provided by NASA Technical Reports Serve

N81-17175

FABRICATION AND PHYSICAL TESTING OF GRAPHITE COMPOSITE PANELS UTILIZING WOVEN GRAPHITE FABRIC WITH CURRENT AND ADVANCED STATE-OF-THE-ART RESIN SYSTEMS

S. C. S. Lee

Hitco Defense Products Division Gardena, California

June 1979

CR-152292

FABRICATION AND PHYSICAL TESTING OF GRAPHITE COMPOSITE PANELS UTILIZING WOVEN GRAPHITE FABRIC WITH CURRENT AND ADVANCED STATE-OF-THE-ART RESIN SYSTEMS

(NASA-CR-152292) FABRICATION AND PHYSICAL N81-17175
TESTING OF GRAPHITE COMPOSITE PANELS
UTILIZING WOVEN GRAPHITE FABRIC WITH CURRENT
AND ADVANCED STATE-OF-THE-ART RESIN SYSTEMS
Unclas
Final Report (HITCO) 26 p HC A03/MF A01 G3/24 43589

FINAL REPORT - JULY 1979

Prepared for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

Under Contract NAS 2-9977

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

HITCO Defense Products Division Gardena, California 90249

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

FABRICATION AND PHYSICAL TESTING OF GRAPHITE COMPOSITE PANELS UTILIZING WOVEN GRAPHITE FABRIC WITH CURPENT AND ADVANCED STATE-OF-THE-ART RESIN SYSTEMS

Samuel C. S. Lee

Final Report

June 1979

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract NAS 2-9977

Hitco Defense Products Division

Gardena, California

for

Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

1. Report No. NASA CR 152292	2. Government Access	sion No.	3. Recipient's Catalog	No.
4. Title and Subtitle FABRICATION AND PHYSICAL T)	5. Report Date JUNE	1979
SITE PANELS UTILIZING WOVE CURRENT AND ADVANCED STATE		l l	6. Performing Organiz	ation Code
7. Author(s)			8. Performing Organiz	ation Report No.
Samuel C. S. Lee		. }	10. Work Unit No.	
9. Performing Organization Name and Address	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		734-10-1	1
Hitco Defense Froducts D 1600 West 135th Street	ivision		11. Contract or Grant NAS 2-99	No.
Gardena, California 902	49	_	13. Type of Report an	
12. Sponsoring Agency Name and Address			Contractor	r report
National Aeronautics and S Moffett Field, CA, 94035	Space Adminst	ration	14. Sponsoring Agency	
15. Supplementary Notes				
Technical Monitor, D.A. Ko NASA, Ames Research Center	ourtides r, Moffett Fi	eld, CA, 94035		
16. Abstract	·			
and advanced state-of-th a balanced plain weave, unidirectional crowfoot system selected was Fibe evaluated were Phenolic, panels were fabricated f Composites Modification were performed by Hitco; major portion of the partesting.	a balanced 8- satin weave. rite's 934 En Phenolic/Nov or testing on Program. Roo the results	harness satin we have the current stocky; the advantage of the stocky of the satisfies are contained the current state of the current s	reave, and a cate-of-the-a nced resin sy nd Bismaleimi carch Center' nechanical te in this repo	semi- rt resin stems de. The s sts only ort. The
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Grahite Composites		Unclassified	-Unlimited	
High Temperature Resin	s	STAR Categor		
19. Security Classif, (of this report)	20. Security Classif, (c	of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassi		20	

TABLE OF CONTENTS

	<u>Pa</u>	ge
1.0	INTRODUCTION	1
2.0	PANEL FABRICATION	2
	2.1 Task 1 - Fabric Selection	2
	2.2 Task 2 - Fabrication of Panels Using Advanced Resin Systems	2
3.0	TESTING	4
4.0	RESULTS AND DISCUSSION	5
	4.1 Task 1 Test Results	5
	4.2 Task 2 Test Results	5
5.0	CONCLUSIONS AND RECOMMENDATIONS	6

LIST OF FIGURES

No.					<u> </u>	age
1	Cutting Plan,	Specimen	Sizes	and Test	Methods	7
	N _a - i					
	• *					

LIST OF TABLES

No.		Page
I	Prepreg Materials	8
II	Standard Cure Cycles	9
III	Task 1 Test Summary	10
IV	Panel No. 1 Mechanical Test Results	11
. V	Panei No. 2 Mechanical Test Results	12
VI	Panel No. 3 Mechanical Test Results	13
VII	Task 2 Test Summary	. 14
VIII	Comparison of Advanced Resin Systems to Epoxy Control	15
IX	Panel No. 4 Mechanical Test Results	16
X	Panel No. 5 Mechanical Test Results	17
XI	Panel No. 6 Mechanical Test Results	18
XII	Panel No. 7 Mechanical Test Results	19
XIII	Panel No. 8 Mechanical Test Results	20

FABRICATION AND PHYSICAL TESTING OF GRAPHITE COMPOSITE PANELS UTILIZING WOVEN GRAPHITE FABRIC WITH CURRENT AND ADVANCED STATE-OF-THE-ART RESIN SYSTEMS

Samuel C. S. Lee

Hitco

1.0 INTRODUCTION

This report finalizes the results of the National Aeronautics and Space Administration's Ames Research Center Contract NAS 2-9977 with Hitco for fabrication and physical testing of woven graphite composite panels using current and advanced resin systems, in support of NASA's Composites Modification Program. Currently the aircraft industry uses graphite/epoxy laminates in a number of structural applications, the typical resin system consisting of a high temperature epoxy such as Ciba-Geigy's MY-720 with an aromatic amine hardener such as Diamino Diphenyl Sulfone. The program endeavors to find alternate resin systems with improved high temperature mechanical and flammability properties.

2.0 PANEL FABRICATION

Panels were fabricated under two tasks as follows:

2.1 Task 1 - Fabric Selection

The objective of this task was to select a particular style of fabric for use on the program. Three candidate weaves were selected, all supplied by the Fiberite Corporation impregnated with 934 resin, their standard high temperature epoxy. These weaves were:

Style	Type Weave	Fabric Weight g/m ² (oz/yd ²)	Warp to Fill Strength Ratio
133	8-harness satin	373 (11)	1:1
134	Plain	186 (5.5)	1:1
177	Crowfoot satin	214 (6.3)	6:1

The prepregs were laminated into 610 x 610 x 3.2 mm (24 x 24 x 1/8 in) panels in an autoclave under 690 kPa (100 psi) pressure using a surface bleed system designed to yield a cured fiber fraction of approximately 65%. The fiber orientation was parallel warp. Each cured panel was cut into four 305 mm (12 in) squares. One square was retained by Hitco for room temperature mechanical testing; the other three were shipped to NASA/Ames. The particulars of the prepreg materials are shown in Table I, while the cure cycles used are shown in Table II.

2.2 Task 2 - Fabrication of Panels Using Advanced Resin Systems

The objective of Task 2 was to fabricate panels using advanced resin systems selected by NASA/Ames. Four such systems were used: three phenol based systems and a bismaleimide. The 934 epoxy was repeated as well to serve as a baseline. The selected advanced resin systems were Xylok 210, Code M-751, MXG 6070 and WFR 1200. A description of each follows:

Kylok 210 is a product of Albright and Wilson Limited of England, and is marketed in the USA by Ciba Geigy. It is a hexamine curing phenolic novolac type resin possessing good long term performance to 230°C (446°F). The manufacture of this resin has been discontinued at present, and its future availability is questionable. The resin used on this contract was supplied by NASA/Ames in varnish form.

The NASA Code M-751 resin is a product of Technochemie GmbH of Dossenheim, West Germany. It is a conventional bismaleimide resin similar to the commercially available Rhodia Kerimid 601, but with improved room temperature storage stability. The resin is supplied in powder form; a solution is obtained by dissolving the powder in N-Methyl Pyrrolidone. The resin used on this contract was supplied by NA5A/Ames.

MXG 6C70 is a proprietary product of Fiberite's West Coast Division. It is a conventional phenolic resin compounded for non-flammability and low smoke emission and was designed for use in advanced aircraft interiors.

WFR 1200 is a single stage phenol formaldehyde resin supplied in an aqueous solution by the Weyerhauser Company. It is produced by a different process than conventional phenolics, and has been referred to as a "benzyl" resin. The resin used on this contract was supplied by the Weyerhauser Company.

The prepregs used in Task 2 were coated by the Fiberite Corporation using their HMF 133 fabric as the reinforcement. All were coated in the Winona, Minnesota plant with the exception of the MXG 6070, which was prepared by the Orange, California plant. Table I is a summary of the prepreg specifics, while Table II is a compilation of the cures used. $7432~\rm cm^2$ (8 ft²) of 3.2 mm (1/8 in) thick paneling was fabricated with each prepreg. Of this quantity, $4645~\rm cm^2$ (5 ft²) was shipped to NASA/Ames in the form of 305 mm (12 in) squares, and the remainder retained by Hitco for testing.

Panel No. 9, the last panel in Task 2, was originally scheduled to be fabricated with yet another advanced resin system, however, since the two resins under consideration were not available in time to be incorporated into the program, it was decided to use the 934 epoxy for that panel as well. All 7432 cm² (8 ft²) of Panel No. 9 was shipped to NASA/Ames.

3.0 TESTING

Hitco performed only the room temperature mechanical tests on the panels fabricated on this program. High temperature mechanical, flammability and fiber release testing was done by NASA/Ames. The specific properties evaluated by Hitco were:

- 1. Flexural Strength and Modulus at 23°C (73°F), Warp and Fill
- 2. Tensile Strength and Modulus at 23°C (73°F), Warp and Fill
- 3. Compressive Strength and Modulus at 23°C (73°F), Warp and Fill
- 4. Short Beam Shear Strength at 23°C (73°F), Warp and Fill

The cutting plan, specimen sizes and test methods used on both Task 1 and 2 panels were identical, and are shown in Figure 1. The test methods selected are typical of those used in the aerospace industry.

Fiber volumes were calculated from measured specific gravities and are approximate only. More accurate values could not be obtained because of the lack of a standard method of measuring the resin contents of the cured panels. The usual method employed is acid digestion, however, it was discovered that some of the resins are resistant to the nitric acid used. Burndown has proven to be unreliable because of the varying heat resistances of the different resin systems, and the fact that the graphite fiber itself oxidizes at the high temperatures required. In calculating the fiber volumes, an assumed voids content of 0.5% was used.

ORIGINAL PAGE IS OF POOR QUALITY

4.0 RESULTS AND DISCUSSION

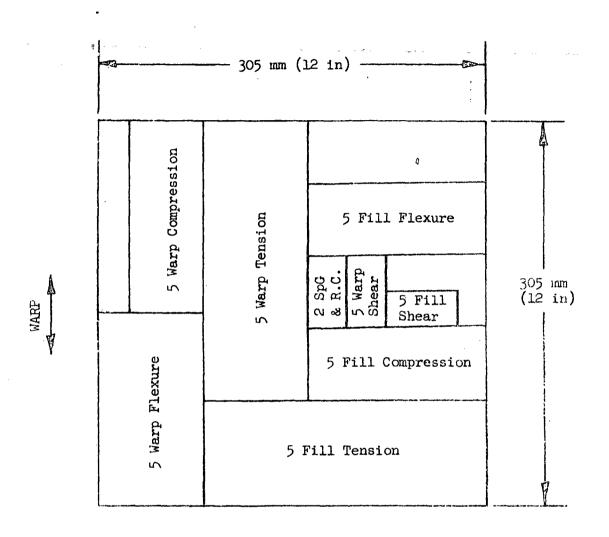
4.1 Task 1 Test Results

A summary of the Task 1 panel testing is presented as Table III, while the individual test results are shown as Tables IV, V and VI. As can be seen in the tables, the cured fiber volumes were all higher than the target 65%, but since they ranged from 66-70%, the mechanical properties of the panels could be compared to each other without artificially normalizing the values. The results are substantially as expected, although with the supposedly "balanced" 133 and 134 weaves, the fill and warp properties in some cases were noticeably out of balance. This is probably caused by distortion of the yarns in one direction or the other during the impregnation and "B" staging of the fabric as witnessed by the unevenness of the tracer yarns, especially in the fill direction.

The 133 8-harness satin weave was selected as the fabric style for use on Task 2. This particular weave displays balanced properties and is favored for structures with some degree of curvature or complexity because of its superior drape as compared to plain weave fabrics.

4.2 Task 2 Test Results

The results of the Task 2 mechanical tests are summarized in Table VII, while Table VIII is a comparison of a typical current epoxy resin system, Fiberite 934, with the advanced resin systems, with all results expressed as a percentage of the epoxy control. The individual test results are presented as Tables IX through XIII. Panel No. 9, which was a repeat of Panel No. 4, was not tested.


A survey of the results show that the moduli values, with the exception of the MXG 6070, agree quite well with the epoxy concrol, as might be expected since this property is primarily controlled by the fiber volume. The quality of the bond is actually revealed by the strength values, especially the shear strength. Here it can be seen that the bismaleimide is the equal of the epoxy control, and is followed in descending order by the benzyl, the phenolic/novolac and finally the phenolic. It should be pointed out that the above results are for room temperature testing only. We have obtained higher flexural strengths for the phenolic/novolac and benzyl systems on small study panels, however, the shear values obtained for such panels followed the trend noted in Table VIII.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Hitco's participation in the Composites Modification Program was limited to fabrication of test panels and determination of room temperature mechanical properties, therefore it would be presumptuous for us to draw any conclusions or make any recommendations as to replacing current epoxies with any of the advanced resin systems evaluated. From our limited perspective, it would seem that the best advanced system studied on this contract was the NASA Code M-751 bismaleimide, which was the equal of the epoxy in room temperature properties, and judging from its chemistry, should have improved high temperature and flammability properties without the use of additives. From a fabrication standpoint, the M-751 was relatively easy to process, much like the epoxy, but required a long postcure.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. Cutting Plan, Specimen Sizes and Test Methods

Type Test	Specimen Dimensions	Test Me	ethod
Tension	12.7 x 203 mm (.50 x 8.0 in)	ASTM D-3039	(76 mm gage length)
Compression	6.4 x 140 mm (.25 x 5.5 in)	ASTM D-3410	(Celanese Fixture)
Flexure	$12.7 \times 140 \text{ mm} (.50 \times 5.5 \text{ in})$	ASTM D-790	(32:1 span)
Short Beam Shear	6.4 x 19 mm (.25 x .75 in)	ASTM D-2344	(4:1 span)
Specific Gravity	25 x 25 mm (1.0 x 1.0 in)	ASTM D-792	

TABLE I. PREPREG MATERIALS

NOT MEASURED	0.8	39.4	5A-1	B9-106	133	934 EPOXY	PANEL #9
22.4	12.6	39.4	1-6	B9-080	133	WFR 1200 BENZYL	PANEL #8
33.2	8.3	51.0	႕	2147	133	MXG 6070 PHENOLIC	PANEL #7
21.6	16.5	38.0	1-6	в9-081	133	CODE M-751 BISMALEIMIDE	PANEL #6
21.3	10.1	39.0	1-6	B9-079	133	XYLOK 210 PHENOLIC/NOVOLAC	PANEL #5
NOT MEASURED NOT MEASURED	1.7	43.0	2C-2	B9-060	133	934 EPOXY	Panel #4
		. •					TASK 2
NOT MEASURED	1.2	37.8	H	B8-177	177	934 EPOXY	PANEL #3
NOT MEASURED	1.3	4.14	2B-2	B8-153	134	934 EPOXY	PANEL #2
NOT MEASURED	6.0	37.0	1B-2	B8-115	133	934 EPOXY	PANEL #1
					·		TASK 1
PERCENT FLOW	VOLATILES	RESIN SOLIDS CONTENT	ROLL NO.	LOT NO.	STYLE	RESIN SYSTEM	PANEL NO.

NOTE: ALL FABRICS COATED BY FIBERITE/WINONA EXCEPT FOR THE MXG 6070, WHICH WAS COATED BY FIBERITE/ORANGE

STANDARD CURE CYCLES

		CURE CYCLE ((IN AUTOCLAVE)		
RESIN	PREPREG STAGING CYCLE (IN CVEN)	TIME AT TEMPERATURE	PRESSURE XPa (pe1)	VACUUM max (in) HC	POSTCURE CYCLE (UNRESTRAINED IN OVEH)
934 EPOXY	NONE	30 MIN @ 23°C (73°F) 15 MIN @ 120°C (248°F) 45 MIN @ 120°C (248°F) 4½ HRS @ 180°C (356°F)	(0) 0 (0) 0 (0) 0 (0) 0 (0) 0	737 (29)	NONE
XYLOK 210 PHENOLIC/ NOVOLAC	NONE	1 HR @ 82°C (180°F) 1 HR @ 121°C (250°F) 4 HRS @ 177°C (350°F) 4 HRS @ 202°C (395°F)	1380 (200)	737 (29)	6 HRS @ 175°C (347°F) 4 HRS TO 200°C (392°F) 13 HRS TO 250°C (482°F) SLOW COOL DOWN
CODE M-751 BISMALEIMIDE	15 MIN @ 135°C (275°F)	30 MIN @ 121 ^O C (250 ^O F) 4 HRS @ 177 ^O C (350 ^O F)	(001) 069	737 (29)	2 HRS @ 154°C (310°F) 2 HRS @ 182°C (360°F) 15 HRS @ 210°C (410°F) SLOW COOL DOWN
MKG 6070 PHENOLIC	NONE	HEAT TO 93°C (200°F) 1 HR @ 93°C (200°F) 4 HRS @ 150°C (302°F)	(0) 0 (0) 0, (0) 0, (0) 0,	737 (29)	NONE
ORIGINO OF POO PENZAI BENZAI	10 MIN @ 129°C (265°F)	20 MIN @ 54° C (130 $^{\circ}$ F) 20 MIN @ 79 $^{\circ}$ C (175 $^{\circ}$ F) 40 MIN @ 10 $^{\circ}$ C (220 $^{\circ}$ F) 4 HRS @ 129 $^{\circ}$ C (265 $^{\circ}$ F)	172 (25) 345 (50)	737 (29)	4 HRS @ 121 ^O C (250 ^O F) SLOW COOL DOWN
AL PAGE IS R QUALITY					

TABLE III. TASK 1 TEST SUMMARY

		CAIC.		FLEXURE	URE	TENSION	SION	COMPRESSION	SSIGN	BEAM
PANEL NO.	STYLE	FIBER VOLUME	TEST DIRECT.	STRENCTH MPa (Ks1)	MODULUS GPa (Ms1)	STRENGTH MPa (Ks1)	MODULUS GPa (Ms1)	STRENGTH MPa (Ksi)	MODULUS GPa (Msi)	STRENGTH MPa (Ks1)
			WARP	784 (114)	72.9 (10.6)		590 (85.6) 74.1 (10.7)	563 (81.6)	72.8 (10.6)	72.8 (10.6) 76.5 (11.1)
-1	133	70.7	FILL	897 (130)	(1.01) 6.69	(6.78) 606	70.6 (10.2)	(8.06)	70.9 (10.3)	70.9 (10.3) 76.3 (11.1)
(WARP	730 (106)	65.2 (9.5)	614 (89.0)	614 (89.0) 66.8 (9.7)	491 (71.2)	!	69.8 (10.1) 77.7 (11.3)
N	134	o. 0 0	FILL	725 (105)	(0.3 (9.0)	591 (85.7)	591 (85.7) 61.1 (8.9)	700 (102)	64.0 (9.3)	70.5 (10.2)
,	ļ	ç	WARP	1115 (162)	112.7 (16.3)	(181) 6421	(6.3) 1249 (181) 24.2 (15.1)	893 (130)	112.8 (16.4)	112.8 (16.4) 99.9 (14.5)
n) 	8 8	FILL	284 (41)	23.9 (3.5)	164 (24)	24.9 (3.6)	362 (53)	27.2 (3.9) 38.6 (5.6)	38.6 (5.6)
		·	decree and a second	**************************************	Commission of the Commission o	With and Property and Property and Property and Personal Property		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Table IV. Mechanical Test Results

NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins

MADA/Allies C	rapart ce		ing current and A	avanced beate-of-	
Panel Numbe	r <u>1 (8</u>	-harness satin we	ave) Size 305 m	m x 305 mm (12 in	x 12 in)
Material 1	O plies 1	HMF 133/34	Orientation	Parallel Warp	
Calculated	Fiber Vo	lume 70.7%	Cured Speci	fic Gravity 1	.596
Test	C	Tested in the W	arp Direction	Tested in the I	Fill Direction
Property	Spec. No.	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)
	1	867 (126)	74.9 (10.9)	905 (131)	69.9 (10.1)
	2	793 (115)	73.4 (10.6)	941 (136)	70.4 (10.2)
	3	678 (98)	72.1 (10.5)	900 (131)	71.1 (10.3)
Flexure	,	839 (122)	72.1 (10.5)	928 (135)	70.1 (10.2)
	5	744 (108)	72.1 (10.5)	811 (118)	68.2 (9.9)
	Average	784 (114)	72.9 (10.6)	897 (130)	69,9 (10,1.)
	Std Dev	76 (11)	1.2 (0.2)	51 (7)	1.1 (0.2)
	1	601 (87.1)	72.4 (10.5)	626 (90.8)	69.0 (10.0)
	2	592 (85.8)	72.4 (10.5)	613 (88.9)	72.4 (10.5)
·	3	601 (87.1)	76.5 (11.1)	603 (87.4)	71.0 (10.3)
Tension	4	597 (86 . 6)	73.8 (10.7)	584 (84.7)	69.6 (10.1)
	5	561 (81.3)	75.2 (10.9)	605 (87.8)	71.0 (10.3)
	Average	590 (85.6)	74.1 (10.7)	606 (87.9)	70.6 (10.2)
	Std Dev	17 (2.5)	1.8 (0.3)	15 (2.2)	1.3 (0.2)
·	1	605 (87.7)	71.0 (10.3)	628 (91.1)	69.6 (10.1)
	2	536 (77.8)	67.6 (9.8)	618 (89.6)	72.4 (10.5)
	3	534 (77 . 4)	71.0 (10.3)	619 (89.8)	71.7 (10.4)
Compression	4	516 (74 . 9)	75.2 (10.9)	604 (87.6)	71.7 (10.4)
	5.	622 (90.2)	79.3 (11.5)	661 (95.9)	69.0 (10.0)
	Average	563 (81.6)	72.8 (10.6)	626 (90.8)	70.9 (10.3)
	Std Dev	47 (6.8)	4.5 (0.7)	21 (3.0)	1.5 (0.2)
	1	74.5 (10.8)		71.7 (10.4)	
	2	75.8 (11.0)	18	75.8 (11.0)	
Short	3	80.7 (11.7)	GE TIT	75.2 (10.9)	
Beam	4	72.4 (10.5)	MAL OUR	78.6 (11.4)	
Shear	5	79.3 (11.5)	ORIGINAL OUR LITT	80.0 (11.6)	
	Average		~	76.3 (11.1)	
···	Std Dev	3.4 (0.5)		3.2 (0.5)	

Table V. Mechanical Test Results

NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins

	,	plain weave)		m x 305 mm (12 in	
Material 1	-			Parallel Warp	and the second
1 -		lume 66.0%		fic Gravity 1	.576
Test	Spec.	Tested in the W	arp Direction	Tested in the]	Fill Direction
Property	No.	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 <mark>6</mark>)
	1	738 (107)	65.4 (9.5)	745 (108)	62.3 (9.0)
	2	793 (115)	65.9 (9.6)	739 (107)	62.5 (9.1)
	3	610 (88)	64.5 (9.4)	699 (101)	63.2 (9.2)
Flexure	4 0	774 (112)	64.4 (9.3)	714 (104)	62.1 (9.0)
	5	737 (107)	65.9 (9.6)	729 (106)	61.8 (9.0)
	Average	730 (106)	65.2 (9.5)	725 (105)	62.3 (9.0)
	Std Dev	72 (10)	0.8 (0.1)	19 (3)	0.6 (0.1)
	1	618 (89.6)	69.9 (10.1)	635 (92.1)	61.4 (8.9)
	2	631 (91.5)	66.9 (9.7)	627 (90.9)	61.4 (8.9)
	3	644 (93.4)	66.2 (9.6)	548 (79.5)	60.7 (8.8)
Tension	4	632 (91.7)	63.4 (9.2)	508 (73.7)	61.4 (8.9)
	5	543 (78.7)	67.6 (9.8)	638 (92.6)	60.7 (8.8)
	Average	614 (89.0)	66.8 (9.7)	591 (85.7)	61.1 (8.9)
	Std Dev	41 (5.9)	2.4 (0.3)	60 (8.7)	0.4 (0.1)
	1	527 (76.5)	67.6 (9.8)	604 (87.6)	64.1 (9.3)
	2	466 (67.6)	69.6 (10.1)	656 (95.2)	64.1 (9.3)
	3.	454 (65 . 9)	68.3 (9.9)	749 (108.6)	64.1 (9.3)
Compression	4	516 (74.9)	7 3.8 (10.7)	724 (105.0)	62.7 (9.1)
	5.	492 (71.4)	69.6 (10.1)	767 (111.2)	64.8 (9.4)
	Average	491 (71.2)	69.8 (10.1)	700 (101.5)	64.0 (9.3)
	Std Dev	31 (4.5)	2.4 (0.3)	68 (9.9)	0.8 (0.1)
	1	80.7 (11.7)		64.8 (9.4)	
	2	81.4 (11.8)		83.4 (12.1)	
Short	3	73.8 (10.7)		62.1 (9.0)	
Beam	4	77.9 (11.3)		76.5 (11.1)	
Shear	5 ·	74.5 (10.8)		65.5 (9.5)	
	Average	77.7 (11.3)		70.5 (10.2)	
	Std Dev	3.5 (0.5)		9.1 (1.3)	,

Table VI. Mechanical Test Results NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins Panel Number 3 (crowfoot satin weave) Size 305 mm x 305 mm (12 in x 12 in) Material 16 plies HMF 177/34 Orientation Parallel Warp 1.588 68.8% Cured Specific Gravity Calculated Fiber Volume Tested in the Warp Direction Tested in the Fill Direction Test Spec. Strength Strength Property No. Modulus Modulus GPa (Psi x 10^6) GPa (Psi \times 10⁶) MPa (Psi x 10^3) MPa (Psi x 10^3) 1021 (148) 1 112.9 (16.4) 288 (42) 23.0 (3.3) 1258 (182) 111.3 (16.1) 289 (42) 23.8 (3.5) 2 112.0 (16.2) 24.4 (3.5) 283 (41) 3 1073 (156) 24.3 (3.5) .285 (41) 1021 (148) 112.9 (16.4) Flexure 4 1203 (175) 114.2 (16.6) 273 (40) 23.8 (3.5) 1115 (162) 112.7 (16.3) 284 (41) 23.9 (3.5) Average 110 (16) 0.6(0.1)1.1 (0.2) 6 (1) Std Dev 1234 (179) 102.7 (14.9) 167 (24) 25.5 (3.7) 1 24.8 (3.6) 1236 (179) 104.1 (15.1) 2 159 (23) 3 1281 (186) 105.5 (15.3) 163 (24) 24.8 (3.6) 4 Tension 1257 (182) 24.8 (3.6) 103.4 (15.0) 170 (25) 5 1239 (180) 24.8 (3.6) 105.5 (15.3) 162 (24) 1249 (181) 164 (24) Average 104.2 (15.1) 24.9 (3.6) 0.3 (0.0) 20 (1.3 (0.2) 4 (1) Std Dev 3) 859 (125) 110.3 (16.0) 371 (54) 26.9 (3.9) 1 896 (130) 109.6 (15.9) 2 330 (48) 26.9 (3.9) 895 (130) 111.0 (16.1) 27.6 (4.0) 3 436 (63) 4 Compression 923 (134) 114.5 (16.6) 359 (52) 26.9 (3.9) 5, 118.6 (17.2) 894 (130) 316 (46) 27.6 (4.0) 112.8 (16.4) 362 (53) 893 (130) 27.2 (3.9) Average 3.8 (0.6) Std Dev 23 (3) 47 (7) 0.4(0.1)100.7 (14.6) 42.4 (6.1) 2 99.3 (14.4) 36.4 (5.3) 3 105.5 (15.3) 38.7 (5.6) Short 4 Beam 37.4 (5.4) 95.2 (13.8) Shear 98.6 (14.3) 5 38.2 (5.5) 99.9 (14.5) 38.6 (5.6) Average

2.3 (0.3)

3.7 (0.5)

Std Dev

TABLE VII. TASK 2 TEST SUMMARY

PANET.	RESTN	CALC.	TEST	FLEXURE	URE	TENSION	LON	COMPRI	COMPRESSION	BEAM
NO.	SYSTEM	VOL.	DIRECT.	STRENCTH	MODITIOS	STRENGTH	MODULUS	STRENCTH	SOTOCOM	STRENGTH
		æ		MPa (Ksi)	GPa (Msi)	MPa (Ks1)	GPa (Msi)	MPa (Ksi)	GPa (Msi)	MPa (Ksi)
-	Troops	, 07	WARP	775 (112)	63.4 (9.20)	658 (95.3)	79.7 (11.6)	533 (77.2)	75.3 (10.9)	72.1 (10.5)
‡	934 EFUAI	٠. م	FILL	(12t) 4L8	(89.6) 1.99	676 (98.1)	76.2 (11.1)	(2.77) &2	70.6 (10.2)	70.9 (10.3)
U	OLO NOTO	7 77	WARP	680 (98.6)	67.8 (9.83)	562 (81.5)	78.2 (11.4)	η ₇₉ (69.5)	76.3 (11.1)	(46.7) 8.45
٥.	AILUR 210	0.00	FILL	(या) १४४	(11:6) 6:49	590 (85.5)	73.2 (10.6)	(6.67) 135	(4.01) 8.17	50.4 (7.31)
7	CODE M-751	0 93	WARP	859 (125)	(6.2 (9.60)	618 (89.6)	75.5 (10.9)	(2.28) 795	72.4 (10.5)	71.1 (10.3)
o	BISMALEIMIDE	96.9	FILL	811 (118)	63.4 (9.19)	(6.86) (49.9)	73.1 (10.6)	(6.48) 585	(2.6) 2.99	(1.01) 6.17
t	MXG 6070	. 77	WARP	540 (78.3)	64.2 (9.32)	(4.48) 282	75.1 (10.9)	(L·45) LLE	(2.11) 0.77	38.6 (5.60)
_	PHENOLIC	7.00	FILL	(1.47) 515	59.8 (8.67)	(6.59) 484	(86.8) 0.29	335 (48.6)	(0.01) 8.89	35.9 (5.20)
α	WFR 1200	3 77	WARP	(111) 192	63.6 (9.23)	533 (77.4)	74.7 (10.9)	(1.91) 625	72.9 (10.6)	61.3 (8.89)
o	BENZYL	6.50	FILL	852 (123)	60.7 (8.80)	581 (84.3)	70.7 (10.3)	(1.77) 883	71.6 (10.4)	63.3 (9.18)

TABLE VIII

COMPARISON OF ADVANCED RESIN SYTEMS TO EPOXY CONTROL

		PERCENT OF CONTROL							
PANEL NO.	RESIN SYSTEM	STRENGTH				MODULUS			
		FLEXURE	TENSION	COMPRESS	SHEAR	FLEXURE	TENSION	COMPRESS	
4	934 EPOXY (CONTROL)	100	100	100	100	100	100	100	
5	XATOK 510	88	86	97	74	102	97	102	
6	CODE M-751 BISMALEIMIDE	101	95	108	100	100	95	95	
7	MXG 6070 PHENOLIC	64	76	67	52	95	88	1.00	
8	WFR 1200 BENZYL	98	84	100	87	96	93	99	

NOTE: THE AVERAGE OF THE WARP AND FILL VALUES FOR EACH MATERIAL WAS USED IN CALCULATING THE PERCENTAGES IN THIS TABLE.

Table IX. Mechanical Test Results

NASA/Ames	Graphite	Fabric	Studies	Using	Current	and	Advanced	State-of	-the-Art	Resins

Panel Number	NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins							
Material 10 Pites RMF 133/34	Panel Numbe	r 4 (Gr	aphite/Epoxy)	Size 305 m	m x 305 mm (12 in	x 12 in)		
Test Property Spec. Strength Modulus Strength Strengt	1							
Test Property So. Strength Modulus GPa (Psi x 10 ³) G	Calculated	Fiber Vo	lume 69.3%	Cured Speci	fic Gravity 1.5	590		
Test Property No. Strength Modulus GPa (Psi x 10 ⁵) G				D1	m - + - 2 + 1 1	7417 72		
MPa (Psi x 10 ³) GPa (Psi x 10 ⁶) MPa (Psi x 10 ³) GPa (Psi x 10 ⁶)	1					······································		
## Plexure 2	Property	No.				_		
Plexure		ı	724 (105)	62.9 (9.12)	910 (132)	66.9 (9.70)		
Tlexure		2	781 (113)	64.7 (9.39)	.856 (124)	65.8 (9.55)		
Tension Tension Fig. Fi	·	3	832 (121)	63.7 (9.24)	820 (119)	67.3 (9.76)		
Average 775 (112) 63.4 (9.20) 874 (127) 66.7 (9.68) Std Dev 39 (6) 0.8 (0.12) 42 (6) 0.7 (0.10)	Flexure	4	776 (112)	63.2 (9.17)	862 (125)	66.2 (9.60)		
Std Dev 39 (6) 0.8 (0.12) 42 (6) 0.7 (0.10)		5	763 (111)	62.7 (9.10)	922 (134)	67.4 (9.78)		
Tension 1		Average	775 (112)	63.4 (9.20)	874 (127)	66.7 (9.68)		
Tension 2 697 (101.0) 79.7 (11.6) 654 (94.8) 76.3 (11.1) 3 697 (101.0) 80.4 (11.7) 705 (102.2) 76.2 (11.0) 4 630 (91.4) 79.6 (11.5) 680 (98.6) 75.7 (11.0) 5 630 (91.3) 78.2 (11.3) 658 (95.4) 77.8 (11.3) Average 658 (95.3) 79.7 (11.6) 676 (98.1) 76.2 (11.1) Std Dev 36 (5.2) 1.0 (0.2) 21 (3.0) 1.0 (0.2) 1 508 (73.6) 81.4 (11.8) 555 (80.5) 66.9 (9.7) 2 539 (78.1) 74.5 (10.8) 549 (79.7) 68.9 (10.0) 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) 70.9 (10.3)		Std Dev	39 (6)	0.8 (0.12)	42 (6)	0.7 (0.10)		
Tension 2 697 (101.0) 79.7 (11.6) 654 (94.8) 76.3 (11.1) 3 697 (101.0) 80.4 (11.7) 705 (102.2) 76.2 (11.0) 4 630 (91.4) 79.6 (11.5) 680 (98.6) 75.7 (11.0) 5 630 (91.3) 78.2 (11.3) 658 (95.4) 77.8 (11.3) Average 658 (95.3) 79.7 (11.6) 676 (98.1) 76.2 (11.1) Std Dev 36 (5.2) 1.0 (0.2) 21 (3.0) 1.0 (0.2) 1 508 (73.6) 81.4 (11.8) 555 (80.5) 66.9 (9.7) 2 539 (78.1) 74.5 (10.8) 549 (79.7) 68.9 (10.0) 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) 70.9 (10.3)		1	634 (91.9)	80.7 (11.7)	685 (99.4)	75.1 (10.9)		
Tension 4 630 (91.4) 79.6 (11.5) 680 (98.6) 75.7 (11.0) 5 630 (91.3) 78.2 (11.3) 658 (95.4) 77.8 (11.3) Average 658 (95.3) 79.7 (11.6) 676 (98.1) 76.2 (11.1) Std Dev 36 (5.2) 1.0 (0.2) 21 (3.0) 1.0 (0.2) 1 508 (73.6) 81.4 (11.8) 555 (80.5) 66.9 (9.7) 2 539 (78.1) 74.5 (10.8) 549 (79.7) 68.9 (10.0) 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 70.5 (10.2) 2 76.5 (11.1) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		2			654 (94.8)	76.3 (11.1)		
Short Beam Shear Short Researce Short Short Researce Short Short Researce Short Researce Short Short Short Researce Short Short Short Researce Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short S		3	697 (101.0)	80.4 (11.7)	705 (102.2)	76.2 (11.0)		
Average 658 (95.3) 79.7 (11.6) 676 (98.1) 76.2 (11.1) Std Dev 36 (5.2) 1.0 (0.2) 21 (3.0) 1.0 (0.2) 1	Tension	4	630 (91.4)	79.6 (11.5)	680 (98.6)	75.7 (11.0)		
Std Dev 36 (5.2) 1.0 (0.2) 21 (3.0) 1.0 (0.2)	·	5	630 (91.3)	78.2 (11.3)	658 (95.4)	77.8 (11.3)		
1 508 (73.6) 81.4 (11.8) 555 (80.5) 66.9 (9.7) 2 539 (78.1) 74.5 (10.8) 549 (79.7) 68.9 (10.0) 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		Average	658 (95.3)	79.7 (11.6)	676 (98.1)	76.2 (11.1)		
Compression 2 539 (78.1) 74.5 (10.8) 549 (79.7) 68.9 (10.0) 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		Std Dev	36 (5.2)	1.0 (0.2)	21 (3.0)	1.0 (0.2)		
Compression 3 526 (76.3) 74.3 (10.8) 541 (78.4) 69.0 (10.0) 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear Short Beam Shear 4 74.5 (10.8) 71.9 (10.4) 69.9 (10.1) Average 72.1 (10.5) 70.9 (10.3)		ı	508 (73.6)	81.4 (11.8)	555 (80.5)	66.9 (9.7)		
Compression 4 517 (75.0) 74.7 (10.8) 515 (74.7) 77.9 (11.3) 5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) Short Beam Shear 1 65.8 (9.5) 70.5 (10.2) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		2	539 (78.1)	74.5 (10.8)	549 (79.7)	68.9 (10.0)		
5 573 (83.1) 71.7 (10.4) 500 (72.5) 70.3 (10.2) Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) 1 65.8 (9.5) 70.5 (10.2) 68.2 (9.9) 2 76.5 (11.1) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		3	526 (76.3)	74.3 (10.8)	541 (78.4)	69.0 (10.0)		
Average 533 (77.2) 75.3 (10.9) 532 (77.2) 70.6 (10.2) Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) 1	Compression	4	517 (75.0)	74.7 (10.8)	515 (74.7)	77.9 (11.3)		
Std Dev 25 (3.7) 3.6 (0.5) 24 (3.4) 4.3 (0.6) 1 65.8 (9.5) 70.5 (10.2) 2 76.5 (11.1) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		5	573 (83.1)	71.7 (10.4)	500 (72.5)	70.3 (10.2)		
Short Beam Shear		Average	533 (77.2)	75.3 (10.9)	532 (77.2)	70.6 (10.2)		
Short Beam Shear 2 76.5 (11.1) 68.2 (9.9) 3 69.5 (10.1) 69.9 (10.1) 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		Std Dev	25 (3.7)	3.6 (0.5)	24 (3.4)	4.3 (0.6)		
Shear 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)	,	1	65.8 (9.5)		70.5 (10.2)	O:		
Shear 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)		2				36		
Shear 4 74.5 (10.8) 71.9 (10.4) 5 73.9 (10.7) 74.4 (10.8) Average 72.1 (10.5) 70.9 (10.3)	Short	3	69.5 (10.1)		69.9 (10.1)	32		
Average 72.1 (10.5) 70.9 (10.3)	Beam	4	74.5 (10.8)		71.9 (10.4)	`~ ~		
	Juear	5	73.9 (10.7)		74.4 (10.8)	E.E.		
Std Dev 4.3 (0.6) 2.3 (0.3)		Average	72.1 (10.5)		70.9 (10.3)	120		
		Std Dev	4.3 (0.6)		2 3 (0.3)			

Table X. Mechanical Test Results

NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins ,

Panel Number 5 (Graphite/Xylok 210) Size 305 mm x 305 mm (12 in x 12 in)

Material 10 plies HMF 133/Xylok 210 Orientation Parallel warp

Calculated Fiber Volume 66.6% Cured Specific Gravity 1.555

Carcurated	7		outed Speci	TIC GIAVICYI	.)))
Test	Seco	Tested in the W	arp Direction	Tested in the I	Fill Direction
Property	Spec. No.	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)
	1	676 (98.1)	67.1 (9.73)	714 (103.6)	64.2 (9.31)
	2	712 (103.2)	67.0 (9.71)	827 (120.0)	64.0 (9.28)
	3	634 (91.9)	69.3 (10.05)	742 (107.6)	66.5 (9.64)
Flexure	4	686 (99.5)	68.1 (9.87)	835 (121.1)	65.7 (9.53)
	5	692 (100.4)	67.4 (9.77)	739 (107.2)	64.0 (9.29)
	Average	680 (98.6)	67.8 (9.83)	771 (111.9)	64.9 (9.41)
	Std Dev	29 (4.2)	0.9 (0.14)	56 (8.0)	1.2 (0.16)
<u> </u>	1	566 (82.1)	77.7 (11.3)	577 (83.6)	72.9 (10.6)
	2	574 (83.2)	76.3 (11.1)	584 (84.6)	73.1 (10.6)
	3 · ^	558 (80.9)	78.5 (11.4)	585 (84.9)	72.4 (10.5)
Tension	4	571 (82.9)	80.0 (11.6)	594 (86.2)	73.0 (10.6)
	5	539 (7 8.2)	78.4 (11.4)	608 (88.1)	74.7 (10.8)
·	Average	562 (81.5)	78.2 (11.4)	590 (85.5)	73.2 (10.6)
	Std Dev	14 (2.0)	1.3 (0.2)	12 (1.7)	0.9 (0.1)
	1	502 (72.8)	75.2 (10.9)	563 (81.6)	73.8 (10.7)
	2	454 (65.9)	73.8 (10.7)	582 (84.4)	73.7 (10.7)
	3	486 (70.4)	79.3 (11.5)	517 (74.9)	71.7 (10.4)
Compression	4	505 (73.2)	76.6 (11.1)	539 (78.2)	66.9 (9.7)
	5	449 (65.1)	76.4 (11.1)	553 (80.2)	73.1 (10.6)
	Average	479 (69.5)	76.3 (11.1)	551 (79.9)	71.8 (10.4)
	Std Dev	26 (3.8)	2.0 (0.3)	25 (3.6)	2.9 (0.4)
	1	56.7 (8.22)		49.5 (7.18)	
, , , , , , , , , , , , , , , , , , ,	2 : .	54.0 (7.83)		51.3 (7.44)	
Short	3	54.9 (7.96)		51.0 (7.40)	
Beam	14	52.9 (7.67)		49.5 (7.18)	·
Shear	5	55.3 (8.02)		50.8 (7.37)	
	Average	54.8 (7.94)		50.4 (7.31)	
	Std Dev	1.4 (0.20)		0.9 (0.12)	

Table XI. Mechanical Test Results

NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins

Panel Number 6 (Graphite/Bismaleimide) Size 305 mm x 305 mm (12 in x 12 in) Material 10 plies HMF 133/M-751 Orientation Parallel warp Calculated Fiber Volume 66.9% Cured Specific Gravity 1.583 Tested in the Warp Direction Tested in the Fill Direction Test Spec. Strength Modulus Strength Modulus No. Property MPa (Psi x 10³) | GPa (Psi x 10⁶) MPa (Psi x 10^3) GPa (Psi x 10^6) 66.4 (9.63) 61.7 (8.95) 1 807 (117) 791 (115) 2 . 875 (127) 66.3 (9.61) 794 (115) 63.5 (9.20) 66.4 (9.63) 63.5 (9.22) 848 (123) 882 (128) 3 846 (123) Flexure 4 66.0 (9.57) 805 (117) 64.1 (9.29) 817 (119) 5 🕝 883 (128) 65.9 (9.56) 64.1 (9.30) 859 (125) 66.2 (9.60) -811 (118) 63.4 (9.19) Average 0.2 (0.03) 1.0 (0.14) Std Dev 33 (5) 23 (3) 631 (91.5) 77.5 (11.2) 655 (95.0) 71.8 (10.4) 649 (94.1) 601 (87.2) 76.4 (11.1) 73.3 (10.6) 2 624 (90.5) 576 (83.5) 74.1 (10.7) 73.5 (10.7) 3 633 (91.8) 74.7 (10.8) 649 (94.2) 72.9 (10.6) Tension 5 649 (94.1) 659 (95.6) 74.0 (10.7) 75.0 (10.9) 618 (89.6) 647 (93.9) 73.1 (10.6) Average. 75.5 (10.9) 29 (4.2) 1.4 (0.2) 14 (2.0) 0.8 (0.1)Std Dev 539 (78.1) 75.2 (10.9) 604 (87.6) 71.0 (10.3) 629 (91.2) 2 573 (83.0) 74.5 (10.8) 64.1 (9.3) 65.5 (9.5) 68.3 (9.9) 609 (88.3) 3 558 (81.0) 541 (78.5) 66.2 (9.6) Compression 531 (77.0) 71.7 (10.4) 5 543 (78.8) 64.1 (9.3) 632 (91.7) 75.1 (10.9) 567 (82.2) 72.4 (10.5) 585 (84.9) 66.7 (9.7) Average 40 (5.8) 4.1 (0.6)41 (5.8) 3.0 (0.4) Std Dev 1 71.9 (10.4) 70.1 (10.2) 2 72.0 (10.4) 73.7 (10.7) 3 70.0 (10.2) 72.7 (10.5) Short Beam 4 71.8 (10.4) 68.1 (9.9) Shear 5 69.9 (10.1) 74.7 (10.8) 71.9 (10.4) 71.1 (10.3) Average Std Dev 1.1 (0.1) 2.7(0.4)

Table XII. Mechanical Test Results

NASA/Ames	Graphite	Fabric	Studies	Using	Current	and	Advanced	State	of-the-	-Art	Resins
-----------	----------	--------	---------	-------	---------	-----	----------	-------	---------	------	--------

Panel Number 7 (Graphite/Phenolic) Size 305 mm x 305 mm (12 in x 12 in)								
Material 1	.0 plies	HMF 133/MXG 6070	Orientation	Parallel warp				
Calculated Fiber Volume 66.1% Cured Specific Gravity 1.566								
Test	Spec.	Tested in the W	arp Direction	Tested in the 1	Fill Direction			
Property	No.	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)			
	1	499 (72.3)	63.8 (9.26)	541 (78.4)	59.6 (8.65)			
	2	534 (77.5)	64.6 (9.37)	538 (7 8.0)	60.3 (8.74)			
	3	536 (77.8)	65.7 (9.53)	528 (76.5)	60.3 (8.74)			
Flexure	4	552 (80.1)	63.6 (9.23)	478 (69.4)	59.5 (8.63)			
	5	579 (84.0)	63.4 (9.20)	489 (71.0)	59.4 (8.61)			
	Average	540 (78.3)	64.2 (9.32)	515 (74.7)	59.8 (8.67)			
	Std Dev	29 (4.3)	0.9 (0.13)	29 (4.2)	0.4 (0.06)			
	1	619 (89.8)	73.7 (10.7)	447 (64.9)	64.5 (9.35)			
1	2	588 (85.3)	78.5 (11.4)	420 (60.9)	61.5 (8.91)			
	3	575 (83.4)	74.1 (10.8)	441 (63.9)	60.6 (8.80)			
Tension	4 . ,	. 546 (79.2)	75.4 (10.9)	422 (61.2)	59.9 (8.69)			
	5	581 (84.2)	73.6 (10.7)	439 (63.7)	63.3 (9.17)			
	Average	582 (84.4)	75.1 (10.9)	434 (62.9)	62.0 (8.98)			
<u> </u>	Std Dev	26 (3.8)	2.1 (0.3)	12 (1.8)	1.9 (0.27)			
	1	376 (54.5)	77.9 (11.3)	331 (48.1)	69.6 (10.1)			
	2	374 (54.3)	82.1 (11.9)	368 (53.4)	65.5 (9.5)			
	3	373 (54.2)	68.3 (9.9)	315 (45.7)	71.7 (10.4)			
Compression	4	388 (56.3)	82.0 (11.9)	321 (46.5)	70.3 (10.2)			
	5	373 (54.2)	74.5 (10.8)	339 (49.1)	66.9 (9.7)			
	Average	377 (54.7)	77.0 (11.2)	335 (48.6)	68.8 (10.0)			
	Std Dev	6 (0.9)	5.8 (0.8)	21 (3.0)	2.5 (0.4)			
	1	37.9 (5.50)		35.0 (5.08)				
	2	39.0 (5.66)		36.3 (5.27)				
Short	3	37.6 (5.46)		37.3 (5.41)				
Beam	14	38.7 (5.61)		35.3 (5.12)				
Shear	5	39.9 (5.79)		35.4 (5.13)				
	Average	38.6 (5.60)		35.9 (5.20)				
	Std Dêv			1.0 (0.14)				
	·							

		· ·							
Table XIII. Mechanical Test Results									
NASA/Ames Graphite Fabric Studies Using Current and Advanced State-of-the-Art Resins									
Panel Number 8 (Graphite/Benzyl) Size 305 mm x 305 mm (12 in x 12 in)									
Material	Material 10 plies HMF 133/WFR 1200 Orientation Parallel warp								
Calculated	Fiber Vo	lume 66.5%	Cured Speci	fic Gravity 1	. 582				
Test	<u> </u>	Tested in the W	arp Direction	Tested in the H	Fill Direction				
Property	Spec. No.	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)	Strength MPa (Psi x 10 ³)	Modulus GPa (Psi x 10 ⁶)				
	1	811 (118)	63.7 (9.24)	830 (120)	60.4 (8.76)				
	2	756 (110)	66.8 (9.69)	842 (122)	59.5 (8.64)				
	3	776 (113)	62.9 (9.13)	899 (130)	61.8 (8.96)				
Flexure	4	781 (113)	61.5 (8.92)	843 (122)	61.9 (8.97)				
	5	682 (99)	63.2 (9.17)	847 (123)	59.9 (8.69)				
	Average	761 (111)	63.6 (9.23)	852 (123)	60.7 (8.80)				
	Std Dev	48 (7)	2.0 (0.28)	27 (4)	1.1 (0.15)				
	1	516 (74.9)	77.4 (11.2)	580 (84.1)	70.9 (10.3)				
	2	525 (76.1)	74.1 (10.8)	588 (85.3)	70.2 (10.2)				
	3	467 (67.7)	74.8 (10.9)	557 (80.8)	70.5 (10.2)				
Tension	4	582 (84.4)	72.9 (10.6)	632 (91.6)	71.4 (10.4)				
	5	577 (83.7)	74.1 (10.8)	548 (79.5)	70.4 (10.2)				
	Average	533 (77.4)	74.7 (10.9)	581 (84.3)	70.7 (10.3)				
	Std Dev	48 (6.9)	1.7 (0.2)	33 (4.7)	0.5 (0.1)				
	1	524 (76.0)	73.1 (10.6)	497 (72.1)	69.6 (10.1)				
ł	2	528 (76.6)	70.3 (10.2)	571 (82.8)	71.7 (10.4)				
	3	522 (75.7)	73.0 (10.6)	574 (83.3)	71.5 (10.4)				
Compression	4	543 (78.8)	71.0 (10.3)	519 (75.3)	73.1 (10.6)				
	5	528 (76.6)	77.2 (11.2)	517 (75.0)	71.9 (10.4)				
	Average	529 (76.7)	72.9 (10.6)	536 (77.7)	71.6 (10.4)				
	Std Dev	8 (1.2)	2.7 (0.4)	35 (5.0)	1.3 (0.2)				
	1	57.3 (8.32)		61.4 (8.91)					
•									

	Average	529 (76.7)	72.9 (10.6)	536 (77.7)	71.6 (10.4)
	Std Dev	8 (1.2)	2.7 (0.4)	35 (5.0)	1.3 (0.2)
	1	57.3 (8.32)		61.4 (8.91)	
	2	65.5 (9.50)		66.4 (9.63)	
Short	3	57.3 (8.31)		65.5 (9.50)	-
Beam	4	64.7 (9.38)	•	64.7 (9.38)	·
Shear	5	61.5 (8.93)	١	58.5 (8.49)	
	Average	61.3 (8.89)		63.3 (9.18)	,
	Std Dev	3.9 (0.56)		3.3 (0.47)	
			20		