ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE DOE/NASA/1028-29 NASA TM-81674

Effects of Mistuning on Bending-Torsion Flutter and Response of a Cascade in Incompressible Flow

(NASA-TM-81674) EFFECTS OF MISTUNING ON BENDING-TORSION FLUTTER AND RESPONSE OF A CASCADE IN INCOMPRESSIBLE FLOW (NASA) 20 p HC A02/MF A01 CSCL 20K

N81-16494

1

Į.

Unclas G3/39 41294

Krishna Rao V. Kaza The University of Toledo and Robert E. Kielb

1

National Aeronautics and Space Administration Lewis Research Center

Work performed for U.S. DEPARTMENT OF ENERGY Conservation and Solar Energy Division of Solar Thermal Energy Systems

Prepared for Dynamics Specialists Conference sponsored by the American Institute of Aeronautics and Astronautics Atlanta, Georgia, April 9-11, 1981

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights

!

Effects of Mistuning on Bending-Torsion Flutter and Response of a Cascade in Incompressible Flow

Krishna Rao V. Kaza The University of Toledo Toledo, Ohio 43606 and Robert E. Kielb National Aeronautics and Space Administration Lewic Research Center Cleveland, Ohio 44135

Work performed for U.S. DEPARTMENT OF ENERGY Conservation and Solar Energy Division of Solar Thermal Energy Systems Washington, D.C. 20545 Under Interagency Agreement EX-76-I-01-1028

Prepared for Dynamics Specialists Conference sponsored by the American Institute of Aeronautics and Astronautics Atlanta, Georgia, April 9-11, 1981

EFFECTS OF MISTUNING ON BENDING-TORSION FLUTTER AND RESPONSE OF A CASCADE IN INCOMPRESSIBLE FLOW

by

Krishna Rao V. Kaza* The University of Toledo and

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

and

Robert E. Kielb^{**} National Aeronautics and Space Administration Lewis Research Center Clevelend, Ohio 44135

Abstract

This paper presents an investigation of the effects of blade mistuning on the acroelastic stability and response of a cascade in incompressible flow. The aerodynamic, inertial, and structural coupling between the bending and corsional motions of each blade and the aerodynamic coupling between the blades are included in the formulation. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending-torsion and uncoupled torsion flutter. The effect of mistuning on forced response, however, may be either beneficial or adverse, depending on the engine order of the forcing function. Additionally, the results illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.

Nomenclature

[A]	aerodynamic matrix due to motion	к
[A _r]	aerodynamic matrix due to motion in rth mode; r = 0, 1, 2 N-1	kF L <mark>M</mark>
{ AD }	aerodynamic matrix due to wake induced flow	L ^W S
{AD _r }	aerodynamic matrix due to wake induced flow in the rth mode, r = 0, 1, 2 N-1	² hl
a	elastic axis location, nondimensional	
b	semichord	^L αl
с	chord	
[D],[D ₈]	<pre>matrices defined in equation (11); s = 0, 1, 2 N-1</pre>	^L wi
[E]	matrix defined in equation (4)	м ^M s
E(s,r)	defined in equation (4)	
*Adjunct Pr ment, Memb	ofessor, Mechanical Engineering Depart- er AIAA.	м <mark></mark>

^{**}Aerospace Engineer, Structures Branch, Member ASME.

e	base for natural logarithm
[G],[C _{\$}]	<pre>matrices defined in equation (11); s = 0, 1, 2 N-1</pre>
$G_{Kh_s}, G_{K\alpha_s}$	quantities defined in equation (11)
h _B	bending deflection of sth blade
har	bending deflection of blade in rth mode of tuned cascade
[1]	unit matrix
ι _{αs}	mass moment of inertia of sth blade about elastic axis per unit span; $(=m_{\rm g}r_{\rm d_g}^2b^2)$
i	$\sqrt{-1}$
K_{h_S}, K_{α_S}	bending and torsional stiffness respec- tively, of sth blade
k	reduced frequency, $\omega b/V$
kF	reduced flutter frequency, $\omega_{\rm F} b/V_{\rm F}$
L ^M	lift due to motion of sth blade per unit span, positive up
L ^W S	lift due to wakes of sth blade per unit span, positive up
² hhr, ² har	nondimensional lift coefficients due to bending and torsional motions, respec- tively, in rth mode
^l ahr, ^l aar	nondimensional moment coefficient due to bending and torsional motion, re- spectively, in rth mode
^l whr, ^l war	nondimensional lift and moment coeffi- cients, respectively, due to wake in rth mode
M ^M s	moment about the elastic axis due to motion of sth blade per unit span, positive nose up
M [₩] s	moment of sth blade pcr unit span about the elastic axis due to wake, posi-

ORIGINAL PAGE IS OF POOP GUALITY

1

tive nose up

^m a	mass per unit span of sth blade
N	number of blades in cascade
[P]	matrix defined in equation (11)
q _{her} ,q _{har}	multiblade coordinates for bending motion in rth mode
q _{acr} ,q _{asr}	multiblade coordinates for torsional motion in rth mode
r	integer specifying the mode of tuned rotor; $r = 0, 1, 2 \dots N-1$; also the engine order of the excitation
r _{as}	radius of gyration of sth blade, non- dimensionalized with respect to b
6	<pre>integer specifying blade, s = 0, 1, 2 N-1; also blade spacing (fig. 1)</pre>
s _{as}	static mass moment of sth blade per unit span about elastic axis, posi- tive when center of gravity is aft of elastic axis
t	time
v	freestream velocity relative to the blade
v _F	flutter speed
wr	velocity induced by wakes
{X}	column matrix, defined in equation (4)
X,Z	rectangular coordinate axes
$x_{\alpha_{s}}$	dimensionless static unbalance of sth blade (=S _{as} /m _s b)
{Y}	column matrix, defined in equation (4)
α _s	amplitude of torsional motion of sth blade, positive clockwise
αs,id	torsional amplitude of each blade of tuned rotor
α _{ar}	amplitude of torsional deflection of a blade in rth mode of a tuned cascade
βr	interblade phase angle, $2\pi r/N$
Y	nondimensional eigenvalue, $(\omega_0/\omega)^2$
Yhs	nondimensional uncoupled bending fre- quency of sth blade
$\gamma_{\alpha_{S}}$	nondimensional uncoupled torsional fre- quency of sth blade
$\delta_{h_s}, \delta_{\alpha_s}$	logarithmic decrements of sth blade in bending and torsion, respectively
^ζ h _s , ^ζ α _s	damping ratios of sth blade in bending and torsion, respectively
η	location of elastic axis measured from leading edge, $(a + 1)/2$

azimuthal	position o	f sth	blade,	de+
fined in	equation	(6)		

mass cio of ath blade, mg/upb²

- real part of eigenvalue, defined in equation (12)
- imaginary part of eigenvalue, defined in equation (12)
- nondimensional flutter frequency
- 5 stagger angle, figure 1
 - fluid density
 - frequency

0₈

и_в П

ΰ

 \widetilde{v}_{F}

ø

ω

ωo ^ωhs

ωas

Σ

reference frequency

$$\sqrt{\frac{K_{h_{g}}}{m_{g}}}$$

- [],{} matrices
- (*) differentiation with time
- []⁻¹ inverse of a matrix

indicate summation over $r = 0, 1, 2 \dots$ N-1

I. Introduction

In the development of modern aircraft turbofan engines, the acroelastic stability and response of bladed-disk assemblies have been among the most difficult problems encountered. The study of stability and response in these assemblies is complicated by the presence of small differences between the individual blades, known as mistuning. The published results in this area which will be discussed later have shown that mistuning can have a beneficial effect on turbine engine blade flutter and an adverse effect on forced response. Experience(1,2) has further shown that there have been costly failures in the development and production phases in which mistuning appeared to have played an important role. Thus, an improved basic understanding of these effects is important in the design phase.

To improve the basic understanding of the effects of mistuning on aeroelastic stability and response and then to explore the possibility of utilizing mistuning as a passive control to alleviate flutter and to minimize forced response, an effort has been in progress in the Structural Dynamics Section, NASA Lewis Research Center. As a part of this general effort, the effects of mistuning on coupled bending-torsion flutter and on aeroelastic response due to wakes have been studied. This paper presents the results of the study for incompressible flow.

Either because of the complexities or because of the general belief that the turbomachinery blade

2

flutter involves only a single degree of freedom, previous researchers (2-7) have studied the effect of blade mistuning on acroelastic stability and response by considering either pure bending models of pure torsional motion of the blades. The studies of models degree of freedom blade flutter in the published literature (5,8,9,10,11) have been limited to tuned caseades. To the best of the authors' knowledge, the forced response of both tuned and mistuned caseades using multi-degree freedom models has not been presented in the published literature. Thus, the problem considered in this paper is a logical extension to the present state of the literature on fautter and forced response of blades with mistuning.

The mathematical model considered herein is of the discretized, lumped parameter type, utilizing discrete masses, mass moment of inertia, and linear and rotational springs to represent the individual blades. The unsteady aerodynamic loads were calculated by using Whitehead's(12) incompressible flow cascade theory. Thus, the model considered is simple enough to be used for extensive parametric studies. At the same time, it is adequate to represent the basic dynamic characteristics of a mistuned cascade, to provide guidance in refining both the aerodynamic and structural models, and to check the results obtained from finite element formulations, such as one presented in reference 13. Recently, the authors have extended the present work into the subsonic and supersonic flow regimes in reference 14.

II. Theory

In general, the components which comprise a bladed-disk system have complex geometries. The analysis of this complex system, as stated earlier, is further complicated by blade mistuning. To accomplish the stated objectives of the paper, it is necessary to develop a model which simplifies the analysis, yet maintains the basic dynamic char-actoristics. For this reason only two degrees of freedom (one bending and one torsim) for each blade are considered in this paper. However, the authors have plans to add additional blade degrees of freedom and disk flexibilities in addition to other refinements to the present model. The general motion of a mistuned cascade is assumed to be a combination of all possible motions of the assoclated tuned cascade. It will, therefore, be instructive first to develop and understand the model of a tuned caseade.

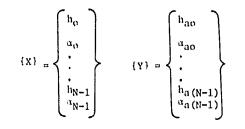
A. Tuned Cascade Model

The geometry of a tuned cascade model is shown in figure 1. The disk is assumed to be rigid and the bladed assembly is modeled as infinite twodimensional cascade of airfoils in a uniform upstream flow with a velocity V as illustrated in figure 1. The effects of wakes shed from upstream obstructions are included. The wakes considered are limited to sinusoidal distortions represented by vorticity perturbation, so that they are convected downstream at the flow velocity V. The amplitude of the wakes is specified by the velocity which the wakes would induce at the position of the midchord point of the reference blade as indicated in figure 1. The motion of the airfoils in each mode of the tuned caseade is assumed to be simple harmonic with a constant plaza angle $\beta_{\rm T}$ between adjacent blades. Also, this interblade phase angle is restricted by Land's (15) assumption to the N discrete values $\beta_{\rm T} = 2\pi r/N$ where $r = 0, 1, 2 \dots$ N=1. Consequently, there are N modes for the caseade with each blade having the same amplitude. The motion of a tuned caseade in rth mode involving bending and torsion coupling can be represented in the form of a traveling wave as shown in figure 1. The motion of the sth blade when the caseade vibrates in the rth mode is indicated in figure 2. For a tuned system, the modes with different interblade phase angles are uncoupled and hence one can write

$$\begin{cases} h_{B} \\ \alpha_{B} \end{cases} e^{i\omega t} = \begin{cases} h_{R} \\ \alpha_{Rr} \end{cases} e^{i(\omega t + \theta_{r} \theta)}$$
 (1)

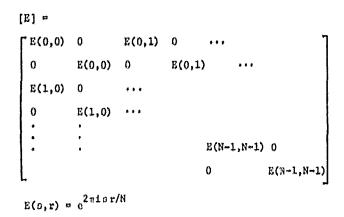
Furthermore, it is adequate to analyze the motion of a single blade in each of the interblade phase angle modes separately. Hence, the number of degrees of freedom of a tuned cascade for the present case is reduced to two for each value of β_r .

B. Mistuned Cascade Model


In a randomly mistuned case4Je, the blades are not identical and can have different response amplitudes. In addition, the phase angle between adjacent blades can vary. Because of the spatial peridicity, the general motion of a blade in a mistuned caseade can be expressed as a combination of the motions in all possible interblade phase angle modes of the corresponding tuned caseade. Consequently, the motion of the sth blade can be written in the traveling wave form

$$\begin{cases} h_{B} \\ \alpha_{B} \end{cases} e^{i\omega t} = \sum_{r=0}^{N-1} \begin{cases} h_{ar} \\ \alpha_{ar} \end{cases} e^{i(\omega t + \beta_{r}B)}$$
(2)

The quantities h_{ar} 's and a_{ar} 's were called as the 'acrodynamic modes' in reference 4. For a cascade with N mistumed blades, equation (2) can be generalized as


$$\{x\} e^{i\omega t} = [E]\{Y\} e^{i\omega t}$$
(3)

where

(4)

Cont'd.

- (4)

(5)

(conc.)

It should be remarked that the motion of a blade in a cascade with and without mistuning can also be expressed is a standing wave form. Since the stability and response are independent of the form used, consideration of either of these forms is adequate to describe the motion. In most of the published literature on flutter analysis of bladeddisk assemblies, the traveling wave form is preferred. This is in contrast to the conventional flutter analysis of a fixed wing aircraft in which the standing wave form is generally used. The motion of the sth blade of a mistuned rotor in the standing wave form may be written as

$$\begin{cases} h_{s} \\ a_{s} \end{cases} e^{i\omega t} = \sum_{r=0}^{N-1} \begin{cases} q(t) \cos \theta_{g}r + q(t) \sin \theta_{g}r \\ hcr & hsr \end{cases} \\ q(t) \cos \theta_{g}r + q(t) \sin \theta_{g}r \\ acr & asr \end{cases}$$

where

$$\theta_{\rm s} = \beta_{\rm r} s/r \tag{6}$$

It is of interest to note that the special cases of the form given by equation (5) are known as 'multiblade coordinate transformations' in the literature dealing with the helicopter and prop-rotor aeroelasticity. This transformation has certain advantages in the analyses, particularly when the coupling between the rotor and supporting structure are involved, and when the coefficients in the equations of motion are periodic in time. Hence, the standing wave representation may be expected to have similar advantages if the analysis includes bearing motion, whirling motion of shaft, stand motion, etc. An interesting discussion on both traveling and standing wave representations for tuned bladed disk assemblies is presented in reference 16.

C. Structural Model

The structural model of the sth blade of a mistuned cascade is illustrated in figure 2. Each airfoil is suspended by bending and torsional springs, $K_{\rm hg}$ and $K_{\alpha_{\rm S}}$, respectively. The airfoil

in assumed to be rigid in the chordwise direction, and this motion is neglected. The elastic coupling between bending and torsion due to putwist, shrouds, and rotation of the rotor is modeled through the offset distance (bx_{α}) between the center of gravity and elastic axis. The centrifugal stiffening effects due to rotation are included in the bending and torsional spring constants. The elastic and dynamic properties of the blades are represented by their respective values at the three-quarters station of blade span. This model may be viewed as a logical extension of the so-called 'typical section wing' used in fixed wing aeroelasticity. (17)

D. Aerodynamic Model

The unsteady aerodynamic loads were calculated by using Whitehead's (12) cascade theory in the incompressible unsteady flow. This theory is an extension of two-dimensional unsteady airfoil theory of Theoderson to account for cascade effects. The effect of airfoil thickness, camber, and o' ,dy state angle of attack are neglected. As menti ...ed carlier, the effects of wakes from a periodic obstruction upstream are included in the form of a vorticity perturbation. It should be noted that the direction of the velocity, as shown in figure 1, induced by the wakes is opposite to that of reference 12. In view of the basic objectives of this paper, it is felt that this incompressible theory is adequate. However, the compressibility effects will be included by using Smith's⁽¹⁸⁾ theory in the subsonic flow regime, and Adamczyk and Goldstein's⁽¹⁹⁾ theory in the supersonic flow regime. These results will be reported in reference 14.

E. Equations of Motion

A simple application of Lagrange's equation to the mathematical model of the sth blade in figure 2 leads to the following coupled bending-torsion equations

$$\begin{bmatrix} m_{g} & S_{\alpha_{g}} \\ S_{\alpha_{g}} & I_{\alpha_{g}} \end{bmatrix} \begin{cases} \frac{d^{2}}{dt^{2}} (h_{g}e^{i\omega t}) \\ \frac{d^{2}}{dt^{2}} (\alpha_{g}e^{i\omega t}) \end{cases}$$

$$+ \begin{bmatrix} (1 + 2i\zeta_{h_{g}})m_{g}\omega_{h_{g}} & 0 \\ 0 & (1 + 2i\zeta_{\alpha_{g}})I_{\alpha_{g}}\omega_{\alpha_{g}}^{2} \end{bmatrix}$$

$$\times \begin{cases} h_{g}e^{i\omega t} \\ \alpha_{g}e^{i\omega t} \end{cases} = \begin{cases} -L_{g}^{M} - L_{g}^{W} \\ M_{g}^{M} + M_{g}^{W} \end{cases}$$

$$(7)$$

Structural damping is added to the equations of motion by multiplying the uncoupled stiffness coefficients in the bending and torsion by $(1 + 2i\zeta_{h_g})$ and $(1 + 2i\zeta_{\alpha_g})$, respectively. The critical damping

4

ratios, ζ_{hg} and $\zeta_{\alpha_{\beta}}$, are related to the logarithmic decrements, δ_{hg} and $\delta_{\alpha_{g}}$, by the relation $\delta_{h_{d}} = 2\pi\zeta_{h_{g}}$ and $\delta_{\alpha_{g}} = 2\pi\zeta_{\alpha_{g}}$. The aerodynamic forces due to motion, represented by the superscript M, and due to excitation from sinusoidal wakes, represented by the superscript w, are expressed in terms of nondimensional coefficients as follows:

$$L_{B}^{M} + L_{B}^{W} = -\pi\rho b^{3}\omega^{2} \sum_{r=0}^{N-1} \left[\hat{k}_{hhr} \frac{h_{ar}}{b} + \hat{k}_{har} \alpha_{ar} + \hat{k}_{whr} \right] a^{1}(\omega t + \beta \rho)$$

$$M_{g}^{M} + M_{g}^{W} = \pi \rho b^{4} \omega^{2} \sum_{r=0}^{N-1} \left[\ell_{\alpha hr} \frac{h_{\alpha r}}{b} + \ell_{\alpha \alpha r} \alpha_{\alpha r} \right]$$

where

$$\begin{aligned} \ell_{\rm hhr} &= \frac{21}{k} \left(C_{\rm Fq} \right)_{\rm \eta} \qquad \ell_{\alpha\alpha r} = \frac{4}{k^2} \left(C_{\rm M\alpha} \right)_{\rm \eta} \\ \ell_{\rm har} &= \frac{2}{k^2} \left(C_{\rm F\alpha} \right)_{\rm \eta} \qquad \ell_{\rm war} = \frac{-4w_{\rm r}}{k^2 v} \left(C_{\rm Mw} \right)_{\rm \eta} \\ \ell_{\rm whr} &= \frac{-2w_{\rm F} (C_{\rm Fw})_{\rm \eta}}{k^2 v} \qquad k = \frac{\omega b}{v} \end{aligned} \tag{9}$$

$$\ell_{\rm ahr} &= \frac{41}{k} \left(C_{\rm Mq} \right)_{\rm \eta}$$

+ $l_{war} e^{i(\omega t + \beta_r s)}$

The coefficients $(G_{Fq})_{\eta}$, $(C_{F\alpha})_{\eta}$, ..., $(C_{Mw})_{\eta}$ are calculated by the unsteady cascade airfoll theory of reference 12 for given values of k, b, s/c, ξ , and a (=2 η - 1). The quantity w_{r} is the amplitude of the velocity of the sinusoidal wake in the rth mode. Nondimensionalizing equation (7), extending the resultant equation to all the blades (s = 0, 1, 2 ... N-1), and using equation (3), the equations for all the blades of a randomly mistuned cascade can be simplified as

$$[P] - [I]Y]Y = - [E]^{-1}[C][E]AD$$
(10)

where

$$[P] = [E]^{-1} [D][E] + [E]^{-1} [G][E][A]]$$

$$[D] = \begin{bmatrix} [D_0] \\ [D_1] \\ & \cdot \\ & \cdot \\ & D_{N-1} \end{bmatrix} \\ G_{K\alpha_s} = \mu_s r_{\alpha_s}^2 \gamma_{\alpha_s}^2 (1 + 2i\zeta_{h_s})$$

$$G_{K\alpha_s} = \mu_s r_{\alpha_s}^2 \gamma_{\alpha_s}^2 (1 + 2i\zeta_{\alpha_s})$$

$$[G] = \begin{bmatrix} [G_0] \\ & G_{N-1} \end{bmatrix} \\ \gamma_{h_s} = \omega_{h_s} / \omega_{o}$$

$$\gamma_{\alpha_s} = \omega_{\alpha_s} / \omega_{o}$$

$$(11)$$

(Cont'd.)

(8a)

(8b)

$$\{A\} = \begin{bmatrix} [A_0] \\ [A_1] \\ [A_{N-1}] \end{bmatrix} \qquad \mu_{B} = m_{B}/\pi\rho b^{2}$$

$$\{AD\} = \begin{bmatrix} (AD_0) (AD_1) \cdots (AD_{N-1}) \end{bmatrix}^{T} \qquad r_{\alpha_{B}} = I_{\alpha_{B}}/m_{B} b^{2}$$

$$[D_{g}] = \mu_{g} \begin{bmatrix} 1/G_{Kh_{g}} & x_{\alpha_{g}}/G_{Kh_{g}} \\ x_{\alpha_{g}}/G_{K\alpha_{g}} & r_{\alpha}^{2}/G_{K\alpha_{g}} \end{bmatrix} \qquad \qquad x_{\alpha_{g}} = S_{\alpha_{g}}/m_{g}b$$

$$\begin{bmatrix} A_{r} \end{bmatrix} = \begin{bmatrix} \hat{k}_{hhr} & \hat{k}_{har} \\ \hat{k}_{ahr} & \hat{k}_{aar} \end{bmatrix}^{T}$$

$$\begin{bmatrix} AD_{r} \end{bmatrix} = \begin{bmatrix} \hat{k}_{tyhr} & \hat{k}_{war} \end{bmatrix}^{T}$$

$$\begin{bmatrix} G_{g} \end{bmatrix} = \begin{bmatrix} 1/G_{tyh} & 0 \\ 0 & 1/G_{K\alpha_{g}} \end{bmatrix}$$
(11)
(conc.)

III. Solution

The neroelastic stability of the cascade is determined by eigenvalues, $\gamma^{c}s$, of the matrix [P]. The relation between the frequency ω and γ is

$$i\omega/\omega_{0} = i/\sqrt{\gamma} = \overline{\mu} \pm i\overline{\nu}$$
 (12)

Flutter occurs when $\overline{\mu} > 0$.

For the given values of the number of blades, and hence the allowable interblade phase angles, the gap to chord ratio, the stagger angle, the elastic axis position, and the structural parameters, the eigenvalues of the matrix [P] are calculated for a range of values of k. Denoting the values of k and v at which $\tilde{\mu} = 0$ as k_F and $\tilde{\nu}_F$, respectively, the nondimensional flutter speed can be written as

$$V_{\rm p}/b\omega_{\rm o} = \overline{V}_{\rm p}/k_{\rm F} \tag{13}$$

The aeroelastic response of the blades induced by wakes is calculated from equation (10) and is

$$\{Y\} = - [[P] - [I]Y]^{-1}[E]^{-1}[G][E]{AD}$$
 (14)

The amplitude of each blade is obtained by substituting equation (14) into equation (3).

IV. Results and Discussion

A. Computer Program and Verification

A digital computer program was written to calculate the flutter stability boundaries and the blade response of a randomly mistuned rotor. In this program, it is possible to consider any type of misturing such as blade-to-blade variations of the uncoupled bending and torsional frequencies, damping ratios, mass ratios, elastic axis and center of gravity positions, and so on. This program is operational on the NASA Lewis Research Genter IBM 370/3033. Buth tuned and mistured uncoupled bending and uncoupled torsion cases, in addition to the tuned coupled bending-torsion case, can be treated as special cases of this program. This program was checked for the following special cases:

1. The correctness of the actodynamic coefficients was checked by comparison of the present results to Whitehead's published results in reference 12 over a wide range of cascade parameters. This comparison shows excellent agreement.

2. To check the correctness of the uncoupled torsional eigenvalues calculated by the present program, a 12-bladed rotor described by Whitehead in reference 3 was considered. The root locus of this rotor with mistuned blades was presented by Whitehead in figure 18 of reference 3. A comparison of the results shows excellent agreement except for the case of zero interblade phase angle. This difference appears to be a plotting error in reference 3 because the present results are also in agreement with those of reference 7 for all interblade phase angles.

3. To check the correctness of the program in calculating the coupled bending-torsion flutter speed of a tuned rotor, the present results for a few selected cases were compared to the corresp ading ones in reference 11. This comparison shows excellent agreement.

4. Forced response results are very limited in the published literature. However, an upperbound for uncoupled bending or torsional response was given in reference 4. The results of the present program are within that bound.

B. Aeroelastic Stability

A compressor stage representative of a forward stage of an advanced axial flow compressor was chosen for conducting parametric studies. This stage, known as the NASA Test Rotor 12, is shown in figure 3. The required parameters of this stage were calculated from the data given in reference 20 and are listed in table 1. The blade bending to torsion frequency ratio for this rotor is 0.357 and the elastic axis and C.G. position are at 50 percent chord. As a result, the coupling between bending and torsion is very weak and the flutter mode is dominated by torsional motion. Hence, the results for the predominantly bending modes for some cases will not be presented. However, to conduct parametric studies the bending to torsion frequency ratio and clastic axis position are varied. For these cases the results for predominently bending modes are included. In some selected cases only uncoupled torsional motion is considered.

A comparison of the system eigenvalues of both tuned and mistuned cascades is useful to understand the mistuning effects. For example, figure 4 is such a plot for a special case in which only uncoupled torsional motion of the blades is considered. The first type of mistuning considered is

the one in which the odd and even pumbered blades have different torsional frequencies. This is known an alternate blade mistuning. For example, in the case of one percent mistuning, the frequency ratio $\omega_{\alpha_{B}}/\omega_{0}$ is 1.005 for all the even blades and is 0.995 for all the odd blades. The reference frequency wo is equal to the arithmetic mean of the uncoupled toroional frequencies of all the blades. Because of the symmetry of this type of mistuning the β_r mode couples with the $(\beta_r + n)$ mode only. Figure 4 may be viewed as a root locus for the tuned cascade with B_r as the parameter. When the blades are mistured, this description is not completely appropriate because each mode contains all possible intorblade phase angles. Due to the inherent symmetry in alternate blade mistuning, each mistuned mode contains only two interblade phase angle modea. However, one can view this plot as a root locus with a predominant interblade phase angle as a parameter. Several interesting observations follow from figure 4. Even me percent of mistuning significantly affected the system eigenvalues and stabilized an unstable tuned cascade. As the level of mistuming is increased, the horizontal width of the root locus is decreased. This amounts to saying that the effective damping of some modes is increased while that of others is decreased. This behavior will have an incluence on forced response which will be discussed later. When the mistuning level is 1.5 percent, the root locus is split into high and low frequency groups. In the high frequency group all the interblade phase angles between 0 and 90 and between 276.4 and 360 are predominant; in the low frequency group those between 96.4° and 270° are predominant. As the level : mistuning is increased beyond 1.5 percent, the frequency separation of these groups becomes larger and the area enclosed by each group decresses.

Figure 5 shows the eigenvector corresponding to the least stable point of the 1.5 percent mistuning curve on figure 4. The predominant interblade phase angle at this point is 51.42° (r = 8) and is coupled with 231.42° mode (r = 36). As can be seen, all the even blades have the same amplitude and all the odd blades have the same amplitude, as expected from the symmetry of this kind of mistuning. However, the amplitude of the odd blades is 68 percent of that of even blades.

Figure 6 illustrates the variation of uncoupled flutter speed with the level of alternating blade mistuning with and without damping. The value of the damping ratio used is 0.2 percent and is the same for all the blades. The results indicate that the mistuning has a substantial effect on flutter speed. For the undamped case, the flutter speed increases monotonically with increase in mistuning level. However, when the mistuning level is 5 percent and more, the additional benefit is modest. For the damped case a similar variation in flutter speed is noticed, except when the mistuning is between 0-1 purcent. In this range, the damping effect is more pronounced. It should be noted that these observations, particularly the effects of mistuning, are in agreement with the qualitative conclusions analytically reached in reference 4 and the experimental results reported in reference 21.

A second, more common type of mistuning was analyzed. Blade torsional frequencies were randomly chosen from a normally distributed population with a mean $\omega_{\alpha_{\rm B}}/\omega_0$ of 1 and a standard deviation

of 0.005. The resulting blade frequencies are phown to figure 7. A comparison of both the tuned and missured eigenvalues is shown in figure 8. The tuned eigenvalues are the same as those presented in figure 4. As can be seen, there is stabilizing effect on the system, but is not quite as strong as that produced by one percent alternating mistuning shown in figure 4. The eigenvector for the least ptable mistured mode from figure 8 is shown in figure 9. The eigenvector consists predominantly of 64.29° interblade phase angle mode but also has significant participation from the 57.86°, 83.57°, 19,29° and 77.14° modes. Also, each blade has a different amplitude and the interblade phase angle varies considerably. It can be seen that this flutter mode can be viewed as a localized phenomena since only blades numbered 42 t'rough 51 have large relative amplitudes. This type of behavior has been observed in actual engine tests.

The effect of elastic axis position on flutter speed is of interest. Both uncoupled torsional and coupled bending-toroion flutter analyzes were formed with and without damping for three elastic axis positions with the center of gravity at midchord. As was noticed in reference 11, very weak instabilities appeared in some caseb which were eliminated by the addition of a small amount of structural damping. Consequently, they are of little practical interest, and, hence, only the results with structural damping are presented in figure 10. Note, that for uncoupled tornional flutter the worst location of the elastic axis is at the midehord point (a = 0). This is in contrast to the present results without damping and to those in references 3 and 11 in which a severe drop in flutter speed is noticed for the 75 percent elastic axis position. For coupled bending-torsion flutter, the effect of clastic axis position depends or, $\omega_{\rm hg}/\omega_0$, if $\omega_{\rm hg}/\omega_0 \leq 1$, the best location (of the three locations investigated herein) is the 75 percent chord point; if $\omega_{hg}/\omega_0 \gg 1$, the best location is the 25 percent chord point. When the elastic axis is off the midehord, the effect of bending-torsion coupling on flutter speed is significant. This observation is in agreement with that in references 5 and 11. These results suggest that the tailoring of the elastic axis position can be used as a passive control to increase flutter opeed as is done in fixed wing aeroelasticity.

Figure 11 shows the effects of both alternating blade mistuning and damping on coupled bending-torsion flutter speed. As can be seen, both mistuning and damping have beneficial effects. However, the level of benefit depends on $\omega_{\rm he}/\omega_0$. It should be noted that the adverse effect of coupling between bending and torsion 1. tuned eascade flutter speed when $\omega_{\rm he}/\omega_0 < 1$ is reduced by the beneficial effect of small mistuning and/or damping.

The effects of alternating blade mistuning, damping, and elastic axis position on the coupled bending torsion flutter speed are illustrated in figure 12. The effects of mistuning and damping are similar to those discussed in figure 6; the effects of the elastic axis position are similar to those discussed in figure 10. For all practical purposes, the curves for the elastic axis at mid-chord are the same as those in figure 6 because the ratio $w_{\rm hg}/w_0$ (=0.357) is small.

The results presented thus far only show the offects of mistuning on acroelastic stability. These results suggest that the utilization of mistuning and/or tailoring of the clastic axis position as passive controls to increase flutter speed are feasible. The next step is to examine the effect of misturing on forced response.

G. Aeroelantic Response

In the present formulation, it is possible to consider an excitation function consisting of all harmonics of rotational speed of the rotor which range up to r = N-1. In engine aeroelastic terminology, the harmenic number r to known as the 'engine order' of the excitation. The coefficients ℓ_{whr} and ℓ_{war} in equations B(a) and (b) represent the forcing functions in the bending and torsion equations, respectively. To understand the nature of the response, excitation in only one harmonic at a time will be considered. This results in no loss of generality since the principle of superposition holds. If the r = R harmonic is considered, then the column matrices $\{AD_0\}, \{AD_1\}, \dots, \{AD_{N-1}\}$ are zero except $\{AD_N\}$ in equation (11). This corresponds to the case in which there are R symmetrically opaced obstructions located upstream from the bladeo and the circumferential wake distribution is perfectly sinusoidal. For practical applications, the forcing frequency is thus equal to R times the rotational speed.

The aeroelastic response results presented herein are for two values of R, 11 and 39, at a fixed reduced frequency chosen such that the caseade is aeroelastically stable in all modes. These values for R were picked because the aerodynamic damping of the tuned system in the r = 11 mode is relatively low whereas that in the r = 39 mode is relatively high. The forcing frequency range investigated is limited to a small range around the uncoupled torsional frequency.

If the blades are tuned, the response will be entirely in the $\mathbf{r} = \mathbf{R}$ mode, and all the blades have equal amplitude. The amplitude of response of any blade is $\begin{cases} h_0 \\ a_0 \end{cases}$ which is a function of ω/ω_0 .

Let the toraional amplitude of resonance of each blade of the tuned rotor be $a_{0,id}$. If the blades are now randomly mistuned, there will be a response in all the modes (enumerated by r) and the amplitude of response of the sth blade is

$$\begin{cases} h_0 \\ h_0 \\ h_0 \end{cases} = \sum_{r=0}^{h-1} \begin{cases} h_{ar} \\ h_{ar} \end{cases} e^{i\beta r^0}$$
 (15)

Figures 13(a) and (b) with R = 11, and figures 13(c) and (d) with R = 39 show the variation of α_{0}/α_{0} , id for both the tuned and one percent alternating blade mistured cascades. Note that figures 13(b) and (d) are a repetition of figures 13(a) and (c), respectively, with 0.2 percent structural damping. Note that the torsional amplitude $\alpha_{B,id}$, of the tuned cascade depends on the level of damping and R. The bending amplitudes are not shown because they are very small in the range of the excitation frequency shown herein. For the alternating blade mistuning, only two r modes are coupled. The amplitude behavior is similar to that shown in figure 5 in which the amplitudes of the odd and even blades are different. In all these cases, the single resonance peak of the tuned caseade is replaced by twin reconance peaks for the alternating mistured cascade. It is seen that the effect of mistuning on forced response depends on the engineorder of the forcing function. For example, the mintuning has a beneficial effect (fig. 13(a)) on torsional response for R = 11, but has an adverse affect (fig. 13(c)) for R = 39. This is in contrast to the common belief that the mistuning always has an adverse offect on forced response. Thus, this result provides an added incentive for purating the use of mistuning as a passive control. The maximum decrease in amplitude with mistuning for R = 11 is approximately 85 percent (fig. 13(a)) without damping and is approximately 25 percent (fig. 13(b)) with damping. The maximum increace in amplitude with mistuning for R = 39 is approximately 110 percent without damping and is approximately 40 percent with damping. As expected, the presecural damping has a significant effect on forced reoponse. Although not shown, the decrease in tuned issonance response is 91 percent for R = 11 and 37 percent for R = 39.

The randomly mistuned cascade described in figure 7 was analyzed for forced response with k=1.2. The results are shown in figures 14(a) for R=11and 14(b) for R=39. As in figure 9, each blade has a different amplitude and the interblade phase angle varies. It is seen that the single resonance peak for the tuned case is changed int. altiput peaks, and different blades peak at d'i' ment forcing frequencies. As in the alternating mistuning case, this type of mistuning has a beneficial effect on the R=11 excitation. For the R=39 excitation, the sharp resonance peak of the tuned system is eliminated. However, for most of the values of the forcing frequency, the mistuned response is higher than the tuned response.

V. Conclusions

This investigation was conducted in an attempt to improve the basic understanding of the effects of mistuning on aeroelastic stability and response and then to explore the feasibility of using mistuning as a passive control to increase flutter speed and to minimize response. The following conclusions are reached on the basis of the limited results obtained by using incompressible unsteady castade aerodynamic theory for two types of mistuning:

1. In general, the mistuning has a beneficial effect on the coupled bending-torsion flutter speed. The flutter speed increases monotonically with an increase in alternating blade mistuning level. However, when the mistuning level is above about 5 percent and more, the additional benefit is modest.

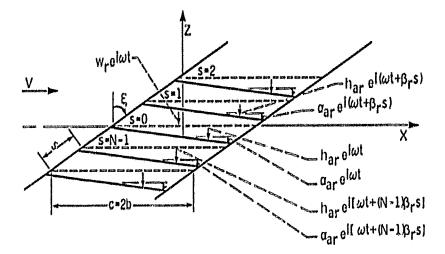
2. The inherent random mistuning which exists in real fan, compressor, and turbine stages has a significantly beneficial effect on flutter. This observation is qualitatively in agreement with the experimental results published in the literature.

3. As expected, the effect of structural damping on flutter speed is stabilizing. However, in the presence of mistuning this effect is not as significant as in the tuned case. 4. The use of uncoupled torsional flutter analysis to deduce the effect of elastic axis position was found to be unreliable because the coupler ing between bending and torsion, structural damping, and mistuning can change the results significantly.

5. Misturing may have either a beneficial or an adverse eifset on forced response, depending on the engine order of excitation.

6. Mistuning introduced multiple resonant peaks for a given engine order excitation.

References


- Cardinale, ... M., Bankhead, H. R., and McKay, R. A., "Experimental Verification of Turboblading Aeromechanics," presenced in the AGARD 56th Symposium on Turbine Engine Testing, Torino, Italy, Sept. 29-Oct. 3, 1980.
- Srinivasan, A. V., and Frye, H. M., "Effects of Mistuning on Resonant Stresses of Turbine Blades," paper presented at the Winter Annual Mesting of the American Society of Mechanical Engineers, New York, New York, Dec. 5-10, 1976.
- Whitchead, D. S., "Torsional Flutter of Unstalled Crocade Blades at Zero Deflection," R&M 3429, 1965 ('&T Memo 12/63, ARC 26085).
- Whitehend, D. S., "Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wekes," Journal of Mechanical Engineering Science, Vol. 8, No. 1, 1966, pp. 15-21.
- Hanamura, Y. and Tanaka, H., "A Modification of Flutter Characteristics by Changing Elastic Nature of Neighboring Blades in Cascades, paper No. 50, presented at 1977 Tokyo Joint Gas Turbine Congress held in Japan, May 22-27, 1977.
- Ewing, D. J., "An Experimental Investigation of the Forced Vibration of Bladed Disks due to Aerodynamic Excitation," paper presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New York, New York, Dec. 5-10, 1976.
- Srinivasan, A. V., "Influence of Mistuning on Blade Torsional Flutter," NASA CR-165137, Aug. 1980.
- Shiori, J., "Non-Stall Normal Mode Flucter in Annular Cascades, Part II - Experimental Study," Transactions of Japan Society of Aeronautical Engineering, Vol. 1, p. 26, 1958.
- Carta, F. O., "Coupled Blade-Disk-Shroud Flutter Instabilities in Turbo-jet Engine Rotors," Journal of Engineering for Power, 1967, pp. 419-426.
- Rao, B. M. and Kronenburger, L., Jr., "Aeroelastic Characteristics of a Cascade of Blades," Texas A&M Res. Foundation, College Station, Texas, Report No. AFOSR-TR-78-1027 (Feb. 1978), AD-A055 619/IGA.
- Bendikson, O. and Friedman, P., "Coupled Bending-Torsion Flutter in Cascades," AIAA Journal, Vol. 18, No. 2., Feb. 1980, pp. 194-201

ORIGINAL PAGE IS OF POOR QUALITY

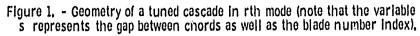

- Whitehead, B. G., "Porce and Mement Coefficients for Vibrating Airfoils in Cascades," R&M 3254, British Aeronautical Research Council, London, Feb. 1969.
- Smith G. C. C., and Elehuri, V., "Aeroelastic and Dynamic Finit: Flement Analyses of a Bladed Shrouded Disk," N. . GB-159728, March 1980.
- 14. Kielb, R. E., and Kaza, K. R. V., "Aeroelastic Characteristics of a Cascade of Mistuned Blades in Subsonie and Supersonic Flows," paper to be presented at the 8th Biennial ASME Engineering Division Conference on Mechanical Vibration and Noise, Hartford, Conn., Sept. 20-23, 1981.
- Lane, F., "Sontem Mode Shapes in the Flutter of Compressor Blade Rows," Journal of the Aeronsutical Ociences, Vol. 23, No. 1, Jan. 1956, pp. 54-56.
- Dugundji, J., "Flutter Analysis of a Tuned Rotor with Rigid and Flexible Disks," GT&PDL Report No. 146, M.I.T., Cambridge, Mass., July 1979.
- Biopling! off. R. L., and Ashley, H., "Principles of Acroclasticity," John Wiley and Sons, Inc., New York, 1962.
- Smith, S. N., "Discrete Frequency Sound Generation in Axial Flow Turbomachines," A.R.G. R&M No. 3709, 1973.
- Adamczyk, J. J., and Goldstein, M. E., "Unsteady <u>Plow in a Supersonic Cascade with Subsonic</u> Leading Edge Locus," AIAA Journal, Vol. 16, No. 12, December 1978, pp. 1248-1254.
- Moore, D. R., and Reid, R., "Performance of a Single-Stage Axial-Plow Transonic Compressor Stage with a Blade Tip Solidity of 1.7," NASA TH X-2658, December 1972.
- Nabatova, N. A., and Shipov, R. A., "Influence of the Material of the Rotor Blades of an Axial-Flow Compressor under Flutter Initiating Conditions," translated from Problems-Prochnostl, No. 8, pp. 63-67, Aug. 1974.

Table 1 Parameters	of	NASA	Test	Rotor	12	
--------------------	----	------	------	-------	----	--

N	19 - 2017 CON ACCENTRATION OF THE THE THE AND
ø/c	0+534
μ _B	258.5
a	0 (varied in some cases)
× 10	0 (varied in some cases)
r _{ug}	$\begin{cases} 0 5774 (= 0) \\ 0.7638 (a = -0.5 and 0.5) \end{cases}$
Ę	34.40
$\omega_{h_0}/\omega_{a_0}$ (tuned)	0.357 (varied in some cases)

1

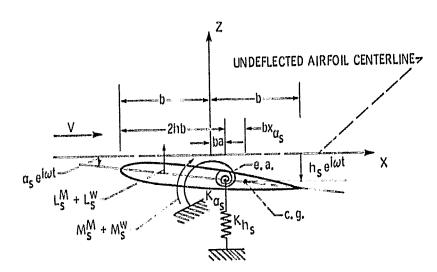
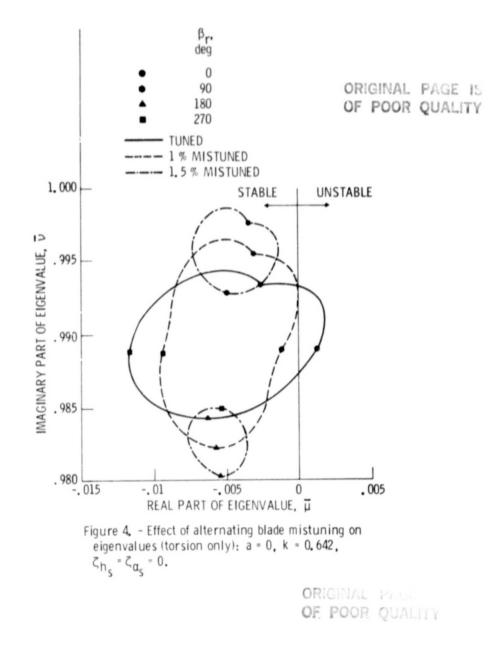
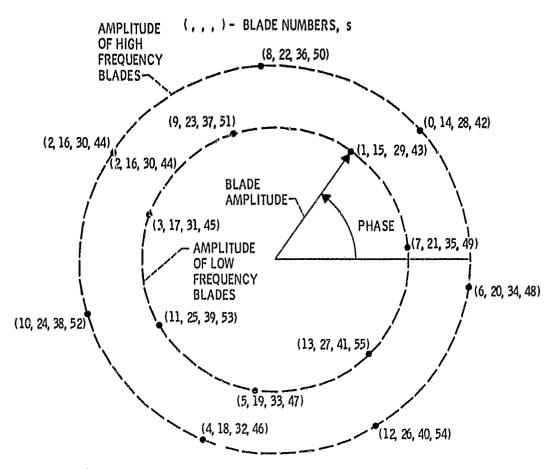




Figure 2. - Airfoil restrained from bending and torsional motion (sinusoidal wakes not shown).

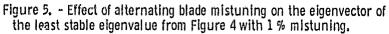


Figure 3. - NASA test Rotor 12.

f

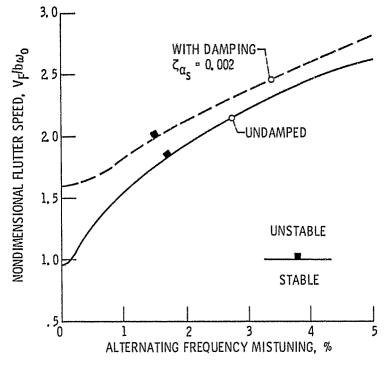
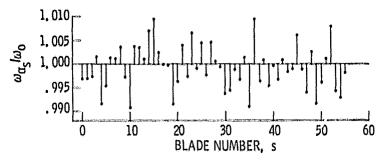
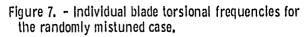
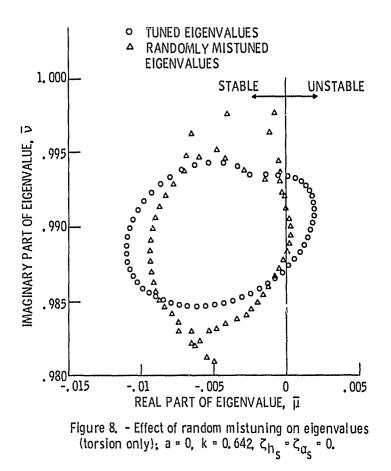
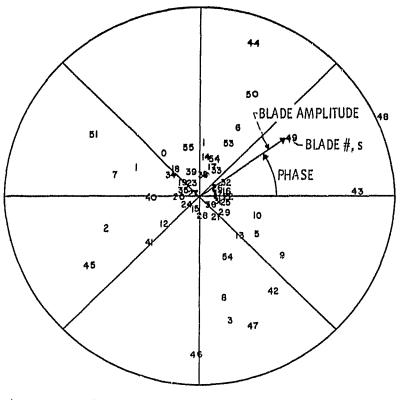
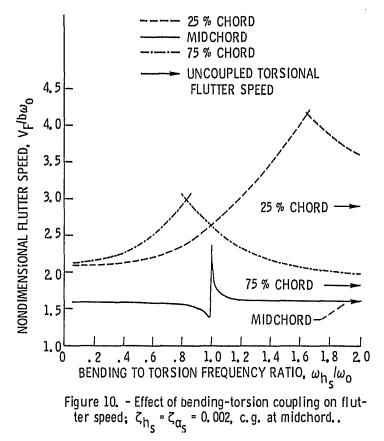
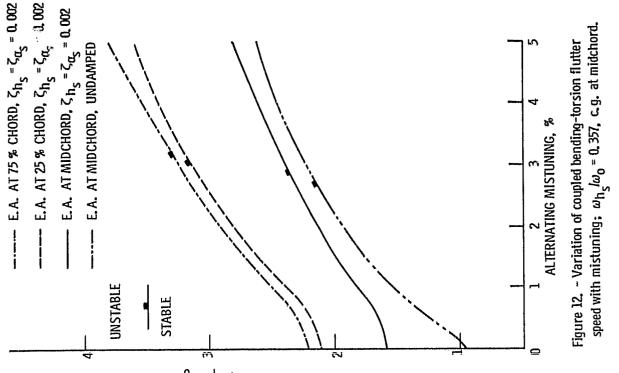
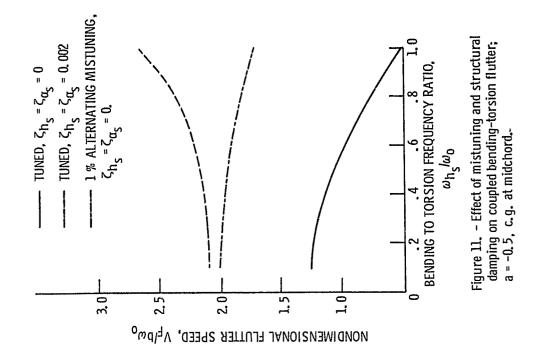
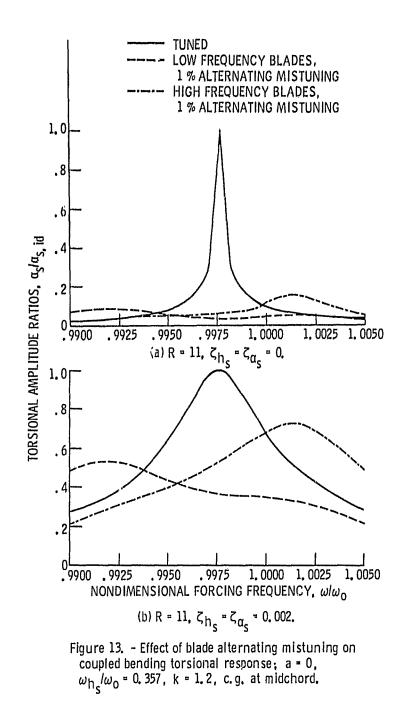
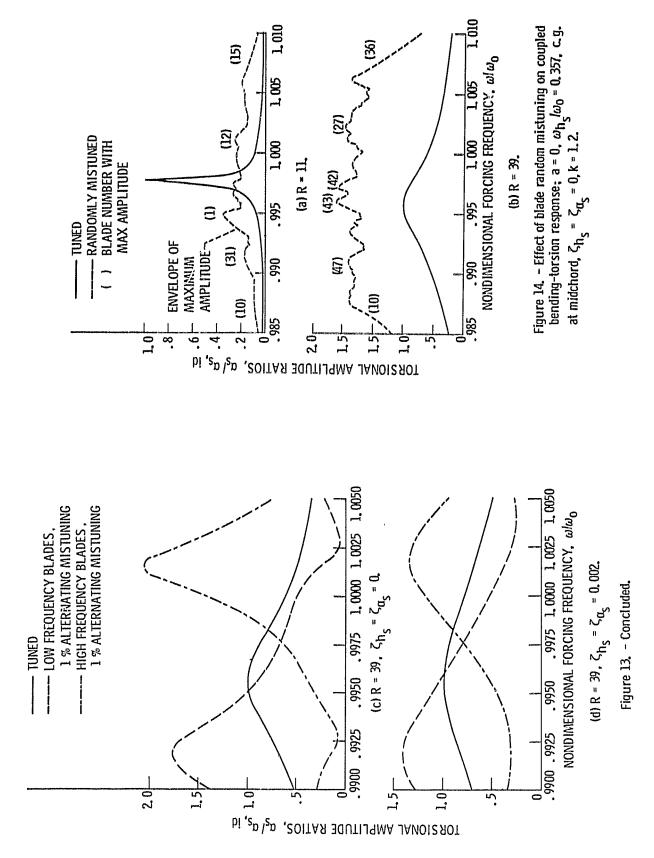





Figure 6. - Variation of uncoupled torsional flutter speed with alternating blade mistuning both with and without damping; a = 0.


Figure 9. - Effect of random mistuning on the eigenvector of the least stable eigenvalues from Figure 8.




ORIGINAL PAGE IS OF POOR QUALITY

Nondimensional flutter speed, $v_{\text{F}}^{\text{h}\omega_{0}}$

ORIGINAL PAGE IS OF POOR QUALITY

.

1. Rep NA	on No SA TM-81674	2. Government Access	ion No.	3. Recipient's Catalog) No		
EF	e and Subtitle FECTS OF MISTUNING ON I	· · · · · · · · · · · · · · · · · · ·	5 Report Date				
AN	AND RESPONSE OF A CASCADE IN INCOMPRESSIBLE FLOW			6. Performing Organization Code 505-33-82			
Kr	7. Author(s) Krishna Rao V. Kaza, The University of Toledo, Toledo, Ohio,			8. Performing Organiz E-699	ration Report No.		
	d Robert E. Kielb, Lewis Re- forming Organization Name and Address	search Center	······································	10. Work Unit No.	earrighting a triange de transformation de la Britan anna a Ru		
	National Aeronautics and Space Administration			11. Contract or Grant No.			
	wis Research Center			NSG-3139			
	eveland, Ohio 44135	nan sala ani manana sala ang kananana manananana		13. Type of Report and Period Covered			
	nsoring Agency Name and Address S. Donartmont of Enormy			Technical Memorandum			
Div	U.S. Department of Energy Division of Solar Thermal Energy Systems Washington, D.C. 20545			14. Sponsoring Agency Gode Report No DOE/NASA/1028-29			
$\mathbf{p_r}$	plementary Notes epared under Interagency Ag nference sponsored by the Ar		-		*		
This paper presents an investigation of the effects of blade mistuning on the aeroelastic stability and response of a cascade in incompressible flow. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades are included in the formulation. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending-torsion and uncoupled torsion flutter. The effect of mistuning on forced response, however, may be either beneficial or adverse, depending on the engine order of the forcing function. Additionally, the results illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.							
17. Kev	Words (Suggested by Author(s))	an mainte in the Atlantic Analysis and the state of the s	18. Distribution Statement				
	roelasticity		Unclassified - 1				
	utter	STAR Category 39					
	rced response	DOE Category	UC-96				
	stuning						
19. Secu	urity Classif. (of this report)	20. Security Classif. (c		21. No. of Pages	22 Price*		
	Unclassified	Uncl	assified				

ŧ

*

t

1

* For sale by the National Technical Information Service, Springfield, Virginia 22161