NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

ASSESBMENT OF THE QUALITY OF 'GATE' AREA RAINFALL DATA FROM A NIMBUS-5 RADIOMOTER

Final Report Under NASA grant NAG 5-14

Department: of Mathematics Morgan Stace University Baltimore. Maryland 21239

IMRRODUCTION

The purpose of the present serudy is to evaluate the quality of rainfall intensity estimates derived from passive microwave measurement: by the Electrically Scanned Microwave Radiometer (ESMR-5) aboard the Mimbus-5 satellite. The microwne measuremonts used are those coincident with the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE). ESMR-5 derived rainfall inteasity estimstee are compared with hourly averaged GATE radar rainfall measurements. Using the radar measurements as ground truth it is determined that with the transfer curves derived herein the sgMR-5 derived data consistently over eatimates rainfall by a factor of approximately 1.4.

RESEARCR PLAN

The ESMR-5 data set used harein consists of computer printouts of microwave brightness temperature measurements for sevonty-nine (79) Nimbas-5 ovarpasses coincident with GATE radar rainfall measurements. The following tasks were completed in assesing the quality of these datas

1. Collect and verify computer printouts of ESMR-5 GATE coincident data.
2. Convert ESMR-5 brightness tamperatures to rain intensity entimates for the two-degree square of the earth's surface centered at $\left(23.5^{\circ} \mathrm{W} .8 .5^{\circ} \mathrm{N}\right)$.
3. Campare ESMR-5 derived rain intensity estimates wth coincident GANE radar maaturononts of rainfall.

Mry:ODOROGY

1. Data Collericion and Preparation

The ESMR-5 data are available on computer tape at coddard Space Flight Center. A search was made of the ESMR-5 data catalogues to locate GATE coincidont data. Their references are given in Table 1. Computer printouts of these data were provided by Dr. paul w. Hwang of Goddard. The printouts indicate brightness temperatures with their latitude-longitude locations and beam positions.

Those data points coincident with the GATE are located and plotted on a grid representing the two degree square centered at $\left(23.5^{\circ} \mathrm{W}, 8.5^{\circ} \mathrm{N}\right)$. Beam position, brightnese temperature, and scan angle are recorded for each. Then a correction of the brightness temperature is carried out. This correction scheme is given by Wilheit [3, Table 5-3] and is a function of beam position. GATE radar rainfall data are available on both magnetic tape and microfilm from the gaxe World Archives. Also, a ghpy Radar Bainfall Atlas [2] is available. Among the data sets contained in the Atlas are tables indiceing one hour, three hour, six hour, twelve hour, and twenty-four hour mean area precipitation rate for the fifteen geographic areas shown in Figure 1 [2]. GArE radar derived hourly rainfill intensity estimates for the entire GArE area on a grid of $0.25^{\circ} \times 0.25^{\circ}$ were obtained on microfile from the GATE World Archives. See Figure 4.

Figure 3 indicates the four one-degree equare regions into Which the two-degree square region centered at $\left(23.5^{\circ} \mathrm{W} .8 .5^{\circ} \mathrm{m}\right)$ was divided. Mean ESMR-5 derived rainfall intenaity entimes fer the entire region and for sach of the four subregiens ware computed for GATE coincifont Bimbus-5 overpasses. These mang were also computed for correaponding GATE radar rain rate eatimaten.
2. Conversion of ESMR-5 Brightness Temperatures to Rain Rates Rain intensity for each data point is determined via an appropriate brightness temperature/rain rate relation. In the present study two such relations are used.

Using ESMR-5 data for Saptember 2, 1974, GMr 12:5713:04, when Mimbus-5 was directly over the GATE area, arithmotically averaged brightness temperatures for areas 1 through 12 in Figure 1 were determined. A brightnese temperature/rain rate relation was determined using a leant mquares linear fit of these temperatures plotted against hourly precipitation rates for corresponding areas [2]. The resulting relation has the equation

$$
R=0.031 T-4.258 .
$$

Where R denotes rain rate and T denotes brightness temperature.
The second is a freezing level dependent ralation derived fros the Wilheit curves [4] shown in Figure 2. This relation is an interpolation of the 4 km and 5 km freezing leval curves
to correspond to a freeziag level of 4.7 km which more closely approximaten GArs conditions. The formula for the relation is

$$
R= \begin{cases}0 & , 0 \leq T \leq 185 \\ 0.101 T-18.643, & 186 \leq T \leq 217 \\ 0.116 T-21.962, & 218 \leq T \leq 247 \\ 0.217 T-46.829, & 248 \leq T\end{cases}
$$

where R denotes rain rate and T denotes brightness temperature.

RESULTS AND CONCLUSTONS

The relation (*) $R=0.031 T-4.258$ was used to calculate rain intensity for each ESMR-5 data point. of the twelve areas in Figure 1. only area 11 is entirely within the two-degree equare centered at $\left(23.5^{\circ} \mathrm{W}, 8.5^{\circ} \mathrm{N}\right)$. Thus, in this instance, ESMR-5 rain intensity estimaten for area 11, derivad using the relation (*) were compared with GATE radar derived hourly man precipitation rates [2] for this area. Table 3 is a sumary of the results and shows that the relation (*) leade to an over estimation of rainfall. However, conaistency in the estimations is evident. Since the relation

$$
R=\left\{\begin{array}{l}
0 \quad, \quad 0 \leq T \leq 185 \\
0.101 T-18.643,186 \leq T \leq 217 \\
0.116 T-21.962,218 \leq T \leq 247 \\
0.217 T-46.829,248 \leq T
\end{array}\right.
$$

is derived from theoretically sound curves, a more comprehensive $+[1]$
analysis was carried out on rain rate estimates derived via this formula. of the 78 available GATE coincident ESMR-5 sensing only 68 could be matched with coincident GATE radar derived hourly rainfall intensity measurements. Using these data, for each matched overpass, mean rain intensity estimates (ESMR-5 and radar) were comprated for each of the five regions (I, II, III, IV, and G) shown in figure 3.

Mean rain rate estimates (ESMR-5 and radar) were computed for the five regions for the entire GAFE experiment and for each phase of GATE. For Region I and Region $G 14$ day and 7 day mans more computed. In each instance the ratio ESMR-5 rainfall/radar rainfall was computed. The following is a listing of the results. Rain rates are in ma/ hr.

GATE

REGION	ESMR-5	RADAR	RATIO
I	0.73	0.42	1.74
II	0.74	0.41	1.80
III	0.72	0.67	1.07
IV	0.67	0.79	.85
G	0.72	0.54	1.33

Ma an ratio 1.36
Standard derivation of ratio 0.41

PHASE I

RESION	BAR-5	RADRR	RNMIO
I	0.50	0.45	1.11
II	0.36	0.46	0.78
III	0.54	0.61	0.89
IV	0.56	0.54	1.03
G	0.49	0.64	0.77

Man of ratio 0.91
Standard deviation of ratio 0.15

PHASE II

REGION	ESMR-5	RADAR	RATIO
I	0.87	0.24	3.63
II	0.85	0.12	7.08
III	0.90	0.76	1.18
IV	1.14	1.00	1.14
G	0.94	0.53	1.77

Mean of ratio 2.96
Standard deviation of ratio 2.52

PHASE III

REGION	ESMR-5	RADAR	RATIO
I	0.82	0.52	1.58
II	0.94	0.53	1.77
III	0.75	0.66	1.14
IV	0.52	0.94	0.96
G Mean of ratio 1.36	0.76	0.56	1.36
Standard deviation of ratio 0.33			

FOURTEEN DAY MEAMB REGTOM I

PERIOD	EMMR-5	RAIAR	RATIO
1	0.27	0.26	1.04
2	0.78	0.62	1.26
3	1.14	0.28	4.07
4	0.85	0.53	1.60

Maan of ratio 1.99 Standard deviation of ratio 1.40

fourteen day means region G

PMRIOD
1
0.47
0.72
1.16
0.68

4
4
RADAR
0.66
0.71

2
3
3

Mean of ratio 1.38
Standard deviation of ratio 0.61

SEVEA DAY MEANS REGION I

PERIOD	ESMR-5	RADAR	RATIO
1	0.07	0.19	0.58
2	0.47	0.40	1.18
3	0.90	0.76	1.18
4	0.66	0.49	1.40
5	1.19	0.02	59.5
6	1.09	0.54	2.02
7	1.21	0.35	3.46
8	0.50	0.70	0.71
9	0.39	0.39	1.0

maan of ratio 7.89
Standard deviation of ratio 19.37
When 59.5 is removed we have:
Mean of matio 1.44
Standard deviation of ratio 0.93

SEVEN DAY RENS REGION G

PIERIOD	RSMR-5	RADAR	RAFIO
1	0.33	0.70	0.47
2	0.60	0.63	0.95
3	0.68	0.64	1.06
4	0.76	0.53	1.43
5	1.15	0.43	2.67
6	1.16	0.63	1.84
7	1.00	0.46	2.17
8	0.38	0.46	0.83
9	0.42	0.41	1.02

Man of ratio 1.38 8tandard deviation of ratio 0.71

Observe that the moan of the ratio
ESMR-5 rain rate/radar rain rate
hovers consiwtently about 1.4. It is know that during Phase II of the GATE, the operation of ESMR-5 was anomalous. For this reasen, data from only 15 GATB coincident overpasses wore retrievable. The results presented here indicates that these, too, may not be true readings. When the ratio for the Phase II estimates of rain rate are ramoved from the coupatations the man ratio is 1.4 to the nearest hundredth.

These results indicate that oceanic rain rate estimates derived frou ESMR-5 data ard very consistent when compared to radar estimates.

OTHER PERTINENT QUESTIONS
Several analyses suggested in the grant proposal, could not bu performed in the allotted time. They are as follows

1. Compare the quality of mgMR-5 measurements at scan angles less than or equal to 30° with that of angles greater than 30°.
2. Compare the quality of ESMR-5 measurements at scan angles less than or equal to 40° with that of angle greater than 40°.
3. Approximate the fraction of rain during the GAME that was such that EsMR-5 maturation affected rain intensity measurement.

REFERENCES

[1] Austin, P. and S. Geotis; 1978: 'Evaluation of the Quality of Precipitation Data from a Satellitwndorne Radiometer'. Final Report under NASA Grant NSG 50\%4*
[2] Hudlow, M. D. and V. L. Patterson: 1979: Gate Radar Rainfall Atlas, Center for Envirommental Assessment Services, NOAA, Washington, D. C.
[3] Wilheit, T. T.: 1972: 'The Electrically Scanning Microwave Radipmeter (ESMR) Experiment' The Nimbus-5 Users Guide, NASA Goddard Space Flight Center, Greenbelt, Maryland.
[4] Wilheit, T. T., A. T. C. Chang, M. So V. Rao, E. B. Rogers, and J. S. Theon; 197\%: 'A Satellite Technique for Quantitatively Mapping Rainfall Rate Over Oceans', Journal of Applied Meteorology, 16, 551-560.

Figure 1. Key giving geometric areas corresponding to the area numbers appearing above the columns of the daily rainfall tabulations. Letters designate ship positions.

Table 2. ESMR-5 GATE DATA

Day	Time Span	Tape-File	Day	Time Span	Tape-File
179	0107-0117	29697-17	211	0008-0017	153199-6
179	1252-1300	L9679-1	211	0157 m2204	L5349-4
180	1207-1215	L9679-9	211	1340-1349	15349-10
181	1309-1315	L9679-17	212	0110-0119	L5349-16
182	1223-1232	L5308-10	212	1255-1304	L5.49-21
183	0742-0153	12441-4	222	0047-0054	L5362-4
183	1325-1332	25308-18	222	1230-1237	25362-15
184	0054-0105	L5308-24	223	0149-0156	L5362-7
186	0110-0119	L5326-20	22.4	1245-1253	L5368-9
186	1256-1304	L5228-3	225	0021-0026	L5368-17
187	0027-0035	L5228-8	227	0035-0041	L5381-10
187	1210-1218	L5228-1]	227	1216-1224	L5361-15
188	1313-1319	L5225-4	242	0143-0150	L5399-11
188	0130-0137	L5c28-22	242	1325-13,33	L5399-16
189	1227-1238	L5225-7	243	0100-0108	L5399- 2 2
190	0145-0157	L5225-13	243	1241-1248	L6861-4
193	0117-0125	L1599-20	24.4	0013-0021	16861-12
193	1300-1307	L5327-2	244	0200-0209	16861-11
194	0033-0040	15327-14	24.4	1254-1202	16861-17
194	1213-1223	L5327-11	264	1344-1350	16861-18
195	1316-1324	L5360-4	245	1257-1304	16836-3
196	0048-0055	L5360-11	246	1210-1219	L6896-16
196	1230-1237	15360-16	247	0133-0139	L9661.-1
197	0150-0157	15360-22	- 247	1313-1321	L9¢6].6
197	0005-0012	L5360-23	248	0043-0053	L9661-18
197	1332-1340	L5359-6	248	1228-1235	L9661-16
209	0140-0150	L5269-4	249	0147-0155	L5255-6
209	1325-1332	15269-10	249	1330-1337	L525.5-4
210	0053-0103	L5269-16	250	1243-1252	15255-18
210	1237-124.5	L5269-21	251	0015-0023	L5276-1

Table 1 (continued)

Day	Time Spari	Tape-File
25°	O203-0210	L5276-2
251	$1159-1205$	L5276-6
252	$0116-0125$	L5276-14
252	$1300-1308$	L5276-20
253	$0032-0040$	L5343-9
253	$1215-1223$	$15343-3$
254	$1316-1324$	L5343-15
255	$1232-1240$	$16842-3$
256	$1333-1340$	$16842-14$

Day	$\frac{\text { Time Span }}{257}$	
$1250-1258$	Tape-File	
258	$1202-1210$	L6872-13
259	$0123-0129$	L6872-21
259	$1305-1311$	L9649-3
260	$0037-0044$	L9649-10
260	$1219-1228$	L9649-15
261	$0138-0145$	L5268-17
261	$1321-1327$	L5268-3
262	$0053-0100$	L5268-9
262	$1235-1243$	L5268-15

Fig. 2. Calculated brightness temperature at 1.55 cm as a function of rain rate for melting levels of $1,2,3,4$ and 5 km (from Wilheit et al, 1977).

TABLE 2: DERIVATION OF THE LINE $R=0.031 T_{B}-4.258$

$$
\begin{aligned}
& T=\text { Brightness Temperature } \\
& R=\text { Rain Rate }
\end{aligned}
$$

Reqion	\underline{T}	\underline{R}	R estimate	Residual
1	171	0.64	0.98	
1	175	1.08	1.10	-.34
2	181	1.09	1.28	-.02
3	165	0.43	0.79	-.19
4	172	1.04	1.01	-.36
5	174	1.86	1.07	+.03
6	171	0.82	0.98	+.79
7	175	0.98	1.10	-.16
8	173	1.02	1.04	-.12
9	173	1.05	1.04	-.02
10	172	1.51	1.01	+.17
11	191	1.46	1.59	+.2
12				-.13

Table 3. Comparison of ESMR-5 rain intensity estimates via the relation $R=0.031 T-4.258$ with GATE radar derived hourly mean precipitation rates for area 11 of Figure 1.

- Missing

Figare 3. subdivieions of the two-degren aquare region centered at $\left(23.5^{\circ} \mathrm{W}, 8.5^{\circ} \mathrm{N}\right)$. The letter G denotes the entire region.

Figure 4 The GATE Area

