundary values i = 1, and i=K must be treated separately due to the

centered differences. For now we will let i= 2, 3, . . . k - 1 and worry about

boundary conditions later.

The coefficients of the AU terms are 3 x 3 matrices which couple the

three governing equations at each node point. There is an equation (12) for

eachnode i=2, 3, . . . k-l.

To readily see the character of this system of linear algebraic equa-

tions, let

Lfl =
-h n h n

ZG Bi-l
--

Ax2 Ri-l

21~ n
My = It- Ax2 Ri (13)

h II NE1 = h n --
2Ax Bitl Ax2 Ritl

41

The finear algebraic system then has the form ~. 2 .

::
or in matrix notation:

.

M2

L2

0

.

.

.

.

0

N3 0 0 . . . 0

M3 N4 0 0 0

L3 M4 N5 O .

.

.

. . .

. . .

- n
D2

D;

Dqn

.

.

G-2
n

DK-l

(14)

The system (14) will be termed “block tridiagonal.” The individual

matrices are full 3 x 3 arrays but they are arranged in a tridiagonal manner

in the full matrix. The block arrangement occurs due to the linearization

scheme used. This effectively couples the three differential equations at

each node point. The boundary values for i = 1, and i = K have not been

treated. This is an additional development item.

The advantages of a system like Eq. (14) are:

1. The Conservation Law form has been retained.

2. Block tridiagonal systems are not much more costly to solve than
pure tridiagonal systems.

3. Operations like (14) can be vectorized for use on STAR-like ma-
chines.

Formulation of this scheme requires the analytical evaluation of the Jacobian

matrices A, P, R. A brief look at these operations now follows.

42

Calculation of the Matrices

The final matrices needed are L, M, N in Eq. (13). These are made up

of combinations of B, R matrices from Eq. (5).

Bn = An - P” + R;

n

n

The matrices A, R will have relatively simple elements (as we shall see),

but the P, Rx matrices will be quite complex. For now we will assume that

the viscous coefficients are constants; hence we will see that

P-R = 0 X

(See Beam-Warming paper, Ref. 3).

We then need to analytically evaluate A, R, where

aEi a7i
A.. = au 33.. = av

‘J j
‘J X.

J

The algebra for these operations is straightforward and is not included here.

The final results are:

43

A =

1

R=; -PV

:

0 0

I-1

1
-(p+)v2-$- w-&v

V V V

0

Y-1

YV

0-

0

k

cv

where Cv is the (constant) specific heat at constant volume, y is the ratio

of specific heats and k is the thermal conductivity.

Summary of Computational Procedure

1. Set initial data at t = 0 for all nodes i = 1, 2, . . . K.

2. Form the vectors U, E, 7.

3. Compute D by explicit differences (Eq. (8)).

4. Evaluate A, R matrices from Eq. (1.6).

5. Form the L, M, N matrices from A and R (Eq. (13)).

6. Modify for boundary values.

7. Call TRIDAG in the GIM code logic to solve the block
tirdiagonal system for AUn.

8. Advance solution vector to (n+l)

U
x-ii-1 = Un + AUn

9. Repeat the process to step 2 for a specified number of
steps or until IAU”l < 6 for convergence to steady state.

44

3.3 ONE-DIMENSIONAL LINEARIZED BLOCK IMPLICIT RESULTS

The procedure outlined in Sections 3.1 and 3.2 was subsequently coded

and checked out. The equations were modified slightly to handle the problem

of an expanding duct, quasi one-dimensional, by the inclusion of the area terms.

This permits the computation of flows other than just the trivial case of con-

stant property flow through a constant area duct. Three cases were con-

sidered in order to check out and prove the method. Consider Fig. 3-l where

the simplest case is when the inflow conditions are fixed at the upstream end

of the duct. For. completely subsonic flow, elementary considerations indicate

that the outflow at the downstream end of the duct has a unique solution. Con-

sider for the moment that the flow is controlled entirely by the inflow conditions

and the out-flow conditions are permitted to develop freely. Of course, it is

known that physically one could change the back pressure at the downstream

end and this would affect conditions at the upstream end. But, computationally,

we specify the inflow conditions and therefore all the flow properties are

uniquely determined. The same reasoning applies to the case where the flow

is completely supersonic. In this case there exists the choking effect which

means that when the back pressure is lowered below the limiting value no

upstream effect is felt. If however, the back pressure is raised, the situa-

tion develops where a normal shock moves into the duct with its positioning

depending upon the back pressure. Thus for fixed inflow conditions for the

supersonic case an unique solution depends upon the outflow pressure. Since

so much is known analytically about this quasi one-dimensional case it was

deemed a reasonable test with which to evaluate the linearized block implicit

(LBI) scheme.

In order that the LB1 scheme could be applied to all three cases, i.e.,

including the strong shock case, pseudo viscous effects were included in the

original coding in terms of numerical diffusion cancellation (NDC) terms. The

first case computed was for fully supersonic flow through the expanding duct.

The LB1 scheme worked well reproducing the analytical results within about

2’7” over the length of the duct. The case was initially run at a Courant num-

ber of one. Subsequent runs were made at larger Courant numbers up to 3

45

-* M>l

Normal

Fig. 3- 1 - One Dimens ional Duct Configuration

46

with good results. Increasing the CFL multiplier further caused rapid de-

ter-ioration of the solution and ultimate destruction of the case (it blowsL up).

Theoretically the implicit solution should work for very large Courant

numbers,. Mathematically this is, of c.ourse, true but it ignores the. physics

of the situation.. -To verify-that the solution was correct the complete der.iva-

tion-was double checked, the coding was rechecked and.nothing was found

wrong. At first it was thought that the non-dominance of the main diagonal

might be causing matrix ill-conditioning. The super- and sub-diagonals are

both proportional to the step size while’the main diagonal remains constant

(at least for the inviscid.equations). A natural conclusion might then be.

drawn that, as the step size is increased, non-dominance could occur such

that the solution of the block matrices loses accuracy thus destroying the

solution.

To test out this theory some numerical experiments were carried out.

First, an unblocked scalar matrix with three diagonals was used. A known

solution was fed into the matrix reduction scheme and the non-dominance

factors between the main and other diagonals were increased gradually. The

case was run on the PDP-11, single precision arithmetic and inaccuracies did

show up in the sixth place for even a 2 to 1 non-dominance ratio. At 10 6 to 1,

inaccuracies occur in the first and second places and at lo9 to 1, order of mag-

nitude inaccuracies were produced. Using double precision arithmetic’on the

PDP-11 or running the case on a CDC 7600 produced no inaccuracies whatsoever.

Thus it is concluded that scalar matrices manipulated on high precision computing

equipment have no accuracy problems associated with diagonal non-diminance.

The same type of numericai experiments were then conducted with the

block matrices. .. -The CDC ,760O was used in order to eliminate.any inaccu-

racy due to less precise computing equipment. Non-dominance ratios on the

order of lo6 to 1 were necessary to generate errors in the fifth and sixth

place. Since’the suspected non-dominance caused by increasing-the step

size would only be of order 10, -it is concluded that the reason the case would

47

not run at large Courant numbers is due to the problem physics and is not

related to the mathematics of diagonal non-dominance.

Subsequent consultations with NASA-Ames personnel (Robert Warming

and Richard Beam) indicated that they saw no accuracy problems related to

non-dominant diagonals and they believe the problem with using large Courant

numbers is due to physically unrealistic propagation of pressure signals which

then cause oscillatory behavior and eventually a negative pressure. Two

different solvers were used to eliminate the possibility of an error in the

coding. The two solvers, one from Lockheed-Huntsville and one from Ames

Research Center, produced identical results. A fourth order damping term

was appended to the RHS to help alleviate some of the oscillatory behavior.

Ames indicated that in all their calculations with centered differences,

fourth order damping was used. A fourth derivative term was therefore

approximated and added to the RHS of the equations. The numerical diffusion

cancellation terms were then dropped, except for the cases with shock. Use

of the damping term eliminated some of the spatial oscillation but is highly

dependent upon the value of an arbitrary coefficient which can vary between

0 and 2. If too small a value is used the parameters oscillate, if too large

a value is used the solution is overdamped and becomes linearized. A com-

promise value used throughout this study was 0.1 which worked quite well for

most of the cases analyzed.

Another idea that was investigated involved the use of a MacCormack

operator to compute the RHS. It is well known that the two-step MacCormack

operator gives second order accuracy and is very stable. This scheme worked

quite well and eliminated the necessity of including the fourth order damping

term.

To this point all the calculations were done using three point centered

difference approximations to the derivatives. This results in the basic block

tridiagonal scheme. One can also formulate the equation set based upon a

48

backward difference approximation which then results in a block bidiagonal

scheme. This approach worked very well and, as is well known, has excellent

stability characteristics. Its major limitation is that it is only first order

accurate and generally is applicable only to supersonic flows. This scheme

is inherently stable for any step size, and several cases were run at Courant

numbers of 1000.

Instead of using a pure centered scheme which has stability problems

or a backward difference approximation that is only first order accurate, a

combination of weighted differences was evaluated. Sever al combinations of

weight factors were investigated, such as 2/3 centered plus l/3 backward,

and generally it was found that a slight increase in the Courant number could

be obtained over that required for the pure centered scheme. Accuracy re-

mained about the same as the centered differencing scheme.

As Fig. 3-2 shows, the solution technique previously discussed produces

very reasonable results including the location of the normal shock in the

diverging duct.

49

3.0

2.0

C

Dissipation
plus Selective NDC
Damping

\

NDC Damping

ytic. Sdlution

1.0 2.0
Area Ratio

3.0

Fig. 3-2 - Quasi-One Dimensional Results.

50

4. DEVELOPMENT OF GIM/STAR SPATIAL
MARCHING ALGORITHMS

4.1 INTRODUCTION

The GIM/STAR SE-l code treats the full elliptic flow field us,ing explicit

finite difference methods. This technique is applicable to a large range of

fluid dynamics problems and has been successful in computing a number of

these. The current code can be an “overkill” for some problems of interest

in that a full elliptic treatment is not necessarily required. A parabolized,

spatial marching algorithm could provide accurate flow fields for these situa-

tions and would be considerably more economical.

The elliptic code is constrained by two items which restrict its use on

large three-dimensional viscous flows:

1.

2. The large amount of data storage needed for three-
dimensional viscous flows causes large “page faulting”
on the STAR machine. Any finite difference method,
explicit or implicit, still requires the large data base.
A GIM/STAR code with a parabolic spatial marching
algorithm would not attack as many kinds of problems
as the elliptic version but would allow large three-
dimensional viscous flows to be treated with no page
faults on STAR.

The time step in explicit schemes is restricted by the
CFL and viscous stability limit. This is usually controlled
by the small grid sizes normal to no-slip boundaries.
If inviscid, free slip boundaries can be used, i.e., ignore
the boundary layer, then the severity of this constraint
decreases. The implicit, linearized block methods
described in Section 3 provide a possible remedy for
the time step difficulty in the elliptic code.

The intent of this research is to provide both an elliptic, time-dependent

GIM/STAR code and a hyperbolic/parabolic spatial marching version. It

51

is not too difficult to conceive of the future codes which could contain switch-

ing logic to automatically change from elliptic to parabolic etc., depending

on the phys its of the flow, -however this will not be attempted here. The

section will review the available classical parabolized methods and their

problems, and then present an idea believed to be new for computing quasi-

parabolic flows.

4.2 CLASSICAL PARABOLIC APPROACHES

Most of the literature on spatially marching schemes, hyperbolic or

parabolic, treat equations which have been transformed to a Cartesian com-

putation grid which is uniform. The space marching can then be done in

much the same manner as time marching. This is a good approach if a

single transformation exists for the full flow domain. The GIM code strategy

has been to compute in the physical domain whereby completely arbitrary geom-

etries can be treated. This approach presents a problem in developing a space

marching algorithm, i.e., the fact that the geometry changes in the marching

coordinate direction. This is akin to a GIM unsteady time marching scheme

whereby the geometry is allowed to change with time. If we are to keep the

GIM strategy of arbitrary geometries, then a space marching scheme must

be developed which will account for the geometric variations in the stream-

wise direction, i.e., non-uniform computational domain.

The recent work of Roberts and Forester (Ref.5) use a boundary-fitted

computational mesh in a parabolic c.ode for ducts of arbitrary cross section.

Their algorithm for solving the equations appears to be a refinement of the

classical method of Patankar and Spalding (Ref. 6). Rubin and Lin (Ref. 7)

presented a nonlinear, iterative finite difference method for three-dimensional

viscous flows. A parabolic method using a block implicit type scheme was

given by Hirsh (Ref. 8). The solutions were restricted to supersonic flow

(shear layers) of the free mixing type. Lubard and Helliwell (Ref. 9) calcu-

lated flows on cone at angle of attack using a parabolized method. This paper

discussed some of the inherent difficulties with singularities, ambiguities and

52

departure solutions which arise in parabolized algorithm. The paper dis-

cusses explicit and implicit schemes for parabolic marching flows.

Lin and Rubin (Ref. 10) presented a method using psuedo-time relaxation

with a space-centered implicit differencing technique. They discuss many of

the problems inherent in “pure” parabolic marching and show how time relaxa-

tion can eliminate departure solutions. The GIM technique, although developed

independently of Lin and Rubin, also employs time relaxation but with an ex-

plicit, one-sided, predictor-corrector scheme and arbitrary three-dimensional

geometries. The second order backward-forward, backward-backward explicit

scheme of the GIM code is also a unique approach to parabolic marching solutions.

For problems in which viscous terms can be neglected entirely and the

main flow direction remains supersonic , we would like the capability in the GIM

code to resort to a simple hyperbolic algorithm. The classical methods pre-

sented in the literature for parabolic and hyperbolic flows are drastically differ-

ent because of the treatment of the pressure terms in the marching direction.

As long as the flow is inviscid and supersonic, the axial pressure terms can be

treated exactly. However, for subsonic flow, for example, several problems

arise in applying a hyperbolic algorithm to the parabolic equations. This is,

however, the approach that would be most general, if the “parabolic pressure”

problem can be treated,

Certain assumptions must be made in using a spatial marching technique.

l There must exist a dominant flow direction in which to march.
There can be no flow back upstream, i.e., no recirculation in the
streamwise direction.

l Stress terms are not allowed to act on the cross planes: i.e., there
can be no second order terms (diffusion, viscosity) in the marching
coordinate.

l The downstream pressure field must not be allowed to propagate
upstream.

There are a number of strong implications in these assumptions. A super-

sonic, inviscid flow satisfies them all. A supersonic viscous flow will con-

form to the assumptions if the viscous terms are dropped in the marching

coordinate direction.

53

Consider now the problem of spatial marching in a subsonic viscous

flow. The first two of the assumptions can be met by. simply,not allowing any

flow reversal problems to be attempted and dropping all streamwise diffusion

terms. The downstream pressure field can still feed back through a subsonic

stream. One obvious approach is to drop the streamwise pressure gradient

term. This would satisfy the third assumption, but it appears a serious

matter to simply drop this important term.

Another approach commonly used is to provide a separate, explicit equa-

tion for the pressure and use windward, one-sided differences. The most exact

way is to compute the conserved flux parameters and then l’decodel’ for the

velocity, density and energy and compute the pressure from a state relation.

The ideal gas law, a set of equilibrium thermodynamic relations or Boussinesq

equations, is used to couple the state variables. Each of these approaches con-

tains inherent difficulties which render their general use questionable. The

following is a summary of some of these problem areas with classical parabolic

s theme s.

Zero Axial Pressure Gradient

This does not cause any significant numerical problems in computing a

flow field. It does however create a major problem in that the computed answers

are probably wrong for most flow fields. A mixed supersonic/subsonic flow, for

example, with a shock wave crossing the flow field cannot be computed at all be-

cause of the large axial (and radial) gradients. Some researchers still proceed

to use this approach and try to justify it.

Exact Pressure Treatment

The rigorous way to compute the parabolized equations is to include the

pressure in the conservation variable state vector for the momentum equations.

A state equation can then be used to “decode” for the pressure. The advantages

of the approach are that: (1) fully conservative differencing can be used; (2) shock

capture algorithms are applicable; and (3) an auxiliary differential equation for

the pressure is not needed. However, there are major problems with the “exact”

treatment of the parabolic pressure.

54

l One-sided upstream differences must be used

l The “decodel’ is ambiguous at Mach = 1 since two
roots appear for the velocity (or pressure) .

l Real viscous, no- slip walls cannot be tre&ted since
/’ the,deco’de is singular: .

1 l ’ Flows w?th a quiescent part, such as jets exhausting ._
into an ambient, motionless atmosphere cannot be
treated because of the singularity for zero velocity.

Consider the two-dimensional parabolic system

where x is the marching coordinate, y the cross plane (or radial) coordinate,

E is the state vector of conservation variables and F is a nonlinear (viscous

plus convective terms) function of E.

A typical state vector E, for the parabolized Navier -Stokes equations is

E =

P= (Y - 1)p
[
($ - u2 f 1

Here, u is the axial velocity, v is the cross plane coordinate velocity, p is

density, 6 is the total energy per unit volume and P is the pressure. Suppose

a calculated value for the E vector exist at a plane X = Xi. It is now required

to “decode” for the primitive variables. The following is one decode pro-

cedure that can be used in computer codes.

55

(1) v = E3/El

(3) P = El/u

E4
(4) b? = yE +

1
9 (u2 t v2)

(5) p = (y=l)P E [- “2t v’]

Two problems are immediately obvious:

The radical in the u velocity decode causes an ambiguity.
It can be easily shown that the correct decode is to take
the t sign for u supersonic and the - sign if u is sub-
sonic . In mixed flows, the sonic nature of a grid point
is not known a priori. This Mach= 1 ambiguity prohibits
a general parabolic marcher from being developed using
the classical notions. See Section 5 of Appendix B.

The axial velocity, u, cannot be zero or the decode is
singular. The axial component must be zero, however,
if a real wall is to be put into the problem. All classical
parabolic codes simply use some wall functions or resort
to inviscid slip conditions to avoid the singularity.

A third difficulty, which is not so obvious, is that attempts to use implicit

methods to march the solution downstream often fail. The reason is that

the boundary conditions are not treated exactly, and these errors build up as

the streamwise coordinate is traversed. Often, the explicit differencing of

points near the wall is used as a patchwork way of circumventing the boundary

condition difficulty.

56

Explicit Treatment of Pressure ’

This is the most widely used. of the parabolic procedures and its origi-

nation is usually attributed to D. B. Spalding. The idea is to -provide an explicit

differential equation for the pressure field in addition to the basic conservation

laws. This is usually a Poisson-type relation obtained from combining con-

tinuity and momentum equations. Satisfaction of local mass conservation is

generally the criteria used for convergence of the elliptic Poisson equation.

In general, a state vector will have the following appearance:

where the E5 component now represents the differential equation solution for

pressure from whatever means.

Now note the difference in the “decode” from the exact treatment case:

P = E5

E2 - Es u =
E1

V = E3/E1

2

P =
E1

E2 - E5

57

The Mach = 1 ambiguity is no longer present as the radical does not appear.

Thus mixed subsonic/supersonic flows .can be computed -without a’ priori knowl-

edge, of the Mach number. Note, however, tha.t the. decode still contains the

axial velocity in the. denominator.. Real solid walls cannot.enter if viscous

boundary conditions are used.

I

This “explicit 11 pressure treatment requires solution, at each plane, of

a Poisson-type equation. Thus, an iteration between planes is required before

moving on down to the next plane. Even with its inherent bad points, this ap-

proach remains the most successful and widely used parabolic algorithm.

4.3 THE QUASI-PARABOLIC IDEA

The results of the initial investigation of a parabolic/hyperbolic GIM

code led to the conclusion that there’.just is not a good approach being used

today that fits the GIM code strategy. Three basic requirements were placed

on a GIM/parabolic algorithm:

l The geometric treatment must be applicable to arbitrary
shapes.

l The same basic algorithm should be applied to both hyper-
boiic and parabolic flows and be capable of eventual coupling
with an automated algorithm for switching back and forth to
the elliptic solver.

l The algorithm should be readily vectorizable to realize the
speed gain from using the STAR computer.

In terms of a “classical” parabolized spatial marching algorithm, several

geometric approaches were investigated.

The first approach considered would generate the geometry plane by

plane as the solution evolves, assembling the elements locally at each step.

This would of course mean that the GEOMETRY module would be called at

each integration step, thus coupling the geometry and the flow. An advantage

58

of this approach is that only the amount of geometry needed would be com-

puted and stored at any cycle of the calculation. This would reduce the

computer storage and reduce the large input/output problems. However,

this approach would also require considerable reprogramming to make the

GEOMETRY module of GIM a subprogram to the INTEGRATION module.

A second approach appears to be a treatment of the geometry uncoupled

from the flow. This means that all geometry, transformations and element

assembly would be done before the flow field is integrated. The matrix data

would be read from a stored file for each cross plane as needed. The ad-

vantages of this approach are the geometry is computed only once for a

given configuration, the geometry module can be separate (as it is now),

from the integration module and the grid could be inspected for desirable

character prior to computing an expensive flow field. Disadvantages are

that the basic character of the flow must be analyzed a priori to place grid

planes in desirable locations, and data must be read from files at each cross

plane which could effect the thru-put time on the computer.

A third possiblity is to switch to computing in a transformed compu-

tational space. This makes the marching algorithm straightforward but

forfeits one of the major advantages of GIM - completely arbitrary

geometries.

Approach 2 was selected as the best compromise and also provides the

ultimate capability of elliptic-parabolic switching discussed earlier.

The classic algorithms for treating the parabolic pressure field

were deemed unsatisfactory. The following idea evolved from this

research. The approach is termed “Quasi-Parabolic” and arose from

the requirement of eliminating the ambiguities and singularities of

existing methods.

59

The basic idea is to combin,e the classical parabolic marching approach

with a II qua& time” relaxation. The parabolic-march procedure greatly re-

duces the amount of computer storage compared to a fully elliptic field. The

time relaxation form of the equations eliminates the “decode” ambiguity asso-

ciated with the parabolic pressure problem and allows velocity boundary con-

ditions at solid walls to be treated. The equations used in the QP method are

the time-averaged full Navier-Stokes, but with all second order terms dropped

in a quasi-marching coordinate. Another way to view the QP equations is to

take the parabolized Navier -Stokes and add back t’psuedo time” derivatives.

The QP solution procedure, as any parabolic marcher, thus allows no down-

stream diffusion effects or pressure wave feedback through a subsonic flow.

The solution is assumed known at upstream data planes, 1, 2, . . .N-1, and the

solution is sought at plane N with no knowledge of plane N t 1. “Psuedo Time” -
relaxation, is used to obtain the solution at plane N in terms of the (converged)

solution at a number of upstream data planes. Backward differences of some

type, (second order) must be used to prohibit downstream feedback. So the

QP algorithm is not a classical space marching scheme, and is also not a

time-dependent elliptic method. It is somewhat of a hybrid technique which

combines the better features of two approaches and eliminates the bad ones.

The GIM/STAR elliptic code will converge a case in 500 to 1000 steps

if the initial guess is chosen reasonably close to the answer. Also, GIM/STAR

is relatively cheap to run, if the problem size is small enough to fit into memory

and not require large page faults. The QP algorithm relieves both of these

difficulties to some extent. By storing only a small number of data planes

(and not the entire elliptic field) the large page fault problem is gone. The

QP marching procedure can also assign a reasonable guess to the Nth data

plane since it knows the upstream converged solution, i.e., guess it is equal

to the N-lSt plane or extrapolated in some way. This should allow the time

relaxation to converge very rapidly. If an implicit time-relaxer is used

with the QP algorithm (with steps many times the CFL), the relaxation should

go even faster.

60

The QP method allows an exact treatment of the Parabolic pressure

field. No ambiguity exist in the QP decode at Mach = 1 (since it is “quasi-

time” dependent) and no-slip walls can be treated exactly, i.e., boundary

layers . The QP algorithm eliminates many of the bad features of pure

parabolic methods.

One obvious disadvantage of the QP approach is the planewise iteration

(time relaxation) which must be done. This can be time consuming on the

machine, and a good criterion for convergence must be used to avoid error

propagation downstream. Spalding’s method suffers from this same plane-

wise iteration to correct the pressure as well; other linearization schemes

such as Roberts and Forester (Ref. 5) which use the conservative equations

also suffer. Planewise iteration is not uncommon in most parabolic methods,

thus the QP scheme is no better or worse in this respect. A linearized block

implicit scheme, as discussed in Section 3, appears to be very attractive for

performing the quasi-time relaxation.

Figure 4- 1 shows the QP form of the three-dimensional Navier-Stokes

equations in Cartesian coordinates. Note that these are the classical para-

bolized form plus a psuedo-time derivative. Included are global mass con-

servation, three components of momentum conservation, total energy and

an equation for conservation of individual species in a binary mixture.

Figure 4-2 is a typical computation molecule for a QP type marching.

Assume that all flow variables are known at planes 1, 2.. .K and the solution

is sought at plane K t 1. If backward differences in x are used, (first order,

second order, etc.), then the scheme of Fig. 4-3 allows no downstream

feedback, and allows plane K t 1 to be uniquely determined from upstream

information, i.e., quasi-parabolically.

Now consider the ultimate, not immediate, implications of such an

algorithm. A flow field could be marched out quasi-parabolically from an

initial data plane 1 to plane K, where K is set a priori ‘by the users. An im-

bedded elliptic region is encountered between planes K and K tM. The

number of planes that the QP algorithm can treat on any given sweep is not

61

av+E+~+*-o
at ax ay a2

P
PU

u= pv

i1 PW
Pt

PC

E=

F=

bu
pu2 + P

PU v

. 1 PU w
(pE + Pb
PUC

- VT -wr -q
YY YZ

-Pw
pWU-T z
PWV- T

Y=
pwZtP-Tez

(p&t P)W-UTZ - VTYZ-WT - q
zz z

PwC - RZ

Y

t- X

Z

(X is QP coordinate)

Fig.4-1 - Three-Dimensional Quasi-Parabolic Navier -Stokes System in Cartesian
Conservation Law Form.

I
I

t
Dominant
Flow Direction

---.,

X

z

I

t
(k- l)St
Plane

k
th

Plane

Plane

Fig. 4-2 - Symbolic GIM Code Computation Molecule.

Equation

Predictor

A w-1
U.

L,j,k
= un *

i,j,k - Ei,j,k-l
] t $e [E;,j,k-l - E’;,j,k-2]

n
j,k - Fi,j,k 1 [At Gn

- x i,j+l,k
- Gn

Lj,k 1
Corrector

ntl u. LUn

I

3 At
L,j,k = 2 i,j,k

+cntl wzz
i,j,k

-ET
L,j,k-l] ’ t% [E’;,j,k-l - E?,k,k-2]

- 6”
i-l,j,k I [

At &n
- z i,j,k

Fig. 4-3 - The Quasi-Parabolic Scheme Finite Difference Equations.

restricted to one. Simply specify single plane marching up to plane K,

switch to the elliptic operator on the next M planes, and then para-

bolically march from the (K+M)th plane to the final
th

N plane. The switching

can then be done II automatically, 1’ but the user must still determine the loca-

tion to perform the switching. Eventually, perhaps, an algorithm could be

written to detect the onset of a separation bubble, flow reversal, or other

elliptic phenomena. This is not being considered at this time, but only the

fact that the capability is within the framework of the QP algorithm.

Advantages of the QP Algorithm Outlined

There is no special treatment required of the parabolic
pressure field. It is handled exactly except for the usual
assumption of no downstream feedback.

No ambiguity exists in the decode procedure at Mach= 1.
Thus mixed flows can be treated with no a priori knowledge
of the relative velocity magnitudes.

Solid wall boundaries can be handled in the QP method
with no-slip values. Regular parabolic procedures
must avoid these type boundaries.

Inclusion of more than one upstream plane will allow
second order accuracy to be maintained inthe quasi-
marching coordinate.

The QP scheme can accommodate either explicit or
implicit It time” relaxation finite-differences.

Within the basic framework of the QP scheme, an
elliptic region could be treated before, during or
after a marching integration simply by including
k-data planes (instead of 2) during the relaxation.

The QP algorithm requires very little addition stor-
age over a classical parabolic method; and requires
many times less storage than a fully elliptic treat-
ment. Thus on STAR, the GIM/QP code could
march out very large flow fields with no large page
faults.

By dropping the cross-plane viscous terms, the QP
procedure becomes Quasi-hyperbolic with no further
coding changes. Thus one algorithm can accommodate
either parabolic or hyperbolic flows.

65

4.4 RESULTS OF COMPUTATION

The QP c,ode has been essentially completed and a number of test. I

cases exercised. Three test problems are shown in this section for illu-

stration of the Quasi-Parabolic code. These cases are:

1. Flow in a three-dimensional duct with an expansion-
recompression and interaction of two shock waves.

2. Flow over a 10 degree planar wedge.

3. Two-dimensional viscous flow resulting from interaction
of a nozzle exhaust with a supersonic freestream.

Other cases are currently in progress, including a boundary layer calculation,

containing subsonic and supersonic flow.

The first problem shown is depicted in Fig. 4-4. The 1 x 1 square nozzle

expands via a trignometric variation to 10 units and then has a constant 2 x 2

cross section. The supersonic Mach number expands up to the 10 unit plane

then, due to recompression, shock sheets form at,the top and outer side wall.

The two shocks intersect as depicted in the figure. The QP code was used

essentially in a hyperbolic mode with free slip inviscid solid walls and con-

tained approximately 24,000 grid points. The purpose of the case is to deter-

mine the ability of the QP marcher to handle rapid expansions and strong

compressions (shock capturing).

The solution for Mach number at the lower wall corner is shown on

Fig. 4-4. A comparison is attempted here with a forward-marching hyper-

bolic code of the classical variety (a MacCormack code). The GIM/QP solu-

tion shows a strong shock wave while the other marcher would not solve for

the large gradients at all. Figure 4-5 shows additional profiles for this case.

The pressure ratio (local to inlet) is shown for both the upper and lower wall

corners. Comparison is made to a published solution (Ref. 11). Excellent

agreement is seen for the smooth upper wall profiles and for the expansion

portion of the lower wall corner. At the axial location where the shock inter-

section occurs, the two solutions differ considerably. The GIM/QP code, using

a first order finite difference scheme agreed very well with the ATL results.

66

(2.y) = 1.5 - 0.5 .a+ t f$, x 5 10

(2.T) = 2. x >lO

Configuration

GIM QP

0

M

01 I I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

X

Mach Number vs Axial Distance
on “Lower Wall” Corner

Fig. 4-4 - Three-Dimensional Square Duct GIM Hyperbolic Computation.

P

PO

Upper Wall Corner

o 2 4 6 8 10 12 14 16 18 20
X

1.5 r- GIM QP

Lower Wall Corner

2 4 6 8 10 12 14 16 18 20

Fig. 4-5 - Three-Dimensional Square Duct GIM Hyperbolic Computation
(Axial Pressure Distribution).

68

However, the second order QP algorithm produced the curve shown in Fig. 4-5,

i.e., a larger pressure rise. As a check on the accuracy of the QP shock wave,

15,000 grid points were placed between 16 and 20 units. Very similar results

were obtained as with the coarser mesh (11 x 11 x 81). It is thus felt that the

GIM QP code is calculating the correct pressure rise across the shock.

In order to test the shock-capture capabilities of the QP finite differ-

ence scheme, an oblique shock on a lo-degree two-dimensional wedge w&s

computed. Two example cases were run with incident Mach numbers of 1.8

and 2.4. The same 60 x 5 1 node grid was used for both calculations. Each

case required about 26 seconds to converge. The results are shown in Fig.

4-6 as the pressure ratio through the shock as a function of vertical position ”

and pressure rise from the NACA 1135 shock tables. The shock was char-

acteristically smeared over five grid points. The excellent agreement indi-

cates a good shock-capturing capability with the QP second order backward

difference scheme.

Case three consists of a parabolic, viscous flow in the configuration of

Fig. 4-7. A nozzle with high pressure exhausts into a lower pressure, hyper-

sonic freestream flow. This case was solved with the GIM elliptic code with

940 nodes and reported in Ref. 2. The QP algorithm gives virtually identical

results as given by the full Navier-Stokes code. The grid used and the steady

state Mach and pressure contours are shown on Fig. 4-7. Comparison of this

solution with the reported values of Ref. 2 and with the inviscid SEAGULL code

of Ref. 12 are shown in Figs. 4-8 and 4-9. The SEAGULL is an inviscid, slip-

line, shock fitting, forward marching code. Figure 4-8 shows vertical pres-

sure distributions at three axial stations in the shear region, and Fig. 4-9

gives the corresponding Mach number plots. As seen by the comparisons,

the GIM marching algorithm does indeed work as expected and gives quanti-

tatively the same answers as the other codes. Application to a boundary layer

problem is currently under way.

69

5.0

4.0

a,
c” 3.0
id u

:

;;i
0 .d &I
fii 2.0
:,

1.0

0.0

m GIM

- - - Shock Tables

0

Moo= 1.8

8 = 44O

1.0 2.0

x= 3.519

I 1 I

1.0 2.0

Fig. 4-6a - Wedge Shock Case to Verify Capture Technique in GIM/QP Code
(Mm = 1.8, 9 = 44 deg).

4.0

3.0

2.0

1.0

0.0

- GIM

--- Shock Tables

M = 2.4

em = 33O
x= 3.519

x= 1.944

i

I
I - --

-- -1
I

‘I
- I

1.0 2.0 1.0 2.0

P/P,

I I

1.0 2.0

Fig.4-6b - Wedge Shock Case to Verify Capture Technique in GIM/QP Code
(M, = 2.4, 8 = 33 deg).

.L
of-2 l-

e Nozzle m
k 30 1 ”

‘1’

,A0
r I I I
2 3 4 5 6

3 Freestream Axial Distance

I Y I M I P I
Nozzle 1.27 1.657 1924

Freestream 1.27 5.0 106

Configuration

Mach Number

Fig. 4-7 - Quasi-Parab o 1 ic Code Applied to Shear Flow.

x = 3.4 x = 4.3 x = 5.6

3.0

2.5

2.0

*
& 1.5

:
2 1.0

.d i .5
‘;;;
u .d a
b

0

>
-0.5

-1.0

-1.5

-2.0

-

- I I I I I I

GIM NS
SEAGULL
GIM QP

4
I I I I I I I
0 .1 .2 .3

Pressure, P/p0

Fig. 4-8 - Quasi-Parabolic Shear Flow Computation (Vertical Pressure Distributions
at Three Axial Stations).

3.0

2.5

2.0

*
1.5

.
: 1.0

2 d
: 0.5

‘;;; 0.0
u .d c)
2 -0.5
>

-1.0

-1.5

-2.0

r
GIM NS

x= 5.6

2 3 4 5 3 4 5 3 ‘4 5

Mach Number

Fig. 4-9 - Quasi-Parabolic Shear Flow Computation (Vertical Mach Number Distributions
at Three Axial Stations).

5. REFERENCES

1. Spradley, L. W ., and M. L. Pearson, “GIM Code User’s Manual for the
STAR-100 Computer,” NASA CR-3157, 1979.

2. Spradley, L. W., P. G. Anderson and M. L. Pearson, “Computation of
Three-Dimensional Nozzle-Exhaust Flow Fields with the GIM Code,”
NASA CR-3042, 1978.

3. Beam, R. M., and R. F. Warming, “An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations, I’ AIAA Paper 77-645, Third
Computational Fluid Dynamics Conference, Albuquerque, N. M., June
1977.

4. Salas, M.D., “Shock Fitting Method for Complicated Two-Dimensional
Supersonic Flows,” AIAA J., Vol. 14, No. 5, May 1976.

5. Roberts, D. W., and C. K. Forester, “Parabolic Procedure for Flows in
Ducts with Arbitrary Cross Section,” AIAA J.,Vol. 17, No. 1, January 1979.

6. Patankar, S. V., and D. B. Spalding, “A Calculation Procedure for Heat,
Mass and Momentum Transfer in Three-Dimensional Parabolic Flow,”
Int. J. Heat Mass Trans., Vol. 15, 1972, pp. 1787-1806.

7. Rubin, S. G., and T. C. Lin, “A Numerical Method for Three-Dimensional
Viscous Flow; Application to the Hypersonic Leading Edge,” J. Camp. phys.,

Vol. 9, 1972, pp. 339-364.

8. Hirsh, R.S., “Calculation of Supersonic Three-Dimensional Free-Mixing
Flows Using the Parabolic-Elliptic Navier-Stokes Equations,” Aerody-
namic Analyses Requiring Advanced Computers, Part I, NASA SP-347,
1975, pp. 543-565.

9. Lubard, S. C., and W. S. Helliwell, “Calculation of the Flow on a Cone at
High Angle of Attack,” AIAA J., Vol. 12, No. 7, 1974.

10. Lin, T. C., and S. G. Rubin, “A Numerical Model for Supersonic Viscous
Flow over a Slender Reentry Vehicle, II AIAA Paper No. 79-0205, New
Orleans, January 1979.

11. Dash, S. M., and P. D. Del Guidice, “Numerical Methods for Calculation
of Three-Dimensional Nozzle Exhaust Flow Fields,” Aerodynamic Analyses
Requiring Advanced Computers, NASA ~~-347, Part I, Mar. 1975, pp. 659-679 .

12. Salas, M.D., “Shock Fitting Method for Complicated Two-Dimensional
Supersonic Flows,~~ AIAA J., Vol. 14, No. 5, May 1976.

75

Appendix A

USE OF THE GIM SE-2 CODE

bY

L. W. Spradley

77

Appendix A

A.1 THE GIM/STAR SE-2 CODE

The Blue Book (Ref. 1) describes the version of the GIM/STAR code

designated SE-l (STAR Elliptic Version 1). This reference manual contains

input guides and user information for the code. Since the publication of this

Blue Book there have been a number of changes to the code which have not

been documented. Some of these changes were necessary to allow large

problems to be run with a minimal number of large page faults while others

were made to reduce the possibility of wasting computer time generating

MATRIX analogs on a bad grid.

The input changes are not extensive but the user should use this

Appendix in conjunction with the Blue Book when running a GIM/STAR

problem. The following subsections describe the changes for the program

modules and file usage.

A.2 GEOM MODULE

\ Module 1 of the GIM SE-1 deck was titled GEOMAT as it contained both

the geometry and grid generation and the matrix coefficient assembly. The

SE-2 version has the two operations broken out into separate modules. The

first module of SE-2 is titled GEOM, as it now only performs the geometric

description and grid generation (see Fig. A- 1).

The user should be aware of the differences ,in this module between

versions 1 and 2:

l Input cards 16 and 17 (in the Blue Book) are no longer used - just
omit cards 16 and 17.

79

Card Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Parameter List/Format

HEADER(I), I = 1,72

(12A6)

NZONES, IDIM, ISTEP, IMATRX, IMATE

(515)

IWRITE, LWRITE, NWRITE

(315)

KC(I), I= 1,6

(6A5)

NSECTS

(15)

MAPE(I), I = 1, 12

(1215)

MAPS(I), I = 1,6

(615)

(IBWL(I), I = 1,6), ITRAIN

(715)

(NNOD(I), I = 1, 3), (ISTRCH(I), I = 1, 3)

(615)

DIVPI(I), I = 1, 3

(3E10.4)

[AETA(J,I), I = 1, NNOD(J)], J = 1, IDIM

(8E 10.4)

[(Ac(I,K,J), I = 1,8), J = 1,4 or 121, K = 1,5

(8E10.4)

[AS(I, J), I = 1,8], J = 1,6

(8E 10.4)

(PT(I, J), I = 1, 5), J = 1,4 or 12

(8E 10.4)

Fig.A-1 - Input Guide for GEOM Module (SE- 2 Code).

80

l File 17 is not output from the geometry module, rather File 18 is
now to be saved. This new File 18 is to be subsequently input to
the new MATRIX module.

l Card Type 4 has been changed. The values of a are no longer
input, but rather a set of flags to retrieve the correct a’s are
now used. The parameter KC .is set to alphabetic characters
F, B, etc., for forward or backward differences, KC(l) is for
x step 1, KC(2) for y step 1, etc., through KC(6) which is z
step 2. The format is 6A5.

A. 3 MATRIX MODULE

The new MATRIX module of the SE-2 code now performs the analog

coefficient calculation and file creation. This module should be executed

following GEOM and before INTEG. The File 18 which was output from GEOM

is now input to the MATRIX module. File 17 needed by INTEG is to be saved

from MATRIX. Figure A-2 gives the storage requirements for MATRIX.

The input to the MATRIX module consists of the Cards 16 and 17 which

were omitted from the GEOM module, plus one new card. Each of these cards

is now described:

Card Parameters

1 NDX, NDY, NDZ, ISNOPT

2 KC(I), I= 1,6

3 Nl, IC, NT

Card Type 1 Format (415)

Same as Card Type 16 (GEOM SE-l) p. 4-27

NDX nodal decrement in the nl-coordinate system

NDY nodal decrement in the n2-coordinate system

NDZ nodal decrement in the n3-coordinate system

ISNOPT special node treatment flag

If ISNOPT = 1 the MATRIX module will calculate the
number of special node terms placed
on File 17 for input to INTEG

Format

(415 1

(6A5)

(315)

81

Matrix 2D - 3D -

/ACOM/

/PCOM/

(Q3MAP/

/IRFBC/

/JCFBC/

/PAFBC/

50*NN 196cNN

4*NN 8 *NN

24Hl-N + 18*%SPEC 48*NN t 18agNSPEC

t 65542 t 65542

6 *NSPEC 6::NSPEC

6 :%NS PE C 6*NSPEC

6*NSPEC 6*NSPEC

where

NN = total number of nodes

NSPEC = number of special node terms allowed
for in DIMENSION statements (DYNMAT
input)

The common block sizes may be calculated for each problem
size to determine the ideal grouping on the LOAD card. If in
doubt assign each block to a new large page boundary as below.
Do not use GRLPALL, but use

GRLP=*ACOM, GRLP=+PCOM, GRLP=W3MAP, GRLP=IRFBC,

etc.

Fig.A-2 - Module Common Block Sizes.

82

If ISNOPT = 0 the entire array of special node terms
will be placed on File 17. The size of
the array is determined by DYNMAT
input (NSPEC parameter).

Card Type 2 Format (6A5,) Analog Choice Card

This card consists of a sequence of six characters (F or B)
identifying the difference direction (forward or backward)
for X, Y, and Z Step 1 and X, Y, Z Step 2, respectively.

Examples :

FFFBBB

forward, forward, forward, backward, backward, backward
for three-dimensional problems and

F B - B F -

forward, backward, backward, forward for two-dimensions.

This is a new card for version SE-2 and is identical to GEOM card type 4.

Card Type 3 Format (315)

Nodal analog print control card.

Nl first node of a print sequence

IC print increment

NT total number of nodes to print for this sequence.

(See page 4-29 SE-1 manual for complete description.)

Any number of cards of this type may be input.

Place a -1 in Columns 4 and 5 on last card to terminate.

Dynamic Dimension for MATRIX

The new MATRIX module has its own dynamic dimensioning sequence.

The same deck DYNMAT is used for MATRIX and GEOM, but the input of a

third parameter is optional in MATRIX.

83

The DYNMAT deck is to be executed before running the MATRIX

deck.

The input consists of one card:

Format

(315)

Card Parameters

1 NN, IDIM, NSPEC

The definition of these input variables are the following:

Card 1 Format (315)

NN number of nodes

IDIM dimensionality (2 or 3)

NSPEC number of special node terms to allow for in
DIMENSION statements. If left blank, or zero,
the arrays will be dimensioned to NN. The
actual number of special node terms will be
calculated and printed out in MATRIX. This
value is then input to INTEG. (Not used by
GEOM.)

A.4 INTEG MODULE (SE-2)

This module has remained virtually intact from a user standpoint.

Three additional options have been added sine-e the Blue Book was issued.

These are:

l Capability to compute a CFL time step automatically over
a multi-zoned grid.

l Treatment of downstream subsonic boundary conditions using
a mass balance condition. This option was added under another
NASA contract and is documented here for completeness.

l Input of a set of flags denoting the finite-difference direction.
This aids in a more complete set of difference options and allows
for full vectorization of all schemes.

84

Figure A-3 is a summary Input Guide for the INTEG SE-Z module.

Note that the new input cards are designated Za, Zb, Zc, 3a and 6a. All except

6a are optional and existing data decks will still work as they did for version

SE-l. Card 6a must now be input in version SE-2. Card 2 has two additional

inputs, IDS, IBOUND which control the optional input of 2a, 2b, and 2c. Zero

values for the parameters on Card 2 signifies omission of the remaining Cards

Type 2a, 2b and 2c. Figure A-3 is a description of the available options and

each parameter that is to be input.

Figure A-5 describes each parameter that is input on the optional Cards

2a, 2b and 2c. An example of the use of the subsonic boundary condition option

is shown in the sample grid of Fig. A-6.

The time step calculation option is controlled via the value of KZONES

read as the last data on Card 3. If this is omitted (=O), then one zone is

as sumed. If KZONES > 0, then this signals the code that a multiple zone

problem is being run. In this case, the value of KZONES should be equal to

the number of zones used in the geometry module. If KZONES= 0, then Card

Types 3a are not used, but any value of KZONES > 0, requires the input of

come Cards 3a. The number of Cards 3a to be input is equal to KZONES-1.

The time step information for zone number 1 is input on Card 3 itself.

Figure A-7 describes the input of this time step information.

Card 6a is simply the KC values used in GEOM and MATRIX, i.e.,

, FFF BBB

in format 6A5. This card must agree with the previous module’s usage.

One additional Fig. A-8 is included in this subsection. This chart

shows formulas for determining the COMMON block sizes for the INTEG

module. These values are needed for large problems to set up the LOAD

card as described in the Blue Book (Ref. 1).

85

Card Type

1

2

2a

2b

2c

3

3a

4

5

6

6a

7

8

9

10

11

12

Parameter List/Format

ICASE, IITITLE(I), I= 1, 78)

(12, 78Al)

IDIM, METHOD, ITMAX, IPRNT, ITSAVE, ISTART,
IOTYPE, IUNITS, ITSTRT, IVISC, IDIST, ISPEC,
IDS, IBOUND

(1415)

INFOUT, IJUMPO, JJUMPO, NIOUT, NJOUT,
ICALC, AMFLW

(615, E1O.O)

INFINL, IJUMPI, JJUMPI, NIIN, NJIN, ICALC,
OUTMFL

(615, E1O.O)

INFINL, IJUMPI, JJUMPI, NIIN, NJIN, INFOUT,
IJUMPO, JJUMPO, NIOUT. NJOUT, ICALC

(1115)

NN, NNX, NDX, NNY, NDY, NNZ, NDZ, NPM,
KZONES

(915)
KST, KNX. KDX, KNY, KDY, KNZ, KDZ

(715)
DTIME, DTFAC, INCDT

(2E10.0, 15)

REALMU, REALK, GAMSl, GAMSZ, WMl. WM2,
DK, RK

(8ElO.O)

EMU, ELAM, ERHO, ESPEC

(4ElO.O)

KC(I), I= 1, 6

(6A5)

NNPM(I), NCPM(1). (NNCPM(1, J). J = 1, 5),
ANGPM(1): I = 1, NPM

(715, E1O.O)

(NCT(I, J, K), PXPM(1, J, K), PYPM(1, J, K),
K = 1.4); J = 1, NCPM(1); I = 1, NPM

(15, 2ElO.O)

RHOZ. PZ, ASTAR, NINC, A, B

(3El0.0, 15. 2ElO.O)

NJ, INC, NTOT, ITAN, ITYPE

(515)

RI, UI, VI, WI, PI, CSI
(6ElO.O)

Nl, IC, NT

(315)

Fig.A-3 - Input Guide for INTEG Module (SE-2 Code).

86

Card Cal.

Type 2 l-5

6- lo

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

56-60

61-65

Format

15

Variable

ID IM

METHOD

ITMAX

IPRNT

ITSAVE

ISTART

IOTYPE

IUNITS

ITSTRT

IVISC

IDIST

ISPEC

IDS

65-70 I5 IBOUND

Description

See Blue Book

V’
Boundary Condition Flag

= 0, one-sided differences
(supersonic)

= 1, mass balance technique
(subsonic)

Note: If IDS. Eq. 1 IBOUND
should be set to either - 1, 0, or 1.

If IDS. Eq. 0, IBOUND is left blank

= -1, input inlet mass flow and
calculate exit mass flow

= 0, input exit mass flow and
calculate inlet mass flow

= 1, calculate both inlet and exit
mass flow

Note: If IDS. Eq. 1 card types 2a, 2b and 2c must follow type 2 card. The use
of types 2a, 2b and 2c depends on the value of IBOUND.

If IBOUND = - 1, use Type 2a

If IBOUND = 0, use Type 2b

If IBOUND = 1, use Type 2c

Fig.A-4 - Definition of Parameters for Card 2.

87

Card

Type 2a

Type 2b

Type 2c

Cal.

l-5

6-10

Format

I5

I5

11-15 I5

16-20 I5

21-25 15

26-30 I5

31-40 E1O.O

l-5 15

6-10 15

11-15 I5

16-20 I5

21-25 15

26-30 I5

31-40 E1O.O

l-5 I5

6-10 I5

11-15 I5

16-20 I5

21-25 15

26-30 I5

31-35 I5

36-40 I5

41-45 15

46-50 I5

51-55 15

Variable

INFOUT

IJUMPO

J JUMP0

NIOUT

NJOUT

ICALC

AMFLW

INFINL

IJUMPI

J JUMP1

NIIN

NJIN

ICALC

OUTMFL

INFINL

IJUMPI

JJUMPI

NIIN

NJIM

INFOUT

IJUMPO

JJUMP~

NIOUT

NJOUT

ICA LC

Description

Starting node on exit plane

Nodal increment in ith direction on exit
plane

.th Nodal increment in J direction on exit
plane

Number of elements in i th direction on
exit plane

Number of elements in j th direction on
exit plane

Velocity update flag

= 1, update inlet velocities

= 2, update exit velocities

Inlet mass flow rate (input by user)

Starting node on inlet plane

Nodal increment in the i th direction on
inlet plane

Nodal increment in the jth direction on
inlet plane

Number of elements in i th direction on
inlet plane

Number of elements in jth direction on
inlet plane

Velocity update flag (see Card Type 2a)

Exit mass flow rate (input by user)

Starting node on inlet plane

Nodal increment in the i th direction on
inlet plane

Nodal increment in the jth direction on
inlet plane

Number of elements in i th direction on
inlet plane

Number of elements in jth direction on
inlet plane

Starting node on exit plane

Nodal increment in the i th direction on
exit plane

.NNpilnncerement in the jth direction on

Number of elements in i th direction on
exit plane

Number of elements in jth direction on
exit plane

Velocity update flag (see Card Type 2a)

Fig.A-5 - Description of Input Parameters for Optional Card Types 2a, 2b, 2c (Subsonic
Boundary Conditions).

88

6 18 30 42 54 66

8 20 32 44 56 68

10 22 34 46 58 70

12 24 36 48 60 72

14 26 28 50 62 74

J=l J=2 J=3 J=4 J=5

I= 1

I=2

I=3

I=4

Example:

IBOUND = 0 INFINL = 6, IJUMPI = 2, JJUMPI = 12, NIIN = 4, N JIN = 5

Fig. A-6 - Example of Subsonic Boundary Condition Usage.

89

Card

3

col.

5

10

15

20

25

30

35

40

45

Format

15

I5

I5

I5

I5

I5

I5

15

I5

Parameter

NN -

NNX

NDX

NNY

NDY

NNZ

NDZ

NPM _

KZONES

Description

See Blue Book

The number of zones that was used to construct the grid. This is used to allow
a CFL time step to be computed over multiple zones. Set to 1 for a single zone
problem.

Card

3a

Cal.

5

10

15

20

25

30

35

Format

15

I5

I5

I5

I5

I5

I5 KDZ

Parameter

KST

KNX

KDX

KNY

KDY

KNZ

Description

Starting node number
of this zone.

Number of nodes in q
direction for this zon2

Nodal decrement in r]
direction for this zonk

Number of nodes in V2
direction for this zone

Nodal decrement in ?j
direction for this zong

Number of nodes in q3
direction for this zone.
Set to 1 for 2-D flow.

Nodal decrement in ‘7,
direction for this zone.
Set to 1 for 2-D flow.

Note: Input Card Type 3a for each multiple zone to be used in computing a CFL
time step. The number of Cards 3a is equal to KZONES- 1, where KZONES
is input on Card 3.

Fig.A-7 - Description of Parameters for Optional Card Type 3a Input.

90

Common Block
Names

/PRIM/

/TAU/

/TMvEC/

/VPROP/

/vBu~/

/BOUND/

/EBUF/

/xBUF/

/STEP/

/Ax~YM/

/Q3MAP/

Axisymmetric

1 Gas

5*NN+l

9=*NN+3

2sNN

2 ‘:cN N

8 =XNN

5*NBtl

8 *NN+4

7 :kNN t4

3*NNtlO

8*NN

2 Gases

6:cNNtl

9*NNt3

2 ::NN

4CNN

10 *NN

5*NBtl

10 *NNt5

7*NN+4

3 *NNt 10

9 :::NN

24*NN+ 18cNSPEC
t 6t COMP

2-D

1 Gas 2 Gases

5*NNtl 6*NNtl

9*NNt3 9*NNt3

2 :%NN 2 :kNN

2*NN 4 :<NN

8 a%NN lO*NN

5>gNBtl 5::NB+l

8 4cNN+4 10 +NNt5

7 *NNt4 7 ::<NN +4

3ZcNNtlO 3::NNtlO

8 9

24*NNt18kNSPEC
+ 6+ COMP

3-D

1 Gas 2 Gases

6 :kNN 7 G;:NN

12 x:NN 1 2 :cNN

2 ::NN 2*NN

2 ::NN 4 :RNN

10 :kNN 12*NN

5+NBtl 5 :cNB+l

15 :::NN 18 *NN

lO*NN+l 10:kNNtl

4 *NNt9 4 ::NN t9

9 10

48:sNN+18+NSPEC
+6+COMP

NN = total number of nodes.

NB = number of boundary nodes.

NSPEC = number of special nodes.

COMP = amount of storage need to complete a large page.

Fig.A-8 - INTEG Module Common Block Sizes for SE-2 Code.

91

A.5 GIM SE-2 FILE DESCRIPTIONS

Following is a brief description of the files used in the STAR SE-2

system. In all but very small problems setups, (a few hundred nodes), a

REQUEST card must be used for each file. The form of the REQUEST

card is as follows:

REQUEST (FILEXX/NSPGS, T = P)

where

NSPGS =

Formulas for calculating NSPGS are now given for each file.

the number of small pages of disk space
allocated to the file

1 small page = 5 12 words

FILE 16 GEOM

Work file used in GEOM only (Binary)

NSPGS = 15+NN/512 NN = no. of nodes

FILE 17 MATRIX/INTEG (Binary)

Nodal analog file created in MATRIX and used in INTEG.

2D -
NLPGS = (16*NN t 18’:NSP t 6)/65536

rounded up to next whole integer

NSPGS = NLPGS*l28 t 1

3D -

NLPGS = (48::NN t 18*NSP t 6)/65536
rounded up to next whole integer

NSPGS = NLPGS’::128 t 1

where

92

NN = total number of nodes

NSP = number of special node terms.

FILE 18 GEOM/MATRIX (Binary)

File containing matrix assembly data. Created in GEOM and used in

GA TRIX.

2D -

NSPGS = 5O%NN/512 + 1

3D -

NSPGS = 196*NN/512 + 1

FILE 20 GEOM/INTEG/GIMTEK (Formatted)

Nodal geometry file created in GEOM and used in INTEG and GIMTEK

2D -

NSPGS = 14+NN/5 12

NSPGS = 2O+NN/5 12

FILE 22 INTEG/GIMPLT (Formatted)

Flowfield solution file created in INTEG and used both as a restart

file and in GIMTEK.

2D

NSPGS = 1 WNN/5 12 per record

3D .-

NSPGS = 14*NN/5 12 per record

Multiply by the number of iteration increments saved.

93

Controllee File Sizes

The size of the controller file is specified on the LOAD ‘card in small

pages. Formulas are given below for calculating the size required for a

given problem.

GEOM

NLPGS =
50*NN/65536 + 3 2D

196::NN/65536 t 3 3D

rounded up to next whole integer

NSPGS = NLPGS*l28 This is the value that goes
on the LOAD card.

MATRIX

No single formula exists to calculate the controllee file size for the

MATRIX module. The procedure is to calculate the number of large pages

(65536 words each) required for each GRLP parameter on the LOAD card,

add these up, add 2 for other storage and multiply the result by 128.

INTEG

The same rule applies to the INTEG controllee file size as to the

MATRIX module. Use the common block sizes to compute the number of

large pages, add them up, add a couple and then multiply by 128 to get the

controllee file size number.

A.6 PLOT MODULE (GIMTEK)

The GIM SE-2 code plotting module is now titled GIMTEK. This re-

flects the modifications which were made to the GIMPLT SE-l module in order

to use the Tektronix 4014 for graphic output. The user need not be aware of

the internal program changes that were made. The input data are identical to

the SE-l version. Three items of significance to the user are now described:

94

The CM field length specified on the job card is calculated by

CMlO = K-Xl0 + 2300010

Notes: 1.

2.

3.

This parameter must be set in the program and the array “A”
dimensioned to this value.

CM must be converted to octal for specification on job card,
and RFL card

Example

NN = 2000

KMAXIO = max
1
504~l~<2~oo~ = max /;:I;;/

= 22000

CMlO
= 22000 + 23000 = 4500010

use CM = 130000 (1300008 = 45056 10'4500010)

Fig. A-9 - GIMTEK Core Requirements.

95

l The formulas on page 6-25 of the Blue Book for computing core
sizes for the plot module are no longer valid. Figure A-9 gives
the revised formulas and an example calculation.

l The plot save command was changed on the software system. The
new save name is

SAVPVF.

l The routine that we use for obtaining GIMTEK plots from the
Tektronix 4014 is

PLIST.

This allows enough options to select only those plots needed and
also allows an unlimited time to examine a plot before proceeding.

The input data for GIMTEK is ‘the same as described in the Blue Book.

Figure A- 10 is a summary of the required input data presented here for

comple tene s s . The user is referred to the Blue Book for a definition of the

parameters.

A.7 EXAMPLE RUNSTREAMS FOR THE SE-2 CODE

The following pages show example runstreams that have been used for

the SE-2 code on the STAR-100 machine. These should aid the new user in

setting up a deck for GIM SE-2:

Fig.A-11 - GEOM Module Only

Fig.A-12 - MATRIX Module Only

Fig.A-13 - GEOM/MATRIX Combination Run

Fig. A-14 - INTEG Run Only

Fig.A-15 - GIMTEK Run

Note: The “blanks” which show up on the card listings are 7-8-q punch cards,
i.e., end of record.

The files for GIM SE-2 are cataloged under user number 838700C as GEOMB,

MATRIXB, INTEGB and GIMTEKB.

96

Card Type

1

2

3

Specs.

S-l

s-2

Grid

G-l

G-2

VVEC

V-l

v-2

I-l

Contours

C-l

c-2

I-l

L-l

Parameter List/Format

ITITLE(l), ITITLE(2)

(2A40)
NX, ITERAD, ITRBLK, KDIM. ISP

(515)
GAMMA, FACTOR, RK, PO, TO, RHO0

(6ElO.O)

NPLT, STITLE, IVIEW, ISYM, ITHETl, IAXISl,
ITHETZ, LAXISZ, IXTABL, VFAC

(15, 5x, A20, 815, E1O.O)

NTYPE, JO, IJUMP, JJUMP, NI, NJ, IPRNT

(715)

‘GRID’, IOPT, ICSCLE, NSPECS, (ISPEC(I), I = 1,
NSPECS)

(A4, IX, 15, 25X, 215, 715)

(ISPEC(I), I = 8, NSPECS) if NSPECS > 7)

(45X, 715)

‘VVEC’, IOPT, NITER, ICSCLE, NSPECS, (ISPEC(I),
I= 1, NSPECS)

(A4, IX, 215, 20X, 215, 715)

(ISPEC(I), I=8, NSPECS) (if NSPECS > 7)

(45X, 715)

(ITER(I), I= 1, NITER)

(1615)

ITYPE, IOPT, NITER, NC, ITABLE, INCR, ICSCLE,
NSPECS, ISPEC(I), I= 1, NSPECS)

(A4, lx, 515, 5X, 215, 715)

(ISPEC(I), I= 1, NSPECS) (if NSPECS > 7)

(45X, 715)

(ITER(I), I= 1, NITER)

(1615)

(CVAL(I), I= 1, NC)

(8ElO.O)

Fig. A- 10 - GIMTEK Summary Input Guide.

97

GEuDCT~CM60000rT103.
USEK*838700C.
CHA~GEe101857*LKC.
GETtULDPL=GEOM/UN=838i’OOC)
GET (DYNI~IAT=DY~I~~AT/UI~=~~&~OOC)
UbDATE(F,C=TAPi%)
DYWiAT.
TOSTAI~~INPUTITAPE~)

*ID NODS

254 1 3

STuKE 838700 400SDs TESTDECK t3
STKSIDE~TlOO.
FOKTKANt I=TAPE3r~=GEOl~i~r~=Ls)
REUUEST(FILE16/75rT=P)
RE~UEST(FILEl&/~74,T=P)
REOUEST(FILE2U/lOO,T=P)

LOA~(GEOMBICN=GEO,~G~,~~~~~GHLPALL= 1

GEbVlGO.

TOAS(Z=838700C~FILE18=~I~FIL~2O)

*** GEOMETKY DATA *it***

Fig.A-11 - GEOP.4 Runstream.

98

MATRIX*CM6000urTlO0.
USER 983t1700Ce

CHARGE* 101857rLHC.
GET t OLDPL=MAT~IX/UN=~~~~OOC)
GET(DYNI~IAT=DYN~IAT/~~=~~~~OOC)

UPDATE(F,C=TAPEB)

COPYStiiF(TAPE8rOUTPUT)
REWIND(TAPE8)
DYNl”lAT.
ATTACH(FILE~~=FILE~&B)
TO~IAK(INPUTITAP~~,~ILE~~=~I//,U)

*ID NONE

254 1 3 1‘714

STcJKE &38700 400SDs TtSTDECK B
STHbIDE*TlOO.
FOkiKAN(I=TAP~3rB=b’iATRB~O=LB)

HEQUEST(FILE17/385,T=P)
LOAU(~ATR~rCN=~~lATRGO,l~20
. GRL!-‘=*AcOM, GRLP=-%Q~;~IA~ 9 GRLP=*t-,C;dw ,*k I RF BC .X JCFBC , XPAI- 0~)

,vrATRGO.
TOA~(L=~387OOC~FlLEl7=SI)

121 11 1 1

F F F d tl id
1 1 20

-1

Fig.A-12 - MATRIX Runstream.

99

GEulilAT. CF16OOOb. T 100.

USEKr83ti700C.
CHAKGEI 101857qLRC.
GET (ULDPL=GE~;I~I/UN=~~~~OOC 1

GET (DYN~‘~IAT=DYI~IYA~-/UI~=~ jt17OOC)
uPDATt(F,C=TAPt8)
DYNl+lAT.

COPYCF(TAPE3rGE(VIC)
KEW 1 ND ((;EOltJlC)
KETURN(OLDPL)

RETURN (TAPE3)
RETUKN (T-APE8)
GET(OLL)~L=;~AT~<IX/UIJ=~~~~OOC 1

UPDATE(F,C=TAPtB)
DYNMAT.
COPY(3F(TAPE3rI”lATC;)
KEW I iLCI (I’wTC)
KETUkN(OLDPL)
RETUKN(TAPE3)
RETuKN(TAPE8)
TOST AK (INPUT 9 GEUI~IC 9 I/IA iC:)

254 1 3

* ID I\ruNE

254 1 3 1714

STukE 838700 400SD5 TtSTDECI< B
STKbIDk*TlOO.
RE~JEST(FILE~~/~~,T=P)
kEuutST(FILE17/38S,T=P)
REU~EST(FILEl~/Y74,T=P)
REUUESTCFILE2U/lOO,T=P)

FOHTRAN(I=GEOlilC.Lj=GEOtqt)rC:=LB)

LOAD (GEOMUI CN=GEOMGu 9 1408. GRLPALL=)

GECmGU.

-
***it GEOiQtTKY DATA -2 * -2 -2 * .* Q

**** MATKIX DATA st*****+

Fig.A-13 - GEOM/MATRIX Runstream.

100

INTEGA*CM600Ud*T200.
USEkr012839C.
CHAtiGEv 1021101LKC.
ATTACH(FILE17=FILE17A)
ATTACH(FIL~~O=FILEZ~A)

GET(OLDi=L=INTEG/UN=838i’OOC)
GET(DYNDII~I=DYNDIIWUI~=~~&~~OC)

UPDATE(F,C=TAPE8)
DYND 114.
COPYCF (TAPERS I NTEGX)
REwINDi INTEGX)
HETURNt OLDPL 1

KETUKN(TAPE3)
HETUKN(TAPEB)
TO~TA~~(I~~PUT*II~T~GX~~IL~~~=UI//U)

1225 1 0 175Y

Fig.A-14 - INTEG Runs tream.

101

GIMTEK*CM120OW*T43~.

USER*012839C.
CHARGE* 1021101LRC.
GET{ OLDPL=GIMTEK/UN=4Y2425C)

UPDATE(F)
FTN(I=COMPILE*L=O)
ATTACH(TAPE2O=FILE23A)
ATTACH(TAPE22=FILE22E)

RFL(120000)
ATTACH(LI~FTER~LKC(~OS~/C/I\~=LIBHARY)
LDSET(LIB=LIBt.TEK/LRCGDSt-.~~ESET=NGINF)
LGO.
SAVE(SAVPVF=SCRJEl-)

*ID KOQCHG
2x. I G I I”IPLT .744

ISET=I~ET+~

*o GIMPLT .Y
COMILlON A(14840 1

*cl) GIMPLT. 15
I<blAX= 14tj40

it G I MTEK DATA ?-k 9 * x * * 4

STOP

Fig.A-15 - GIMTEK Runstream.

102

Appendix B

THREE-DIMENSIONAL LB1 SCHEMES
FOR THE NAVIER-STOKES

EQUATIONS

bY
Jiirgen Thoenes

Appendix B

B. 1 INTRODUCTION

Algorithms are developed for the solution of the three-dimensional

compressible Navier-Stokes equations in conservation form. This work

represents an extension of the methodologies outlined by Beam and Warming

(Ref. B- 1) and Spradley (unpublished information) and familiarity with the

cited literature is assumed. A time-dependent algorithm for the unsteady

equations is developed first and then a spatial marching scheme for the

three-dimensional parabolized steady equations is obtained. Algorithms

for one- or two-dimensional problems are easily obtained by simply de-

leting appropriate terms from the equations.

105

B.2 THREE-DIMENSIONAL UNSTEADY ALGORITHM

The three-dimensional compressible conservation equations can be

written in conservative form

=~[vlluJ’ux) + v 12 (U* Uy) + v13 (Us u,,]

+3v21 (Us Ux) + vz2 (Us Uy) + vz3 (U, UJ

t&P31 (wJx) + 32 w* Uy) + V3,wJz)]

where U is the vector of conserved variables and E, F, G and Vij are flux

vectors.

A generalized single-step temporal finite difference scheme for ad-

vancing the solution of Eq. (B.l), is the following.

AUn = BAt 8Aun + At 8Un + L Aun-l
iqat mat; 1+6

(B-1)

(B.2)

where U
n

= U(nAt) and AUn = Untl - Un. (Terms of order At2 and At3 have

been neglected, for simplicity.)

.106

8U
If Eq. (B.l) is solved for at and inserted in Eq. (B.Z), the resulting ex-

pression for AUn is

(-AEn t AVTl t AVr2 t 4,)

+ ,$& (-AEn f AV& + AVZ2 + AVg3)

+ 2 (-AGn t AV;, t AVi2 t A$,) 1
At

+ 1+5
a(-, $ Vll t VI2 t V13)n
ax

+ ay ?- (-F + V21 t V22 + V23)n

+% (-G + V31 + V32 + V33)
n

t & At?-'

where AE
n = En+’ _ En, etc.

(B.3)

n
Note that AEn, AFn, AGn and AVij are nonlinear functions of the con-

served variables U. A linear equation with the same temporal accuracy as

Eq. (B-3) can be obtained by expanding AE”, AFn, AGn and AV: in a Taylor

series, thus

E ntl

or

AEn = An AUn (B.4a)

107

Similarly

Bn AUn

Cn AUn

(B.4b)

(B.4c)

where A, B, and C are the linearization Jacobians.

Strictly speaking, the same procedure should be applied to the viscous

terms. However, as pointed out in Ref. B.l, treating the spatial cross-derivative

terms, i.e., AVij (if j), in this manner would lead to considerable difficulties

in constructing an efficient spatially factored algorithm. Therefore, spatial

cross-derivative terms will be evaluated explicitly (without loss of accuracy,

Ref. l), i.e.,

A?.
‘J

= AV;-l (if 3 (B.5)

while the linearization is applied to the AVkk (k = 1, 2, 3). Remembering that

Avkk = f(U,Ux),
k

AVEk = ($)n AUn t (27 AUEk

= Pkk AUn t RLk AUzk

Application of the product differentiation rule shows that

R;k AUn Xk = (Rkk Au);k - & Rkk m AUn

(B.6)

(B-7)

108

and therefore from Eq. (B.6) and (B.7)

AVLk = Pkk Aunt (Rkk AU)n - Rkk x AUn
Xk ’ k

n
= tpkk - Rkk,xk)n AUn + (Rkk AWxk (B.8)

where Pkk and Rkk are the linearization Jacobians as defined in Eq. (B.6).

Evaluation of these Jacobians will show that for constant transport coeffi-

cients

-LR
Pkk 8xk kk = ’

and thus

AVtk = k & (Rkk Auf

(B-9)

(B.lO)

If the approximations outlined above are introduced into Eq. (B.3), we obtain

AUn =
@At 8
iqax

1 [
-An Aunt & (Rll AU?

I

8 n n
tay-B AU t

[
5 (Rz2 AWn

I

t&
[
-Cn AUnt&(R33 AU)"

+ z &W,, + Av13)
n-l

+ 6 (AV21 + AV23)
n-l

t&(AV,, t AV32)n-1
I

(Continued)

109

At
+ G-g

(-E t Vll t VI2 t V13)n

+ aY
2 (-F t V21 + V22 + V23)n

t &t-G + V31 + V32 + V33
)“3

t & AUn-’ (B.ll)

Thus, for constant transport coefficients only the Rkk linearization Jacobians

are needed in addition to the A, B and C Jacobians.

Expanding and rearranging Eq. (B.ll), we obtain

Rtlll +
a2 & Bn--

aY2

a2 tgcn-- az2 RY3 * AUn

=+$-$& (9, t AV,,)“-’ t & (Av21 + Av23)
n-l

t& (AV,, t AV,,)“-‘1

At
+1+5 ax C

a (-E t Vll t V12 t V13)n

+ w a (-F t V21 t V22 + V23)n

6 n
l-G + V31 + V32 + V33)

3

+ + Au”” (B.12)

110

Note the special notation used in writing the left hand side (LHS) of Eq. (B.12)

which really must be considered an ‘toperator,lt operating on AU
n

, and which

is of the form

LHS(12) = Itatbtc (B.13)

This can be written in a spatially factored form

LHS(12) =
I
(I t a) (I t b) (I t c)’

1
* AUn

= (Itatbtc)
1

t ab t ac t bc t abc * AUn
I

(B-14)

if we note that ab, ac, bc, and abc all are at least an order of magnitude (in At)

smaller than a, b, c. Thus, without loss of accuracy,

LHS(12) =

= + 8At 8 An a2 n
---(ax

--
1+5 ax2 R1l) * 1

iLBT.--
(ay

a2
ax2

R;2) * 1
Ri3) * AUn (B.15)

Following Beam and Warming (Ref. B.-l), in practice Eq. (B.15) is implemented

by the sequence

a2 --
ax2 R;l

)I

* AU** = RHS(12)

a2 --
w2

RT2
)l

* AU* = AU**

(B.16a)

(B. 16b.)

where RHS(12) means the right hand side of Eq. (B.12).

111

* AUn = AU*

U
ntl = Un t AUn

The remainder of the analysis follows that of Ref. B-l.

(B.16c)

(B.16d)

112

B.3 SUMMARY OF EQUATIONS FOR UNSTEADY ALGORITHM

The vector of conserved variables, U, and the flux vectors of Eq. (B.l)

are

E =
r Pu

2
Pu +P

F =

G =

PUV
PUW
GE + P) 1 =

-Pv
~ Puv

2
Pv +P

Pm
v(PE + P)

-Pw
Puw
Pm
Pw2+ P

w(PE + P)

=

I
=

m

m2/p+ P

mn/P

mq/p
W/P) (r + P)

n

mn/P

- I

n2/p+ P

W/P
@/PI (r + P)

-

9

m%

W/P
s2/p+ P

(S/P) (r + P)
113

where the Pressure is given by the equation of state

2 2 2
P - u + “2 + w

= (y-l) r -
(

n-l2 + II2 + q2
2P)

The viscous flux vectors are

vll =

114

0

(2P + N ux

pvx

pwx
(2P + A) uux t pwx t pwx + kTx

0

AV
Y

L I p”Y
0

AuvY + pvu Y

t

52 =

v13 =

v21 =

-
0

AW
Z

0

PUZ
Auwz + pwu Z - 1

p"Y
v22 = (2/J+ A) vy

pwY
puuy t (2p t A) WY t pww yt kT

Y

'23 =

V 32 =

0

PUZ
V33 = PV,

tzc-l+ N wz
puu, t pw, t (2~ t A) wwz t kTZ 1

where u = au/ax, etc.
115

x

In order to write the viscous flux vectors in terms of the conserved

variables, the temperature gradients must be expressed in terms of the con-

served variables. It is easily shown that

(
am ap

1 (
an 8~ --n - m P,5-mz -n Pa* ag

1

(
as g -9 P,5-qac

)I

Using this equation it can be shown that

- mP,)

PP
vll =

-2 (PS, - 9P,)

PP-3 I
(z+$- $$ In (Pmx - mPx)

I
i (1 - j$ II nCPnx - nPx) + 9 (P9, -

+ &Z PW
X

- W,)
1

W,)
3

r0 1
AP -2 W - nPy)

V i-we2 WY -
12= o

WY)

1 @3 m(Pn
Y

- nP,) + pP
-3

n(Pm
Y

- mP,)
i

116

v13 =

v21 =

v22 =

0

&f2 (PS, - ¶Pz)
0

E-LP -2 m
-3 (p Z

- mP,)

w m(Pqz - SP,) + I-LP-3 9(PmZ - W,)
1

0

PP-2 (Pnx - nPx)
Mm2 CPmx - mP,)
0

lJP
-3 -3

4Pnx - nPx) + AP n(Pmx - mp,) I

I
1

0

IJP -2 (Pm - mp,)

(2P+ 3 P
-i

(Pn, - W,)

IJP -2 (PS, - spy)

/Apm3 ((2 t h - Fr) n(pn
1

- nP,)

+ (l-& [mlPmyY- mPy) + q(Pqy - 4Py)]

- + &i P (Pry - rp,)
I

v23 = AP -2 (P9 - 9P,)

i-lP-2 (P”
c3

- np,)

n(Pqz - ¶P,) + luP-3 WnZ - nPz)

117

v31 = 1
0

CLP -2 (P51x - qp,)
0

Ap:; (Pm, - mpx)

IJP m(P9, - wx) + w-3s CPmx - mp,) I L

‘32 =

-
0

0

pP-2 (PS, - WY)
Mm2 (pn, - nP,)

cLP-3 Wq y - 9p,) + c3 Wny - nP,) 1

-
0

PP -2 (Pmz - mP,)

I-LP -2 (Pn, - np,)

V 33 = (2p+W P-2 (PS, - w,)

I-lP -3 (2 + $ - g$, S(PS, - W,)
1
t (1 - g$’ m(Pm, II - mp,) + WnZ - W,) 1

+ gr P(Pr - W,) Z
I A

118

The linearization Jacobian6 A, B and C are:

+ -; (PE t p)]

0

B+= -uv

q(u2+v2tw2)-v2

c = g=

0

-uw

-VW

J$J (u2tv2tw2)-w2

wyE-+Et p,]
I

1

- (Y- 3)u

w

@Et PI-(y-W2

0

- w- l)v

U

0

- (y-1)uv

0

- o-l)w

0

U

- (y-1)uw

0

t-Y-1

0

0

1
I F

0 1 0 0

V U 0 0

- t-r-l)u - (y-3) v - (v-l)w (y-1)

0 W V 0

- (y-1)uv ;(PE* p) ty-l)v2
- -

(y-l)vw YV I

0 0 - 1 0

W 0 U 0

0 W V 0

- (y-l)u - (y-l)v - (Y’3)W (r-1)

- (y-1)uw - (y-l)vw ;(PE+ p)-(y-l)w2 YW

w The linearization Jacobians Rll, R22, R33 are:

8

r

0 0 0

(z+;)u - (2+$) 0

avll

R1l = aux = - f

V

W

0

0

-1

0

(1 -&, (u2 + v2 + w2) - (2t;-&pl - (1 -&)v

t gr E + (1 t;) u2

r
0 0 0

I u -1 0

av22 R22 = r = -
(2$)v

Y W

(1 - &) (u2 + v2 t w2)
t gr Et (lt;)v’

0 - (2+;)

0 0

-(l-&u - (2t; -+v

U

av33 V

R33 = m = -
2 (2$)w

(1 -&r) (u2t v2 t w2)

t gr Et (1t+)w2

0

0

0

-1

- (1 -$p

0

0

0

-1

- (1 -p+jw

0 0

0 0

-1 0

0 -(2$)

-(l-&)v - (2+; -$gw

0 -

0

0

0

-2
Pr

0

0

0

0

-2
Pr

-

B.4 THREE-DIMENSIONAL STEADY PARABOLIZED ALGORITHM

A flow model which uses a spatial forward marching procedure in the

principal direction of flow to obtain a solution cannot tolerate the upstream

propagation of any flow phenomena. Such a model is obtained by deleting

those viscous terms from the governing equations which contain gradients

in the marching direction, and the resulting set of equations is termed

“parabolized.”

The three-dimensional, steady state compressible conservation equa-

tions for parabolic flow (in the x-direction) are

+: + E + +?$ = a ay ay II V22(E,Ey) + V23(E, Ez) 1
+ V33(Es Ez)] (B.17)

where E is the vector of conserved variables, and F, G and V.. are flux
l&l

vectors.

In complete analogy to the treatment of the unsteady problem, a general-

ized single-step spatial finite difference scheme for advancing the solution of

Eq. (B. 17) can be written as

AEn = !?h&&,&.~:+~ a-1 itg ax it5 ax l-+5 (B.18)

where E
n

= E(nAx,y, z) and AEn = E ntl - En (terms of order Ax2 and Ax 3

have been negelected for simplicity).

Solving Eq. (B.17) for aE/ax and substituting into Eq. (lB.18) yields

AEn = +!$ J$ (-AFt AV22t Av23)n

ts (-AGt AV32t AV33)n
I

&
+ m ay [

a (-F t V22 t V23)n

t$ (-GtV32t V33)n 1
t & AE~-~ (B.19)

Again, AFn, AGn and AV: are nonlinear functions of the conserved variables

E. A linear equation with the same spatial accuracy as Eq. (B..19) can be ob-

tained by expanding AFn, AGn and AVLk in a Taylor series while treating

AVFj (i f j) explicitly. Accordingly,

An AEn (B.ZOa)

Bn AEn (B.20b)

where A and B are linearization Jacobians.

While assuming that

AVf:
1J

= AV;-’ 0 f j)

we can write

(B.21)

= Pkk
n

AEn + R”kk AExk

122

(B.22)

Since

R!kq
a AEn = & (REk AE") - & RFk AEn

we can rewrite

AVFk = (p;;tk -&R"
k kk

) AEn+ &(RFk AEn) (B.23)
k

where Pkk and Rkk are the linearization Jacobians defined in Eq. (B.22).

Using the viscous flux vectors V22 and V33, it can be shown again that,

for constant transport coefficients,

p:k - axk aRzk = 0'

which allows us to simplify Eq. (23) to

(B.24)

Av:k = axk -?- (REk AEn) (B.25)

Substituting Eqs.

AEn =

t

t

t

eh a
iqay I [

-AnAEntF a (Rz2 AEn)
I

a
+az [

-BnAEnt & (Rt3 AEn)
1)

+$f
[
& (Av23)n-1 t 2 (AV32)n-1 I

g [++ V22+ VZ31n
t&(-G t V32 t V33)n I & AEn-’ 1+5 (B.26)

123

From Eq. (B.26) it is concluded that in addition to the A and B Jacobians we

only need Sk (k- 2 3 - ,). if constant transport coefficients are assumed.

Expanding and rearranging Eq. (B.26) to combine all terms containing

AEn, we obtain

a2 --

aY2

A$;1 t & AV;,’
I

(-F t V22 t V23)n t $ (-G t V32 t V33)n I

In analogous fashion to the unsteady formulation and without loss of

accuracy, we can write

t AE~ (B.28)

where LHS(27) means the left hand side of Eq. (B.27), which in practice is

implemented by the sequence

a2 --
w2

‘; A$ = RHS(27)

* AEn = A$

(B.27)

(B.29a)

(B.29b)

and, finally

E
ntl = En t AEn (B.29c)

where RHS(27) means the right hand side of Eq. (B.27).

124

B.5 SUMMARY OF EQUATIONS FOR STEADY STATE ALGORITHM

For steady flow, the vector of conserved variables, E, and the flux

vectors of Eq. (B.17) are

E =

F =

G =

‘PV

-Pu
Pu2 + P

Puv
Puw
u(PE + P)

- I
I

1 r E3/u

Puv
E2 + E;/(EIu) - EMU

E3 E4/(Eiu)
E3 E5/(E p)

E4/u

E4

E3 E4/(E p)

E2 + E;/(E14 - Elu

E4 E5/(E p)

where u = f(E1, E2, E3, E4, Es) as obtained by decoding the E vector for the

primitive variables. It should be noted that although the flux vectors for the

steady case are the same as for the unsteady case, their form in terms of the

125

conserved variables differs from that in the unsteady case. It is assumed

that decoding the E vector was accomplished by obtaining u as a function of

the E vector components, i.e.,

and

v = E/El

w = E4’E 1

P = E/U

p = E2 - El u

E = (Es - W/E1

It can be shown that in the decode procedure the (t) and the (-) sign apply to

supersonic and to subsonic flow, respectively. As long as the flow is strictly

supersonic or subsonic, choice of the sign should be no problem. It is ob-

viously a problem for transonic flows, boundary layers and supersonic flows

with imbedded subsonic pockets.

In terms of the conserved variables, the heat conduction term becomes

Using this equation the viscous flux vectors V..
1J

in Eq. (B.17) can be written

as shown on the following page.

126

-

aE

I-1 &(&$ i=l’ ”

v22 =

Ml+g(*)~
i=l

+ lJ.t2+ z-&)E;~E~ El%
h

(

+ Y(1 -&)Ei3E4

+ ~ik E-2 aE5 - _
Pr 1 1 ay

aEl
-E3ay

>
aE,\ I

and

v23 = v23 =

127

v32

and

0

0

k-i2

A E;”

I-1Ei3

tA

(aE4 E- a*l
1 ay - E4ay

>

(

aE3 E- aEl
1 aY - E3F

> .
(aE4 BE1

E3 Elay -E4ay
>

-3

(

aE3 aEl
El E4 Elay -E3ay

>

1

128

The linearization Jacobians A and B are obtained by differentiating

the flux vectors F and G with respect to the conserved variables. The

result is

A = A!. -Ayj (&)
‘J j

B = B!. -Bij(&)
‘J j

where (au/aE.) is a column vector obtained by differentation.
J

i

1 1 1 1

0 0 0 0

pz
2 2 2 2 2 2 2 2 A!‘. = u tv u tv u tv u tv

LJ V V V V
W W W W

(Et;) (E + ;I @‘+;I (Et;)

129

.and

B!. = +
U

L

B!‘.
LJ

= pz

I-

c

(

0

0

-VW

-(u2 + w2)

-w(E t ;)

0 ci 1 0’

0 0 U 0

0 w V 0

U 0 2w 0

0 0 (E+pE) W

1 1 1 1 1

0 0 0 0 0

V V V V V
2 2 tw 2 2 2 2 2 2 2 2 1 u tw u +w u tw u tw

W W W W W

E + ;I W;) (E + ;I (Et;) (E + ;I
!

The components of the (au/aE) column vector are given by

2!L=
aE2

au - = (+)y 2
aE3 - 1 0 1

130

au = (+)y 2 aE4 - 1 0 1

where

The linearization Jacobians Rkk (k= 2, 3) are obtained by differentiating

the viscous flux vectors Vkk with respect to the spatial derivatives of the

conserved variables Ei (i= 1,5). The result is:

R22 = Ri2 t Q(pE)

R33 = Ri3 t Q(pE)

0

0

1 J!L
R22 = pu

-(2+$x7

-w

-+v2

-(l -& (v2 t w2)

- gr (E + ;I

0 0

0 0

0 v+3

0 0

0 (2+ ; - &v

0

0

0

1

(1 - +

0

1
Pr

0

0

-V

(z++v

1+$v2

-(l -& (v2 + w2)

-& (E+$

0. 0

0 0

0 1

0 0

0 (1 -+p

1
0 0 0

1 1 1

0 0 0

0 0 0

(l-j+ (1 -&)u (l-+
-

0

0

0

v+3

(2+$ -$-)w

0 0

1 1

0 0

I 0 0

Cl-& (1 +u

i-
0

0

0

0

1
Pr

132

B.6 REFERENCES

B-l. Beam, Richard M., and B. F. Warming, “An Implicit Factored Scheme for
the Compressible Navier-Stokes Equations ,‘I AIAA Paper No. 77-645 (1977).

133

Appendix C

MULTILINEAR INTERPOLANTS FOR
GIM MARCHING METHODS

bY

John F. Stalnaker

Appendix C

C. 1 INTRODUCTION

The following is a study to determine the nature of the multilinear

weight functions which will generate certain implicit, spatial marching

finite difference schemes within the GIM framework. The derivations are

performed using rectangular two- and three-dimensional grids for sim-

plicity of understanding. In these grids the local and Cartesian coordinates

coincide; however, it should be realized that this is not always, perhaps

seldom, the case and that the finite difference scheme generated by the

GIM code is in terms of the local coordinates.

With the above caveat aside let us proceed by setting in one place

the notation to be used herein:

sa

wP
Dtk)

“P
f, g, h

E, F, G

E,@,f$

a, b

AJ

shape function for element point a

weight function for element point p

element difference operators for T)~ direction

unique components of D (1) , Dt2) , and Dc3),
respectively

vectors of conserved variables

Beam-Warming marching parameters

finite difference parameters in the n2 and n3
directions, respectively

determinant of the Jacobian of transformation.

137

Subscripts

Lj,k assembled grid point indices for 171, q2, and q3,
respectively.

= ,..., 1 9 2-D

= ,..., 1 27 3-D

asi3 element point indices = 1,. . . ,4 2-D; = 1,. . .8, 3-D

In all the following q 1 (and x in the case of the rectilinear grid) is

assumed to be the marching direction.

C.2 TWO-DIMENSIONAL BILINEAR WEIGHT FUNCTIONS

For the two-dimensional case the shape functions are assumed to be

the same bilinear shape functions now in the GIM code (Ref. C-l):

1

(1 - T)l) (1 - 7-4

sa =
r)l (1 - 7-Q

n1 n2
(1 - rll) Q

(C-1)

The weight functions are assumed to have the form

where the

individual

The two-dimensional element difference operators are

(C-2)

cpi are to be determined. The nodal numbering system for the

elements and the nine node box are shown in Fig. C-l.

(C-3)

138

Y

t- X

(a)

i-l, jtl i, jtl i+l, j+l
T v l

i-l, j D ..i, j 0 i+l, j

t
AY

i-l, j-1, A .i+l, j-l

I- nr-4’j-l

(b)

Fig. C-l - Two-Dimensional Nodal Numbering System
(a) Element System; (b) Nine-Node Rectangle

139

(C.3)
(Conclfd)

Noting that for the rectilinear element

ax -=
aQ 1

Ax, -@ = Ay, = =
an2

-2.y = 0,
aq2 h,

A, = Ax Ay

Substituting Eqs. (C.l) and (C.2) into (C.3) results in the following element

difference operators

k& 3 D(l) = - D(l) = 12 ‘a, [6 C
P-2 Pl PO - 3cp1 - 2 cp2 + cp3 1

& 3 D;:’ = - D;‘d = & [6 CPo - 3 CPl - 4 CP2 t 2 cp3]

(C-4)

?& E D12) =
P4

- D;“1’ = & L.6 cpo - 2 cp1 - 3 732 + Cp31

The differential equation

3Et” = 0
ay

is modeled with a general spatial marching scheme (after Ref. C-2)

140

& [(1 +E) E.
Li-1, j - (‘+26) Eij + E Ei-1 j] ,

(C.5)

+ ay ’ [a Fi+l,j+l + (1-2a) “i+l,j + (a-1) Fi+l,j-lI

+ w [a Fi jt 1 t (1-2a) Fi j
, ,

+ (a - 1) Fi j 1]
, -

-& [a Fi 1 j+l + (1 -2a) Fi-1 j + (a-1) Fi-1 j-11 - , , ,
(C.5)

(Conclld)
=o

Examination of Eq. (C.5) reveals the significance of the difference parameters:

a cross-plane (I)) difference parameter
2

= 1 for forward cross-plane differences

= 0 for backward cross-plane differences

= f for centered cross-plane differences

E marching (I)) difference parameter
1

= 0 for forward differences

= -1 for backward differences

= -$ for centered differences

8 weighting parameter for plane (itl)

> 0
.th cross-plane differences are taken in the L

and (i+l) st plane

= 0 cross plane differences are not taken in the
(itl) st plane

4 weighting parameter for plane (i-l)
.th

> 0 cross-plane differences are taken in the L
and (i-l) st plane

= 0 cross-plane differences are not taken in the
(i-l) st plane

Note that for the present explicit differences in the elliptic GIM code 0 = 4 = 0.

Assuming a form of the weight functions similar to that presently in

the code, i.e.,

f!P-
wp = AJ O (dpl - YIl) 52 - tl,) (Cha)

141

results in

dPl = + [v gp1 - gp2)/(gp1 - gp)l (C.6b)

and

fPl + fpz = gp1+gp2

Assembling the elements as in Ref. C-l in terms f’s and g’s, equating

these to the difference coefficients in Eq. (C.5) and substituting into Eqs. (c.6)
::

yields weight functions of the following form:

“‘=irJ 1 “l (P - tl,) (2/3 - rl2)

w2 =
a2
Tp2 - 171) (2/3 - rl2)

w3 =
“3
nJ (P2 - ‘71) u/3 - rl$

w4 =
“4
aJ @ 1 - tll) (l/3 - T-t,)

where

“1
= 36a(l +E- 20)

“2
= 36a(E- 24)

(C.7a)

(C.7b)

Note that al s and p’s are substituted here for the d
Pi

in Eqs. (c.6) to show the

similarity of these to the current GIM weight functions.

142

“3
= 36 (a-l) (e i 24)

“4
= 36 (a-l) (lte-28)

(C.7b)
(Conclld)

and

1 2(1+e) - 38
Pl = 3 1te-28 [I

(C.7c)

1 e-34
p2 = 3 e-2t#J [I

These apply except in the case where

E = 2e- 1; ‘Go

(e.g., Crank-Nicholson or e = 0, 8 = l/2). In these cases the weight functions

do not maintain the same symmetry as the present weight functions. Values

of the a’s and p’s are available from the author.

C.3 THREE-DIMENSIONAL TRILINEAR WEIGHT FUNCTIONS

The procedure for the three-dimensional case is much the same as the

two -dimens ional problem. We assume the same trilinear shape functions now

in the GIM code:

sa =

(l-r,,) (1-r,2) (1’r)3)

171 (1-7?2) (1-r13)

‘11 772 (l-r/3)

b-ll) 772 (h3)

h--q (1-r12) T)3

t71 (l’r12) 773

‘11 q2 t73

b-tl) r)2 t73

(C-8)

143

The weight functions are assumed to have the form:

A, - W
P

=‘~po’~plr)l~cp2~2’c~~3~~+c~4~~f12

(C.9a)

or

dO wp = ++ (d
Pl

- rll) (dp2 - rl2) (dp3 - 03) (C.9b)

The relations between the Cl s and the dl s is obvious. The numbering system

for the rectilinear element and the 27 node box are given in Fig. C-2.

The full expressions for the element difference operators are given in

Ref. C-3. For the rectilinear box, where

A, = Ax Ay AZ, * = kc, e = Ay, $ = AZ
ax. 1

arl 1
0 i f j,

2 3 ‘arlj =

These operators become

D(l)
pa = AY Az]1d,,/Ldq2/ld”3 wp 2

Dt2) =
P” Ax Az /Id?$‘dq20$dq3 WP 2

Dt3)
Pa

= Ax Ay of&l ;‘drj2/:q3 Wp 2

0 0 0

(C. 10)

Substituting Eqs. (C.8) and (C.qa) into Eq. (C-10) results in four unique differ-

ence operators for each direction

144

7)2

A,

Plane (i- 1) ,

‘13
ql L

Plane (itl)

- \

Fig. C-2 - Three-Dimens ional Nodal Numbering Sys tern
(a) Element System; (b) 27-Node Rectilinear BOX

145

It can be seen from the above that

fPl
+ fp2 + fp3 + fp4 = gpl + gp2 + gp3 + gp4 = hpl + hp2 + hp3 t hp4 (C. 12a)

and

fPl + fp2 = gpl + gp: $3 + $4 = gp + gp4

fpl + fp3 = hpl + hp2; fp2 + fp4 = hp3 + hp4

gPl + gp3 = hp1 + hp4; ppz + gp4 = hp2 + hp3

Now, Eqs. (C.qb), (C.ll) and (C. 12) can be combined to yield

(C. 12b)

fal
fP2

=!@A. %L=%L; &,G
fp4 ’ 732 gP4 hi= hP3

(C.13a)

dPo
= 216

tfp1+fp2)-tfp3ffp4) Pg1+hp2)- th 3th 4)

fpl+fp2+fp3+fp4 I[hp1+hp2+hp3fh@4 13 I[(gp1+ gp3) - (gp2+ gp4) 1
dpl = 3 L 2(g

[p1733) - (gp 2 + gp4) I[/ kp 1-b gp3) - (gp2 + gp4) 1
dp2 = 3

L 2(h
I QPh@2) - (hp3+hp4) / I[(hpl + hp2’ - (hp3+ hp4) 1 (C.13b)

dp3 = 3
1 2(f

I p1+ fpz) - (fp3+ fp4) IL / (fpl + fp2’ - vp3+ fp4) 1
The differential equation

is modeled by

146

(1 i-e) Et;‘: - (lt2e)Ef kteE;-;]
I ,

.

+ gy La =;;;, k
it1 t (I-2a)Fi kt (a-l)Fttl
,

]
J-1, k

t w [a F!
.

J+l, k
t (1 - 2a) Fi

,
k t (a - 1) Fi- 1 k]

,

A -- .
- Ay [a Fit:, k t (1 - 2a) Fir; t (a-l) FiB1]

j-l, k (C. 14)

it1
’ & Lb =j, k+l t (1 - 2b) Gitl t (b - 1) Gitl

j,k j, k-l]

t w [bGf
J, k+l

t (l-2b)Gf kt (b-l)Gt
J, J, k-l

]

-AZ [
de bGi-’

j, ktl
t (1 - 2b) Gi-’

j,k
t (b - 1) Gi-’

j,k-11 = ’

where the difference parameters have the same significance as before and b

is equivalent to a for differences in n
3’

Assembling the elements and equating coefficients does not lead to

expressions for the weight functions in as straightforward a manner as in

the two -dimensional problem. In order to resolve several ambiguities, the

following considerations along with Eqs. (C.13a) were used:

1. The weight functions should reduce to the form presently in the
code for 8 = I$ = 0.

2. The first four weight functions should readily reduce to the two-
dimensional case. That is, the internal symmetries of the two-
dimensional element difference operators should carry over to
three dimens ions.

3. The weight functions derived here should be applicable to the
elliptic solver with 8 = 4 = 0. Thus, the boundary terms must
be differenced consistantly.

147

From this, the following weight functions result:

w1
al = aT;(Pl -Q (5- 2 v,) (3 - 773)

“2 2 2
w2 = Ajp2Vl) (T--r,,) (7-113)

“3 1 2
w3 = *;(P2-q1) t?j-T,& (T--rl3)

“4 1 2
w4 = *y ml- u1) t?j - 112) (3 - rl3)

a5 2 1
w5 = *py171) (j372) (3’r,3)

a6
w6 = hi+-74 (5- 7-/2) ($ - r,,)

a7 1 1
w7 = *y(P2-9) (~972) (3’1,3)

“8 1 1
w8 = ,--;@I-ql) (T-r,,) (T-773)

where

a1 =
(a-b+ b2) (1 t E - 20); a5 = b(b- 1) (1 tc-28)

a2 = (a-btb') (c-24) ; a6 = b(b - 1) (E - 2#)

a3 = (a-2btb’) (e-24) ; a7 = (1 -b)2 (E- 24)

“4 =
(a - 2b t b2) (1 t E - 2@); a8 = (1-b)2 (H-E-2&

and Pl and p2 are defined in Eq. (C.7c).

148

C.4 REFERENCES

C-l. Spradley, L. W., P. G. Anderson, and M. L. Pearson, llComputation of
Three-Dimensional Nozzle-Exhaust Flow Fields with the GIM Code,”
NASA CR-3042 (1978).

C-2. Beam, R. M., and R. F. Warming, ItAn Implicit Factored Scheme for
the Compressible Navier-Stokes Equations; II, the Numerical ODE
Connection,l’ AIAA Paper No. 79-1446 (1979).

C-3. Spradley, L. W., and M. L. Pearson, “GIM Code User’s Manual for the
STAR-100 Computer,” NASA CR-3157 (1979).

149

Appendix D

VECTORIZED BLOCK TRIDIAGONAL EQUATION
SOLVER FOR THE GIM/STAR CODE

by
S. J. Robertson

,

Appendix D

An attempt was made to develop a vectorized algorithm for solving

large systems of tinear equations of the form:

L i-pi-1 t MiUit NitI Ui+l= Di (D-1)

where the L, M and N elements are 3x3, 4x4 or 5x5 matrix blocks, and

the U and D elements are three-, four- or five-component column vectors.

The subscript i in Eq, (D.l) corresponds to nodal points in a computational

grid, and the three, four or five dimcnsionality of the matrix and vector

elements depend on whether the system of equations are for a one-, two- or

three-dimensional flow field problem (see Section 3). The system of linear

equations represented by Eq. (D.l) forms a block tridiagonal system.

A solution algorithm was sought that would make use of the parallel

processing capability of the STAR-100 vector computer. The Gauss-Seidel

relaxation technique, based on an iterated solution of

Ur+’ = (1 -w)U; - wMfl (Li-lU;-l t NitlUc+l - Di) (D-2)

where w is an over-relaxation factor, is the only technique which we could

find that permits a straightforward use of vectorized computer programming.
-1

The inverse matrix Mi in Eq. (D.2) is evaluated for all Mi prior to entering

the iteration loop. Since each matrix block is dimensioned only up to 5 x 5,

the inverse can be evaluated by direct algebraic manipulation or by a Gauss

153

elimination technique. For the time being, we have coded only the algebraic

inversion, since vector programming can be used in this method.

Separate subroutines were programmed for 3 x 3, 4 x4 and 5 x 5 block

tridiagonal Gauss-Seidel equation solvers. These are listed in Tables D-l,

D-2 and D-3 as subroutines EQSOL3, EQSOL4 and EQSOL5, respectively.

The argument list in these subroutines is (U, L, M, N, D, NODES, W, EPS,

MAXI). The vector U is the solution vector which enters the subroutine as

an initial or trial solution and returns as the updated or final solution. The

matrices L, M and N and the vector D enter the subroutine as constants.

The scalar NODES is the number of nodal points, W is the over-relaxation

parameter, EPS is the error tolerance in the convergence test and MAXI is

the maximum allowable iterations. The U and D vectors are doubly dimen-

sioned, and the matrices L, M and N are triply dimensioned. The first sub-

script of both vectors and matrices corresponds to the nodal point index. The

second subscript of U and D corresponds to the vector components, and the

second and third subscripts of L, M and N corresponds to the matrix elements.

As of this writing, these subroutines have not been evaluated, except for

some very simple test cases. They have not been applied to realistic fluid

dynamics problems where their usefulness can be determined.

154

Table D - 1
LIST OF SUBROUTINE EQSOL3

50 CONTINUk
NC4 1 =NODES- 1
NM2=NODES-2
I TEK=O

10 Cc)NTINUt
1T~k!=1TE&+l

DO 100 I=193
UP(lrI)=(l .-;41*ut 19 I)
UP(l*I)=UP(19I)-v~*l~II(l9I~l)*(N(l*l*l

3. +~(lrlr3)*~(2v3))
1

(Continued)
155

Table D- 1 (Concluded)

UP(~*I)=JP(~‘I)-~~*I”II(~~I~~) ;;-(I\(1939 1)*b(2* l)+I\(1*3*2)*U(2*2)

s +N(lr3*3)*U(2,3))

up{29 1ow12)=(1.--d)*~(2~ Isw2)
UP (2 9 I LbhiY2) =UP (2 9 I blUidi2) - ‘iv++14 I (2. I 9 l robi;‘“12) * (L (2 9 1 9 l aN1b.12) 3&u (l . l aai\lls12)

3 +L (2 9 1 9 2biup42) *cl (1 q 251~12) +L (2 9 1 9 3wh2) *u (l 9 3ww2))
UP{ 29 IbNiY2) =clP (2 3 I~I‘JI$~)-Lv*vI’*II (29 I l lbiLM2) 7% (I\; (2 * 1 * 15biWl2) *u (3 9 1 PIJIb)

51 +N(2r 1 r21~M2)*J(3*2~1~1~12)+~(2. 1 r3Ll‘\ll~i2)*C;(3r3~1\11~12))

ut= (2 9 I W41’42) =d? (2 9 1 btW12) - W-~IY I (2 * I 9 25~NV12) T* (L (2 9 2 1 l brub’l2) %u (l , l SNtll2)
3 +~(2*.292bN~2)*J(l r281\1r~i2)+L(2r2~3~iu11~2)*u(l r3biw~2))

uP~2~13[LI~12~=~rl(~~1bN,~12)-~*l~:1 (29 I ~2e~1~12)*(~(2r2ribN~~~2)-~~(3~ isw12)

3~ +N (2 9 2 * 2bNivl2) ++J (3 9 2bi’U42) +N (2 l 2 9 3LIuiw2) *U (3 * 3Liwl2))

UP(~~I~~~I~I~)=U~-‘(~~IL~I\~I~~~)-~J*I~II(~~ ~~~
s +L (2 9 3 9 2bNp12) *-cl (l 9 28hb12) +L (2 * 3 t 3brw2).-!+u (l 9 3ardvi2 1)

uP~2rIOlul42)~U~J(2,I~~l~2)- Lb*14 I (2 9 I 9 3LiYi’*i2) * (C-4 (2 * 3 1 1 JJI\~+I~) *U (3 9 1 BNh2)

0 +N(2*3*2~NF12)*~(3~231~~.12)+N(2*3.3~Nl~12)*U(3r33N;M2))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
d *D ( 2 9 2sNM2 ) +14 1 i 2 9 I 9 3ibNr42 1 +D ( 2 I 3bNM2 ) ) 

UP(N~DESrI)=(l.-;~)*U(r~~DE~~I) 
UP(NODE~~I)~=~~~(I~~D~~~I)-~*~~~II~~~DE~~I~~)~~L~NUDE~*~~~~~U~N~I~*~) 

5 +L~NOD~S~~,~)*U~NM~~~)+L~NOD~~~~*~~~U~NI~I~*~) ) 
UP(NO~E~~I)~~P(~~~DE~~I)-~~~~~I~I~~D~~*I*~)~~L~~~D~~*~~~)~U~~~~~~~*~) 

B +L(NOD~~~~,~)*U(N~~I~~~)+L(N~DE~*~~~)*U(~I~I~~~)) 
UP ( NODES 9 I ) =ilr’ ( tudDkS * I 1 -bti*lh 1 ( htiDk - 39 1*3)7~(L(lNu~cb93r l )ii-U(1\1,~11* 1) 

5 +L(NOD~~t~,~)~u~~J~~Ilr2)+L(~uD~~~3~3)*u(l\il~i1~3~) 

UP(I~~~L;E~~I)~=~~~(.LUDE~~I)+~L*(I~I~(NODE~*I~~)*D(~\~~~UE~*~)+~~I(N~~~~~~*I~~) 
S *D(NODE~~~)+IJII (,JODEs*I *3)*U(NODEb*3)) 

lci0 CcjNTINUE 
IJcj 350 1=1*3 
DIF(~~I~NCJ~=S)= 3P(lrI~N~DES)-U(l*IBNODES) 

350 CurdT I NLt 
wis = 0 . 

DEL=O. 
I.20 360 I=113 
Di) 360 J= 1 rr\130Ea 
DcL=utL+~lF(JII)~~~IF(jri) 
R,u’lS=kMS+UP ( J , 1 ) jkUt-‘( J 9 I 1 

3~0 CLINT I Nut 
i)EL=LUtiT CljEL I 
RlbS = SOtiT ( KdS ) 

TEST=DEL/kkiS 

00 400 I=193 
U(l.IBN~D~~)=JP(lrI~N~D~~) 

400 CUNT I NUt 

IF( TtST.Lt.EPs.Ul~.ITEH.Gk.viAXI )ktl-Ukik 

Gc, TO li; 
END 

156 



Table D-Z 

LJSTING OF SUBROUTINE EQSOJA 

(Continued) 



Table D-2 (Continued) 

(Continued) 

158 



Table D-2 (Continued) 

0 +N(2r2r3)*U(2,3)+N(2~2*4)*24)) 
UP ( 1, 1 ) =UP ( 1 9 1) -Ll*vlI ( 1 l 1*3)*(1~(2*3rl)*U(2r1)+~(2~3*2)~U(2~2) 

3 +N(2r3~3)*U(2,3)+N(2*3*4)*24)) 
UP(lrI)=UP(191) -,~*MI(lrI*4)*(~(2*4*1)*u(2*1)+1~(2*4*2)~-U(2~2) 

tl; +N(2r4*3)*~(2,3)+N(2*4*4)*U(2*4)) 
UP~l*I)=UP~~,1)+~~~~l~lI~~~I~l)~~~l*l)+l~l~l*l~2)~~~l~2)+ 

5 1~lI~1r1*3~*~~1,3)+l”~1~1~1~4~*~~1~4~~ 
UPC29 Iswl2)=( I.-d)*U(2r ltbN1Y2) 
UP ( 2 9 I SI\,.*‘l; ) =cllJ ( 2 , 18N1‘/12) -‘W’tw I ( 2 l 1 9 1 ilWl2 ) -2 ( L. ( 1 9 1 * 1 blwl2 ) +lJ ( 1 * 1 %l\t1’12 ) 

Ic, +L(lrlr 2%1ufi,2 ) ++d ( 1 9 ~LI’v,~‘I~ 1 +L ( 1 9 1 9 jLILe*i2) *b ( 1 * 3~1wl2) +i ( 1 3 1 9 4dh1v12 ) * 

0 u ( 1 , 48rwl2 ) ) 
UP ( 2 9 1 L61\1l”I2 ) CUP ( 2 9 I IplUM ) -‘ti*ih I ( 2 9 I . 1 amI* ) ‘SC ( h ( 3 9 1 l 1 aN1v12 ) -zU ( 3 l 1 ~i’d12 2 

s +~(3* 1~23Np12) 3ttJ(3r2tLrw~2)+lu(39 1 r3Bi\llv12)*C,(3r35EulY2)+i’u(3r 1 r4aiw~2)* 

56 U(3r4tbNM2) ) 
~P(~~~BNI~~I~)~U~((~~IN~~I~)--VJ-~~~YII~~~I~~~N~I~~*~L~~~~~~~N~~~~)-~U~~~~~~M~~ 

5 +LC 1r2*2aiu~l2)~~cl1~2~~~i~~2)+L(1~2r3LL;L;v~2)*u(1r3bPuivi2)+~(1r2r4rr~l~~2)~ 
‘b u( 1 r4k+h~2) ) 

cJP( 2 * I rihd2 ) =dP ( 2, I ILi‘wl2) -LV*lJl I (2 * 1 r3druM2)-~(L( 1939 lbNtd2)*U( 1 * 1ON1vl2) 
3 +L( 1 r3*2all\lly2)i%u( I r2b1dly2)+L( 1 *3*3~~1~I~l2)*ll( 1 r3biWl;l)+L( 113rqri,N,vi;?)* 

Lb cl ( 1 ,4BlUlY2 1 ) 
UP(2r I81\1,*12)=c1P( 2,I~i\lM2)-W~hI (29 I *3bl\lw’l2)*(lU(3~~r 1b1\1<12)*U(3r 18NA2) 

‘b +N ( 3 9 3 9 21oNf.12 ) ?%U (3 9 2sb.1~12 ) +Iu ( 3 9 3 9 3:m1*~2 ) *u ( 3 9 3Lolwi2 ) +,A ( 3 13 9 4dw12 ) * 

5 U(3r48NVl2)) 
UP ( 2, I b1\radl2 ) =dp ( 2, I LNlv’l2) --\ni*tm I (2 9 I * 4-l’Jl”12 1 * (L ( 1 9 4. 1 aIJ142) +lJ ( 1 * 18Nk12 1 

5 +L( 1 r4r2kbx~2) -*d L I *2bluM2)+L( 194 r3aNivl2) *u ( 1 9 3brd2) +L ( 1 9 4 9 4r6;~~2 I* 
3 U( 1 9 4Sl’Wlil ) ) 

ut-‘( 2, 1 ~OI\,VQ ) =uP ( 2, I aNlv12 ) -W*I”I I ( 2 9 I * 4bI+12) 9t(1\(3*4r 1lul\llJl~)~u(3* ldJhlr’l2) 
b +N(3,4~~~l\r~~1~)*U~3~2bl~lvl2)+N(3*4’~~~~~”lil) UC, ( 3.3.dw,;i ) +l~ ( 3 9 4 9 4blulv12 j * 

5 U ( 3 9 481\11”12 ) ) 
U~(2rI~,\1,.l2)~J~((,l1,U;Vl2)+b~*(I~II(~*l’1~iUI”l2)*LI(2 . 1 ~r~l~~2) +IVI I ( 2 9 I 9 2olw12 ) 

b sD ( 2,2a,dpl2 ) +,.l 1 ( 2, 1 , 3b1ql*12 ) its ( 2 9 3ardvl2 ) +I’\ I ( 2 l I 9 4hlU142) *lJ ( 2 q 4~&1~(2 ) ) 

UP(l~ODE~,I)=(1.-H)~U(NODEjrI) 
uP(NODEsrl)=u~(~\ri)~E~:,rI) -w-!+& 1 (i\rODEb 9 I 9 1 ) * (L ( Nh 1 9 1, 1 )sU(NMl * 1 ) 

3 +L(Nt’?1 * 1,2)‘~L1(Ni~l1r2)+L(l\ilvll , 193)*u(N1b1 *3)+L(iuM1 l 1*4) 

B *U(NM1 94) ) 
UP(I\IODE~~ I )=Up(juilDEs* I I -~w++l”,I (NUDEbr I r2)*‘(L(lWll r2r 1 )+u(Ivlfil 9 1) 

2.3 +L(NMl , ~,2)+cl~rw11 r2)+L(wd1 r2r3)++U(Nwl r3)+L(NFi1 r2*4) 

B -;cu ( ,\I\1 1 9 4 ) ) 
uc-‘(luolJ~s*l )=dP(19dUlibr I) -wU:[v, 1 ( l\ltiDtb 9 1 93) -X- ( I- ( hl”l1 939 1 )*U(iwll 9 1 ) 

B +L ( P4I.l 1 ,3,~]~u(I‘~~.~1.2)+L(Nf~ll ,3*3)*UCiNlvi1*3)+L(1\11~11 l 3*4) 

3 9UtNMl 94) I 
~C-‘(r\l~u~d, 1 )=,~P(,\1~)3tbq I)-hf*~vlI (I’dU;)t;b* i94)*(L(Iulv11 9 4 1 1 ) *u ( I\ll6 1 * 1 1 

k +L ( i\iW 1 l 4,2) *~Uiw1112)+L(tw11 r4*3)*lJ(NiG1 r3)+L(IUl%1 *4*4) 

(Continued) 

159 



Table D-2 (Concluded) 

3 *U(Nlbil 94) ) 

UP~NODES~I)~U~~,~ODES~I)+~~*~~~I~NODE~*I~~)~D~NODES*~)+MI~NODES*I*~ 
s SD(NUDES~~)+,~II (&UljEbr 1 r3)*D(i\UDEbr3)+lvll (ILODEbw I r4)*D(NODEbr4)‘) 

100 CONTINUE 
DU 350 I=194 

DIF(l*IsNODES)= UP(lrIBNGDES)-U(l*IBNODES) 
350 Cv\T I NUE 

kMS= o . 
DEL=0 l 

Di, 360 I=194 

I30 360 J=l.NL)tiES 
DEL=DEL+C)IF(J,I)~DIF(JII) 
&I~IS=HI~L+UP (J, 1 ) i’tcll=( J, I ) 

360 C3NT I NUE 
D~L=SQ~T.(DEL) 
HIV’ISZSG~HT ( RIv’iS ) 

TEST=DEL/klvlS 

WRITE(6*450)Up,3,DIF 
430 F3f?r~iAT(YE10.3) 

WHITE(~~SOO) 1TtiRqT~STI~EL9H~S 
500 FOHI”IAT( 15*3E10.3) 

DC) 400 I=134 

U(lrlBN~DES)=UP(lrIbN~DE~) 
4uO CCjNTINUt 

IF(TEST.LE.EP~.~l~.ITE~.G~.i~AXl )HETUHN 

GO TO 10 
El\lD 

160 



Table D-3 

LISTING OF SUBROUTINE EQSOL5 

SUBI~OUTINE E~~~L~(U~LIM*NIDINOD~~*W*E~~*MAXI) 

DIMENSIUN U(9,5),L(9rSr5)*M(9*~~5)*1~1(9*5*5)* 
3 N(gr5r5)*D(gv5) ,DET(9)*UP(9*5) l DIF(9*5) 

IdEAL Lrl”l~l”lI ,,\ 
CWll~ON/Xi’rl I /M 1 
l”lI( ~~~~~~NCIDE~)=(I”I(~Y~Y~~~\~UDE~)*I~I(~*~*~~I~~U~~)--IVI( lr3*2%db0kb)* 

b @l( lr2e35NODEb) )*(M( l r4r4rt;hC~DEb)*ld( lr5r5bhODkb)--M( 1*5*48NODEb)* 
8 M( 1.4rSBNODES) 1 

Ml(lrlrlsNODE5)=1~1(l+l*l%NODES) -(M( 1 r2r2WdDk5)*M( 1 r4r38NODEb) 
3 -M( 1 rL+r25iN()DES) *rd( 1 r2r3WdODE5) )*(ivi( l r3*4dYODkb))+Id( l r5r5aNLDEL) 
3 -iY( lr5r48N30ES)*Yl( l r3rSBNODE5)) 

MI ( 19 1 Y ~SINODE~) =,vil ( 1 Y 1 Y 15NUUtb)+(M( 1 r2*2bN0Dta)*M( 195r38NOUEs) 
3 -ly ( 1 9 5 t 2BiJOL)tb ) *VI ( l 9 2 9 3aNUUt: 5, )*(PI( 1 l 3*4bNu~tb)*l”1( 1 r4r5bNuUk5) 
3 -M( lr4*4~N3DE~)*M(lr3~5~i~UD~S)) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
b -&I (1 ,L+ (2aNOL)ib) WY (193r3%NuDEs)) * (PI (1 q 2 9 4ducIIkb) *lY (1 l 5 l 5aNWEb 1
YB -MC lr5q48NODES)*M(lr2r58NODES))

1”II(lrlrl~N~DE~)=1~~11(l*l~l~N~D~~) - (Pi (1 * 3 9 2blLUDtb) *A(1 .5 l 3bNUDEb I
Lb -,q (1 15 Y 2bNODtb) +,“I (1 9 3.3aNbUEs)) * (PI (1 .2 9 4bNUUtb I *PI (1 .4 Y 5bNUDEL)
3 -M(1 r4r4sNODES) +M(1 r2158NODES))

MI(~*~~~BN~DE~)=I*~I(~~~~~~NCJDE~)+(I~I(~*~*~~~~D~~~*I~~(~~~~~BIUUDE~)
3 -M(~~~*~~NOD~S)~M(~~~*~~N~D~~))*(I~(~~~*~~NOD~~)*M(~~~*~~NODE~)
3 -lvl (1 r3 9 43NOlJES) *PI (1 * 2 * 5rt;NODEb))

N I (1 9 2 t 1 !&NUDES) = (14 (1 Y 2 t 1 &NODE5) *I% (1 9 3 Y 38hUJtb 1 -iv1 (l 9 3 9 l b;NODkS) *
b PI(1 r2.3Yb1’4UD~b)) *(l-1(1 r4.4bNiJDLb)*l”l(1 l 5*5~i’k~L~)-Pl(195r4!-f+JUDE2)*

3 M(1 .4,58NODES))
~~lI(lr2~1BNOD~~)=,~I(l~lr2SNODE~~-(Ivl(lr2*1~l\ri)Dt~~*1~1(1*4r3~N~DEs~

b -M(1 r4r l%tnrOatS)*~‘d(lr2.3bNOtiti5)) *(PJI(1*3*4%NODks)*M(1 r5*58NOUE5)
3 -M(1 r5-43NODES) *M(1 r3r53NODES))

I~~I(~~~~~ONUD~~)=,~~(~~~~~BNODES~+(IVI(~~~~~~NCID~~~~I~(~~~~~~~;I~ODE~)
3 --;v (1 Y 5 Y 1 BNoL)L~) *IV (1 Y 2* 3bNODEb)) * (I”1 (l * 3 9 4W’dOUEb) *Pi (1 l 4 * 5aNOL)Eb)

3 -M(lr4r48NoDES)*M(lr3~53NODES~~
MI(~~~~~GNL)DE~)=I’II(~.~~~~NODES)+(I”~(I~~*~.~NC)DE~)*IY(~*~~~~~~~DE~)

3 -M(1949 1SNOD~h;-) *M(1 r3r3SNODEb))*(l”l(1 l 2*4b\r0Dkb)*l”i(1+5*58NODEa)
3 -M(l.5r48NODES)*M(lr2r58NODE5))

MI(l~2~l3NOD~S)=MI(l~l~2%NODE~~- (M(lr3*l~NODE~)*ld(l*5*33NCIDE~)
3 -M(lr5rl~tiNO~~~)*Pl(1~3r3bNOUE5))*(14(1*2’46NUDEb)*M(lr4r5djhUDE~)
0 -MC 194949 WDES)*M(1 r2rSsNODES))

l”l1(1*2*1dd’A~DE3) =piI (1 Y 1 r28N0DEs)+(l~i(1 r4* 1bNC)Dta)*w(1 *5*33NUDE>)

3 -rq(1959 lbluOfJts) -liPit 1 r4r3.&NODEb))*(n(1 *2*4bhOOiJES)*i~l(1 r3r52d’JULjEb)

3 -M(I~~~~~NODES)*I~(~.~*~~N~DES))
~lI(lr3rlBNi)DES)=(i~l(lr2rl5NC;DE5)+~Y(lr3r2~i~WUE~)-~~I(lr3~lBNUDE5)*

(Continued)

161

Table D- 3 (Continued)

16 f’l(1*2rZbNODES))*(M(1 *~*~~NOUES)*IY(1 r5r5bhODEb)-lq(1 r594$NoDkb)jt
8 +‘I(1 r4953N0DES))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
3 ~~~(l~4*l~i~O~~S~~~v~(ir2r28NOD~S~~~(~~(lr3~4~l~OD~S)~~l(l~5~5~NOD~S) 
5 --M ( 1 Y 5 9 4aluOL)ES ) +fi\‘i ( 1 Y 3,5ZblUODES ) ) 

~1(l~3*1~N~D~~)=,~I(l*l~3~NODES)+(M(l.2~1~NOD~5)*,~(l,~,2~N~DES) 
3 -M( 1*5*13lWDES)*i~( 1*2*2BNODES) )*(M( Ir3r4&NOUES)++M( lr4r5h~ODES) 
5 -M(lr4~48NO~~S~*M(l~3~5~NOD~~)) 

1~11 ( 1 l 3* l%NODES) =tdI (1 9 1 r3bl\lUUEs)+(W1( 1939 l&i\UDt,,)*~til( 1 ,4,2~,~uD~~) 
3 --M(l*4~1~~~~~S)Qivl(1*3*2tN~DE5))*t~~i(1r2~4~i\l~Ut~)*~vl(1,~y5~N~~t~) 
3 -M( 195948N00tS) *l”‘i( 1 r2r5bNODES) ) 

~~lI(1r3rl~NOD~~)=t~lI(l~l~38NODES;-(~~i(l~3~l~bf~UDt~)*1~l(l~5~2~~~OD~~) 
3 -Iv( 1 *5* lhl\ODt3) *l”l( 1 r392bN’JDEb) )*(lil( 1 r2~4%PdO~E~)Stlb$( 1 *4,5bNUDE=) 
B -M( 1 *4r4%~NOjsJtS) *M( 1 r2r5sNODES)) 

rviI(l~3*1~i\l~D~~)=,vlI(1*1r3bNODES)+(~l(1r4rl3lu~gts)9,~(1r5r23Nrj~E;r,) 
0 -~~(l*5’l~NO~t~)~~~~(l~4*2~NUD~~))*(l~(l~2~4~NUDt~)~~~~(~,3~5~NOD~S) 

3 -,y( lr3r4~NoDES)*M(lr2r59NODES)) 
~YI( lr4rl~~u~~~)=(~~(1’2’ 18NbDES)*ld( lr3r2~bluOUt~)-lrl( 1*3*lslNuDE~)* 

P ,“I( 1 r2r2bNU~ks) )*(lh( 1 r4~32iWDtb)*l”l( 1 *5*5=NUDt~)--ivl( 1 r5*3sNQDtb)* 

5 I’I( 1 .4.5rbiu3DES) 1 
~~I(lr4rl~~UDE~)=i~I(l*I*4~N~D~S) - ( I./I ( 1 .z. 1 BIuU~EL ) *I’d ( 1 I 4 * 2BNODEL 1 

0 -~(l,4r1~N~i)t;5)~~~(lr2r2~N~~E5))*(lv’l(1*3~~~N~G~5)-~~vl(1*~~5~~~UD~~) 

3 -M( lr5r3sNODES)*M( lr3r5%NODES) 1 
,v,I(l,4~loNUD~~)=~~~I(lrlr4~NOD~S)+(1~l(1r2~l~~UD~~)*~~~(1*5*2~~~OD~S~ 

x2 -~~(l~5rl~~~O~~S)~i~l(lr2~2~NUD~~))*(l~1(l*3~3~NUDt~)*~~~(l*4*5~NODE~) 

Lb -iq( 1*4r3&NOIJES) *M( 1 r3r5sNODES) ) 
~~I(l,4~l~~~D~~)=~“iI(lrl,4~NODES)+(1”1(l*3*l~NCjDtS~*~~~(l*4*2~NODES~ 

3 -M ( 1 ,4 Y 1 %;ioDEb ) *IW ( 1 Y 39 2biuUDEb ) ) * ( lvl ( 1 9 2 * 3~lNOUt~) *PI ( 1 9 5 l 5ai’JCDES ) 

3 -M(~,~~~%NODES)*M(~~~*~~I~ODES)) 
1‘41 ( 1949 laFuUDEa>) =,iiI ( 1 * 1 rLlbi\JbDtb) -(Iv~( 1 ,3rlbhtiDca)*l’h( 1 r5*2%NtitiEb) 

22 -l\1(l,5,l~,~O~~~))t~~~(l,3r2~NODE~)~*(l~(l*2*~~l\luut5)*(.M(1~4*5~NODES~ 

5 -i~( 1 r4r39NODtS) sM( I *2*5bNODES) I 
~I(lr4rl~,~~D~S)=~~~I(l,l~4~N~~~5)+(l~l(l*4*l~NUD~5)*~(l*5*2~~~D~S~ 

3 ~-I~(lr5rl~~~O~~S)+~~(l~4~2~~~~D~S))*(F/~(1~2*3~i~0Dt;5~+~~(1~3*5~NUDES~ 

3 -M(lr3r3~NO~tS)*M(lr2*5~NOD~5)) 
~~I(lr~rlfi;NOD~S)~((IV~(l~2rl~N~D~S)*lVl(l~3*2~NUD~S)--l~(l*3~1~NOD~S)* 

c& !q( 1 ,~,~~N~I-JE~) )+(kl( 1 ,4r3blVODtL)*W( 1 •5*4~NUDt~~)-i’~~( 1 *5*3sNbDE5)* 

3 M( 1 r4.43NODES) ) 

162 



Table D-3 (Continued) 

l”II(l*5*l~NUD~~)=;~~I(l*l~5~N~DES)-(~~l(lr3*l~~~D~~)*1~(1*5*2~N~D~S) 
3 -M(lr5rlBNOD~~)~l~(lr3*23N~DE~))*(1~(1*2*3~N~~~S)*M(l~4*43N~D~S) 
3 -M(lr4*3%NODES)*M(le2r48NODES)) 

MI(l*5*l~N0DES)=~~I(1*1*5~NODES)+(M(l*4*l~N~DE~)*i~(l*5*2~NODES) 
3 -M( 1~5*15IiNODE~)*M( 1*4*23NODES))*(M( 1*2*3~NODES)*M( 1*3*4BNODES) 

3 -M( lr3*38NODES)*M(l*2*43NODES)) 
I~l1(f*1*2~N0~E~)=~(rvl(1*1*231\100E~)*I~(1*3r~3N~DE~)-l~(1*~*2~N~DEb)* 

3 M( 19 lr3aNO~Eb) )*(M( l l 4*4%NODES)*M( 1 l ~*~~NUDES)--PI( l l 5*48NCJDEb)+f 

3 M( 1 r4*5sND~Es) ) 
MI(~*~*~~NODE~)=I”II(~*~*~~NODES~- (Ivl( 1 l 1 l 2CbNODES)*M( 1*4*3gNODES) 

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
3 -rL)( 1,5*4SNODES) *M( 1 e3r5sNODES) 1 

i~~I(lrl~2~f;CJOD~S)=~~I~lr2~l~NUDE~)+~I~i~1*l~2~NODt~)*~~~lr5r33NL)DE5) 
3 -r~(l*5*2sNO~t;~)*1~l(l*l*3~N~DES))*(1~l(1*3*4~lU0DtT5)*l~l(1*4*5~NuDES) 

3 -,v( 1 r4*43NODliS)*Mf I l 3*58NODES) ) 
MI ( I l I r2bNODES)=,dI ( 1 r2r I~NODES)+(M( I l 3*2~l\t0Dtb)*r~l( I l 4*33NODES) 

5 -,y( lr4*23NODth)*M( 1-3, 3bNUDEb) )*(lQ( 1.1 l 4sNODES)*M( 1 r5r5tbNLJDES) 
3 -M(l*5*4!6NOD~S)*M(l*l*53NODES)) 

MI(l*l*2%d’;)D~~)=,SI(l*2*l~Ni)DE~)- (@I( I l 3*2bNODta)+1Jl( I l 5*3kbNtiiJEb) 
3 -M(1*5*2~~~O~cS)~lVi(l*3*3~N~DES))~(l~(l*l*4~i~~~~~)*~(1*4*5~N~DE~) 
3 -bq( 1 r4*43NoDES) *M( l* lr5sNODES) ) 

~~lI(l*l*2~NOD~~)=~~II(1*2*1~NODES)+(i~l(1*4*2~~~Dt;S)*~~l(1*5*3~NODES) 
Lb -M ( 1 * 5 l 2aNoDt;.s ) *PI ( I * 4 * 3aNUDEs ) ) * ( PI ( I . I * 4br\lOUtb) *MI ( 1 93 l 53NUDES ) 

3 -M(I*3*4~~0DES)~M(l*I*5~NL)DELi~) 
~I(I*~*~~NC~~~S)=(I~(I*I*I~NOD~S)*I~I(~*~*~~N~UE~~-~~(I*~*IBNUD~S~* 

B IYI(~*~*~~NUDE~))*(~~I(~*~*~~NODES)*CM(~*~*~~~UC)DES)-~*~(~*~*~~~\~C)DE~,* 
3 l*l( 1+4,53NO~Es) ) 

MI(1*2*2oNOD~S)=,~I(1*2*2~NODES) -(MC 1.1 l ~SNODES)*IM( 1 *4*38NODES) 
rs -M(1,4*l~N~~E~)*;~~(l*l*3~NOD~S))*(M(l*3*4~N~D~S)*M(l*5*5~NDDES) 

3 -~~(1*5*4%NO~ES)*M(l*3*5~NUDES)) 
(\,I 1 ( 1 , 2 ,2ib~~~~ ) =l4 I ( 1 ,2, ~AN~DE~) + ( 1’4 ( i 9 1 9 A bNGDtS 1 *c,d ( 1 15 9 3WJLiDES 1 

kb -M ( 1 15 9 1 hi\Ol)tb ) *I”1 ( 1 l 1 r3bNO(~Es) )*C(PI( 1*3*4bNuDts)*l~l( 1 *4*5bNUDES) 

3 -M( l*4*48NODES)++M(l*3*5~NODE.S)) 
iv1 ( 1 ,~,~&NODE~)=,~II (1*2*2bNODES)+(t”l( 1*3* lsNUDtS)*M( 1 l 4*3sNoDES) 

3 -M( 1 ,,q, lk!sNOC)t~) *I’dit 1 r3,38NODEb) )*(l;l( I * I l 4~l’J0DEb)*lti( 1 *5*581\0DEb) 

3 -~q(l*5*4~NO~ES)W”l(1*l*53NODES)) 
MI(~~~~~~NODE~)=I~II(~*~~~~N~D~~) -(kc 1 ,3rlsNODtb)*1~l( 1 *5*3BNCJDES) 

5 rM ( 1 ,5r 1 SNoDES ) *IV ( 1 l .3* 3aNODES) 1 * (P’l ( 1 l 194SJODEb)*M( 1 l 4*58NODES) 

3 -M(lr4r43NODES)W’~(lrIr58NODES)) 
IV11 ( 1 l 2*2!bNODES)=idI ( 1*2*28NODES)+(M( l l 4* ~B~ODE~)*I”I( 1 l 5*38NODES) 

3 -M(~,~,~~NOD~S)*~~I(~*~~~~N~DE~))*(I~I(~ l 1 rL+oNODEb)*b’l( 1 r3*5br‘duDl%b) 

3 -M(lr3r43NO~E~)*M(1~1~5~NODES)) 
~(I(l,3*2rf;Ni)D~3)~(l\/1(l*l.l~NDDES)*lYI(1*3*2~~ODES~-~~(1*3*1~~~~D~~)* 

3 I‘,i( 1, 1 •~~I\~CJDE~) )S-c(M( 1 r4943NOD~b)*lW( 1 r5*5~l\LJDk~)-l~1( 1 *5*43N~JUih)* 

3 IVI( 1 r4r53NGDES) ) 

MI(I*~*~~NODES)=;~I(~*~*~~N~DES) -(M( l*l*lBNUDES)+M( 1*4*23NODES) 

(Continued) 

163 



Table D-3 (Cont,hued) 

3 -~~(~~~*~BNO~~S)*I~(~~~*~~NOD~S~,~~(M(~*~*~~NODES~*~~~(~*~~~~NODES~ 

3 -M( lr5r43NODES) *M( 1 r3r58NODES) 1 
MI(l*3,28NOD~~)=,~I(1*2*3~NODE~)+(M(l*l*l~N~DEs~~l”~(l*5~2~~~DE~~ 

3 -~(1~5119\10~~~)*M(1*1*281\10D~S))*(I’v’l(1*3*48N00~~~*1~1(1r4r5~bl\l~DE~) 

3 -M( ] r4*42=l\lODrS) *MC 1 r3r59NODES) ) 
lilI(l*3r28NOD~~)=1~1(lr2*3~NDDES~+(1~(1*3*l4;NODES~*M(1*4*28N~DES~ 

3 -MC ~r4rl3NO~~S)~ivl~~r~r~3NODES))*~il~lrlr43~ODES~*l~~1~5.53NODES~ 
3 -~(lr5*43NoDES)*M(lrl*53~~DDES)) 

MI ( 1 l 3*23NODEa) =,\I1 ( 1*2*3~NOOE~)- (M( 1 l 3* laluODEb)*~~l( 1*5*231\ltiDEb) 
3 -~(1*5~l~NO~~~)*tiv~(lr3*25NODE~~)~~M(l*l*4~NCUE~)*M(l*4*5~N~DE~) 

3 -M(l~4*48NO~~~)~~l(lrl*53NDDES~~ 
141 ( 1 r3r2h~OD&)=,qI (1*2*3bNUDEb)+(lQl( 1 r4* ld~NODtb)*~~l( 1 l 5r231\10DES) 

5 -M( 1.5. I8NODES)*b’l( 1*4*28NODES) )*(M( 1 l 1*43NODtb)*M( 1*3*58NODES) 

3 -M~l~3*4~NOD~~)*~l~1~l~5~NODES~~ 
MI(I*4*2~NODE~)=~M(1*l*l~NODES~~M(l*3*2~NODES~-M~l*3*l~NODES~~ 

5 M( 191 r25frNO~E~) )*(M( 1 *4*39hCDEb)Wl( 1 *5*5BhODEb)-ld( 1 l 5*33NODES)* 

3 M(lr4rS~NODE.S)) 
MI(lr4.2%+lGDE~)=l~I(l*2*4~NODES~ -(M(l*l*lYaNODE~)*M(l*4*23NODE~) 

3 -~(l*4*l3NO~~~)*i~(l~l*2~NODES~~*~M(l~3*3~NODES~*M~l*5~5~N~DES~ 

3 -M( lr5*33NoDES)*M( Ir3*53NODES) 1 
~~~I(lr4r2~~~D~S)~~~II(l~2*4~NOD~S~+(l~~l*l*l~NU~~~~*M(l*5*2~N~DES~ 

3 -~(l*5*l’~NO~~~)*M(l*l*2~N~D~~)~*(l~~(l~3*3~N~~t~~*l~(l*4.5~N~DE~~

5 -M(I*4*3~[~ODES)~M(Ir3,5~~~DES))
IMI (1 ,4,23NOOgES)=i~I (1 l 2*4SNODES)+(M(1 r3* laNtiDts)*M(1*4*28NODES)

3 -M(1 ,4,1bNCD~5)W;(1 ,3,2”1\1ti(JEb))*(M(1 * 1 l Ljbl”\IDDtb)*I’l(1 *5*5bNODEL)

3 -~~l~5*33l~oDES)*i~i~lrl*5~NODES~~
MI (1 *4*28NODES)=,vlI (1*2*4~NUDES) -(Ml 1 r3r lrt;luODE~.,*lvl(1 *5*23NODES)

5 -~(Ir5*1~NO~~~)~M(l*~*2~~~~ES~~*(~~(l*l*3~N~D~S~*M(l*4*5~~~~~S~

3 -M(lr4*38NO~~S)*M(l*l~5~NODES~)
l.lI(1 *4*2bNODES)=,II (1 *2r48NODEb)+(M(1 *4*lrLNC’Dts)++M(1 *5*2sNODES)

0 -lvj(1 r5* 13N()DEb) ++1’4(1 r.qr23NtiDEb)) -2 (PI (1 , 1 9 ~jbC\ODES) *VI (1 ,3,58i”&~Eb)

3 -M(lr3*3~i\100~S)91\‘(11115~NODES))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 Ivl( 1, 1 r23LNODE~) ) *(I”I( 1 *4*3bhODES)*Vl( 1 *5*4bNOUEb)-1~l( 195*38NUDEb)* 

3 I”I( 1 r4r43NODES) ) 
MI ( 1 *5*2aNODEa)=r~lI ( 1 l 2*5bNODEb) -(lA( 1 * 1 * ltL~‘~UDts)*t~l( 1 *4*23NCJDEb) 

3 -~~(lr4*l~NO~ES)+l~i(1~l*28NODES~)-~(M(1*3r3~iVOUtS~*i\ll(1*5*4SN~DE~~ 

3 -M ( 1 * 5*3si~OO~S ) ii-l”1 ( 1 *3* 4WLODES 1 1 
~I(l,5*2~NOD~~)=~~I(l*2*5~~OD~S~+(M~l*l*l5NODE~~~~~~(l*5*23NODES~ 

3 -M(I,5,I81\roDES)~M(I*l,28NC;DES))*(iivl(l*3*3~N~DES)~~~(l*4*4lbN~DES) 

5 -~(1,4*38h00ES)“M(l*3~4~NODES~) 
IV,I ( 1 ,5,2&NdDEb) =,:I1 ( 1 r2r~~d\ICIDEb)+(lVl( 1 r3* lbNbDLb)~h( 1 *4*2~~~UDE~) 

3 -i ( 1 + 4 1 1 aj\(~Dtb ) *I’I L 1 13 + 2aNdDEs ) ) * ( l*i ( 1 * 1 * 3brLl~DEb )*14 ( 1 9 5 9 4-~;l\iuDES ) 

3 -~(lr5*3~~O~~~)*l~l(1*1*4~~~DE~~~ 
141 ( 1 .5*2~1\10DEa) =,dl ( 1 •2rEiWJLUE~) -(pit 1939 1al\ruDks)*w1( 1 r5r23NtibLa) 

(Continued) 

164 



Table D-3 (Continued) 

16 -M(lr5~~3NO~tS)~M(1~3~23N~D~S))*~~~~l~l~3~NODES)*M~l.4~4~N~D~S) . 
3 -M(lr4*3~NOD~S)*M(1~l~43NODES~) 

MI( 1~5~2&NODEb)=i~I (lrzr5bbNoDES)+(1VI( 1~4*181\10D1Lb)*l-rl( 1*5*2351N~DESl 
ii -M( lr5rIBNODiS)*M( 1 r4r2%NODEb) )*(Pl( lrlr3~NUUE5)*t.‘l( 1 r3r4SNUDEs) 
3 -M(~~~~~~NOOES)~I~(~,~,~NODES)) 

lylI(1rl~3~NOD~S)=(M~lr1r~~NODES)*l~i~lr;?r381U~U~~,-~~l~lr~r~43lVODES)* 

B M( 1* lr34NODES) )*(M( 1 r4r43NODES)*M( 1*5r53NCJDES)-M( 1 l 5*431d0DES)* 

4; M(lr4rTBNODES)) 
MI(~~~~~~N~)D~~)=I~~I~~~~~~BNODES~ -(M( 1 t 1 r23NODEa)*M( 1 r4r38NODES) 

8 -M( 1 r4r2!bikODEL) *Pl( 19 1’3kbb~ODES) )*c(l”l( 1*2r4bNUDtS)++1~1( 195*53NUbE5) 
56 -M(1~5r43~00ES)*M(1.2.5~NODES~) 

MI ( 19 1 r3rt;NU~E~i)=j41 ( 1.39 l%NODE5)+(M( 111 r2bNUDkS)*iV( 1 r5933NUDESl 
B -M(~~5~23NO~~~)+M(lrl~~~NUDES))~(l~~~*2*4~N~Dt~~*l~~~~4*5~~UDES~ 
ii -M(1~4*4bNODES)*M(lr2rSBNODES)) 

I”11 ( 1 * 1 *38NUDEb) =;glI (1 r3r lbNu~Es)+(M( 1 r2r25NUlJEb)*M( 1 r4r3aNuDEb) 
32 -1’4 ( 1 9 4 9 23NDDtb ) *WI ( 1 92 9 3bNODES ) ) Ji ( IY ( 1 l 1 t 431u0DEL) *IV ( 1 l 5 * 5sNUDEs 1 
3 -M(lr5r43l~ODtS)~M(l,lr58NOOES)) 

MI(~~~~~~NODE~)=III~~~~~~~N~DES) -(14( 1 r2r2bNuDES)*M( 1 r5r3d.+JC)D~a) 
2b -M( 1 r5r28NODts) *M( 1 r2r33hODEs) )*(lvl( 19 1 r4%NUDLS)*M( 1 *4*5d~\dDEb) 
3s -M(lr4r43NODES)“M(l~I~53NODES)) 

MI(lrlr35NODES) =A1 (lr3r ~ZJNODES)+(I~I( 1 r4r23NODES)*M( 1 r5r33NUDES) 
a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ft; -M( 1r2*4bNO~~~)**r”l( lr1.50l\1UDkS) 1 

I~II(~~~~~~NDDE~)=(I~I(~~~~~~NUDES;*I*I(~~~~~L~~\~UUE~)-IY(~~~~~~N~DES)~ 
3 M( 19 1 r3oNUDEa) ) *(MC 1 .4r4bNODtS)+ld( 1 r5*5LbNuLjEb)-1~1( 1 r5*43NODEb)* 

s M(lr4rS*NODEb)) 
MI ( 1 c2r3bNO~E~)=rlI ( 1 r3r2%~NUDEb) - ( M ( 1 9 1 9 1 bNcjDts ) *PI ( 1 9 4 l 33Nl)DEa 1 

3 -M(lr4rl~NOD~s)*M(lrl~3~NUDt~))*(~~(l*2~4~NuDtS)*~1(1*~*5~1~~DE~) 
5 -M( 115943 ~ODES)*~~I(~~~~~~NUDES,) 

b11( 1 r2*33NJDEs) =,qI ( 1 r3.2bNUDES)+(b’l( 1 l 19 ldWJDE~)*Pl( 1 r5r33NUDEb) 
3 -M(~~~~~BNODES)~~I(~~~*~~N~DES))~(I~(~~~*~~~~D~S)*~I(~*~*~~N~DE~) 
3 -M(lr4*43NODES)*M(lr2r58NOOES)) 

MI( 1*2r3SNUDEa) =IyI (lr3*28NODES)+(M( 1 329 ~~NC)DES)*IV’~( 1 .4.33NODEs) 
5 -M( 1 r4*1bi\1ODt;b) +*@I( 1 -2+3bNUDES) )*(+‘I( 1 l 1 r4?bl\rObtS)*tvl( 1 r5rgANODEs) 
B -&I ( 1 9 5 l 43lNODE.5 ) *+‘i ( 1 9 1 9 53NCJDE5 1 1 

I”11 ( 1 r2*Z.$bNUD~a) =A1 ( 1 r3~2bN3~ES) -(lrl( lr2r laNClDtS)*M( 1 r5’33NUDES) 
3 -rvl( 1959 l~l\ro~tb) *wl( lr2r3bNbDES) )*c(M( 1 t 1 r4bNuUt5)*M( 1 l 4,5kbNODEs) 
4; -M( lr4r48NODES)*M( lrlr53NODES) 1 

MI (lr2r33NODEh)=i~I (lr3r23NODES)+(M( 1*4*13NUDES)*M( 1 r5*33NODEb) 
32 -M(lr5~lBNDD~S)*M(lr4~33NODES))*(~(l*l*4~~ODE~)*~Vl(l*2*5~N~DES) 
si -M(lr2r43NODES)*M(lrl~53NODES~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
3 ~~(~~~~~~NODE~))*(M(~.~~~~NODES)*~~(~*~*~~N~DES)-I~(~*~~~~NODE~)~

4; C4(1 rbr58NO~ES))

165

Table D- 3 (Continued)

I”l’I(~*3*~8N~D~~)=,~~I(~*3*3~N~~i~,+~FI~1*1*1~~N~D~S))t-l”l~~*5*24;N~DES)
3 -IV (1 .5* l%NODES) *PI (1 * 1 * 2bNC)DEb)) *(lvl(1 r2r.+bl\bDE~j*1’~1(1*4*5aNCJDEs)

8 -M (1 .4 r43NOL)ES) *Ivl’(1 ,2,5!GNOUES I 1
Ml (1*3*38NODEb) =pi I (1 * 3*3b1\OUEb I+ (1% (1 l 2 * 1 r;NODtb) *M (1 l 4 * 2bLcjDEj)

3 -~(~*4*~3N~~t~)~M(~*2*2~t\1~DE5~)*(lIvl~1*~*4~~~~D~S;-~l~l~1*5*5~l~ODES)

3 -M~~*~*~~NOD~S~~I~(I*]*~~N~DES~)
MI(l*3*3~l~OD~~)=,~lI(1*3*3~N~DES)- (lW(1 r2r 1aNUDEb)++‘I(1 *5*23NtiDES)

s -~(~*~*l~N~D~~)~1~(~*2*2~l~i)DE~))*(1~~1*~*4bi\li)DtS)*~~(1*4*5~l~ljDES)

s -M(1*4*4b1\10DES) *l”l(19 1 r5bNCjDES) 1
PII (1*3*d%NODEd)=~~iI (1*3*3bNUDES)+(i~l(1 l 4* 1 bNtiDEb)++l’vl(1 rfjr2SNdDEs)

!b -M(1 r5r 1b1uOi)ta) +M(1 *4*2uNU0Eb))*(M(1 * 1 *4~~\ILJUt~)~l’~1(1 *2*5~l’JU0Eb)

3 -~~(~*2*48~NO~ES)*M(l*l*5ssNODE~))
I~/~((*~*~~~~~D~~)=(~I(~*~*~~N~DES)~J~I(~*~*~~~U~DES)--~~(~*~*~~N~DES)*

% I’I(19 lr2bN3DE~))9(l%(1 *4*331NODk~)*1~1(1 l 5*5bh0Dtb)-b’\(1 l 5*33N~DE>1+’
3 +‘I(1 r4r55NODES))

MI(1 r4r38NODEb)=1~11 (1 r3*4~NbDES)- (itic 19 19 l~ruuoEs)*~~l(1 *4*231\ODLb)

0 -~~(~*4*~~N0~t~)*M(l*~*2~N~Dt~~)~(~l(~*2*3~l~~D~~)~~~(l*5*5~l~~~t~~
3 --14(1 r5*3%NoDES) ++M(1*2*5BNODES))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

s -M(~*5*~3NODES)~~~i(~*~*2~~~OOES))*(M(l*2*3~~~~~ES)~~~(l*4*5~N~DES) 

s -M(~r4*3~NODE~)*M(l*2*53NODES)) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

B -M(1 l 4* lki\r(j~i;a) *IY(1 r2?2bI\lti3Eb))*(Vi(19 1 l ~zdlUUtb)*l~l(1 r5r5oNUDEs)

3 -M (1.5 *3bNoDES) *lVl (1 * 1~ 53NODES 1 1
vi1 (1 r4r3sNODEa) =,d]I (1 l 3v43NODES)- (I%(1 r2rlsNODE5)*1’4(1 r5*231\IUDEb)

b -M(195, lL~\()L)t;b) ++~y’lI 1 *2*2aNOOEb))*(l”l(1 l 1 l 3&NUUEb)*PI(1 *4*5Bt\ti~JLb)

3 -i~(l~4r38~00tS)~M(lrl~~~N~D~~))
MI (1,4*3SNOD~s)=:~I (~*~*~SJN~CES)+(FI(1 l 4* lBNODlL~)*M(1 r5*23NODEb)

32 -rq(115r 1bNoDt.i) +lvl(1*4*2bNUDEb))*(IY(1 * 1 *Lj~lk0UEb)~M(1 r2r50NGCEs)

If; -M(lr2.~ri;NOi)tS)*l*l(l,Ir53NODES))
PiI(~*~*C~~NOD~~)=~,~(~*~*~~NODES)*I~~(~*~*~~N~DE~)-~~~(~*~*~BNODES~*

0 lV((1, lr2;blAO~Ei~))*(fW(1 l 4*3bNODEa)*i~i(1 *5*4Gl\ODEb)-iVI(1 *5*39NC~DE5)9

3 P’I(1 r4r43NODES))
~1I(l*5*3~NUDE~)=r~I(l*3*5~N~~tS)-(l~~~l*l*l bNLDts)*ivi(1 *4*2~bNtiDES)

3 -M(1*4*~8N~1)~~)*l~i(~*~*2~N~D~~))*~i~l(1*2*~~iLCilit~)~1~(~*~*4~~~UD~~)

3 -M(lr5r3%NoDtS)*M(lr2r4bNUDES) 1
1Y~(~r~r~~N~~~~)=,~~I(~r3r~~N~~ES)+(l~~(lrl*l~~~~~~)*l~l(l~5*~~N~Lj~~)

3 -p.q(lr5r loNoDES) *141(1* 1*2sNODES))*(iY(1 r2r3hNUDkS)*M(1~4r43NC~~Jtb)

3 -M (1 14 +33NoDES) -YclVl(1 l 2 * 4sNODES 1) .
IV\1 (1 l 5*3bNtiDE>) =i+lI (1 *,~*5~1\13DES)+(l’d(1 *2* ldNODES)*i~l(1 *4*2bNODEa)

3 -,&q(1 l 4* lkb,lqoDts) *14(1 *2*2~l~UDE~))Jk(l~l(1 * 1 *3WJUDtb)*l”I(1 r594bNLi)Es)

3 -1~(~*5*391\1oDES)*~l(1.~*4~NODtS))

PiI (1*5*35N(JDES)=plI (1 l 3*5=bN3DES)- (id(1 *2* lLbiAGDEb)~I~l(1 *5*23NODES)
s -~~(~*~*~~NOD~~)~;~(~*~*~~N~~DE~))*(I~I(I*~*~’~NODES)~IV~(~*~*~~~‘J~)DES)

3 -MC i*4*381~oDES)*Fl(19 1*4LNCIDEb))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(Continued) 

166 



(Continued) 

167 

I Ill1 



Table D-3 (Continued) 

3 -M( 1 ,5q 1~1~~0~~s) ++igl( 1 * 1 r2SNODES) )*(1’4( 1 *2*4aNUDES)*M( 19395”“DES) 

3 ‘M ( 1 ,3 r4LbNOD~S ) *b’l( 1 * 2r 55luODkS) ) 
,%I ( 1 ,3,4&i\u~E~) =piI (1, 4,3~i\lU~~~)+(l”l( 1 *29 lbl~UDtL~)*i~( 1 r3*2°‘\iu~~s1 

8 -M ( 1 13 9 1a1uODtb ) *$I ( 1 l 2 * 2LNUL)E:=, ) ) * (Fi ( 1 l 1 * 4W\lUl~kb) ++I”1 ( 1 * 5 * 5%1’JUDEs 1 

0 -~1(lr5r4~NO~E~;*M(l*l~5~i~~D~S)) 
IV’II( 1*3r4~i~UD~S)=,JlI(1*4*3~i\l~Dt~) - ( IY ( 1 .2 1 1 >ruuDtb ) +I;1 ( 1 * 5 * 2iNi)iJES ) 

B -M( 1 *5*1&iqO/)tb) +Pl( 1 *2*2bNUUkb) )+ (M( 1 Q 1 l 4uuOC)tS)++crJl( 1 r3r5bNL~OLb) 

3 -M( lr3r4bNODES)*M( 1, IrSbNODES) 1 
MI ( 1,3r4SNODE~)=;41 (1*4*3bNODEb)+(WI( 1 *3* lSNODt.b)++l( 1 l 5*25NODES) 

s -14 ( 1 15 9 1 !bNol)t5 ) *,$I ( 1 13, z&NUDES 1 ) * (1’4 ( 1 l 1 * 4biulJLJtL) +lvi ( 1 9 2 * 5bNODEb 1 

3 -I~(~*~*~~NO~E~)*M(~*~*~~~~OD~S)) 
,“~~(~*~~~~I~OD~~)=~~;‘I(~*~*~BN.ODES~*~~LI(~~~*~~N~DE~~-~~(~*~~~BNODES~~ 

B &‘l( 1, 1 r23NODEi) ) *(M( 1 *.3*3:1:,ODEb)Wv;( 1 *~~~L+GI’JUDE.~)-I~I( 1 l 593LdUDEb)s 

3 4 ( 1 1 3 * ~%INODES ) ) 
1’41 ( 1 *~~L+!~JNODE.ZJ)=~‘~~I ‘i ~~~+t.+SNUDtd)--(lh( 1 * 1 * fbr\rUDts)s~#l( 1 *~*~SB~JUUEL) 

5 -M ( 1 93. 1 Lbi’JC>(‘Jtb ) *Iv1 ( 1 * 1 * 2&brYb~~C~) ) * (14 ( 1 9 2 * 3kI’JObtb) *I*‘1 ( 1 q 5 * SbPdUbES ) 

I -M( 1r5*3SNODE’~)‘tM( lr2r~SNODEs)) 

1~11 ( 1*4*4~bNODEb)=1~\1 (1 ,4*4bN0DE;5)+(M( 1 t 1 q lbNODtb)+W( 1 l 5*25NUDES) 
Ya -M( 1 *5* ~~IWJ~L>) -kh( 1. 1 *2+NuDEs) )+(+‘I( 1 *2*3LAUUtL)+lV( 1 r395bkUDEb) 

B -M( 1*3r35NoDES) *i%( 1*2*5&NODkS) ) 
~~~(~r4r4~NOD~~)=~~~~(~r4,4~~O~~S~+(Ir1(~*2*~~[\iUDt~)*1vi(~*3*28l\;ODE~~ 

Lb -iq(1 r39 lbI‘JODE3) iklW(1 *~*~LNULIE~))*(ld(1 l 1 ~~LIuLLEL)~M(1 .5rfjLNtiDEL)

53 -,P~(~*~*~~NODES)~M(~*~*~~NODES))
MI(1*4.4!&NUDEa)=AI (1*4*4kJ’JODES)-(iY(1*2* lBt’dJDE~)*ivl(lr5r25NODEb)

Lb -M (1 ,5* 1 b1‘40D~>) *PI (1 * Z* 2blUiiDEb)) ++(I.I(1, 1 ,~~~‘~OIJE~)*I’JI(1 r3r~BNUDE5)

3 -rY(lr3*38NO~ES)~M(l*l*5~NODE5~)
i”lI (1 *494slqi)DEd)=,v\I (1 9494~l\U~t~)+(l”l(1 *39 ltNObts)+,‘~‘l(1 *5*2kbrd(JI)Ea)

B -~(~r5*~~1uO~~~)~crvl(~r3~2~N~D~5~)*(M(l*~*3~bl’JC)LjtC~~~*l(1*2*5~NOD~~)

B -M(1 r2*331NOC)tj)+hd(1 l 1 r5bNUDkS) 1
~~I(l*5r4~NOD~~)~(i~l(l*l*l~1~~D~S~*l~l(l~2*2~IVUU~S~‘l~1(1*~*1~N~~~S~*

S 1’4(1 * 1 r261\10~E~)) *((Iv’I(1 * 3 * 3sNODts I ++I”1 i I v 3 l 4zbiubDts) -PI (1 l 5 9 ~SI\~UDES) x
~5 Jvi(1 r3*4sNODES)) 1

Jvi1 (1 r5r4bNbDES) =I+II (1*495W\1UDEb)-(r’l(1 * 1, lSl’~bDtL)*~vl(1 ,3,2sNODZs)
5~ -M(1 r3r l~iuoDES)*YI(19 1*2~NODkS))s(M(1 *2*3h~ur\l~j~j-~)G+JVl(1 ,5,4$&JuDES)
B -M(l*5*3~NOD~~)~lM(lr2~4~NOD~S))

I”i 1 (1 15 14SN0DES) =,.i 1 (1 , 4, ‘SdNo~E5) + (IL’1 (1 , 1 , 1 b[\lC~Dk>) *ii;; (1 ,5,2$i\ibaES)
I, -Pl(I*59 l~~~OOt~)~~~dl(I*1 r2~PJUDtbl)*(Pl(1*2*3b1uubka)+t1q(1 *l*4>iqLUtzz)

b -M(1*3*3bNOUt~)++M(1*2*4kb~ODkbl)

MI (1 *5*48iNODEb)=I+iI (1 *4*5bN0DES)+(v1(192* l!+l\rOD~~);;~~l(1 ,3*2$~bct,~)
lo -b+l(l*3*l~~~O~t~)~lvl(1*2t2~iU~DES)~*(~i(l*l*~~~~~~~S;)*~~~(1,5,4&NO~~S)
5 --P-1(1*5*32~NODE5) *I”((131 r4LNODES))

1~11 (1 *5r4siuODEs)=.~lI (1 *4*5bNODEb)- (rvl(1929 l%brbcj[jkL)~,4(1 r5*25NGDEj)

0 -M(1 *5’1a1dODts) ~;-IvI(1 r2-2aNuDtb))*(h(1. 1 *~~N~~~~)~I~~I(1 ,3,4al\~~k.j
5 -M(l*3*3~NO~~s)*l~(l*l~4~NOD~~))

(Continued)

168

Table D-3 (Continiied)

(Continued)

169

Table D-3 (Continued)

(Continued)

Table D-3 (Continued)
b -M(1 ,4r l~til\oDES).+h’~(1 r3r2bNLUtb))*(~“~(1 , 1 9 3aJi\i)i>Eb) .%lVi (1 ,2,4ti;hCIL)E5 1

8 -M(lr2~3~NO~ES)*i~l~l~lr4BNOOE5)~
DET(~~N~~E~)=,~~~(~,~,~SI\JOCE~)*MI(~*~*~~N~DE~)

3 +~,(l,~,28hODES)*MI(l~~~l~t~~~~~)
3 +pl (1 , 1 ,331\i0DES 1 -KM I (l 93 9 l ?AODES)

5 4 1 +,q(~,I,~SNODES)*MI (1 9 lr4sNCJDES)

5 +I~~(~,~.~~~~OD~S)*MI(~*~*~~N~DE~)
NMl=NODES-1

NM2=NODES-2
DO 50 1=1*5
DO 50 J=lq5

1’4 I (1 9 I 9 JdidODEs) =I., I (l * I ~JYNO~E~)/~~T(~BI~~U~~)
50 C;UNTINU~

I TEH=O

10 CONTINUE
ITEK=ITEG+l

Da 100 I=195
UP(lrI)=(1.-d)*U(lrI)
U~(l~I)=UP(l,I)-~~*l~iI(l rI~1~“~~~~2rlrl)*U~2~l~+l~~2~l*2)~u~2*2)

3 +N(2*1*3)~U(2,3)+1~(2*l~4)*U(2~4)+~(2*1*5)~~(2~5))
UP(l*I)=UP(1,I)-“~“l’lI(l 9 I *2)9(1\(2r2* 1)+b(;lc 1)+I\“(zr2r2)*;:u(292)

3 +N(212r3)*U(L,3)+1~(2~2*4)*~(2*4)+N(2*2~5)~U(2*5))
UP(lrI)=UP(191) -d++PII (1. I *3)“(N(2939 1)*u(29 1)+ru(~*3~2))-u(2~~)

s +N(2*3~3)*U(2,3)+h(2r3r4)~U(2r4)+i‘~(2*3*r5)3U(2r5))
uPclrI)=UP(1,I)-.r~l’~lI(1 •I*4)-~(,\(2*4rl)*u(29 I)+rq(294*2)*u(292)

3 +N(2r4*3)~U(2,3)+~(2~4~4)~U(2*4)+1~(2*4*~)-~~(~~~))
UPC l* 1)=JP(19 I)-;J*vlI (1 * I *5)*(N(2*5* 1)-1tU(;lr 1)+id(295~2)9tb(2r2)

3 ~~~

UPC 1) I)=UP(1, I)+“J*(v!I (1 *1*1~~~0~1r1~+M1~1*1*2~*~~1~2)+
9; 1~1I(l~Ir3)gD(l,3)+,~1I(l l 114)*0(1*4)+MI(l*I15)*~(1*5))

UP (2 9 18wl2) = (1. -d 1 xu (2 9 I BIUM2 1
UP (2 9 15l;rul”l;!) =uP (2, I aJiWVl2) --vL+l~lI (2 I I 9 l*[ul”l2)* (L(19 1. l’uldJl2) XU(1 * lLiUl’l2)

3 +L (1 9 1 l 2bN1v12) *u (1 t 25bI~iv)2) +L (1 3 1 9 3$b\r1~12) *Y (l 9 3eikM2) +L (l , l q4~iL~q2) it
3 U (1 9 4rLhd12 1 +L (1 , J, l 5Yd1’12) *cI (1 .5Ll\v12) 1

UP (2. I BN&‘l2) =LJP (2 , I biwl2) -u*c,‘v, I (2 9 I 9 1 aw’I2) i[- (I\ (3 9 1 1 l~lIul”l~) ‘-cl (3 9 1 !bi\11”12)
b +N (3 q 1 * 2bN;\;12) *u (3 12alui’vi2) +N (3 9 I 9 38Nl~12) *b (3 9 31bd~i2) +h (3 9 l 9 40lLw2) *

B U(3*4~N1~12)+~(3,lr5~N1~,2)*U(3*~~Ni~l2))
UP(2rIBN,~2)=UP(Z,I~~,~2)- W*MI (29 I r2bd\ih2)*(L(lr2r 14~N1’42)-*lJU 1 q lBiLi~l2)

3 +L (1 9 2 9 25Nf42) jtd (1 9 2shM2) +L (1 9 2 9 3d~r;l2) *U (1 9 3dwi2) +L (1 9 2 9 45rqivl2) *

3 U (1 .4bNIY2) +L (1 , 2 l 5sbN1Y12) *U (l . S%i’F\.1”12))
UP (2 9 I %NM2) =UJp (2 , I biWI2) - JJ*.‘~ I (2 9 I .251w12) s- (rd(3929 lkrw2)iiu(3r ilN1~2)

3 ~~~

3 U(3r4~NM2)+N(3,2*58Nlvl2)*U(3~5~N1~2))
UP (2 * I BiWl2) =up (2 9 I bNM2) -h*NI (2* I *3NuPl2)++:-(L(193. lAku1~12)-~UJ(1. 1alWl2)

(Continued)

171

Table D-3 (Continued)

3, +L(l l 3*2&l’J,&q2)*U(I r218luM2)+L(I *3*3~Nb’i2)*U(l *3tlL1~2)+L(l *3r4*lkl”l2)*

B U(lr4s~~~12,+L(1,3*5~NM2)*U(l*5~NiV12))
uP(2r I3N1~12,=bP(2,1SNiY2)-W*clYI (29 I l 3~Nl”l2)*(N(3*3~lbNl~2)~U(3~ 13NM2)

& ~~~

3 ~~~
UP (2 9 I8wd2) =JP (2 3 I Ln’1vl2) --id*l’vi I (2 l I 9 4aNivl2) * (L (I 9 4 * 1 SNlri2) *U (1 9 1 LNM2)

3 +L(1 qL+r23NM2)*U(1 *2Sl\K2)+L(1 r4r3bNli12)*U(1 *39V12)+L(I r4r4*huld2)*
B U(I *4lil’wi2)+L(1 v.$r5SNM2)*U(1 r5bKlb2))

UP(29 I~iwl2)=d?(29ISi\i+2)-bv*ClI (29 I l 4bNlh2)*(h(3*4r1uNh%2)*U(3~ 18Nb12)

B ~~
3 U (3 9 45hvi2) +iV (3 9 4 9 5aNp12 1 *U (3 9 5~Nl~‘12))

UP(~~I~N,V~~)=JP(;Z,I~I~I~I~)--*~*~~II (29 I r5ww12) -;;-(L(I-59 1wh1~12)x-u(19 isrw2)
lu +L (1 9 5* 23lUlvi2) *u (1 9 2~l\rl~l2) +L (1 v 5 9 3m\rt~) *U (I 9 31Liw12) +L (I 9 5 t 4u1utv12) *

3 U (1 ,481\11’d2) +L (1 , 5. 5aN1’412) *U (1 9 5LNwl2 1 1
uP(2r 18111d2) =clp’(29 IaN~vl2)-~+1”11 (29 I *5%1\ll”l2) *(lu(3rtjr ltl\rlvi2)~3(3* lrNr*12)

3 ~~

3 U(3~4~l’wl2)+l\1(~,~*E~~~NI~;~)*U(J*S~NM~)J
UP (2 q I 81~1b2) =tiP (2 9 I w162) +h* (I*‘(I (2 9 I . 18w12) KD (2 9 1 w.bl2 I +li/l I (2 9 I 92~hv~2 I

e *D (2 * 2~~vh2) +,>I I i 2 t I 9 3tialv12) *;-D (2 9 3ww1 2) i-b’1 I (2 9 I 9 48NM2) i;-D (2 * 4ai\bi2)
3 +,&II (2~1*53Nt~2)*D(2*55NM21 1

UP(NODEbr I)=(1 .-d)*U(NODEL* I)
U~(NODESr1)~U~~,\r~~DE~.I)-W*i~I(l~~GE~*ir1);;-(L(Nli.~1 l 19 1)>FU(NMl 9 l)

3 +L (NM l , 1 ,2)~tillI\li”ilr2)+L(N1~ll , 1 9 3) *U (NtylI .3 1 +L (NIM l l 1*4)
3 +~(NMlr4)+L(1ui~l 9 l *5)*U(l\ll~l1*5))

uP(l\rbDts*I)=U~‘,~~~)DE~,I)--~~*~~~~I(IUJUE~*I~~)*(L(I~I’~~ *;?r 1)+~U(lu8~llr 1)

3 +L (NM 1 ~~,~)~uU(IUIYI~~)+L(N~‘~II l 2~3)*U(~t~iI l 3)+L(NMI l 2*4)

rb ‘-‘U(KM1*4)+L(l\?l1 r2*5)*U(NFll 95))
UP(I~ODES~I)=~~(,~JDES~ I)-w*l~lI (I\IL)DEa* Ir3)*(L(i\ilvlI 939 1)++U(NiJlI 9 1)

E +L(hlvil 9 3, 2) -it U (ILl*i I 9 2) +L (NM 1 , 3 l 3) *b (iw l t 3) +L (~I’I l 9394)

3 “u(NA1*4)+L(~~i~?l 93rES)+U(NMl 95))
uP(NoIJEbr 1)=Up(l~dUEbr I)-Ud*dI (ILoDEs* I r4)*(L(hlvli *4r 1)*U(Nlv:l. 1)

3 +L(NM1 9 4. 2) *U (Ni’% I + 2) +L (NM I r4*3)*U(N,viI r3)+L(NMI *4*4)

3 *U(NM1 94)+L (IviM r4r5Y*U(NMl *5))

UP(NODEbr I)=LJP(;~~DESI I)--w*MI (h0DEbr I r5)*(L(Nlr11 959 1)-*U(tuidl 9 1)

3 +L (IdNl 1 9 5, 2) *b (i\llb; I * 2) +L (NI’~ 1 9 5 9 3) +u (hl”l1 * 3) +L (i\IdI 1 *5*4)

E *U (NH 1 9 4 1 +L (1 didi 1 r59tj)*u(rkb91 95))
UP(NODES, I) =IJp (,~dDLbr I) +bJ* (VI 1 (l\jODEb* I * 1)*u(NuLJtsr 1)+[vlI (NcjDLSic I r2)

5 *‘D (,NCjDc.~ * 2) +I’I 1 t ,uUlJCb * I 13) *lJ (~‘JUDEJ * 3)+lviI (iwtitsr 194)-xD(NODEsr4)

% +jvlI (NiJtjEb* 1 v5)+:-O(l\rODESr5))

lU0 CONTINUt
00 350 1=1*5
DIF(1,101\100~S)= dP(1, IsNODES)-U(19 IaNODES)

(Continued)

172

Table D-3 (Concluded)

350 CONTINUE
w4s=o.

DEL=00
DO 360 I=lrEj
Di, 360 J=l*NOi)Es
UEL=DEL+UIF(J,I)*~IF(JII)
RI~IS=RMS+UP(J~I)*UP(JII)

360 CcJNTINUE
DEL=SQHT(DtL)
kMS=SUKT (KMS)
TEST=DEL/KMS

WKITE(6*4E l)UP,dvDIF
450 F~Rl”~AT(YE13.3)

WRITE(6*5UO) ITERITE~TIDELIKIMS

500 FORI”IAT(19q3~10.3)
DO 400 i=lrg
U(1~IBN~DE~)=UP(lrl~i~~D~~)

400 CuNTINUt’
IF(TtST-Lte~P~.ti~2. ITEK.GE.MAXI)K~TuKN
Gu TU 1U

END

173

1. Report No. 2. Government Accerrion No.

I

3. Recipient’s Catalog No.

a-.-. --

4. Title and Subtitle 5. Report Date

December 19 80
HYPERBOLIC/PARABOLIC DEVELOPMENT
FOR THE GIM-STAR CODE

7. Author(s)

6. Performing Organization Code

__ __
8. Performing Organization Report NO.

LMSC-HREC TR D697882
L. W. Spradley, J. F. Stalnaker, A. W. Ratliff

9. Performing Organization Name and Address

10. Work Unit No.

Lockheed Missiles & Space Company, Inc.
Huntsville Research & Engineering Center

11. Contract or Grant No.

4800 Bradford Blvd. NASl-15783, NASl-15795
---.-c? 13. Type of Report and Period Covered

2. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Coda
Washington, DC 20546

5. Supplementary Notes

Langley Technical Monitors: James L. Hunt and J. Phillip Drummond.
Progress Report

Appendix A by L. W. Spradley, Lockheed Missiles & Space Company, Inc.
Appendix B by J;‘rgen Thoenes, Lockheed Missiles & Space Company, Inc.
Appendix C by John F. Stalnaker, Lockheed Missiles & Space Company, Inc
Appendix D by S. J. Robertson, Lockheed Missiles & Space Company, Inc.

6. Abstract

A study was conducted to compute flow fields in supersonic inlet configurations. The
problem was run with the elliptic GIM code on the STAR computer. Spillage flow
under the lower cowl was calculated to be 33% of the incoming stream. The shock/
boundary layer interaction on the upper propulsive surface was computed including
separation. All shocks produced by the flow system were captured. An investigatio!
of linearized block implicit (LBI) schemes was also conducted to determine their
application to the GIM code. Pure explicit methods have stability limitations and
fully implicit schemes are inherently inefficient; however, LB1 schemes show
promise as an effective compromise. This study also included the development of a
quasi-parabolic version of the GIM code. The basic idea was to make use of clas-
sical parabolized Navier-Stokes methods combined with quasi-time relaxation. This
scheme is referred to as quasi-parabolic although it applies equally well to hyper-
bolic supersonic inviscid flows. Second order windward differences are used in the
marching coordinate and either explicit or linear block implicit time relaxation can
be incorporated.

17. Key Words (Suggested by Author(s))

Inlet flows
Shock/bound ary layer interaction
Linearized block implicit schemes
Parabolized Navier -Stokes

18. Distribution Statement

Unclassified - Unlimited

Subject Category 34

19. Security Classif. (of this report1 20. Security Classif. (of this page1 21. No. of Pages 22. Price

Unclassified Unclassified 175 A08

For sale by the National Technical Information Service, Springfield. Virginra 22161
NASA-Lang1 ey, 1980

