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PREFACE

This report was prepared by the Research Triangle Institute, Research
Triangle Park, North Carolina, under Contract NAS1-15768. The work has
been administered by the Electron Devices Research Branch of the Flight
Electronics Division, Langley Research Center, National Aeronautics
and Space Administration. Mr. W. L. Kelly IV served as Technical Repre-
sentative.

These studies began on 29 March 1979 and were completed on 15 June 1980.
Mr. W.H. Ruedger served as Project Leader. Dr. D.R. Daluge and Mr. J.V.
Aanstoos completed the project team. Dr. W. E. Snyder, North Carolina State
University, served as consultant to the program.

This volume covers tasks completed under the initial contract. Subse-
quent volumes cover additional efforts and include: 1) recommendations
for the reference to be used in IAS demonstration hardware evaluation,

2) the impact of microelectronics technology advances on on-board signal
processing, and, 3) the impact of data editing on data packetization and
ground software requirements.
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1.0  INTRODUCTION

The satellite data acquisition and handling system currently implemented by
NASA is now operating at capacity and as such provides severe limitation on data
throughput. NASA's mission model for the near-to-medium future indicates sig-
nificant increases and/or changes in the data acquisition systems, data rates,
and user requirements. To anticipate this new era of space observation require-
ments, NASA is embarking on the NASA End-to-End Data System (NEEDS) program.

This program is an attempt to significantly increase the effectiveness and
efficiency of the system that couples the user of space data with the sensors
that acquire this data. The NEEDS program will therefore address the identifi-
cation, development, and demonstration of data handling and processing tech-
niques and technologies which are required to accomplish this.

More specifically, the NEEDS program goals present a requirement for
on-board signal processing to achieve user-compatible, information-adaptive data
acquisition. One very specific area of interest, which this study addresses, is
the preprocessing required to register imaging sensor data which has been distorted
by anomalies in subsatellite point position and/or attitude control. This study
brings attention to the concepts and considerations involved in using state-of-
the-art positioning systems such as the Global Positioning System (GPS) in concert
with state-of-the-art attitude stabilization and/or determination systems to
provide the required registration accuracy. Aspects of the study include an
examination of the accuracy to which a given image picture-element can be Tocated
and identified, the determination of those algorithms required to augment the
registration procedure, and consideration of the technology impact on performing
these procedures on-board the satellite. The signal processing functions comprise
a major constituent of the Information Adaptive System (IAS), a significant module
of the NEEDS concept. The IAS essentially consists of the spaceborne portion of NEEDS
exclusive of telemetry, support and housekeeping systems. A block diagram of the IAS
is shown in figure 1-1. The signal processing discussed in this report is resident
within the Data Pre-Processor shown in the figure.

Section 2.0 of this report discusses the general approach to registration. In
this section it is pointed out that a similar study was completed by TRW[1-T] atthe outset
of the RTI program and it was therefore advantageous to take advantage of this as a
point of departure. Section 3.0 discusses hardware implementation aspects, a
demonstration hardware procurement specification is discussed in Section 4.0, a
summary and recommendations are contained in Section 5.0, and the appendix presents
an in-depth study of high-speed interpolation for resampling.
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2.0 IMAGE REGISTRATION APPROACH

As discussed previously, the major theme of the study was a conceptual
definition of on-board signal processing to achieve image registration. About
the time of initiation of study effort, TRW released the draft report of a study very
similar in scope to this effort. In order to maximize the return of the RTI study,
it was decided to use the TRW study as a point of departure and to build upon it with
recommendations for deviations or revisions. These recommendations were to range from
a completely different approach to minor "vernier" revisions. The general conclusion
reached was that the basic TRW approach was sound, but that minor changes could achieve
better registration accuracy with negliigible hardware impact. This section documents
those comments.

Major subsections will discuss inputs available for implementing on-board
registration, namely position from GPS-PAC and attitude from state-of-the-art star
trackers, will address the architecture approach, will consider the impact of choice
of map projection, and will conclude with a brief discussion of the issues in use of
ground control points for sub-pixel registration.

A major point discussed in Section 2.3 is the advantage in the use of
windowing for high speed interpolation. That discussion characterizes interpolators
in a way which explains the superiority of certain approaches and facilitates the
design of interpolators with nre-specified frequency response characteristics.

2.1 Position and Attitude Information

The basic ingredient for real-time image registration is a source of measurements
from which the pixel location in geoidal co-ordinates can be obtained. This requires
measuring satellite position and attitude accurately and in real-time. The following
discussion presents a brief description of techniques for achieving these measurements.
For Landsat-D, position is to be accurately measured by means of a Global Positioning
System (GPS) receiver flown on board while attitude is to be derived by means of a
star-tracker augmented inertial system. Included in this section is a discussion of
the GPS system (GPS-PAC) and a survey of current and projected star-tracker systems.

GPS-PAC Receiver/Processor Assembly

This discussion describes the specifications for the GPS receiver to be flown
on Landsat-D. It is essentially a condensation of the Applied Physics Laboratory
Design Specification [2-1].

The Receiver/Processor assembly (R/PA) is a major module of the GPS system
and includes the receivers, processor/software, synthesizer, time code generator

and the power supply. The R/PA and its relationship to GPS-PAC is shown in
figure 2-1.
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GPS-PAC>1s to provide accurate measurement and prediction of host vehicle
navigation parameters in real-time. It will provide (by command) eijther simultaneous
(dual receiver) or sequential (single receiver) processing of the dual L-band
signal pairs (L]/L2 are used for jonospheric group delay compensation). The
processor will have provision for selecting the satellite constellation with minimum
geometric-dilution-of-precision (GDOP). The host vehicle - NDS dynamics are
specified as:

range - 18,000 to 27,000 km
range rate - + 9 km/sec

range acceleration - + 16 m/s2
range jerk - + 0.02 m/s3

While in navigate mode, satellites are tracked sequentially for both simultaneous
and sequential configurations with not more than six seconds dwell time on each satellite.
When no satellites are in view, the processor enters a dead-reckoning mode with a stored
host vehicle dynamics model. The nominal navigation "cycle period" is 6 seconds.

The Kalman navigation filter outputs host vehicle position, velocity, and GPS
system time on command with the output rate selected on command. Selected data files
are also output at selected rates on command. The specified accuracy is:

pseudo range < 1.5 meters
delta-pseudo range < 0.02 meters

Time-to-first-fix (TTFF) is < 470 seconds and in case of outage, Time-to-
subsequent-fix (TTSF) is < 190 seconds for short outage (15 minutes dead reckoning)
and < 445 seconds for long outage (50 minutes dead reckoning).

GDOP is reviewed at least every three minutes.

Attitude Determination and Control Consideratibns

As mentioned previously, the two critical parameters to determine pixel location
are satellite attitude and sub-satellite point position. This discussion presents
comments on the capability to determine satellite attitude. Data have been obtained
from TRW [1-1] and from a study done by Boeing [2-2] to determine trade-offs in
selection of an attitude control and determination system for the Space Test Program
Standard Satellite. Material presented has been excerpted from these reports in
some instances directly.

TRW reports (see Table 2-1) that the pointing accuracy available from the
Modular Attitude Control System (MACS) on LANDSAT-D is on the order of 0.0027 degrees

which translates to 33 meters at 705 km. This exceeds the performance goal of
registration to one-half pixel. TRW concludes then that utilization of a star tracker
is required if Ground Control Points are not used. Table 2-2 shows an error summary
of the BBRC CT-401 star tracker (considered as a candidate). The result indicates that
it also is not capable of supporting registration to within one-half pixel and TRW
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concludes an advanced star tracker is required. They mention a high accuracy stellar-
inertial attitude reference system being developed by JPL which has an accuracy of

7 arc-seconds and project that technology should be able to drive this to 3 arc-seconds’
corresponding to about 10 meters errors in along and cross track directions due to
pitch and roll variations.

The Boeing study survey shown in Table 2-3 further supports the idea that
accuracies over and above the CT-401 system are probably not currently available.
Boeing alludes to achieving increased accuracy through use of the space sextant.

This sensor is being developed by the Martin Marietta Aerospace Corporation and was
planned for test in 1979. It is more than a star sensor in that is provides star,
moon and earth fixes for navigation state determinations. Projected accuracy is on
the order of 0.3 arc-second. General features of this system are listed in Table 2-4.

2.2 Comment on TRW Processing Algorithm

The processing flow to compute a map projection location of a given pixel
is as shown in Figure 2-2. Computations involved consist of a series of co-ordinate
transformations required to take pixel location from scanner co-ordinates to map
projection co-ordinates with various Euler angles, position, and attitude as inputs
Flow in Figure 2-2 1is shown right to Teft in order to be compatible with the

generalized matrix equation:
[PUTPUT] [ A ] [ B ] [ C ] [INPUT]

In general this computation is performed only for a few pixels per scan and
distance along-scan for other pixels calculated from the scan geometry. Figure 2-3
shows the processor functional organization recommended by TRW [1-1]. After review of
the approach, RTI concluded that it is sound and implementable. Several mfnor
revisions which increase performance are discussed here and include the along-scan
distance expression, the map projection, the resampling algorithm, latitude/
Tongitude determination, and an effect ignored by TRW, the Tocal earth "tilt"
due to geocentric co-ordinates. Other comments on along-scan distance calculation
and on resampling which were generated early in the study are included as
appendices. Those comments are pertinent but do not possess the relevance of
the topics discussed in the main body of the report.

it

Map Projection

The goals of map projection image registration are:
1. to represent the image in a form which is independent of satellite
and scan parameters,
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to represent the frame area with essentially true scale (some
scale error must be tolerated when a curved surface is represented

3N
.

on a plane) ,
3. to locate pixels absolutely,
Further, since on-board real-time image registration limits storage and

computational complexity:
4. scan lines should pe nearly aligned with an axis of the

projection,

5. rational functions or polynomial approximétions of trigonometric

and other functions should be used.

The first goal would be achieved by adopting a standard perspective to
which all images are corrected, but two images could be compared directly
only if the image centers coincided. Thus, perspective representation is
to be avoided.

The Oblique Mercator Projection will be modified here for:

.computational efficiency
.earth rotation
.earth ellipticity
The regular projection is defined by:
tan X' = cos i tan A + sin i tan @/cos A
sin @' = cos i sin § - sin i cos ¥ sin A
X =Re A'

Y =Re 1In tan 1+@>
42

where P is (spherical earth) Tatitude

A is longitude
@' and A»' are latitude and longitude relative to the new

ground track equator
Re is earth. radius
and, X and Y are the projection coordinates.

First, note that v
In tan <E-+ !> = 1p(1ttanz
4 2

1-tan%
v v
= Z[tan% + tan3<7>+tan5<?) + .. ]
3 5
2y + v3
—
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_ The error of approximation is less than .0002 meters for
y = Re In tan/n+@'} when |p'|<.Ul45 radians
)
The error is about 3.25 meters if only the linear term is used. The
price ‘of the improved accuracy is quite small. The error can be virtually

eliminated by the inclusion of one more term.
Thus, one can use : '3
Y=Re(p + p ’¢)
The earth's rotation results in a latitude-dependent heading error
which skews the scan lines with respect to the Oblique Mercator Projection
equator (see Figures 2-4 and 2-5). Since latitude changes only by about

1.664 within a frame, the skew may be treated as a constant over a frame.

Thus, one can correct tor the rotational skew by using
X = Re 2' + Sg*p'
where the parameter SP is chosen for frame center
P = tan(He) = He + He3
3
where He is the rotational heading error with a maximum value of about
4° = .07 radians (see Figure 2-5).
It is convenient to move the zero of transformed longitude to frame
center:
X =Re(r' - r0') + Spept

where Xo' is the original transformed longitude at frame center.

The earth's ellipticity remains to be accounted for. The goal is
to map with essentially true scale at all latitudes, although the frame
area changes with latitude, because of the variation in earth radius and

orbital altitude. The along-scan distance expression may be used to choose
an appropriate scaling factor.

. -1 {Ro ..
Re[sm <ﬁ s1nw> - ]

(Ro-Re) ¥ = Re 9' for small v

a.
n

Thus, the appropriate scaling factor is the local earth radius, which
may be adequately modeled as a latitude-dependent parameter Rﬂy.
The final modified transform is
X = RP,*(A' -20') + Sprpl
Y= RE*(D' + 4'3/6)

14
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where 5

R[Dy = ab d] + tan wc
vVal tan? P+ b2

here, a = 6378 km (equatorial radius)
b = 6357 km (polar radius)
§. = geocentric latitude
and ) RY, is chosen at frame center
(Note: tan . = <932 tan §, where ¢ is geodetic latitude)
a

The parameter wa must De chosen according to satellite velocity,
local earth curvature, and local rate of change of transformed longitude
with respect to surface distance. These can be adequately modeled as
functions of latitude.

The Oblique Mercator Projection is used with geocentric latitude. The
scale change within a scan is small, because the scan is virtually
east-west.

Latitude Longitude Determination

At this point, the scan vector has been expressed in ECI
coordinates. An earth surface model is used to determine the
scanning longitude/latitude. The equation of the mean sea level

is
x2+y2 . 53 o
a2 b2
or,
x2+y2+a2 Z2 - a2
2
b
where a = 0378 km
D = 6357 km

With the satellite at

=
'

- (XO) _Yo, ZO)
and unit scan vector

U= (U Uy Uy),

a quadratic equation for intercept is

o
[(x+U 0)24(Y 40

o)1+ 22,00 = s

b
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Combining like terms, on% obtains
2, 2,4 21 2
[UX "'U.y +b—2 UZ] .D

2
a 2
+2 [XOUX+Y0U +— 7 U ] o)

y b2 0z
+1X 2+Y 2+33 JA 2-a?] =0
0o o0 b2 0

The solution p is the distance to intercept. It is the smaller of the
two solutions and care must be taken in solution:

2C

p:_——

-Bﬂ’sz-zmc

where A, B, C are the quadratic, linear and constant coefficients,
respectively. (This expression avoids the differencing of similar
quantities, since B is negative.)
The intercept point in ECI coordinates is

R = + + +

Rp = (XU 05 Yo Uges Z, U_e)

and the geocentric latitude is

Z +U_p
arctan(T%——%T>
R

=
i

The longitude is

>
I

A Y +U o
w t + arctan| ¥
e X0+pr

where Wg is the earth's angular velocity and t is the time since
the ECI system last coincided with the rotating earth coordinate
system.
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"Ti1t" introduced by geocentric co-ordinates

For highest registration accuracy, an earth-sensing satellite such as
Landsat-0 can determine the map projection coordinates directly, but the required
time and computation are excessive for pixel-wise use. This suggests some sort
of interpolation procedure. If the map projection along-scan coordinate has good
scale accuracy, the problem can be treated as that of estimation of along-scan
ground distance for the reference ellipsoid as a function of the scan angle
parameter, but the perspective asymmetry resulting from geocentric scanning rather
than geonormal scanning must be accounted for. Unless it is, there will be up to
+ 11 meters of error at the ends of the + 92 km. scan, more than half of the
half-pixel error budget of Landsat-D.

A simplified along-scan distance expression

The locus of points on the earth imaged by a line array of detectors will
be called the scan arc. For each pixel there is a satellite-to-imaged area vector,
which will be called the scan vector. The angle between a particular scan
vector and the scan vector at center scan will be called the scan angle. It will
be assumed that the scan arc can be accurately modeled as an arc of a great circle

on a sphere of radius Rscan'

satellite

Figure 2-6. Scanning Geometry
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In Figure 2-6, ho is the satellite altitude, measured along the normal to the
scan arc, and d is the along-scan distrance to be calculated as a function of the
scan angle VY.

From the law of sines:

+ +
ho Rscan ho Rsc;an Rscan
sin(n-v- —%—— ) sin(?+d/Rscan) sin ¥
scan
. h +R .
+ =
sin(¥ d/Rscan) Ro scan sin ¥
scan
d/R - ein=] +
scan = sin __ho Rscan siny |- ¥
scan
. =1
= +.\ .
d Rscan s1n ho r‘scan siny |- v
Rscan
This equation is exact for a spherical earth model with RScan = Re’ the earth radius.

The extension to the reference ellipsoid

Numerical calculations show that the expression derived above is a good
approximation if ¥ is measured from the normal to the ellipsoid, but that a small
asymmetry is introduced when ¥ is measured from the geocentric direction. This
can be seen most clearly near the pole, where the scan arc is exactly meridional
(see Figure 2-7), but the asymmetry is seen at all non-zero latitudes to some
extent (unless the satellite has a polar orbit).

satellite

Geocentric

; Geodetic
Sgg?ﬁEE]]jte subsatellite
point

Figure 2-7. Perspective asymmetry results from the fact that the scan vector at
center scan is not normal to the scan arc.
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Because of the perspective asymmetry, the poleward half of the scan is
underestimated while the anti-polar half is overestimated as shown in Table 2-5.
For best accuracy, the scan arc should be centered at the geodetic sub-satellite
point and Rscan should be the radius of curvature of the scan arc, but very good

accuracy (except for the asymmetry) is obtained with:

h0 = geocentric altitude

RScan = Re'= earth radius

and y measured from the direction of the geocentric
subsatellite point

A simple modification, using the concept of a scan angle bias, eliminates
most of the asymmetry while preserving the simple form of the distance expression.

The scan angle bias correction

Figure 2-8shows the scanning geometry as seen from the satellite position.
| MERIDIAN
|
: ORBIT PLANE

|

A

eocentfic subsatellite point
C

scan arc

Geodetic
subsatellite
point

Figure 2-8 The scan vector is biased from the normal direction

On the locally-defined reference sphere, ABC defines a right spherical
triangle. The angle 0 is the angle between the orbit plane and the meridonal
plane. The scan angle ¥ corresponding to point C is approximately

¥o=24¢sino

where A ¢ is the difference between geocentric latitude and geodetic latitude.
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Table 2-5. Total Ground Distance Perspective Error

Latitude at Error at Scan Edge in Meters
Center Scan Poleward Half Equatorial Half
0° -0.1 -0.1
9.9° -2.1 +2.1
19.8° -4.1 +4,2
29.7° -5.9 +6.2
39.5° -7.5 +8.0
49.3° -8.9 +9.5
59.0° -9.9 +10.7
68.4° -10.7 +11.6 -
77.1° -11.1 +12.2
81.8° -11.3 +12.4
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To put this into a more useable form, note that

i
AP tanap = (b tan § - tan P
1+ (g)Z tan2 9

(a2 - b2) sin § cos P =(a2- b

b2 cos2 Q + a2 s*in2

2

where P

Re

geocentric latitude

earth radius
equatorial radius = 6378.165 km.
polar radius = 6356.783 km.

and sin 8 = cos i/cos P
where i = orbital inclination.

Thus, one obtains

¥y = §52 - bz) cos i sin @ R2
[o] 2 2 e
a b
= 2.36258 10"'! sin ¢ Ri

The accuracy of this expression has been verified by numerical calculation
of the angle between the center scan vector and the scan arc.

To use this scan angle bias correction, one merely adds the bias value to each
scan angle (a poleward angle is considered positive) and then subtracts the appro-
priate biasing value from the ground distance. That is, the corrected distance
d ' (y¥) is defined by

d ' (?) =d (v + v) - d (¥o)

An empirically-derived bias constant provides slightly improved results:

vo = 2.11185 107" sin P RE
The asymmetry is essentially removed and the ground distance expression d' (v)

23
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is within 0.7 meters at all latitudes for a + 92 km. scan at an orbital
inclination of 81.8°.

2.3 High Speed Interpolation - Background and Key Results

When continuous data are being sampled rapidly, it is not always
possible to take samples at exactly the right points. For example, an
earth-imaging satellite may take data with equal scan angle increments
when data are really needed with equal ground distance increments. Thus,
it is necessary to estimate data values between the actual sample points.
One might also need to estimate the position of the peak value of the
data from samples near the peak, as when locating a landmark in an image.

Two high-speed interpolation procedures are commonly used for esti-
mation. The nearest-neighbor method uses the nearest actual sample as
the estimate and linear interpolation fits a piecewise-linear function
to the data to allow estimation. These methods are acceptable for certain
applications, for example, for data in which adjacent samples are very
highly correlated, but they are inadequate for interpolation of high-
resolution digital imagery.

A family of moderately-efficient interpolation procedures, known
as cubic convolutions, have been espoused by Rifman, et al, [2-3]. These
methods fit piecewise-cubic functions to the data samples to permit
estimation. Some of these methods have been shown to perform exceptionally
well on real satellite imagery. The simpler methods produce interpolation
artifacts, such as blockiness or blurring, which may even be visible to
the eye when the interpolated imagery is displayed, but these effects are
significantly reduced with cubic convolution. These methods seem to
have been derived somewhat intuitively, by requi?ing certain properties of
the fitted cubic polynomial (although Simon [2-4] has provided a stochastic
criterion for optimal interpolation of noisy data).

This study has characterized interpolators in a way which, for band-
limited data, explains the superiority of cubic convolution over the simpler
approaches and facilitates the design of interpolators with specified
frequency response characteristics. _

If f(x) is a continuous data function sampled at integer values,

. . -~
then the interpolation estimate f is defined by

o

Ax) = T (k) h(x-k)

S
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A
where h(x) is the convolution kernel. If f(x) is to be exact for each of
the actual sample points then h(k) = 0 for each integer k except h(0) = 1.
In view of this, the interpolator can always be expressed as

h(x) = w(x) sinc (x) = w(x)_éiﬁﬁﬂx)

mX

where sinc (x) is the kernel which implements exact interpolation of
bandlimited data when the sample set is infinite and w(x) is a "window
function" which tends to compensate for the errors associated with the

use of a finite sample set. Windows are used, for example, to design

a near-optimal finite impulse response digital Tow pass filter. The
significant points here are that windows can be used to design bandlimited
interpolators and that every interpolator can be associated with a (pos-
sibly discontinuous) window function. One can alternately regard the
function w(x) -as a window for the sample impulses or as a window for the
sinc function.

By varying the window, one achieves trigonometric polynomial inter-
polation or Lagrange polynomial interpolation or methods favoring
other classes of data. The cubic convolution method proposed by TRW [l-ﬂ
for Landsat-D approximates trigonometric polynomial interpolation, with
much simpler computation. It also corresponds quite closely to that
obtained using the optimal window for spectral estimation [2-5].

There are two points of detail. First, for maximum speed, the
convolution weights, that is, the samples of h used in the interpolation
sum

Fx) = I k) h(x-k)

k==co
can be stored in a lookup table. In this case, computational complexity
plays no role in the choice of the interpolator. Second, for correct
interpolation of constants, it may be necessary to modify the interpolator
slightly. There is a straightforward procedure for this. One can cal-
culate the mean of the data, interpolate only the deviations from the
mean and then reintroduce the mean. When the details of this are written
out, it is found that this is equivalent to interpolation with a slightly
modified kernel, and this kernel interpolates constants exactly.
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2.4 Use of ground control points for sub-pixel reagistration

TRW [1-1U indicates and this study corroborates that on-board real-time
image registration is probably limited to accuracies on the order of one
pixel. An obvious way to improve upon this is to incorporate ground control
points (GCP) into the registration process.

As a first step in investigating sub-pixel registration, a Titerature
search was conducted to ascertain the extent of previous work in this area.
The results of this search were very disappointing. No relevant literature
was revealed which related either to sub-pixel accuracy or to on-board use
of ground control points.

While the Tatter was not surprising the former was. As a result, it
was decided to investigate the differences encountered in using GCP's for
the attainment of coarse (~1 pixel) or fine (~%-pixe1) registration. The
following discussion pursues this in further detail.

In coarse landmark registration, one uses a large-scale landmark occu-
pying many pixels. If a Landsat scan comprises about 16 1ines of detec-
tors, the landmark is 1ikely to overlap several scans. A large body of
water with well-defined edges might be used as a large-scale landmark,
for example. Changes in water level will often produce significant image
variation.

The standard coarse registration procedure is to compare a small ref-
erence image with equal-size subimages of the data image to be registered
using the normalized correlation or sum of differences similarity mea-
sures. The subimage of the data image is called a "window". The window
and the reference image form a "window pair".

The similarity measure has the form

E XijRij (correlation)

or
E |Xij - Rij| (sum of differences)

where i,j define row and column coordinates relative to a corner of the
window (Xij) and the corresponding corner of the reference image (Rij).
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If correlation is to be normalized, it must be divided by

()
(=)

Normalized correlation should have a peak at the exact match point, while

and by

the sum of differences should have the value zero there, and, hence, re-
quires no normalization. Of course, these sums are calculated only for

a discrete set of windows, offset from each other by integer pixel values.
Thus, either method can Tocate the match point only within one pixel in
each dimension. Other techniques are used to refine the landmark registra-
tion point to sub-pixel accuracy.

The sum of differences similarity measure allows the use of an effi-
cient thresholding strategy. This similarity measure, combined with such
a thresholding strategy, is referred to as the SSDA (Sequential Similarity
Detection Algorithm). It is more efficient, by far, on any digital compu-
ter (it is about 50 times as efficient on a general purpose computer, be-
cause it has very few multiplications, requires no normalization, and
terminates computation quickly for grossly-mismatched window pairs).
Correlation is, however, preferred at low signal-to-noise ratios (say,

less than 2).
Coarse registration of several large-scale landmarks allows the

determination of a registration transformation, which registers the entire
image to roughly the same degree of accuracy (especially if the registra-
tion errors are primarily of low spatial frequency). By this procedure,
or by an alternative procedure, small-scale landmarks may be registered
within one pixel.

Small-scale landmarks can differ significantly from large-scale land-
marks. Examples of small-scale landmarks are highway intersections and
airports. These may fit into one Landsat scan of about 16 Tines (480
meters). Except for snow cover, they are largely invariant in spectral
signature.

In registration refinement, the emphasis can shift from minimization
of the probability of grosé error ("false lock") to minimization of the
fine-scale error because the target landmark is already known to lie in
an area without false match points.
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There seem to be three basic approaches to registration refinement.
One alternative is to choose a landmark with sharply-defined features,
fit some sort of smooth surface to the data image points and then deter-
mine the extremum of this estimated data surface, whose coordinates are
known. This procedure might be used, for example, in the case of a "beacon".
In general, Tandmarks may not provide sharp extrema, so that registration
errors may remain large.

A second method replaces the data function by the similarity measure
function for window pairs of moderate size (say, 16x16 or 32x32 pixels).

The similarity measure function (e.g., correlation) will usually have a
sharper extremum than the data function itself. A smooth surface is again
used to estimate the exact registration offset. ’

A third method is based on sophisticated edge detection techniques.

The method proposed by Tisdale [2-6] is of this type. His technique in-
volves three phases: an edge determination phase, an edge skeletonization
phase, and a matching phase. An accuracy of 0.2 pixel is claimed.

To achieve this accuracy, rather large Tandmarks comprising many city
blocks were required.

The following are variations on these techniques which may provide
some advantages for a real-time registration system.

If two-dimensional sampled data are interpolated via any convolutional
kernel, then the centroid of the interpolated function is exactly the cen-
troid of the sample impulses. Thus, it may be useful to provide the coor-
dinates of the centroid of the landmark reference image and estimate it
from the data. If correlation is used, the centroid should be a good first
estimate of the correlation-peak (ideally, the correlation would be an
autocorrelation and the correlation surface would then be symmetric).
Subpixel Registration Refinement

It may be necessary to use landmarks (ground control points) for
absolute registration refinement to achieve the desired registration
accuracy. The standard registration techniques, similarity detection
and correlation, are intended primarily for registration to one pixel
accuracy. What is needed is a "super-resolution" technique.

One possible approach is to use resampling techniques to simulate
high-resolution sampling and then use correlation (correlation is preferred
over similarity detection for the refinement process). Disadvantages
of this approach include: dependence upon a specific resampling technique
and computational complexity. (Three such calculations would presumably
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be used to determine an affine transformation for registration refinement. )
There is a simple alternative based upon the use of image features
which are essentially one-dimensional, such as highways and airport
runways or features which have well-defined edges, such as water boundaries.
It is a much simpler procedure to estimate the position, in one dimension,
of a well-defined linear feature. Given the coordinates of a point on the
section of highway and a vector indicating its orientation, one fits a one-
dimensional curve in the direction normal to the highway, using a two-
dimensional interpolator, and then estimates the highway's position in
one-dimension. This is the projection of the registration error vector
in the specified direction. Six of these one-dimensional landmarks will
usually define an affine registration transformation to register an entire
image (just as 3 full two-dimensional registrations do). Other advantages are:
- landmark availability '
concise landmark data packets
redundancy easily accommodated

Of course, twice as many of these one-dimensional landmarks must be
used to fix the same number of parameters.

The first step involves estimation of the edge's intersection with
each row and each column of a small sub-image (about 10 x 10 pixels).
This might be implemented as an analog process. Then, a least squares
linear fit would be used to estimate the true edge position. The map
projection distance error is then simply computed. This is the projection
of the local registration desplacement vector along the normal to the edge.

Ifws= (X) is the position vector in the original coordinate system
and w' = (;:) is the position vector in the affine-transformed coordinate
system, then

w' = Aw + wo

where wo defines the translational component of the affine transformation
and A is a non-singular matrix defining the scaling and rotation.

Six one-dimensional displacement estimations serve in general to
determine the 6 parameters of the transformation. The 6 equations are
of the form

(Wi - Wi) S Uy = (Awi two- Wi) U= di

where u, is a unit vector in the direction normal to the i'th landmark
edge, and di is the estimated displacement. (A is a 2 x 2 matrix and W,
has two components, for a total.of 6 parameters). ‘
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Questions about the existence and stability of solutions must of course,
be answered. Intuitively, one expects that the error sensitivity should
be good if displacement estimates are made in orthogonal directions at
~nearby points (and only in orthogonal directions for such points).

A Kalman filter might be used to permit inter-frame use of land-
mark displacement data.

The affine transformation could be used either to estimate the
complete displacement (not just the one-dimensional disp]acément) at the
Tandmark poﬁnts, or to re-register the image completely. The latter is
probably cumbersome for on-board real-time use.
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3.0 HARDWARE DESCRIPTION

3.1 Introduction

A functional description of one approach to the special-purpose hardware
required for radiometric correction and resampling of the image data is
presented here. TRW [1-1] proposed a three-stage approach to resampling, see
Figure 3-1, with along-scan and across-scan resampling performed separately,
each system accessing a common memory system called a skew buffer. This appears
to be a sound approach to achieving the required speed with minimal component
count and power dissipation. The documentation of the proposed implementation
for each stage is somewhat sketchy, and the hardware diagrams presented are
a combination of block diagram generality and gate-level detail. Data flow is
not obvious in most cases, the width of most data paths being left unspecified.
Control signals are not specifically defined as to their respective functions.
The report derives rather precise component counts from these diagrams although
the parts lists arrived at and compiled in Table 3-1 do not have an obvious
correspondence to the hardware diagrams. In the case of the radiometric correction
processor, the parts list included with Figure 3-2 does not correspond with the
entries for that subsystem in Table 3-1.

TRW presented algorithms for along-scan and cross-scan resampling in flow
chart form. Hardware diagrams of subsystems which are to implement these
algorithms are presented later, along with the radiometric correction and skew
buffer subsystems and a micro-controller to provide control signals for all of
these systems. The radiometric correction and along-scan resampling subsystem
diagrams are fairly vague. The other diagrams are much clearer, but all are
lacking in accompanying operational explanations. The integration of these
subsystems into a complete geometric correction processor is illustrated in the
block diagram in Figure 3-1. However, the hardware documentation of the individual
subsystems would be better understood from the inclusion of functional-level
block diagrams which do not include gate-level wiring details and considerations
of individual chip organization.

Each of the subsystems will now be considered in detail, and in some cases
changes or alternative approaches will be suggested.

3.2 Radiometric Correction Processor

TRW's approach to the design of a radiometric correction processor was to
store in RAM the breakpoints of piecewise Tinear approximations (see Figure 3-3) to
the sensor calibration curves. For each pixel intensity value, the RAM is accessed
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Figure 3-2. Radiometric Correction [1-1]
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Figure 3-3. Piecewise Linear Approximation to Sensor Response
Curve. Curve is Assumed Linear Between Breakpoints [1-1]
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using the sensor number and some of the high-order bits of the intensity. The
resulting breakpoints are used with the intensity value in a linear interpolation
process involving a subtraction and a muitiplication. The circuit which TRW
proposes to accomplish this is as shown in Figure 3-2. This diagram shows 256
bytes of RAM being used to store the breakpoints. The overall parts list (Table 3-1)
contradicts this and indicates that 512 bytes will be used. Since each sensor

has a unique calibration curve, and there are 112 sensors (16 per band, times 7
bands), even the higher figure would only allow storage for 4 breakpoints per sensor.
TRW states that "Because the response curves are smoothly varying, relatively few
preakpoints need to be stored." However, no further analysis is done to determine
just how many breakpoints should be used. The sample sensor response curve shown
in the report for illustration purposes contains no fewer than eight breakpoints,
which is probably a more reasonable estimate of the number required to achieve
acceptable accuracy. In order to achieve the required speed (100 ns/output), TRW's
design utilizes two multipliers running in parallel. This is no longer necessary,
as high-speed 8-bit multipliers with more than adequate speed and lower power
requirements are now available off-the-shelf. (see the survey of high-speed
multiplier chips, Table 3-2). The resulting power requirement for the

radiometric correction processor, using TRW's parts Tist (Table 3-1) data except
for the multiplier contribution is:

1 quad nand: 8 mw
1 hex invert: 12
2 4 bit adder: 48
6 8 bit latch: 815
1 4 bit counter: 93
1 8 bit multiplier: 1000
4 256 x 4 RAM: 800
1 dual JK F/F: 15
Total Power + 2791 mw

An alternate approach to radiometric correction which uses less power and

- results in greater accuracy with a much simpler design is shown in Figure 3-4.

In this scheme, the entire sensor calibration curves are stored in RAM, instead of
merely the breakpoints, thus eliminating the need for interpolation. Since there
are 256 points per sensor calibration curve and 16 sensors per band, a total of 4K
bytes of RAM is required for each band. The simple table Tookup scheme can be
implemented with off-the-shelf components using only two IC's per band. Since
each band will require a separate lookup table, they can be run in parallel. This
significantly reduces the speed requirement, allowing the use of Tlow-power CMOS
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Table 3-2. High-Speed Multiplier Chips

MFR Part no. £ Bits Speed (ns) Power (Watts)
AMD AN25S558 8 45 1.4
TRY MPY-8HJ-1 8 45 1.0
TRY MPY-12HJ 12 80 2.0
TRY MPY-16HJ 16 100 3.0
TRY (planned) 24.. 200 3.5

(The following multipliers include an on-chip accumulator
for performing sum-of-product computations).

TRY TDC1008J 8 70 1.2
TRNK TDC1008J 12 95 2.5
TRY T0C1010J 16 115 3.5
TRY (being considered) 16 450 1.0
TRY  estimates of 39 8, 12, 16 50-80 N.A.
generatijon (ECL)
performance
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/
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/
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-- entire calibration curve stored in RAM

-- CMOS static RAM such as Hitachi HM6116 (2Kx8):
access time: 120 ns
power: 175 mw

-- total power = 350 mw/band = 2450 mw

Figure 3-4. Alternate Radiometric Correction Processor (each band).
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devices such as the Hitachi HM6116 2Kx8-bit static RAM described in Figure 3-4.
Its speed is more than adequate and its low power consumption results in a total
power demand from all bands of only 2450, considerably less than that of the
original design.

The design suggested above 1is appropriate for correcting thematic-mapper
type of output, in which the number of sensors per band is relatively few
(16 in this case). However, if a line scanner is used, each of the 6000 cells
per 1ine for each band will have to be corrected. Clearly it would be
impractical to store an entire 256-point calibration curve for each of these
cells. However, as will be pointed out in the discussion of line scanner
specifications (Section 4.0 ), sufficient accuracy is obtainable from a linear
correction. This involves for each cell output subtraction of a constant
(corresponding to the dark current for that cell) and multiplication by
another constant (a scaling factor). Thus only enough memory to store two
constants per cell is required, along with a single adder and 8-bit multiplier.
As discussed above, the speed of multiplier chips available now is sufficient
for only one such device to be required for correction of all seven bands.
If the line scanner consists of 16 lines of 6000 cells per band, the
requirement is for 16x6000x2 or approximately 192K bytes of random access
memory per band.

3.3 Line Scanner Buffering

As discussed by TRW, the general purpose processor (GPP) updates the
distortion information which it passes to the resampling processors once
every scan. However, since the distortion information which the resampling
processors use during one scan was actually computed during the previous scan,
it is not current and must result in some loss of accuracy. It is proposed that
this situation be corrected by buffering one entire scan of image data to give
the GPP time to compute up-to-date distortion information for that data. This
buffer can be located either in front of or following the radiometric correction
processor. A

38



3.4 Along-Scan Processor

Before one can adequately comment on the design proposed by TRW or
consider alternative architectures, several points concerning the design of
the along-scan processor need some discussion. See Figure 3-5 for the
algorithm of the along-scan processor as presented in [1-1].

A question arises from the totally different architectures proposed for
the along-scan and across-scan processors. Although the distortion calculations
are somewhat different in these cases (the existence of the skew buffer takes
care of most differences), the interpolation procedure is very similar. It
would seem that similarity in the two architectures could prove cost-effective.

For the along-scan processor, a 256 x 8 ROM is used to store the 64 sets of
cubic interpolation weights. Each set of weights consists of four values which
are used to determine the actual intensity output at grid points. The set of
weights selected depends on the distortion calculated at a point. Eight bits
derived from the distortion calculation are shown addressing the ROM. Presumably
only one value of a set of four weights can be output at a time. Therefore, the
addressing scheme for this ROM needs to be augmented. A scheme similar to that
used in the across-scan processor for accessing interpolation weights would be
preferable.

On the across-scan processor, the distortion calculation supplies six
bits of the address with the other two bits being supplied by a counter desig-
nating the coefficient within each set of weights. As a pixel is used in an
interpolation, the correct weight is addressed in the ROM.

The need for the many multiplexers and their interconnections shown in
Figure 3-6 is not obvious. Only the MUX/L at the input to the adder seems to fulfill
a useful role in the interpolation calculation. If these multiplexers are in
fact part of an ALU chip and are not discrete parts, then their inclusion in
Figure 3-6 detracts from an understanding of the along-scan processor. If these
multiplexers serve in an active role, (as perhaps, gating to allow ROM coefficients
to be stored temporarily in RAM), discussion to this effect would have proved
helpful.

In any case, the written explanation of the design of the along-scan
processor is sufficiently lacking in detail so as to make its complete
review impracticable.
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Figure 3-5.  Along-Scan Resampling Algorithm (Each Band) [1-1]
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Useful additions to the hardware documentation are functional-level
block diagrams of the subsystems.
processor is shown in Figure 3-7.

Such a diagram for the along-scan
This diagram can then be refined in

a top-down manner into the detailed version shown in Figure 3-6.

This subsystem requires four machine cycles to‘perform each interpola-

tion, and functions as follows:

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

(Refer to Figure 3-7)

Input a new pixel value, simultaneously storing it
in the local file and forming the product of this
value with the currently addressed cubic convolution
weight. Increment the 2-bit input pixel counters.

Form the product of oldest pixel in local file with
currently addressed weight. Add this to the pre-
vious product. Increment the input pixel counters.

Form the product of the next-oldest pixel in the
local file with the current weight, and add this to the
previous sum.  Increment the input pixel counters.

Form the product of the remaining pixel in the local
file with the current weight. and add to previous

sum. Output this sum to the skew buffer. Increment
the output pixel counter. Compute @ new distortion

INPUT FROM
RADIOMETRIC
PROCESSOR

—

DX. Test for DX>1.
LOCAL GRID
FILE POINT
ADDRESS COUNT
LOCAL COUNTERS, /
IMAGE DATA ADDRESS vi O
FILE 2 LOGIC 6 DXo,
Afl)
COMPUTE

IXEL

INPUT P ALONG SCAN
2 POSITION COUNT DISTORTIONS
4 S CUBIC ; T
CONvVOLUTION | 7 I DX
WEIGHTS 7
MULTIPLY/ (RoM) 6
ACCUMULATE

Figure 3-7.

i

Along-scan processor functional block diagram
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If the test in cycle 4 for DX>1 is true, indicating that no output pixel falls
between two input pixels, then an alternate 4-cycle sequence is executed.
In this sequence, DX is decremented by one and a new input pixel is read in,
but no interpolation is performed and no pixel is output.

As indicated by TRW, the sample period is 600 ns. Thus, the time
allotted for each machine cycle is 150 ns. The main functional blocks
will now be discussed in detail.

The purpose of the local image data file is to buffer the number of
pixels required in the interpolation process, in this case four. In the
TRW implementation, this local file also functions to compensate for a dis-
placement between alternate scan lines. In addition, the incoming scan lines
for that implementation were multiplexed across sixteen sensors, thus
imposing additional size and complexity requirements on the local file design.
The TRW documentation does not indicate how these functions are handled,
nor is the operation of their local image data file clear at this time.

In the present discussion, buffered line scanner sensor output is
assumed, thus greatly simplifying the requirements of the Tocal file. It
js assumed that pixel values will be presented to the processor in order,
one line at a time. The four most recent input pixels must be saved in
such a way that their relative positional information is preserved. One
scheme for implementing this without using more than four machine cycles is
illustrated in Figure 3-8. Since a new input pixel will be stored in the
file on every fourth cycle, the file address must point to the location of the
oldest pixel in the file at this point so that it can be written over by the
new pixel. This is accomplished by using a 2 bit pixel position counter
which is incremented each machine cycle and a 2 bit offset counter which
is incremented in every fourth cycle. Thse two counters can actually be
implemented as one 4 bit counter as shown. Their sum (ignoring overflow)
is used to access the register file. Relative pixel position information is
preserved in the pixel position counter, which can then be used in con-
junction with the distortion DX to access the cubic convolution weight ROM.
Note that the register file must be of the type that can be read and written
simultaneously, with a fast access time, since on every fourth cycle the
data being written will also be read out and used in forming a product.

The multiply/accumulate function can now be performed on a single
chip, further reducing the complexity of the design from that proposed
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by TRW. Chips are now available off-the-shelf which can perform an 8

bit multiplication and addition in 70 nanoseconds (see Table 3-2). These
devices have on-chip registers and a flexible control structure, allowing the
required sum-of-products operation to be implemented with no additional

gates or Tatches.

This distortion computation is implemented in a straightforward manner,
following the algorithm depicted in the flow chart (Figure 3-5). As every 64th
output pixel is counted, the grid point counter is incremented, thus indexing
a new A(I) value from the RAM. These values represent the average distortions
over the 64-pixel intervals, and are accumulated in the adder-latch circuit
to produce the distortion estimate DX for the current output pixel. This 6
bit quantity is then used in conjunction with the 2 bit pixel position count
to access the cubic convolution weight ROM. The multiplexer is
utilized to enable the accumulator latch to be loaded with the initial dis-
tortion at the start of a new scan. When DX becomes greater than or equal
to one, the overflow signal is asserted, and the controller initiates the 4
cycle sequence in which a new pixel is input without generating a new output
pixel. The distortion total (DX) is implicitly reduced by one since the
carry bit (the integer part) is lost. Note that the A(I) RAM must be loaded
by the general-purpose processor (GPP) in between accesses by the along
scan processor. For this reason, a latch is used to store the currently
needed value of A(I), leaving the RAM free for writing in between accesses to
acquire a new A(I). These accesses will occur once for each output grid
point (once every 64 output pixels), or approximately once every 38 micro-
seconds, more than sufficient time for the GPP to write a new value to the
RAM.

Table 3-3 illustrates the operation of the along-scan pro-
cessor of Figure 3-8. The flow of data throughput processor is exemplified
using input pixels labelled A, B, C, etc. The example begins with the start of
a new scan line, at which time a special control sequence is executed which
reads in four new input pixels without generéting an oufput, and the initial
distortion DX, is stored in the distortion accumulator. After this the
cycle continues in the normal manner, except for occasional interruptions by
the occurence of distortion overflow.
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3.5 Skew Buffer

The skew buffer is a system of memory and addressing logic designed
to interface the along-scan processor to the across-scan processor. The
term skew refers to the fact that the scan lines are not exactly parallel
to the horizontal axis of the output grid, but are "skewed" slightly due
to various error sources. TRW identified the major source of skew in a
thematic mapper-based system as variation in the scan duration. This source
of skew is virtually eliminated in a line scanner-based system since each
entire line is imaged instantaneously, and the timing of the imaging process
in the along track direction is controlled electronically rather than
mechanically. Some skew will still be realized in a Tine scanner based
system, primarily due to attitude or "pointing" errors.

The consequence of skew on the design of the buffer is increased
storage requirement. Note that even if no skew were anticipated, the
buffer memory requirement would be four full lines data since the across-
scan processor requires four adjacent pixels in the vertical direction
for each interpolation, while the along-scan processor outpdts sequentially
in the horizontal direction one line at a time. If there is skew amounting
to as much as N pixels per line (deviation from parallel) in either direction,
the buffer storage requirement is increased by 2N full lines of data (6000 bytes
per line).

The skew buffer operation is shown schematically in Figure 3-9 and functionally
in Figure 3-10, showing two "snapshots" of the skew buffer memory during
operation. Data is written into the memory horizontally, one scan line of data to
one horizontal line of memory. Data is read out of the buffer four vertically
adjacent pixels per interpolation cycle, moving on to the next column with each
new cycle. Information on the amount of skew between the input and output lines
is used to determine which four pixels in a given column should be used in the
current across-scan interpolation. Using this information, the skew buffer
output addressing logic will occassionally shift the base address of its
four-pixel read sequence up or down (depending on the direction of skew). In
the example illustrated in Figure 3-10, a 12-1ine buffer is shown, thus
allowing for maximum of 4 pixels of skew in either direction. Memory
locations are labelled by a number which indicates which input scan line the
pixel data stored in it came from.
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Figure 3-9.

Skew Buffer And Address Processor. [1-1]
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Encircled groups of four pixels represent data which have been read from
the buffer and used by the across scan processor to interpolate a single
output pixel. Refer also to the flow chart in Figure 15 to understand this
example. Note that the write operations are performed in the same column as
the read operations, but the timing is such that the current input pixel is
written to the buffer before the read operations are performed.
Figure 3-10A shows the case of the output line being skewed the
maximum amount in the positive direction. For reasons of clarity, relatively
few pixels per Tine are illustrated in these examples, thus greatly
exaggerating the amount of skew per pixel. At the point in time that
this "snapshot" was made all of the encircled groups of four pixels have
been read out of the buffer and interpolated by the across scan processor.
As this was being done, new intermediate pixel values from scan line 12
were being written into the buffer in row 8. A new cycle has just started in
column M, where another intermediate pixel from scan line 12 has been written
into row 8 of the buffer, and the next step will be to read the four output
pixels from that column Tabelled 9, 10, 11, and 12. In Figure 3-10B the other
extreme case is illustrated: maximum negative skew. In this example, we
see the effect of wraparound addressing. This causes the buffer to
appear continuous across boundaries, the first row being treated as if
adjacent to the last, thus utilizing the available storage most efficiently.
Note that if in either of these two cases the skew had been greater than shown,
the point at which writing was being done would be "lapped" by the read
operations, causing invalid data to be read. This data would be invalid in
the sense that the four pixels used in an interpolation would not be adjacent
to each other in the input space. Since this could produce blatantly
incorrect values of the output pixel intensity estimates, it is important
that skew buffer sizing be designed for near worst-case expectations of skew.
The flow chart in Figure 3-11 outlines the algorithm for implementing the
operations illustrated in Figure 3-10. Note that all computations on row
indices are done modulo N, where N is the number of rows in the buffer.
This will implement the "wraparound addressing" effect referred to earlier.
At the start of a new line, the column counter COL is reset to 1 and the
write row index WROW is incremented (modulo N). The read row index RROW
is set to be behind the write row index by an amount equal to the maximum
skew to be accommodated in either direction plus 3. This combined with
a buffer sizing of 4+2 x MAXSKEW will assure that as long as the skew is
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Example of Skew Buffer Operation:
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AT START OF NEW LINE:

cCoL =1

WROW = WROW + 1

RROW = WROW - (MAXSKEW + 3)
DY =DY,

A =

WRITE NEXT INTERMEDIATE PIXEL
INTO BUFFER (WROW, COL)

¥

OUTPUT PIXEL = Z BUFFER(RROW + i, COL) X W(DY, i)
i=0

Y

COL=COL +1

DY =DY -1

RROW = RROW + 1

RROW = RROW -1

e

DY =DY +1 ——

Figure 3-11. Flow chart of skew buffer and across-scan processor
operation.
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within the design Timits no overlapping of new and old data will occur. The
value of the vertical distorition DY is set to its initial value DY, as deter-
mined by the general purpose processor (GPP). The value of DY, will be periodically
updated by the GPP, probably at intervals of M lines where M is the number of
lines imaged simultaneously by the Tine scanner. At these points the skew
per pixel estimate S will also be updated.

A functional diagram of the hardware to implement this algorithm and the
across-scan resampling is shown in Figure 3-12. This is somewhat similar to
the TRW designs as discussed in the next section. The major hardware differences
are the presence of a 4-byte local input file and associated addressing logic in
the TRW design and the distinction made in the TRW design between the vertical
distortion per pixel "aAY" and the "skew per pixel fraction AL". This latter
discrepancy is somewhat puzzling since AY and AL must in fact be the same
quantity and it is unclear why the TRW design incorporates the same vertical
distortion logic (consisting of two latches and an adder) in both the skew
buffer address processor and the across-scan resampling processor. In the
design shown in Figure 3-18, this logic is shared by both processors. The
absence of a Tocal input file in the present design is made possible by the
fact that for each interpolation cycle all four required input pixels are
read directly from the skew buffer. In the TRW design, each block of 16 lines
was processed one column at a time, requiring 19 input pixels to be utilized
in computing 16 output pixels. The proposed timing scheme (Figure 3-13) required
every 16th cycle to include four read operations from the skew buffer with no
write operations to it. This would cause the input address processor to fall
quickly behind the output processor, since only 15 new input pixels are
written to the buffer while 16 output pixels are computed. No explanation given
in the documentation resolves this apparent timing problem. It appears that
an effort was made to keep the required number of cycles per interpolation down
to 4, since the resulting 150 nanosecond cycle time was pushing the state of
the art in memory speeds. This resulted in increased hardware compiexity
and possible timing problems. In the present design a 5 cycle interpolation
interval is proposed, in which one write operation and four read operations
are executed, resulting in a 120 nsec. cycle time. It is believed that in
the anticipated time frame high-density RAM of sufficient speed will be
available.
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3.6 Across-Scan Processor

The algorithm and implementation of the across-scan processor
proposed by TRW are shown in Figures 3-14 and 3-15.

Since most of the functions of the across-scan processor have been
implemented in the skew buffer system, the remaining portion is very
simple. Both the accessing of input pixels and the vertical distortion
computation have been discussed in the skew buffer section. Al1l that
remains is the sum-of-products operation and the cubic convolution
weights addressing. These operations are implemented exactly as in the
along-scan processor. The complete skew buffer and cross-scan processor
diagram has been shown in Figure 3-12. Control lines are not shown
here for clarity, but will function in a straightforward manner to im-
plement the algorithm detailed earlier. Note that the registers DY
and S must have the capability of being loaded from the GPP.

3.7 Microsequencer

For completeness, the microsequencer proposed by TRW for overall
control is included as figure 3-16.
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4.0 SPECIFICATION DEVELOPMENT

4.1 Introduction

One task under the study was to develop, in close coordination with
NASA, a specification to be used for the procurement of IAS prototype
demonstration hardware. This section presents, in narrative form, the
major considerations to be incorporated in such a specification. The
considerations included here address only the radiometric correction and
geometric distortion aspects of the IAS, however, a more comprehensive
specification has been developed as an iterative process between RTI
and NASA and currently is a part of the procurement package. The following
paragraphs were designed to be used as candidate text for this package
and as a result are somewhat redundant with respect to other sections of
this report.

4.2 Background

NASA has throughout the past decade actively conducted programs
utilizing earth observing sensor platforms as a mechanism for reconnaissance
of earth resources and for observation of the earth environment. As
the spatial resolution of these sensors is increased to meet more demanding
applications, the volume of data collected by one of these platforms becomes
overwhelmingly large. Users are faced with ground processing delays
sometimes ranging from weeks to months before usable data is available.

To circumvent this, NASA has initiated the NASA End-to-End Data System (NEEDS)
program with the objective of improving the efficiency and effectiveness
of data throughput.

A primary element of the NEEDS program is the incorporation of on-board
signal processing into the satellite sensor platform design. This concept
will alleviate much of the demand for ground based data processing by real-
time processing the data as it is acquired and by reducing the quantity
of data which is telemetered to the ground processing facility. It is the
goal of the Phase II NEEDS program to demonstrate this concept.

The emphasis of this procurement is the on-board signal processing
hardware. required to perform the pre-processing functions of radiometric
correction and image registration. The processing requirement results
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from a gradually varying departure from linearity of each of the
photosensors. The fequirement for image registration results from
uncertainty in subsatellite position due to imperfect ephemeris
control and from error in sensor pointing due to variations in
attitude determination and control.

4.3 Objective

The objective of the Information Adaptive System Team Task is
to design, develop, and demonstrate an adaptive data control and
processing system which is capable of interfacing directly with
earth resources and environmental monitoring sensors to provide on-
board data control, formatting, calibration, preprocessing, data set
selection, and information extraction.

The specific objective of this procurement is to provide demon-
stration hardware to perform the preprocessing functions of radio-
metric correction and image registration in support of this primary
objective.

4.4 Technical Requirements

General

Figure 4-1 shows the principal components of the overall In-
formation Adaptive System. The emphasis of this procurement resides
in those functions provided by the data preprocessor. As mentioned
elsewhere, these consist of radiometric correction and geometric
correction. The functional organization of the preprocessor is
shown in Figure 4-2. This organization is the result of a previous
study and as such is representative. Bidders are encouraged to re-
view this approach and to take exception if appropriate and to suggest
alternatives where cost-effectiveness can be increased. Notice that
the general scheme is to perform a pierce-point calculation at several
points and then to interpolate to achieve ground distance along-scan.
A skew buffer is incorporated to compensate for yaw attitude variations
and earth rotation. Resampling is then performed along track to
rectify the data to an appropriate map projection. The resampling
processor is pipe-lined with parallelism for the seven bands.
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Radiometric Correction -

The interpolation circuit operates by each segment of a piecewise
linear curve being represented by its characteristic equation -
_ b
y=alx-"/)
and with the 3 most significant bits of the intensity being used as

address to the RAM to look up "a" and "b/a".
The design power requirements [1-1] are as follows:

memory 400 mv
multipliers 3300
latch 544
counter 93
gates 8
shift register 136
flip flop 15

4496 mw/band (~32 watts total)
An alternative design would simply use 256 bytes of RAM to store
the entire calibration curve, rather than just breakpoints.
For the 16 sensors on one band, a total of 4K bytes of RAM would
be required. Using the same 54LS207 chips that TRW proposed, this
design would consume 6400 mw per band (~ 100 watts total). However,
the following facts shouid be observed:

1) The use of bipolar memory chips is not reasonable, since there
are now MOS RAMs available with sufficient speed and much
lower power.

2) MOS technology can be expected to produce higher densities
and lTower power in the next 2 years, whereas the multipliers
are pushing the state-of-the-art in speed and cannot be ex-
pected to change much in that interval.

3) A table look-up calibration scheme is much simpler to build
and can be made much more tolerant to small drifts in speed
of components than the rather complex interpolation scheme.

It is considered reasonable to project that power consumption with
MOS technology is well under half the 6400 mw per band figure and that
space-rated hardware is within the state-of-the-art within the antici-
pated time frame.
Geometric Correction -

General - The raw scan data exhibit spacecraft-dependent and
perspective dependent distortions. To permit direct comparisons of

63



different images of the same region or of adjacent regions, the images
must be registered with a map projection. This map projection should be
based upon the reference ellipsoid (polar radius 6356.783 km, equatorial
radius 6378.165 km). The map projection shall be definable as an invert-
ible function of geocentric latitude and longitude. In determining the
true geocentric latitude and longitude which is being scanned, the follow-
ing factors are to .be taken into account:

ssatellite altitude above the reference ellipsoid

e variation of earth radius and curvature with latitude

* the direction of scanning with respect to the local normal
to the earth's surface

espacecraft attitude (including the alignment with the
sensor module)

sspacecraft ephemeris
eoptical distortion

Preferred Map Projection - There are additional constraints for an
on-board image registration map projection. It must provide nearly con-
stant scale throughout an image frame, utilize tractable computations
and one axis of the map projection should be nearly aligned with the
along-scan direction so that scan data storage does not become excessive.

On the other hand, some degree of distortion which is dependent
solely upon latitude and longitude can be tolerated if the distortion
is removable by subsequent re-registration on the ground. Indeed, some
distortion is necessarily associated with the plane representation of
a curved surface.

The Space Oblique Mercator Projection is a candidate map projec-
tion, but in its straightforward implementation, it is probably too
involved computationally for on-board saté11ite use.

Another candidate is the Oblique Mercator Projection for the
reference ellipsoid. For each image frame, the projection would be
established with respect to the satellite orbit plane's intersection
with the image at frame center. Earth rotation causes the ground
track to wander from the transformed equator, so that some additional
variation is introduced. This projection is probably still too complex
for this application unless simplified algorithms are developed.
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A simpler projection is the Oblique Mercator Projection for the
sphere. The additional distortion resulting from this projection, rather
than the one for the reference ellipsoid, is primarily latitude dependent
if a fixed mean earth radius is assumed. The scale in ground distance
units will vary slightly but images can be compared, because they have
the same distortion at the same ground position. This map projection
can be inverted for ground re-registration to further reduce scale var-
iation within a frame.

The full calculation of the map projection coordinates of an image
pixel is still time-consuming even for the latter projection. Thus, it
may be desirable to choose one or more interpolation algorithms to “fill-
in" between precisely-located points. It must, however, be remembered
that it is the map projection which is being interpolated, not a direct,
physical entity, such as ground distance.

This projection amounts to approximation of the reference ellipsoid
by a single sphere of radius approximately 6370 km. Thus, the along scan
map coordinate is proportional to ground distance on the approximating
sphere (each point on the reference ellipsoid is associated with the
unique point on the approximating sphere lying along the same line through
earth center).

Computation of Grid Constants - If the latter map projection de-
scribed in the previous section is chosen, then there are relatively
simple interpolation algorithms which calculate ground distance on the
approximating sphere.

Computer Compatibility - For each band, the resampling algorithm
must be used to process about 225 rows, each comprising about 6167 pixels,
in one second (this includes both the distortion calculations and the
resampling interpolation).

The line scanner will output, for each pixel, a value which is the
result of accumulating charge from photons emitted or reflected from this
area. The output of the next pixel sensor will be proportional to the
light from a nearby, non-overlapping area of the surface.

Geometric correction requires that the map coordinates of the cen-
ters of these areas, be known to within + 15m prior to resampling. This
could be accomplished by computing the map projection for each pixel
scanned. However, this is likely to be beyond the speed capabilities
of state-of-the-art computers. An acceptable alternative is to provide
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special purpose hardware to perform a linear interpolation between
points whose map coordinates have been found by more precise methods.

Each pixel thus requires two pieces of information; the intensity
at that point (output from the radiometric correction system) and the
map coordinates of the center of the pixel. An acceptable mechanism
for maintaining the map coordinates is to compute a "distortion", the
difference (in the a]dng-scan direction) between the coordinates of cen-
ter of the pixel being scanned and a reference grid point on the map projection.

Resampling for Intensity Correction - Since the output of a cell
of the scanner is proportional to the average intensity from an area on
the surface, it can be considered an estimate of the intensity (re-
flectivity) at a point, the center of the area.

Typically, the pixel centers (grid points) on the map projection
do not align exactly with the centers of the pixels being scanned, and
it is necessary to provide an estimate of the intensity function at a
point other than the center of a scanned pixel.

The estimate of intensity at a point having coordinates x, y can
be arrived at, by interpolation from neighboring pixels. In this context,
x refers to the along-scan direction, and y refers to the along-track
direction.

It is acceptable to perform the interpolation in the x and y
directions separately.

The interpolation shall be based on a sum-of-products scheme. The
estimated value of a pixel is the weighted average of the nearest four
pixels on the same line. Those values are then to be interpo]qted in
the along-track direction. The weights may be derived by a 513151
interpolation scheme.

Studies to date indicate that a weighted sum of the nearest four

pixels provide a good estimate of an intermediate pixel. A choice of

sin x
X

only under very restrictive assumptions concerning the sampling process.

(x + m for the pixel spacing) weights, provide an optimum estimate

The contractor shall review and recommend alternative approaches based on
actual sampling procedure and by the scanner. Final choice of an inter-
polation scheme shall be coordinated with the government prior to adoption.

The "along-scan processor" described in [1-1] represents an approach,
but not necessarily a final design, which is acceptable to the government.
The contractor is expected to review this design and provide an analysis
and recommendation to the government prior to adoption.
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Along-Track Interpolation - Just as in the along-scan direction,
sampled pixel centers cannot be expected to align exactly with map
projection grid points. Therefore, intensity interpolation must be done
in the along-track direction.

After pixels have been registered in the x direction by the along-
scan processor, they must be stored in a memory, so they may be inter-
polated in the y direction.

The skew described by TRW provides a mechanism for accomplishing
this, however, some exceptions must be noted:

(1) Due to the "instantaneous" sampling mechanism

of the line scanner, earth motion contributes
to blur rather than skew, therefore it is not

necessary to compute "skew per pixel" and
modify the buffer addressing in this way.

(2) Using a four line buffer with address, wrap-

around on lines should be sufficient if read-
before-write timing is properly done.

The contractor is expected to provide a detailed simulation of the
design to the government prior to hardware imp]ementatioh.

Accuracy Requirements - The map projection shall be defined by
invertible functions of geocentric latitude and Tongitude for points on
the reference ellipsoid. One of the coordinates of the projection shall
be in the along-scan direction, with the other essentially normal to it
(a skew factor may be necessary to accommodate attitude error and the
effect of non-normal scanning of the earth).

A full scan of data is accumulated during a single time interval
and then read out sequentially, so that earth rotation produces a slight-
1y selective blurring, but no skew.

The intra-frame variation for the ideal map projection shall be less
than five (5) parts in 10,000. That is, there must be a defined scale
factor for the frame so that ground distance on the reference ellipsoid
is proportional to separation on the map projection to this degree of
accuracy (much of this scale variation is "removable" by inverting the
functions defining the map projection). The geometric correction shall
be correct to within 0.25 pixel for spacing (1 o) and to within 0.5
pixel for absolute registratibn (1 6). That is, the map projection
coordinates shall be obtained to this degree of accuracy.
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In addition, at least three (3) pixels in each frame (separated
pairwise by at least 0.25 frame) shall be "position-tagged." That is,
their map coordinates, correct to 0.1 pixel (1 o) shall be provided,
allowing for more accurate re-registration on the ground.

Resampling interpolation should agree to 6 bits with the value
obtained by 4 x 4 pixel calculations using the exact value of sin x/x.

Use of Ground Control Points - If the position-tagging described
previously cannot be accomplished with the specified accuracy, then
there must be a provision for position-tagging refinement to the required
accuracy by correlation or Sequential Similarity Detection Algorithm
(SSDA) methods when GCP's are available. Performance will be degraded
when GCP's are not available.
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5.0 RECOMMENDATIONS FOR FURTHER RESEARCH

In keeping with the overall goals of the NEEDS program, the following
areas are suggested for further study:

1. The continued examination of state-df—the-art technology
developments for application to satellite on-board signal processing.
This is especially important in the 1light of the recent micro-
electronics advances being experienced in the VHSIC and VLSI areas.
Any meaningful pursuit of this area should include a survey of
related activities in the military community as well as develop-
ments in the private sector.

2. A key issue in the NEEDS Phase II hardware demonstration is
the performance evaluation. It is important to recognize the
proper evaluation procedures and perhaps more importantly the
performance evaluation measures. It is recommended that evaluation
standards be adopted and that uniform performance measures

~be established. These should consider image interpretation both
numerically, as by computer, and subjectively, as by the human
observer.

3. In that the scanning geometry associated with the thematic
mapper is not representative of future sensors, the impact of
linear and rectangular arrays on the on-board processing should
be investigated. Again, a survey of systems employed by the
military would provide a useful input.
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HIGH-SPEED INTERPOLATION OF SAMPLED DATA

A.1 INTRODUCTION

The problem of reconstruction of continuous data from a few regular-
ly spaced samples has been approached from several different viewpoints.
The most familiar are polynomial interpolation and bandlimited interpola-
tion. Digital interpolation does not generate a continuous reconstruction,
but it can optimally simulate an increased sampling rate for bandlimited
sequences (see [A—]]). In this paper, the bases of several interpolation
techniques are examined, and some of the resulting specific techniques
are compared for performance and for facility of digital implementation
(for maximum speed, interpolation weights are stored in a lookup table,
but if the weights must be computed as they are used, computer-efficient
interpolators can be chosen). It is shown that, to some extent, an
interpolator can be designed to perform well for a prescribed class of
functions. In particular, near-bandlimited* interpolators can be designed
for certain fregquency response characteristics, much as windowed digital
FIR low-pass filters are.

The interpolation may serve two purposes, reconstruction and noise
reduction, and these may be somewhat inconsistent goals. Given a stochas-
tic description of the signal and of the noise, an optimal interpoiator
(i.e., a minimum variance estimator) can be defined [A-Z], but signifi-
cant Tow-energy constituents of the signal may be severely distorted.

One of the most important applications of high-speed interpolation
is satellite image registration, and some of the terminology of this
paper is borrowed from the image processing literature. For a thorough
discussion of the sampling/interpolation. problem, see chapter 12 of [A-3].

*A near-bandlimited interpolator is an interpolator which is designed
by approximating, in some sense, the spectral response of the jdeal (infin-
ite) sinc interpolator. Such interpolators usually differ in the sense
in which they approximate a low-pass response, commonly in the spectral
distribution of the error of approximation.

Many near-bandlimited interpolators possess a response more like that

of a low-pass filter at almost every portion of the spectrum than that of
polynomial interpolators.
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A.2  NOTATION AND BACKGROUND

For notational convenience, the continuous data function f(x) is
assumed to be sampled at integer values f(k), for k=0,1,2,...,N-1.
The estimate f(x) is to be obtained for the range

ro|=

N
7" T <x«<

(it is assumed that other sample sets will be used for other ranges).
The estimator f(x) is usually definable as a convolution with a
kernel h(x):

f(x) = f(k)h(x-k)
k=~o

Thus, for each k, the kernel h(x) is sampled to provide an interpolation
weight as a function of the displacement d=x-k from the estimation

point x. ATl of the methods to be considered here are definable in this
way. The interpolation condition is that h(k)=0 for each integer k except
that h(0)=1. Kernels for actual implementation will, of course, vanish
outside some finite interval.

‘ If f(x) and h(x) are Fourier integrable, then the Fourier transforms
F F, and H of f f, and h, respectlvely, are related by

I:‘(.w)=H(w) E F(wtk) (normalized frequency) (A.2.1)
K=-w

(see chapter 5 of [A-4]). The well-known special case is

h(x)=sinc(x)= §iﬂ%%£l__
H(w)=3] if fw|< 0.5 (normalized frequency)

otherwise

which yields ideal low-pass bandlimited interpolation when an infinite
number of samples of f are available. The function h could also be
chosen to provide bandpass bandlimited interpolation (see [A-3], page 191),
but the low-pass case is always assumed here.

In image processing applications, one usually requires that

o

E h(x-k) = 1 for each x (A.2.2)

e

(i.e., constants are reconstructed - exactly), so that the mean intensity
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of an image is preserved. Unless otherwise stated, this condition will be
assumed.

Symmetry of the kernel is also assumed, except when an odd number of
sample weights are required. For example, if one uses nearest neighbor

interpolation, the kernel is almost completely defined by
1 if |x|<0.5
h(x) =

0 if |x|>0.5

but exact symmetry would require that h(0.5)=h(-0.5), which would lead to
the use of two sample values when these are equally displaced from the
estimation point. The "tie" may be resolved, for example, by defining
h(0.5)=1 and h(-0.5)=0. In this way, one uses a fixed number of non-zero
weights (except when the estimation point coincides with a sample point).

Some properties of the sinc function are listed here for convenient
reference:

sinc(0)=1
sinc(k)=0 for k#0

(=]

E sinc(x-k)=1 for each x

k=cw

sinc(x)=sinc(-x)

sinc(x+k)=(-])k< X > sinc(x) (a "recursion relation")
Xtk

©

f sinc(x)dx = 1

n+1

- CO

if a= J/‘ sinc(x)dx for n>o, then the sequence a, is
n
alternating, andlanlis monotone decreasing

From these properties, it follows that, for each n, there is a number

n< o <nti, such that ¢
sinc (x)dx=1.
Q

The significance of the last property is indicated in the following resuit,
which follows directly from equation (A.2.1);

if f(x) is constant and %(x) is continuous and
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@

/h(x)dx = H{o) = 1

-0

© [od

then %(x)= z f(x) h(x-k) = f(x) Z hix~-k) = f{x)

K:_m k:_m

(that is, the exact constant reconstruction condition is satisfied).
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A.3 APPROACHES TO INTERPOLATION

A.3.1 Introduction

Fourier analysis and the simple forms of the sinc interpolator
tend to iead one toward approximations of ideal bandlimited inter-
polation, but there are several points which should be made.

From the viewpoint of bandlimited interpolation, the continuous
data are contained in the infinite set of sample impulses, but they
are corrupted by high-frequency sampling artifacts. Properly -
sampled data are then completely separable from the sampling artifacts
by ideal low-pass filtering. Thus,

-]

f(x) = f(x) azf(k) sinc (x-k)

K=-e

The first problem is that one can neither obtain nor use an
infinite number of samples of f(x), and a truncated function cannot
be perfectly bandlimited.

Moreover, the continuous data may not really be.bandlimited.

For example, if the data have a constant slope (at least, locally),
"an ideal bandlimited interpolator would reconstrutt the data using

only low frequencies (i.e., the data's high frequency content would
be aliased into low freguencies). .

Also, the frequency response of ideal bandlimited interpolation
may be inappropriate because the contribution of noise sources may be
more significant at one portion of the passband. Simon[A-2] has found
that near-bandlimited interpolators are often inferior to near-linear
interpolators from the noise standpoint.

The following simple example may be useful: Suppose one uses only
two samples, f(0) and f(1). How does one best reconstruct f(x) between
0 and 1? " Intuitively, it seems unlikely that two samples provide much
information about curvature, thus, a reasonable choice is the linear
interpolator, which may be implemented by convolution with the function
h(x), where

~h(x) = §1-x]| for |x|< 1
0 otherwise

The complete piecewise-linear reconstruction of f(x) is defined by
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ow

)= D fnGeks 2y (s |xk])

K== x=1<k<x+1

In the (normalized) frequency domain, one has

Flw) = Hiw) Z F (wm)=sinc 2(m)z: F (wtm)
M=-c . m=-c

From this equation, it is seen that there will be aliasing of high frequency
content whenever F(w) # 0 for |w|> 0.5. If, for example, f(x) has exactly
constant non-zero slope (locally), it is not bandlimited and there will be

some of this aliasing. However, the high frequency content of h(x) causes
aliasing of low frequencies of f(x) to high frequencies, too. Wherever

f(x) is truly linear, it is interpolated exactly, despite the aliasing, whereas
near-bandlimited interpolation would be incorrect.

A thorough comparison of near-bandlimited digital interpolators and a spec¢ific
alternative, Lagrange polynomial interpolation, is contained in[A-1].

Practical approaches to interpolation can be divided into those which are
tied to the concept of bandlimiting and those which are not. Perhaps the most
familiar representatives of the two classes are trigonometric polynomial inter-
polation and Lagrange polynomial interpolation. Near-bandlimited approaches
are considered first.

A.3.2 Trigonometric Polynomial Interpolation

A real periodic function of period N which is also bandlimited, has
a finite Fourier series. The finite Fourier series expansion can be
obtained by means of a kernel:

1+2 Cos( 2nk )
:E:: = X (N odd)
h (x) = ]ik<_N_ N

N 5

]+2§ Cos (2_3_5 x> + Cos(mx) (N even)

T<keN
2

The special form of hN(x) for N even results from bandlimiting
exactly at one of the Fourier frequencies (see [A-4] for details). This
method is always based upon N samples, unless x is itself a sample point.
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A.3.3 Periodic Polynomial Spline Interpolation

This method fits smooth, periodic, piecewise-polynomial functions to the
data samples [A-i]. Smoothness tends to produce bandlimiting, as
the following development shows.
In view of equation(2.1), each non—hegative spectral model for
the data defines a unique "exact interpolation response", which will
not, in general, correspond to a finite impulse response interpolation.
The spectral model of interest here is

.2
F(w) = sinc M W)

for an integer m.  The optimal kernel is then defined by the aliasing
ratio '

. 2m
Hm(w) _sinc " (w)
E sinczm(uwm)
Meec
1 if w= 0
0 if wis an integer # 0
1 otherwise
2m
w
whm >
M=wcw
as m increases, sinc 2m(w') becomes more concentrated in the Jowpass

region and is aliased less. Thus, H_. (w) approaches the bandlimited ideal

m
as m increases.

Now, it wil] be noted that, for any positive integers k and N, the
expression Hm <§> is precisely the k'th attenuation factor corresponding
to N - point periodic 2m-1 degree polynomial spline interpolation
(see[A-5)). Thus, at the va]ues-%, the frequency response of periodic
pulynomial spline reconstruction interpolates the near-ideal Hm(w).

The case m=2, N=4 is one of the forms of the TRW cubic convolution inter-

polation (see section A.4.9 and [1-1]).

A.3.4 Infinite Sample Set Estimation

The sinc function is an ideal interpolator for an infinite set
of sample impulses of a properly bandlimited function. Having only
a finite set of samples, the "missing samples" must be estimated.
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If each estimate is an actual sample value, the mean of the samples,
or the mean of any subset of the samples, then constants will be recon-
structed exactly (see section A.2). This approach can be used to define
trigonometric polynomial interpolation (see section A.3.2), or other,
less familiar, techniques.

Example 3.4.1 Trigonometric Polynomial Interpolation

Repeating N samples periodically, one estimates f(k)=f (k mod N). This
leads to the estimator

F(x) =i f(k mod N) sinc (x-k)

K=o

CN-1

DL S sin(x-kHNj)

" _ _
=Z]: f(k) Z sinc(d+Nj)

k=0 jo-o

where, for convenience, the estimaticn displacement is denoted by d.

Because of the properties of the sinc function the latter sum can be re-
written as

j=-e

= sinc(d) (-1)NJ d
2 L
jo- ¢

nd Cot <Eg> sinc(d) if N is even
N

N
sinc(d if N is odd
sinc(d
N

(see(A-5)). Trigonometric identities may then be used to establish the
equivalence with trigonometric polynomial interpolation.
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Example A.3.4.2 Mean - Sinc Reconstruction

N-1
Let F(k)<F = & £k for k> N and for k<0,
k=0
and define
N-1
f(x)= z f(k) sinc(x-k) ZE: f sinc(x-k)
k=0 . k>N
k<0

The series converges because

sinc(x-k) = (-1)"k< X ) sinc(x)
x-K

Example 3.4.3 Step - Sinc Reconstruction
Let

fF(k) = ) (k) for 0 < k < N-1

' { f(0) for k<O
f(N-1) for k > N

This results in the estimator

o0

£(x) = £(0) Z sinc(x+k)

A.3.5 Truncated Sinc'Interpolation

If one truncates the sinc function, it no longer defines ideal
bandlimited interpolation, but it will reconstruct constants well, in.

the mean, if it is trunééted at a ' point o< for which
¢4

/ sinc(x) dx=1

- Q
(see section A.2).It will, in general, have a better overall frequency
response if it is truncated at an integer value (the truncated sinc
is then continuous).
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In either case, division permits a relatively efficient computation of
the set of interpolation weights, using the recursion relation

sinc (x-k) = (-1)'k X sinc(x)
x-k
for x # k

A.3.6 Windowed Sinc Reconstruction

It will be seen (section A.4.1) that simple truncation of the sinc
function can introduce substantial ripple into the frequency response,
but that the sharp-cutoff characteristic is well-preserved. Windowing
is a standard technique for exchanging increased transition bandwidth for
decreased ripple, and it can be used for the truncated sinc interpolator,
that is, a kernel may be defined as 4

h(x) = w(x) sinc(x)
where w(x) is one of the popular analog windows.

Simple truncation corresponds to the use of a rectangular window,
and it is optimal in the mean square sense, because of its sharp cutoff
(see [A-4]). Thisproperty is especially useful if the data spectrum is
essentially flat over the passband.

For many data types, including much satellite imagery, the
spectral density drops off rapidly with frequency, so that frequency
response errors near the edge of the passband are not as significant
(in the mean) as low frequency errors. One of the popular analog
windows might be chosen on the basis of a spectral model of the data[A-6]
(some interpolators are compared for a Gaussian spectral model in
section A.5.2 and in [A-2] ). The Kaiser window family is especially
convenient, since window characteristics can be varied with a single
parameter (see sectionA.4.12).

The kernels defined in this way will not, in general, satisfy the
constant reconstruction condition (Eq A2.2), but there is a simple remedy :
interpolate only the deviations from the mean. If h(x) = w(x) sinc(x)
and w(x) truncates the sinc function at * N/2 where N is the fixed
sample size, then the kernel h](x), where

hx) + 1 |1 D h(xek) | AF [x[<
hi(x) = N . 2
0 otherwise
implements this procedure. For many common windows, this results in only

a slight modification in the overall frequency response.
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A.3.7 Lagrange Polynomial Interpolation

This well-known technique fits an N-1 degree polynomial to N samples,
using polynomials which vanish on all but one of the sample points. This
form of interpolation is often not appropriate for functional approximations
because the behavior of the approximated function often differs considerably
from that of a low degree polynomial, even if the function has a Taylor's
series expansion.

Linear interpolation is the most familiar example. Step function or
nearest-neighbor interpolation can be regarded as another example.

A.3.8 Non-Periodic Polynomial Spline

A smooth, piecewise-polynomial reconstruction can be defined with
various non-periodic boundary conditions. A common one in the case of the
cubic spline is the assumption of zero curvature at the boundary. The
resulting (finite) reconstruction has the following property:

Among those interpolating functions which have a continuous second
derivative on the interval of definition, this cubic spline "curves the
least" in order to fit the data (for an exact statement of this property,
see [A-7 ], page 207).

High curvature is, of course, associated with high frequencies, and
this property suggests a tendency toward bandlimiting, which can be seen in
the frequency response (section 4.6).

A.3.9 Polynomial Osculatory Interpolation

One alternative to Lagrange interpolation which is sometimes useful
in approximating relatively smooth functions is Hermite, or osculatory,
approximation. For this method, a continuous function and its derivative(s)
are interpolated at several points. Since one does not have direct access to
the data in interpolation, one can only estimate the derivatives from the
samples, using finite differences.

A.3.710 Discrete Orthogonal System Interpolation

Suppose that a set Ve of real, continuous functions, k=0, 1, . . . . .,
N-1 defines a discrete orthogonal system over a finite set of sample points,
say, at integer values, j=0, 1, . . . . . ., N-1, that is
N-1
j{: wk(j) Yo(j) = 1 if k=g
3=0 0 if k#s
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then a function could be estimated from its sample values by
R N-1 N-]
£(x) = ' £(3) v ()] v (x)
K= Jj=

(discrete orthogonality ensures that %(x) interpolates f(x)). If one of the
Yy is the constant function, then constants will be reconstructed exactly.

To determine the convolution kernel h(x), rearrange the summations
in the definition of f(x) to obtain
N-1

N-1 .
2{: f(J v (3w (x)

j=0 k=0

-~

Since this estimation is to be used only on the interval { N -1, NJ , the dis-
placement d of the estimation point x from the sample poin% J de% rmines both
x and j. For example, suppose that N is even and M<d=x-j< M+1 for some integer

M. Then
MEj<x< M+j+l

and, hence, M+j=N -1

2
and x=d+j= d+N - 1-M
2
Thus, it is possible to define
N-1
h(d) = h(x-j) = ¥ (3) ¥y (x)
k=0

with h(d) = 0 otherwise (it is possible that h will have distinct analytic
expressions on each unit-length interval).

The first example has been covered elsewhere (section A.3.7), but it
provides an excellent example of the procedure.

Example 3.10.1 Quadratic Lagrange Interpolation
The Lagrange auxiliary functions are easily found:

wo (X) = X'] 2X"2

= -x{x-2)

=
—
—
x
L}

= X(x-1
2 82

-
N
—
x
~—
[}



‘PO(O)=] ‘i’o(])=0 w0(2)=0
v5(0)=0 w](1)=1 wf(2)=0
¥,(0)=0 v,(1)=0 v, (2)=1

It is clear that these wk(x) form a discrete orthogonal system.

A relatively simple expression for the kernel can be obtained.
For - 0.5<d< 0.5, j=1, and

2
= v, (x) = 2x-x2
= 2(1+d) - (1+d)2
= 1-d?
For 0.5<d<1.5, j=0, so that )
h(d) = h(x-0) = :E:: 9,(0) ¥, (x)
k=0
= (x-1) (x-2)
2
= (d-1) (d-2)
2

For - 1.5<d< -0.5, j=2, and
h(d) = h(x-2) = v,(x)

x(x-1) = (2+d) (2+d-1)
2 2

(1d[-2) ([d]-1)
2

Thus, a compact expression for h(d) is
0 for d < - 1.5
(ld]-2) (]d]-1) for - 1.5<d< - 0.5
2

h(d) = 1-d for - 0.5<d< 0.5

(ld]-2) (|d]-1) for 0.5<d<1.5
2

for d>1.5
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Note the slight asymmetry in the definition resulting from the asymmetry
of the estimation interval. It is absolutely essential because of the
discontinuous kernel. The overall reconstruction is not continuous, in general.
Example 3.10.2 Discrete Cosine Transform- Interpolation

The discrete cosine transform G of a function f(k) for O<k< N-1, is defined

by -
vz N-1
N f(m) _ for k=0
G(k) = m=0
N-1
2 f(m) cos 2m+1) ki
T N for 1< k< N-1
m=0
Thus, it is possible to interpolate a continuous function f(x) using
Fx) = 1 o) + 5’: G(k) cos |(2x+1) knm
V2 2N

k=1
Since expressions for the kernel are rather involved, they will not be listed
here.

This is a non-trivial application of the discrete orthogonal system
approach. Another famiiiar technique which could be defined in this way is
trigonometric polynomial interpolation, by means of the orthogonal system of
sinusoids of the discrete Fourier transform.

A.3.11 Attenuation Factor Kernel Definition

Suppose that one desires a periodic interpolant (i.e., the samples
are repeated to simulate an infinite sample set) and one can specify the
Fourier coefficients P_ of the desired (periodic) impulse response. Then
the exact Fourier coefficients Ho of the desired kernel h(x) are

Hm= N Pm F(m mod N)

where Fk denotes the k'th DFT Coefficient [A-5]. This corresponds to taking the
N-periodic DFT of the finite data sequence and then "correcting" the infinite
(but periodic) transform with the "attenuation factors" Pm.
For example, the attenuation factors

Pm = 1 form =20
sinc ¢ 1 3 form# 0
N 2+cos 2Im

N
result in periodic cubic spline interpolation (see section A.3.3). The kernel

is expressible as a cubic piecewise-polynomial (see section A.4.9). One of the
forms of TRW's cubic convolution uses this kernel.
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A.3.12 Direct Kernel Construction

An interpolation kernel should have the properties listed in section
A.2. Additional properties are sometimes chosen, such as exact constant
or slope reconstruction and smoothness conditions (to provide a smooth
reconstruction).

If one chooses a family of functions with the required number of
degrees of freedom, one may be able to solve the resulting system of
equations to define a kernel meeting all of the conditions.

Popular choices are cubic or quartic spline fits to the unit impuise
with certain additional conditions [A-2]. The TRW cubic convolution methods
are excellent examples of this procedure. They have been shown to perform
well on real images and are relatively computer-efficient. The system
responée for these methods can be quite close to that of the trigonometric
polynomial method, despite the computational simp]icity of the kernel.
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A.4 SPECIFIC INTERPOLATORS
A.4.1 Introduction

It has been shown that interpolation can be seen from many points of
view. The purpose of this section is to compare the interpolators which
result from the approaches described in the previous section. Performance
comparisons are left for section A.5.

The forms of several 4-point interpolation kernels are shown in Figure
A4-1. Note the great similarity of form which makes kernel comparisons
very difficult. The concept of windows which was useful in the design of
near-bandlimited interpolators (Section A.3.6), can also be used to facili-
tate the comparison of interpolators.

Every interpolator can be regarded as a windowed sinc function,
although the window is, in some cases, discontinuous. The window serves
as a "normalized interpolator", with the sinc function as the "normalizing
factor." Kernels can then be discerned and characterized readily.

Interpolators can also be compared in the frequency domain (this is
most appropriate for near-bandlimited interpolators, but can be used
generally).

For each of the kernels considered, the explicit form of the kernel
is provided, together with its "truncation window" or "normalized kernel
and its frequency response. Each of these is real and symmetric (except
possib1y'at a finite number of points), so only the positive half of each
domain is indicated.
A.4.2 Nearest Neighbor (Figure A4-2)

The kernel of this most primitive method is

h(d) = {] for -0.5<d <0.5
0 otherwise

This kernel reconstructs the data as a step function, and very serious
aliasing problems arise because h(x) is far from bandlimited. In imagery,
the moire' effects of spurious high spatial frequency components of the
kernel may be detectable to the eye as "blockiness". The performance may
be adequate for reconstructing highly-oversampled data.
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A.4.3 Linear (Figure A4-3)
Piecewise linear reconstruction may be defined by
1 - |d] for |d|<1
h(d) =
0 otherwise

This method cannot reconstruct curvature of the data function within a
sampling interval, of course. In imagery, the resulting lack of resolu-
tion may be visible to the eye as "blurriness".

A.4.4 Quadratic Lagrange Interpolation (Figure A4-4)
It was shown in example 3.10.1 that this kernel is

0 for d<-1.5

(1d[-1) (|d|-2) for -1.5<d<-0.5
2

h(d) = 1-|d|? for -0.5<d<0.5

(1d]-1) (ld|-2) for 0.5<d<1.5
2

0 for d>1.5
A.4.5 Cubic Lagrange (Figure A4-5)

The kernel is

(1-1d1%) (2-1d]) for|d|<]
2
h(d) =

(1-ldl)6(2-|9l) (3-d ) for 1<|d|<2

0 otherwise
This may be derived as in example 3.10.1.

A.4.6 Cubic Spline (Figure A4-6)

The kernel is
(1-1d]) (1+0.8 |d|-]d|%) for |d|<]
h(d) = (1-1d]) (2-1d]) (-I3]+ 2) for 1<]d|<2
0 otherwise

A cubic spline is formally fit to f(0), f(1), f(2) and f(3); these
polynomial weights for f(x), 1<x<2, can then be determined directly.

A.4.7 Cubic Osculatory (Figure A4-7)

Here, a cubic is used to fit data and estimates of the derivative.
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If f(x) is sampled at k=0,1,2,3 then f'(1) is estimated as 1 (f(2)-f(0))
2
and f'(2) is estimated as 1 (f(3)-f(1)). The kernel which fits a cubic

2
to (1) and f(2) and the estimates of f'(1) and f (2) is

2-5 |d[%+ 3 |d|° for [d|<1
2 :
h(d) = -3 1d| + 5 |d]¢ - ld|3 for 1<|d|< 2
2
0 othervise

This kernel is continuous and has a continuous derivative.
A.4.8 Trigonometric Polynomial (Figures A4-8a, -A4-8b, A4-8¢ and A4-8d)
The kernel (for N=2,4 or 6) is

LIy 2] 21kd
h(d) = N 2{: Cos (—N—%)+ Cos (nd)] for |d|< N
2
k=1
0 otherwise
For N=3, the kernel is
] 2nd for -1.5<d<1.5
h(d) - -§- <]+2 Cos (—3—>) -
0 otherwise

Note that, for the first time, the frequency response exceeds 1 for part
of the passband (N>3).

A.4.9 Periodic Cubic Spline (Figures A4-9a and A4-9b)

If two sample points are used, the kernel is

h(d) = 1-3 {d|%+2 [d]3 for |d|<1

0 otherwise
Note that this interpolator, whose response appears quite good, estimates
inter-sample curvature (from the two samples).
The 4-point form is a version of TRW cubic convolution D-[L The

kernel is

1-2.25[d|% + 1.25 |d|°  for |d}<]

h(d) =
3-6 |d[+3.75[d]%-0.75 |d|° for 1<|d|<2

0 otherwise
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The kernel and response are very similar to those of the previous method.
The resemblance is even more striking in the next case.

A.4.10 Periodic Quintic Spline (Figure A4-10)

The kernel 1is

32-60/d|%+45]d[*-17]d]° for |d|<]
n(d) = 3
2 i 5
-20(]d]-2)2 + 35(|d]-2)* + 15(]d[-2)°  for 1<|d|<2
32
0 otherwise

Compare with figure A4-8a

A.4.11 Truncated Sinc (Figures A4-1la, A4-11b, A4-11c and A4-11d)

The sinc kernel is truncated at 2, and the kernel is modified,

as described in section A3.5, for exact constant reconstruction. The

exact kernel is
1

sinc(d)+1 | 1- :E: sinc(]d]+k) for |d|<]
g -
h(d) = k—62
sinc(d)+1 [1- :E: sinc(]d|+k) for 1<|d|<2
4 k=-3
0 otherwise

A.4.12 Kaiser-windowed Sinc (Figures A4-12a, A4-12b, and A4-12c)

The kernel is defined as in A4.11, except that sinc(d) is replaced
by w(d) sinc(d) where (for the 4-point interpolator)

sinh ( B Vl-i%jz > for |d|<2
w(d) =

. d
(sinh R) 1--§

0 otherwise

This is actually a recently-proposed alternative form of the Kaiser window,
which is more easily implemented [A-8]. The original form was also tried,
with very similar results. .

A frequency response very similar to that of any of the near-band-
limited interpolators can be obtained by selection of the parameter g. The
ones selected here had near-asymptotic frequency responses near w=0 and for
large w.
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A.4.13 Hamming - windowed Sinc (Figure A4-13)

The kernel is defined as in A.4.11, with sinc (d) replaced by w(d)
sinc(d) where

0.54 + 0.46 Cos nd  for |d|<2
w(d) = 2

0 otherwise

A.4.14 Cosine - windowed Sinc (Figure A4-14)

The kernel is defined as in A.4.11, with sinc (d) replaced by
w(d) sinc(d) where
Cos 1d for |d|<2
4

w(d) =
0 otherwise

A.4.15 Cubic Convolution (Figures A4-15 and A4-9b)

These techniques were apparently derived by direct kernel construc-
tion [A-2], but one of the forms is periodic cubic spline interpolation
[1-1]. An earlier form approximated the sinc kernel by a smooth, piece-

‘wise-cubic function:

1-2d|? + |d|3 for |d|<1]

h(d) =
4-8|d|+5]d|?-[d|3 for 1 |d|<2

0 otherwise
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A.5 PERFORMANCE COMPARISONS

A.5.1 Digital Implementation Efficiency

Some of the techniques described in section A.4 are at least moderately
computer-efficient. It may, therefore, be feasible to compute the weights
as they are needed. Table A5-1 lists these kernels and Table A5-2 lists
the number of basic computer operations needed to implement them for image
resampling (in the case of the periodic quintic spline, which approximates
trigonometric polynomial interpolation, some optimization would reduce the
number of multiplications).

115



Table A5-1. Kernels of 1, 2, 3 and 4 Point Interpolation Methods

Center Portion Second Portion

Kernel of Kernel of Kernel
Nearest 1.0 0.0
Neighbor
Bilinear 1 - x| 0.0
2 Point 1 - 3X]2 + 2[X|3 0.0
Per. Cubic Spline
Quadratic . 1 - |Xx}2 1-1.5}X}+0.5*|X]|2
Cubic 1-2.5|X|241.5]X|3  2-4|X|+2.5]X|2-0.5]X]|3
Osculatory
Cubic

24-46|X]+27]x]2-5]x]?

- - 2 3

Spline 1-0.2[X|-1.8]X]|2+|X| 15
Cubic 1-0.5|X|-|X|2+0.5[X|3  6-11]X[+6/x]2-|X]3
Lagrange ' 6

Periodic Cubic
Spline (4 Pt) 1-2.25]X[2+1.25|X|3  3-6|X|+3.75]|X[2-0.75]X|3
(Original TRW Kernel) '

Periodic Quintic
Spline (4 Pt)

32-60]X|2+45]X|4-17]X|5S =20 (|X]-2)2+35(|X]-2)4+15(|x[-2)®
32 32 :

Alternate TRW Kernel 1-2]X[2+]x]3 4-8|X|+5]X|2-|X]3
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Table A5-2.

Operations per Reconstructed Pixel

"Nearer"

METHOD Decision Add./Subt. Multiply Divide
Nearest
Neighbor 2 0 0 0
Biljnear 0 3 4 0
2 point 0 6 9+ 4 0
Per. Cub. Spline
Quadratic 2 20 20+ 9 0
Lagrange 0 25 30 + 16 0
4 point
Cubic
Osculatory 0 25 35 + 16 0
Cubic Spline 0 30 30 + 16 0
Perjodic
Cubic Spline 0 25 30 + 16 0
(4 pt)
Truncated Sinc 2

: 0 2N N® + 2N 2N
(N X N Pixel) + 2 sinc calculations
Truncated Sinc

. 0 22 143 22
(NN + 5 pixels) + 2 sinc calculations
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A.5.2 The Gaussian Reconstruction Test

The Gaussian function

£(x) = 1 -x2/,

|
[1+)

with Fourier transform

Flo) = e 2

was used as simulated data and was reconstructed using various inter-
polators. The approximation was actually implemented in the frequency
domain, to show the spectral distribution of error. The test was also
run on the data function g(x) = f(x - .5), the function f shifted by
1/2 pixel.

The basic equation is

(=]

Flo) = H(a) e 3P Z exp[-(w + 2kn) /2-2kAnj]

- ®

where A is the data shift (either 0.0 or 0.5 here). The sum was trun-
cated to 21 terms.

The absolute spectral error was plotted. (Figures A5-2a and A5-2b)
Among the 4-point methods tested, the periodic cubic spline method produced
a minumum value of maximum error. The non-periodic spline method had
slightly less error, in the mean, with a slightly higher maximum value.
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A.5.3 The Bandlimited Reconstruction Test

Portions of each of two 256 x 256 pixel images (with 8 bit resolution)
were enlarged by a factor of 3.29 to another image of the same size. For a
reference enlargement, the sinc function, truncated at + 5.5 pixels,
was used.

The same parts of these images were then enlarged using several of
the alternative techniques and the results were compared with the reference.
Mean, mean square, and maximum disparities were noted.

Although one of the images was a portrait of a woman ("Terry")

(Figure A5-3a) and the other was a segment of a Landsat scene of North
Carolina (Figure A5-3b), similar results were obtained in the two cases.
The trigonometric polynomial technique and TRW cubic convolution came out
best, with other cubic 4-point techniques also performing well. Linear
interpolation did reasonably well, but the nearest-neighbor method did
very poorly, as expected (Table 5-3).
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Figure 5.3.1. Enlarged Portion of "Terry"

Figure 5.3.2. Enlarged Portion of Landsat Image
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Table A5-3

Bandlimited Reconstruction Test Results

Terry Landsat

Method Mean A Mean a2 Max A Mean A Mean A2 Max A
Nearest
Neighbor 3.45 11.34 189 0.49 0.87 7
Bilinear 1.14 1.63 34 0.33 0.61 4
2 Point
Per. Cubic 1.21 1.73 32 0.33 0.61 4
Spline
Quadratic 1.39 3.73 50 0.24 0.50 2
Lagrange
4 Point 0.92 1.33 19 0.25 0.52 3
Cubic 0.90 1.32 20 0.23 0.48 2
Osculatory
Cubic
Spline 0.89 1.29 18 0.28 0.55 3
Periodic
Cubic 0.84 1.24 16 0.23 0.48 2
Spline
Trig. 0.84 1.23 16 0.23 0.49 2
Polynomial
Discrete
Cosine 0.85 1.25 16 0.25 0.51 3
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A.5.4 The Unconstrained Reconstruction Test

The same two images were used for this test as for the bandlimited
reconstruction test.

First, the fourth row of the image was reconstructed using alternate
pixels of the first, third, fifth, and seventh rows. The nearest pixels
used for reconstruction were one row and one column away from the reconstruc-
tion point (this is the "worst case"). The estimated row was then compared
with the actual fourth row of the image. This process of reconstruction
of one row out of seven was repeated along the image, for a total of 9000
reconstruction pixels (to avoid end effects, only 250 pixels of each row
were used in the comparison). The mean, mean square and maximum disparity
were again noted. It should be remarked that the outcome of this test
depended solely upon two values of the interpolation kernel, namely, h(0.5)
and h(1.5), because only the worst case offset is used. Also dropping
alternate rows and columns raises the image bandwidth by decreasing the
correlation of adjacent sample values.

With the "Terry" image, the kernels with near-asymptotic responses
performed best, with the trigonometric polynomial and TRW cubic convolution
techniques also doing well.

With the Landsat image, the two-poiht methods did best, the near-
asymptotic cubic methods were next, and the other cubic methods also did
well (Table A5-4).
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Table A5-4

Unconstrained Reconstruction Test Results

Terry Landsat

Method Mean A Mean A2 Max A Mean 4 Mean A%  Max A
Nearest 10.03 865.47 231.00 1.05 2.46 9.00
Neighbor '
Bilinear 7.06 350.47 123.25 0.82 1.24 8.25
2 Point
Per. Cubic 7.06 350.47 123.25 0.82 - 1.24 8.25
Spline
Quadratic 7.30 409.89 145.89 0.88 1.41 7.56
Lagrange 6.97 349.68 123.47 0.84 1.28 8.54
4 Point
Cubic
Osculatory 6.97 349.68 123.47 0.84 1.28 8.54
Cubic 6.99 350.13  123.5] 0.85 1.31 8.59
Spline
Periodic
Cubic 7.03 351.22 126.36 0.87 1.36 8.68
Spline
Trig. 7.06 352.00 127.99 0.88 1.39 8.73
Polynomial
Discrete
Cosine 7.06 351.99 127.99 0.88 1.39 8.73
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A.6 Conclusion

Near-bandlimited interpolators can be designed to have desirable
frequency response characteristics by windowing the sinc function. The
simple rectangular window yields a sharp-cutoff fréquency response with
substantial penalties in accuracy at low frequencies. A Kaiser window
can be used to obtain a very low ripple response, with a wider transition
band. A good compromise is the trigonometric polynomial interpolation
window. One of the forms of TRW cubic convolution is very similar in
performance to trigonometric polynomial interpolation. Spectral models
for the signal and for the noise may aid in the design effort.

The use of other types of interpolators is based upon a priori in-
formation about the class of functions to be interpolated. The discrete
orthogonal transform method, the attenuation factor method, direct kernel
construction, or one of the classical types of polynomial interpolation
may be used in this case. Another possibility is to fit a least-squares
line, parabola, or other curve and then to interpolate only the devia-
tions of the samples from the least-squares estimate, using some appropriate
interpolator.
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APPENDIX B

SCANNING GEOMETRY CONSIDERATIONS
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Along-Scan Distance Expression

From the geometry shown below,

d = along scan distance

Re = earth radius (latitude dependent)
Ro = orbital radius

p = scan distance to earth

By law of sines (all angles in radians),
Re - RO = Ro

Siny Sinﬁ-qwg> Sinfy+d
Re Re

Re Sin<%+g_> = Ro Sin¥

Re

Determine, d = Re [Sin'1<R_o siﬂ)-\y]l
- Re

Tnis i< much simpler than the expression given by TRW [1_1].
Also this along-scan distance function is invertible:

y = ARCTAN
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Since Re is essentially constant over a scan, the coefficients need be
calculated only once per scan with only 2 multiplications and a division required
at each point. (Polynomial approximation would use 7 multiplications at each point.)

This expression for d is accurate to within 5 meters. For example,

with Re = 6378
K = 7075/6378
B = -.0550483406
A = .3349163686
¢ = 91.2077 km

(Compare the exact value d = 91.2123 km and the polynomial approximation
value d = 91.1803)

with Re = 6357
K = 7075/6357
B = -.0573081146
A = .3346245445
d = 93.9589
(Compare the exact value 93.9636 and the polynomial approximation value

93.9312)

The error is approximately 32 meters for the polynomial approximation in
both cases.

Note that this approach is approximately six times better than the TRW
approach.

Further Along-Scan Distance Expression Considerations

As discussed previously, image resampling requires an accurate expression for
along-scan distance. The primary factors to be considered are:

e earth modeling
e scan direction

Over a 185 x 185 km region, the earth's curvature has a negligible effect
on the along-scan distance, but earth-center scanning (in contrast with earth-normal
scanning) can produce a 20 meter error in the along-scan distance at certain
latitudes. For example, if the scan at 60° latitude were Tongitudinal, the North
half-scan would be about 75 meters longer than the South half-scan. The satellite
heading is approximately 18.5° so that non-longitudinal scanning eliminates a
large part of the difference. The remaining error is approximately 75 sin (18.5°)
meters.
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The along-scan distance expression may pe used to avoia
the direct computation of latitude and longitude at most points. It is
thus useful to optimize the approximate calculation of d.

It is suggested that a rational function approximation be chosen for

each scan, as descripbed below, to improve both accuracy and etficiency.
Starting with the series

sin”!(k sin x)ax _ ;o (KP+k) L2, K(9KE-1)(k
(k=T)x : 120

2 4

-Dx o

one obtains the rational function approximation

sin'](k sin x)-x = (k=1)x 1+Ax°
14Bx2

where B = (1-k)(9k%-1)/20
A =B+ k%+k
5

Here, k = Ro/Re and x = y, the scan angle,

d = Re|:s1'n']<33 sin\y> —w]; (Ro-Re)v¥ 1+Aw2
Re 1+BW2

with A and B defined as above.

This may be optimized to

B-(Ro-Re)A

Q
1]

<

xR

1/g + ¥

The following discussion details a compensation algorithm for non-normal
scanning. The error due to non-normal scanning depends not only upon latitude,
but on scan line orientation (via satellite heading).

The along-scan distance expression remains quite simple and can be used
more often per scan, replacing cruder approximations.

The effect of changing the scanning to normal scanning would be to. fit
6 = 0 in the expressions.
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Latitude/Longitude And Along-Scan Distance

First, ignore earth motion. Direct determination of latitude/
longitude as detailed in earlier memo:

Solve:
2
2 2 , a“ 2] 2
a2
+ 2 [XOUx + Yko + Bﬁ'zouz] p
+ [X 2y 2. éE-Z 2. az] =0
0 ] 2 0
b
for scan vector length o
2C

-8 +v82 - 4AC

where A, B, C are the quadratic, linear and constant coefficients above.
The intersection with the reference ellipsoid is at

X
1]

(Xy + Uges Yo+ Upps 2o+ Upp)

=
|

Z0 + Uzp

C-arctan WI——
Y +Up
= u t + arctan S A
e X0 + pr

The previous calculation is to be done at mid-scan and at one scan

>
I

extreme.
If RIo and RI+ are the intersection points,

Tet

d, = ||R

¥ 1+ ™ Rpoll
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o (satellite)

VA
I+ Rio
Solve for p', the perpendicular distance from RO to the line

R

joining RI+ and RIo

' > > <—> +><—> +>
po= < o RI;)' A Riy - Rlo

R -R)
1Ry, - Ryl <“ fo

pointing altitude & = arccos{&—

Note: o' = P,COS® where © 1§ ngular offset due to earth center-
o )

The along scan distance expression is the invertible expression

(Flat Earth Assumption):

= o' [tan (e+¥) - tan 6] + Vcos o At

3
p'[‘v+£e—f—l)—+—2(e+w)5]thosaAt

3 15

[N
$

[

where At is the time from mid-scan (see [1-1] page 6-16).

Inverse of Along-Scan Distance .

y = arctan (d : ch? a At | tan e) -9

A suitable approximation for arctan is

arctan X = X - 3 + T

7 5

error < 107 * 700 = 7 * 10°° km
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This expression eliminates the need for iterative evaluation of the

along-scan distance expression ([1-1], Page 6-17).

(Note: d + Vcos a At is the true along-scan distance, taking earth

rotation into account.)
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APPENDIX C

* RESAMPLING CONSIDERATIONS
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Resampling Algorithm

Resampling interpolation by approximation of the sinltx)/Ax kernel
using polynomials has been established as a method which avoids loss of
resolution and blockiness. The modifications of the TRW convolution
methods to be described here relate to the computational efficiency and
precision of the method, not to its theoretical basis.

A better polynomial approximation to sin{wx)/mx for this application

is
[CROLR for |x|<1
P(x) = 2
D-0x[-2) 1 (Ix]-2)  for 1<|x|<2
2

The polynomial approximation P(x)
.interpolates sin(nx)/rx at 0,41, +2
.interpolates its derivative at 0, +1
.posesses a continuous second derivative
.requires only two multiplications and a shift
.is more accurate at all points
.has a sharp cutoff lowpass characteristic
A second improvement may be realized by utilization of the property:

sinm(x+k) - (_1)k<x ) .sin(nx)\
X

m{(x+k) +k X

/

Three out of four evaluations are avoided, but a multiplication and a
division are necessary. The saving is not great, but if the polynomial
P(x) is evaluated only for the nearest neighbor input pixel, and the
relationship

x+K
is used elsewhere, the very good aécuracy of the approximation on [-.5, .5]
is automatically transferred to the whole range [-2, 2]. The actual
approximating function in this case is no longer a polynomial, but a
rational function.

P(x+k) = (-1)"(* P(x)
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For 16 pixels, the total computational tallies are:

TRW Method Revised Method

8 weights ~ 24 mult. 2 weights ~ 4 mult.+2 shifts
+4*16 mult. 6 weights ~ 7 mult.+6 divides
+4*16 mult. +4*16 mult.

= 152 multiplications +4*16 mult.

= 139 mult.+6 divides+2 shifts

These tallies ignore the edge effects at scan edges; each method would
be similarly affected by these edge effects. At scan edges, output inten-
sities must be interpolated from as few as two input values.

The subject of resampling has been pursued in-depth during the study
as described in section 2.3 and in appendix A.

Considerations in Fast Resampling

The material pfesented in this section was motivated by the need to

determine what performance was achievable utilizing fast resampling techniques.
The techniques considered are essentially variants of known techniques.

There are several preliminary conclusions to be drawn from this study.

If the data are sampled at four times the Nyquist rate, quadratic resampling
using 3 x 3 points gives good results because low freguencies are not heavily
aliased.

[f the data are sampled at twice the Nyquist rate, cubic spline fitting of
the data is to be preferred.

If the data are sampled just at the Nyquist rate, the TRW method or the
periodic cubic spline method provides good performance over the passband.

The periodic cubic spline method results in periodic cubic spline reconstruction
of the data and, hence, is also quite appropriate for use in the final phase of sub
pixel registration using ground control points.

Methods are very easily combined to achieve average properties.

Fast Image Resampling Techniques

The goal of image resampling is to reconstruct continuous image data from
discrete samples. The continuous image will not, in general, be reconstructed
precisely (unless it has an analytic form involving N parameters and N samples are
taken) because the exact resampling method for properly bandlimited data utilizes
a weighted combination of an infinite number of samples v:ith the weights given by
the sampling kernel

sinc (x) = sin mx/7x
where x is the displacement from the sample point, in pixels.
The resampling methods to be considered here use very few sample points
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(1, 2, 3 or 4) with a sampling kernel which, in some sense, approximates the sinc
function. Adaptive methods and methods using a variable number of sample points
are not treated here.
These methods may be grouped into three categories:
1. Methods based upon standard interpolation techniques (e.g., linear,
quadratic, cubic spline)
2. Methods based upon approximation of the exact resampling kernel (the

sinc function)
3. Hybrid methods obtained by combining techniques of the previous types

in standard or non-standard ways (certain standard combination methods
will be described below).

Considerations

The major consideration is, of course, accuracy, but some techniques work
very well for certain image types (e.g., polynomial interpolative techniques tend
to be good at low spatial frequencies) but not for others (e.g., polynomial
interpolative techniques tend to be poor near the edge of the passband.).

The best kernel in the least-squares sense is the truncated sinc function
(see [C-1], p. 250) despite the fact that it behaves rather poorly for certain
spatial frequencies.

Most of the techniques considered here resample constants exactly. The
truncated sinc function does not, however, have this property. Kernels with this
property preserve the mean intensity of an image and allow true intensity variations
to stand out from extensive areas of very little change. The interpolative
methods also resample low-degree polynomials or certain trigonometric polynomials
exactly. ‘

A common practice in digital filter design is to minimize the maximum
frequency response ripple (i.e., error) in the passband or the stop-band or both.
The untruncated sinc function has the response of an ideal low-pass filter and
approximations to it can be expected to have somewhat similar characteristics. Thus,
if the image has a relatively flat bandlimited spectrum, it is reasonable to judge
a kernel by this minimax criterion.

The Tow-pass filtering effect also tends to minimize "noise" due to detector
non-uniformity, however, the very filtering which tends to eliminate the noise
tends to smooth sharp "edges" in the data. These edges are frequently desirable
constitutents of ground control points ("landmarks") used for high precision image
registration by subimage matching. '

It is probably safe to summarize the situation by saying that constants ("DC")
should be resampled exactly, "edge frequencies" should be resampled with adequate
accuracy for image registration and other frequencies should be resampled with an
accuracy dependent upon the spectral distribution of typical data.
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It should be remarked that the data are not intensities, but intensities
corrupted by optical distortion, smoothed by integration over the area of a detector

and then corrupted by detector noise. Resampling must be based upon the spectrum
of these data.

Another error source in resampling is the quantization of the resampling
weighfs. These weights must be computed, with some roundoff error, from the
resampling kernel, or stored, with some degree of precision, in a lookup table.
The displacement value, upon which the weights are based, is itself rounded off
before computation or table lookup. Moreover, most of the three or four point
methods considered here will sometimes yield spurious negative intensity values
(since some of the weights are negative).

Only fast resampling techniques, -such as those required for on-board
satellite real-time resampling of image data, are considered here. Much better
results could be had using standard low-pass filter design techniques with many
sample points. If absolute maximum processing speed is required, the resampling
weights must be stored in a lookup table (unless the weights are trivially related
to the displacement, as in nearest-neighbor or linear 1interpolation resampling).

A1l of these techniques (except the one or two point methods) have end
effects; that is, the method cannot be extended all the way to the end of a scan
line. The alternatives are to overscan (i.e., take data slightly beyond the ends
of the line of desired sample points) or to adopt another method at the end of the

line. A simpler implementation and greater accuracy are achieved if the data
are overscanned by a few pixels.

Nearest Neighbor Résampling

The most primitive technique 1is to estimate the image value at a desired
point as the value at the nearest actual sample point. The operation may be
described by a kernel
1i4f |x| < .5

h{x) =
(x) 0 otherwise

vith the understanding that "ties" (i.e., sample points which are equally displaced ‘
from a desired point) are to be resolved in some way. Very serious aliasing
problems arise because h is not bandlimited.

This kernel reconstructs the data as a step function. The moire  effects
of spurious high spatial frequency components may be detectable to the eye as
“blockiness" although the resolution is adequate for some purposes, for example,
in resampling highly-oversampled data.
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Linear Interpolation

This method reconstructs the data as a piecewise-linear function which is
exact at the sample points (in two dimensions, the reconstruction is piecewise-
planar).

The kernel associated with this method, which is somewhat closer to being
bandlimited than the previous one, is

1-|x] for |x] <1
hix) = 0 otherwise
It gives poor resolution, even for moderately low spatial frequencies, because

it does not reconstruct the curvature of the data function within pixel intervals.

Two Point Cubic Interpolation

An improved kernel is obtained by fitting a cubic to two points with the
assumptions:
o the sampled data are exact
e the derivative is equal to zero at the sample points
(if one estimates the derivative better, one gets ordinary linear interpolation,
which yields poorer results)
The kernel is
h(x) = (1-1xN2(1+2 |x]) = 1-3[x]% + 2]x]3 for [x]< 1
0 otherwise
(the graph begins to resemble that of the sinc function).
The kernel h is almost perfectly bandlimited at a normalized frequency of
1 (better than either nearest neighbor or linear interpolation) and its resolution
is roughly the mean of that for these two techniques.
The major disadvantage of this method is the computation or table lookup

for the weights. .

Quadratic Interpolation

This method is akin to Simpson's rule of numerical integration. As with
Simpson's rule, a parabola is fit to three data points with good results. The
resolution is very good, but there is significant stop-band ripple, although
less than with the nearest neighbor method.

The kernel is discontinuous

1-[x|? for [x| < .5
h(x) =) (22 [x])(1=|x|/2 for .5 < |x| < 1.5
Here, as in NN, ties must be decided; only one point can be weighted using the
1-|x|2 branch of the kernel.
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Cubic Interpolation

A cubic polynomial is fit to four data points using the kernel
(1-|x|2)(2-|x|)/2 for |x| <1
h(x) = { (1-]x|)(2-|x|)}(3-]x[)/6 for 1 < |x]| < 2
0 otherwise
This kernel is continuous and the approximation of the sinc function is quite
apparent. Resolution is not as good as that of quadratic interpolation, but
there is very little stop-band ripple.

Cubic Osculatory Interpolation

The name "osculatory” is used because a cubic is used to fit the data
function and its derivatives at two points. The derivatives are estimated, using
the mean value theorem:

fz = (f3-f])/2

£ = (f,-F,)/2

where f], f2, f3, and f4 are the data points, respectively.

The kernel which results in osculatory interpolation of the data at the two
middle sample points (i.e., the kernel which fits a cubic to f2’ s fé, fé) is

(2-5|X]2 + 3]x|3)/2 for |x] <1
h(x) ={2-4|x|+ 2.5]x|%-0.5|x|> for 1 < |x| < 2
0 otherwise

(1-1x])(2 + 2|x|-3|x|2)/2 for |x| <1
={(1-1x])(2-x])%72  for 1 < |x| <2

0 otherwise

This kernel 1is continuous and has a continuous derivative, but its resolution is
still not as good as that of quadratic interpolation. Its frequency is virtually
free of ripple.

Cubic Spline Interpolation

Because of the minimum-curvature property of cubic spline interpolation,
fitting cubic splines to four data points tends to bandlimit the data, thus, the
action of the sinc function is approximated. '
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The kernel is
(1-1x)(1 + .8]x]-|x|?)  for |x| <1
h(x) ={ (1-|x|)(2-]x|)(-|x[/3 + 4/5)  for 1 < |x| <2
0 otherwise

The resolution is excellent (better than that of the quadratic kernel) but there
is a very small amount of stop-band ripple. The derivative of h is discontinuous
at 0 and at 1.

Cubic Spline Approximation of the Sinc Function

Instead of trying to bandlimit the data, as in the previous example, one
can try to bandlimit and truncate the sinc function. This method was proposed
by TRW and seems to provide good overall performance. The TRW kernel is

=-1xN + x| - 1.25[x|2) for |x| <1
h(x) ={ (1-]x|)(2-|x])%(0.75)  for 1 < |x| < 2
0 otherwise
The kernel and its derivative are continuous.

This kernel sacrifices some performance at very low spatial frequencies to
obtain good performance throughout the passband.

TRW has also used another kernel

(=[x + x| = [x]?)
: ={<1—|x|>(z-|x|)2
which has more ripple and a sharper cutoff (it actually provides a more accurate
approximation of the sinc function).

Trigonometric Polynomial Interpolation

A four-point Fourier transform of the four sample values yields a
trigonometric polynomial reconstruction of the data which interpolates the data
at the four sample points. The data, of course, may have constituent frequencies
which are not harmonically related to the sampling frequencies.

The kernel is

0 + cosmx + 2cos(nx/2»/4 for |x| < 2
h(x) = 0 otherwise

This kernel gives results which are surprisingly similar to those of the previous
technique, although the approaches are quite different. Its characteristic lies
between those of the TRW kernels, although it is much closer to the first TRW kernel.
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Periodic Cubic Spline Interpolation

The cubic spline interpolation method works quite well, despite the fact that
the data cannot have polynomial-like behavior overall, but only locallv. This is
another application of the discrete Fourier transform which yields a periodic cubic
spline interpolation of the data.

The exact continuous Fourier transform of the periodic cubic spline
interpolation is calculated by the use of "attenuation factors," which weight
the entire infinite but periodic discrete Fourier transform.

The kernel is m
h(x) = 111467 s1nc4 H) cos 2mmx
N m=1 2 + cos{2mm N ‘
N

The sum is infinite, but the terms become insignificant rapidly because
of the fourth power of the sinc function.
If one uses only the first four terms, with N = 4, one has

h(X) L‘[]+E'2¢COng+_9—gCOS"X+%g'E2rCOS'ng]

Note that §$-= .9855 so that this kernel differs very slightly from the

trigonometric polynomial kernel. The frequency response is essentially the same

as that of the first TRW kernel, although it was obtained in an entirely different

manner. The TRW kernel has the advantage that it is easy to compute. However,

tihe periodic cubic spline kernel is, when computed exactly, known to provide

exact periodic cubic spline reconstruction of the data. If a lookup table is used,

the computation required to determine the values of the kernel becomes insignificant.
This method also can be used with 3 points, with results somewhat similar

to the second TRW kernel, except for stopband ripple.

Kaiser Window Truncation of Sinc (x)

An alternative Kaiser window, recently proposed, was used to truncate sinc(x)
to the interval [-2,2], thus, the effective kernel is
(sinmx/mx)sinh(8 /1-(x/2)2)/(sinhg)/1-(x/2)2
h(x) = for |x| < 2
0 otherwise
This kernel is known to be virtually equivalent to the original Kaiser
window but a Tittle easier to use since only standard functions are required. A
cnoice of B = 4.8 gives fairly good performance at very low frequencies.
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The results are then very similar to those obtained with cubic spline interpolation
of the data.

Hamming Window Truncation of Sinc (x)

This kernel is
(.54+.46cosmx)sin x/mx for |x|< 2

hix) = 2
(x) 0 otherwise

This kernel has a sharp-cutoff response with significant ripple, somewhat

1ike the alternate TRW kernel, except that this kernel does not resample DC correctly.

There are many possible criteria to be applied to these resampling methods.

Two of them will be mentioned here.

1. Minimize the maximum error in the passband and/or in the stop-band
(exempting the transition band). This is a standard criterion which
often guides computer algorithms for digital fiiter design.

This is a relatively convenient criterion to apply for nearly
bandlimited kernels.

2. Minimize the maximum relative error of interpolation for a test
function or class of test functions. It is not convenient to transport
this criterion to the frequency domain because it is relative error,
not absolute error, which is being measured.

One might, for example, convolve the kernel with the sinc function
itself and compare the result with the ideal which is also the sinc
function.

There are two additional provisos: the zeros of the sinc function
(or other test function) must be exempted from consideration and only
a section of the test function can be examined.

Combination Methods

The most obvious way to combine two methods of resampling is by the linear
combination of two or more kernels which have been defined or the same domain,
for example,

if h] and h2 are defined on [-2,2] and t is any real number,

then h3 = th] + (l-t)h2 is also a kernel defined on [-2,2].
if h] and h2 resampled constants exactly, h3 will resample constants exactly.
The properties of h3 will be "averages" of the propoerties of h] and h2'
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If the interval [-2,2] is subdivided in such a way that resampling will be
done using either one kernel of another, but not both, another sort of combination
is achieved. For example,

define

1 for [x| < .25
h(x) = 1-{x| for .25 < |x| < .75
to combine the nearest neighbor and linear interpolation methods on [-1,1].

The Role of Continuous Fourier Transforms and Digital Filtering in Resampling

If the Fourier transform of a signal f is F and the reconstruction is
implemented by use of a convolutional kernel h, that is,

f(t) = ¥ £(n)h(t-n)

n:-oo
A A
then the Fourier transform F of f satisfies the equality
A ©
Flw) = H(w) £ F( 0w + 2nm)
n=-o

where H is the Fourier transform of h (see [A-4], p. 140).

If Hw) =1 for le <
and H(w) = 0 for |w| > 7
then h is the sinc function and properly bandlimited functions are reconstructed
exactly. If h is truncated (i.e., "time-limited") then it is not bandlimited,
thus no truncated approximation of the sinc function will satisfy this condition
exactly.

Ordinarily H(w) will be a continuous function of w. Thus, it cannot
approximate the response of the sinc function very well near its discontinuity.
Some Tlow-frequency energy will be aliased into the higher frequency region, with
the largest contribution arising from passband energy near cutoff o which is
heavily aliased into the region above cutoff. Some aliasing also occurs because
of the side lobes in the response H(w), but this can be quite a bit lower.

Those kernels which approximate the sinc function will tend to have a
~ sharper cutoff with more ripple. Those kernels which interpolate the data by
a low degree polynomial tend to have a smoother transition with less ripple
(e.g., the 4 point cubic osculatory interpolation is a clear example of this).
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However, it has been found that kernels which yield periodic cubic spline
interpolation of the data are very similar in response to some of those which are
obtained from cubic spline approximation of the sinc function. These methods seem
to be intermediate between the polynomial interpolation kernels and the kernels
obtained by close approximation of sinc x). They are to be recommended when good
performance over the passband is required. However, polynomial interpolation
mgthods are to be preferred for accuracy when most energy is at very low frequencies
(e.g., cubic spline interpolation is very accurate near DC and has a very gradual
dropoff in accuracy to about w = 0.25). Fortunately these methods may be combined
in Tinear combination to achieve performance at any intermediate level.
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