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° Nomenclature

Symbol De f init ion

a speed of sound/Qoo o

c wing chord

c£ section llft coefficient

............. C wing mean aerodynamic chordmac

C pressure coefficient
P ^2

h enthalpy/Qo_

i computational mesh index in the z direction

I maximum value of i-1

J computational mesh index in the r direction

J maximum value of J-I

k computational mesb index in the _ direction

K maximum value of k in the first quadrant

kw index of mesh plane in the first quadrant, neighboring

the plane 0 =

kw' index of mesh plane in the third quadrant, neighboring

the plane 0 _ 3_2
bl blach number

^ ^Z

P pressure/Pooo Qo_

q perturbation velocity vector/0o_

Q velocity vector/_oo o

Q flow speed/Qoo _

flow speed

r radial eoordinate/c

R radial coordinate of slipstream boundary/c

u perturbation velocity component in the z direction/Qoo o

U velocity component in the z direction/(_ooo

AU deviation of U from its average value/Qoo o

v perturbation velocity component in the r direction/Q_,

v velocity component in the r dlrection/"Qo_

w perturbation velocity component in the 0 direction/(io_ ,

. W velocity componeut in the 0 direction/Qoo o

z axial coordinate/c
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Nomenclature (Cont.)

S_S_S_S_S_S_S_S_S__ Definitionm

slipstreamswirlangle
s

y ratio of specificheats

_l _ vorticity vector/(_o_/C)

q deviation of slipstream boundary from its

undisturbed positlon/c

n* % of semispan

_[ 8 angular coordinate
2

_r stretchingfactor in r direction

4 _z stretchingfactor in z direction

_0 stretchingfactor in @ direction
p density/Po_

density

_ _ perturbation velocity potentlal/cQo_

undisturbed radius of a _treamline/cQo_

Subscripts

i denotes inner region variables

o denotes outer region variables

s sli@stream boundary

t denotes total conditions

denotes undisturbed conditions

_ Superscripts

(--) averagequantity
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I. Introduction

Interest in turbo-prop propulsion systems has been recently revived

" due to the _ropulsion efficiency of these systems and the predicted fuel

shortages in the future. Propeller slipstreams will interact with wings

causing changes in their aerodynamic properties. The det_'mination of

the effects of slipstream-wing interaction is therefor_ necessary before

any design decisions regarding the installation of turbo-prop propulsion

systems can be derived. Since current passenger flight cruise speeds

are in the transonic range, this is the range considered here.

The interaction of wings with regions of high energy flow embedded

in uniform _treams was studied by Shollenberger (1975), who used flow

singularities to simulate a Jet interacting with a wing. The flow

solution and Jet position were found by calculating the singularity

strengths and locations. Lan (1975) used a quasi vortex-lattice m_hod

and a two-vortex-sheet representation of the slipstream to study the

in=erection problem with different slipstream and freestream Mmch numbers.

Ting, et al., (1972) used the method of asymptotic expansions to study

the interference of a wing with multipropellers. The effect of nonuniform

J streams on the aerodynamic characteristics of wings has been studied by

Chow, et al., (1970) and Kleiustein and Liu (1972). Boctor, eta!.,

(1978) have recently studied the interaction of the slipstream with a

wlng-body _onfiguration at high subsonic Mac_ numbers, using the panel

method. _qls method does not include treatment of local patches of

supersonic flow and shock waves. Therefore, though i_ may indicate

. qualitative trends, it fails to give quantitative descriptions of flows

I° in the _ransonic regime. In addition to the theoretical studies mentioned

above, experimental tests were conducted by Welge and Crowder (1978) to

assess the magnitude of _he aerodynamic interference of a propeller

s]ipstream on a supercritical wing.

Except for the final experimental study, all previous studies

dealiug with slipstream-wing interaction are limited to subsonic flows_

In this report a simplified model is used to describe the interaction

between a propeller slipstream and a wing in the transonic regime. The

undistdrbed slipstream boundary is assumed to coincide with an it_finlte



circular cylinder. The undisturbed slipstreamveloclty is rotational

and is a function of the radius only. In general, the velocity per-

turbation caused by introducing a wing into the slipstream is also

rotational. By making small disturbance assumptions, however, the

perturbation velocity becomes nearly potential,,and an approximation for

the flow is obtained by solving _ potential equation. This simplified

model allows us to obtain basic information about the interaction

problem while avoiding the need for solving the more complex Euler

equatlous.



2. Formulation and Governing Equations

The present analysis considers a wing in a flow with a slipstream

(inner flow region) embeQded in a freestream (outer flow region). Far

upstream of the wing, flow conditions are undisturbed by the wing.

There, the freestream Mach number is Mo_o , and the slipstream is a

circular cylinder of radius R with velocity distribution

_i_, = (Ui_(r) ' 0 , Wi_(r)) and total enthalpy hti_(r) . The flow

velocities and the enthalpy are normalized here by the freestream flow

" _peed and the square of the freestream flow speed, respectively. 'l"ae

cylindrical coordinates (z, r, 8) are used, with the z-axis coinciding

with the axis of the undisturbed slipstream. The coordinates r and z

are normalized by the wing chord. The subscripts i, o, _ , and t are

used

used to denote inner region properties, outer region properties,

undisturbed condiLions, and total conditions, respectively. As the wing

is approached, the flow is perturbed from its basic undisturbed condition.

i Since the flow is potential in the outer flow region, the velocity

perturbation there may be expressed as _o = V_o " In the slipstream,

the flow is rotational in genera!. Let _i = (ul ' vl ' wi) be the

velocity perturbation there. Due to the wing effect, the slipstream

surface deviates from the undisturbed circular cylinder and is defined

by

r = R(z,e)= R + n(z,8) ,

where n is the amount of deviation from the undisturbed condition.

The condlt_ons at the interface specifying zero nomaal flow to it

are

no

vi= uinz+ wi_--,r= R , (I)

and _O
_o = Uo_z 4-w° _-- , r = R , (2)

r



and the condition specifying zero pressure Jump across the interface is

2 2

Qi - Qi=o 2 2 (3)
" = Moooaioo '2

Qo - I

where Q is the magnitude of the velocity Q and a Is the sound

speed normalized by the freestream flow speed.

The continuity equation governs the flow in the outer region,

_hile the continuity equation in addition to the Euler equations governs

the flow in the inner region in general. The continuity equauion is

V • (pQ) = 6 , (4)

or a-f "r (rpV)+T (pw)=o ,

where p , the density normalized by the freestream density, is given by

where

_Qioo(_)/aioo(_) , _ < R=o

ooo

I_(.ploo(_)la21oo(_) , _)< R_o

_'_(*)=ll , , >R

a2(,) I(>_) hoot(*) _ Q_(_ * <R'"b.L , ,> "=



and the unperturbedpressure pi_(_) is givenby the relation

Pi_=----_f-.e
. yM_

(whichsatisfiesthe Euler equ tions),where

= rag(r) dr .
R

Here, y is the ratio of specificheats, _(z, r, 8) is the radius of

the streanLllne passing through point (z, r, 8) in the undisturbed flow

region far upstreamof the wing, and the pressurehas been normalizedby

the freestream density multiplied by the square of the freestream fiow

speed.

In general, thp velocity perturbatlon inside the slipstream is

rotational, and a complete solution requires solving the continuity

equation (Equation 4) in additionto the Euler equation

I Vp , r < R , (6)(Q~•v)Q~=-

inside the slipstream,solving the continuityequationoutside the

slipstream,and determiningthe slipstreamboundary R(z, @) •

2.i S_II PerturbationApproximation

Two simplifyingassumptions,under which the requirementfor solving

the Euler equation-inthe inner region is dropped,are introduced. The

first assumptionis that the undisturbedinnex region flow is nearly

uniform:

(r)+ AU_(r) << I ,

Ui_

where

ui_(r)=Ui_+ _ui_(r)



and Ui_ is the averagevalue of Ui_(r) . The second assumptionis
the small disturbanceassumptionwhich limits the wings consideredhere

l
to wings with small surfaceslopes. To see the simplifyingeffectsof

these assumptions,cake the curl of Equation (6). This gives

_(Q• v)o.(_.V>Q+-12(vo_v_), (7>(q
t ~ P

for r < R , where _ is the vortlcityand

•,VxQ •

Under the two assumptionsmade above, Equation (7) to the lowest order

becomes

--t"= 0 ._z

This allows the velocity perturbation in the inner region to be expressed

in terms of a velocity potential, and the governing equations simplify

to

[ ] I _ (r°_r)B_ pCu + ¢,z) +r "__z

1 0(w +r = o ,+ r

where

_UiJr),r<R
u_'ll ,r>R

Iwi(0,r <R=
OO

_° 0 ,r>R

and 0 is given by Equation (5) with _, replacedby r. 'lq_egoverning

equationis furthersimplifiedby replacingthe full potentialequation
with the transonlcsmall disturbanceequation

[ ._z p(u + Cz) + rl' 1 3 1
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where p is to be approximated by the first four terms of the binomial

expansion for Equation (5). The conditions at the slipstream boundary

reduce t("

_r(Z,Roo+ €, 8)= Uioo(R°o)' £ _ 0 , (9)

and

2 2
Cz(Z,R- €, e) Mo_ai_(R)= ,E_ 0 . (i0)
,z(Z,R + E, o) Ui_(R)

_.__ .:_.,.....-.__ .... ......... .: ......................,_. _ , ,._f_
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3. Kumerical Approach

The solution to'the governing equations is found numerically.

Therefore, define a net of discrete points (zi, rj, Ok) in the com-

putational domain (see Figure I) with

0< i< I :-I ,

l<J<J+l ,

l<k<K

The computational domain is bounded by an outez cyllndrical boundary

J+l z0(r = r ) , an upstream vertical plane (z = ) , and a downstream

I+l)vertical plane (z = z . The undisturbed cylindrical slipstream

boundary (r = R) lies between the two cylindrical mesh surfaces

rj such thatr = rj-I and r = , J = Js _

Js-I Js
r + r

R = 2

i7

'l_newing extends in both the 8 = _ plane (which bisects the angle between

the two mesh planes O = 8k and O = e k+l , k = k) and the 9 =-_-

plane (which oisects the angle _ etween the two mesh planes e = ek a_d

e = Bk+l , k = k ,)w

3.1 Finlte Difference Formulas

The finite difference approximation to the governing equation

(Equation 8) at the point (zi, rj, 8k) , 1 --_i _<I , 2 _< J _<J ,

l<k<K _ is

(_i+_,J,k ui+_,j,k) _ (_i-½,J,k ui-½,J,k)
i_ ±-½

Z -- Z

i __?_,k rj_i vi,Ji_,k) _ (pi,J-½,k rJ-½ vi,j-½,k)

rj rj+_ _ rJ-_

+ 1. (pooi'j'kq_ wi,J,k+_) (pooi,J,k-½ wi,J,k-½)-- = 0 , *,11)

, rj @k_ _ 0k-½

i
I
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where

Ul,J,k = u (rj)+ ui,J,k ,

vi,J,k _ vi,J,k ,

wi,j,k,w (rj)+ i,J,k ,

and fi,J,k denotes an approximation to the function f(zi rj Ok)D • •

The discretized density is first evaluated at points (xi!_ , rj , 8k) •

The value of pi,J+_,k is then calculated csing the relation

pi,Jq_,k . _ (pi-½,J,k+ pi-½,j_l,k

+ pi+_,J,k + pi+_,J±l,k).

~i+½,J,k
The modified density, p , is given by

5i+4_,J,k : pi4_,J,k + Api+_,J,k

with Api+_,J,k . _|j[,J,k(pid_,J,k _ pi-½,J,k) , (12)

i+2

:' , B ," 0where _ _ 1+2
_±+_ ,_ . o '

and the switching function B _s given by

The evaluation of the modified density _ at points in the constant

z !+½ plane, as done here and by Jameson (1976), produces sharper shocks
. i

than those produced by the evaluation of _ at constant z planes, as

suggested by Ilafez,eta!., (1978). The switching function I-'in

Equation (12) is evaluated at the point z_'j'k A"_eevaluation of the
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switching function at the point z t'j'k- as done by Jameson (1976),• •

• _ produces here a nonsmooth solution at the sonic llne.

The artificial viscosity

Ti,j,k (Api+_'j'k ui+_,3, k) _ (Api_,j,k ui-_,J, k)" "- i+_ i-_ '
Z - Z

which is an approximation to

3
- _-7(U_z^Z)

(where Az i_ the mesh spacing in the z direction), has been added to

the central difference approximation to Equation (4) in order to produce

a stable difference scheme in the supersonic zone. This fo'_,for the

viscosity was introduced by Jameson (1976) to solve the full potential

equation in conservative form. Since the flow is nearl_,aligned with

the z coordinate• it is sufficient to add the viscosity to the z derivative

only. i+_,J,k i-h,J,k
The perturbation velocity components u and u are

defined by the formulas

i+_,j,,k . _i+l,J,k._ _i,J,k
u i+l i

z - ,2

and

i-½,J,k _i,J,k _ ¢i-l,J,k
u i i-I

Z -- Z

Similar formulas for vi'jd_'k and vi'j'½'_" are used at a)l mesh

points except those where J = Js - 1 and J " Js ' respectively. The

appropriate formdlas at these points are derived in Appendix A and are

given by

2 n_5i'j'k .,i.J-l,k_ J -.J (13)
i (J-l)+_,k ----x_"--'-----i'_= "L ' s •

v ' = (rj - rj-l) (I +AB)



-11-

for points in the inner region at the slipstream boundary, and

.i.._i,J,k _ _i,J-l,k_

vi'j-½'k " 2-Alt__'z" ' J " Js ' (14)
(rj - rj'l) (i+ AB)

for points in the outer regionat the slipstreamboundary,where

I

A- bi_(R+)

and
2 2

B- Ho+ai_(R) .

The perturbatlonve!oaitycomponents wl,J,k4½ and wi'j
are

defined by the formulas

i,J,k+½. 1 _,J,k+l _ ii,J,k
w rj ok+l _ ok

and

wi,J,k-½ _ i _ll,J,k _ _i,J,k-I
rj 6k _ 0k-I

at all points except those on the wing surfaceand those in the wing

wake. (h_ the wing surface the small disturbance boundary condition

is used, where s is the deviation of the wing surface from a horizonta!

plane and is defined to be positive in the direction of increasing 0 .

The potential function _ is discontinuous at the wing wake. There,

the following formulas are used:

i,._,k+_ __1 _l,J,k+_ + Cj !i,_,k= _T_ ""_-- k = k
w rj 0k+l_ ok w

wl,J,k_½._!l i,J, - , k = k +I
rj ok _ ok_ I w

---_!..... k " kw,wi,J,k+__ 3_ _!ij'k+l c'_ i.J,k
rj 6k+l _ Ok '
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wl,J,k-½ _,-_I _i,J,k ( i,J,k-i + c,J_ - , k- kw,+l
, rj ek _ 6k-I

where

2 2
[

- cJ
c'J " SJu,3__._ £,3,'T '

2 2

4 4

and .re,  espectively,thevaluesofthepotentialat
2 2

the upper and lower surfaces of the wing trailing edge located at

rj J CJ
0 " _ , r - , and _bu,3___' £,7_r are respectively the values of the

2 2
potential $ at the upper and lower surfaces of the wing trailing edge

located at $ = 3_ rJ--_ t r m

The far fieldboundaryconditionsare givenby

uO'j;k = 0

and $i,J+l,k = 0 ,

and on the downstream plane (z - zI+I) , Fquation (II) is solved with

the z derivative in that equation set equal to zero.

3.2 Finite Difference Formulas at the b_is

Define a Cartesian coordinate system (x, y, z) with a horizonta]

x-axis (O _ _ ) and a vertical y-axis (0 - O) The continuity

equation in Cartesian coordinates is

_z _(u + Cz) + 7x (°-¢x)+ 7y (_¢y)" o (16)

The finite difference al,uroximation to Equation (16) is used for points

along the z-axls and is given by
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_u)_+_,J,k. (_v)_-_,._,k
i+½ i-h

Z -- Z

, (OVc) i' J_t'kw +_- (pVc) i' J+_' kw '+_
*1

: , Ax

(OWe) 1,J+_,T _ (pWc)i'j4/_' B ,, 0 , (17)
+ Ay

where

Ve x

We " Cy '

()i,J+_,T 1 [ i'J4_'kw i'J+_'kw'+l]=_ ( ) +C) - ,

i,j.4_,k_.1 i,J+_,k ,],
( )i,J-_,B ,_ 1 [-f ( ) + ()

and Ax , by are the mesh spacings in the x and y directions, respectively.

The potential function _ is double valued at the axis. As the axis is

approached !_rom above, it takes a value _+ and as it is approached

from below it takes another value _- . Therefore, set

f O<Ok< _"

¢i+ I', 3_

¢i,l,k . 2-- < Ok < 2_

01- __ < Ok < 3_' 2 2

% and W in terms of tlle
and express the velocity components U , Vc " c

_: potentialfunction¢ by formulassimilarto thoseusedformesh

points away from the axis.
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3.3 Iteratlve Procedure

( Equation (11) written at all mesh points off the axis and Equation (17)

written for all mesh points on the axis constitute a nonlinear system of

algebraic equations for the potential function _i,J,k at the mesh

, points. Hafez, et al., (1978) and Holst (1979) have recently solved the

_ transonic full potential equation by a simple line relaxation scheme

which requires no special treatment for supersonic points. This simple

scheme is used here. _e finite difference equations at all mesh points

may be written in the form

Ej'k-o , j = I,2, ... ,J (18)

, k " I, 2, ... , K

v

where Ej'k is an I-component vector whose ith element is given by

the left hand slde of Equation (Ii) if J > I and is given by the left

hand side of Equation (17) if J - I . _len the velocity components

appearing explicitly in the finite difference equations are expressed in

terms of the velocity potentlal the vector Ej'k can be split in the

following manner

EJ,k . DJ,k @,J,k~ _ ~fJ'k , J = l, 2, ... , J (19)

, k- 1, 2, ... , K

where the vector _,J,k is given by

_l,j,k"

¢2,j,k

¢,J,k •

@l,J,k.

In order to solve Equation (18) iteratively, a sequence of vectors

_J ,k
Z*n , n _ i, 2, ... is defined. _ese vectors are obt_ined by solving

the linear system of algebraic equations

_i_ AJ'k fJ,k" D **n , J - I 2..... I{ ~ _ ~n,n-I ' '

€, , k = I, 2, ... , K

:}
!
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where DJn'__is the matrix Dj'k with its elements evaluated using the

n-Ist iteratlve solution, and fJ,k is the vector fJ,k with tile~n,n-I ~
n-ist iterative solution used for evaluating the density and the last

_vailabie iterative solution used for." evaluating the velocity potential..

The n th tterattve soIution is given by
tp

where _ is a relaxation factor. The relaxation sweep is done for

lines with k - 1 to k = K on a cylindrical surface and is then

continued for cylinders with increasing radii. At the end of the relaxation

sweep, the Jump _n potential at tilewing trailing edge

./

.... GJ,n/"
/

is found and the nth itera:ive value Is defined by the relatlor

where _ is a relaxation factor. Relaxation sweeps of tile computational

domain are repeated until convergence occurs. In order to improve

stability and tile rate of convergence, a @zt term

k) i,jk)On-1 _q'*n - - - - _n-I

- K 2 (zI Zi_l)At

th
is added illthe n iteratlve sweep to the left-hand side of the

algebraic equation solved for the mesh point (i,J,k) where K is a

constant and we set

_._t" zI - zi_1 •

[.

k.- !

t

t.
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4. Results

The method presented above for solving the slipstream-wing inter-

action problem has been used to modify a computer code: developed by

M. llafez (fo= sDlving the trapsonic full potential equation by the

artificial compressibility method, described by Hafez, et al., 1978).

Numerical examples are presente&here for two geometrical configurations.

The first is that of a simple rectangular wing, while the second is that

of a swept wing.

A computational mesh with nonuniform spacings in the 8 direction

and with a stretching factor

8k _ 6k-I

_@ = @k+l @k , 0 < 8 < _ ,-

is used. The mesh is symmetric about both the horizontal and vertical

planes. Inside a cylindrical region with an axis coinciding with the z-

axis and with its surface and end planes containing the outermost wing

tips, the mash spacings in both the axial and radial directions are

uniform. Outside this cylinder, however, the mesh spacings are non-

uniform. They are stretched with a stretching factor _r in the

positive radial direction. Downstream of the wing the mesh spacings

are stretched by the factor _z in the positive z direction while they

are stretched by the same factor upstream of the wing in the negative

... z direction. _lerefore the mesh spacings increase in size as one moves

away from the wing. A value of i.i for each of three stretching factors

is used here.

The results are calculated for a freestream Math number M = 0.8 .oo=

The slipstream swirl an_le as and total pressure Pti_ distributions

of highly loaded propellers under development (see Welge and Crowder,

1978) are sho_ in Figures 2 and 3. These distributions are used in the

calculations presented here, It is noted that Equations (13) and (14)
/

..'" are valid for general A and B values. However, for the Pti_/Ptooo

'-- distribution of Figure 3, both A and B are approximately unity. In

this case, it is ¢onslstentwith the small disturbanceapproximationto

set A = B = I , allowing the problem to be solved with no special

treatment for points at the slipstream boundary. Although the application

of Equations (13) and (14) is a simple matter in the present calculations

/
/
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where cylindricalcoordinatesare used, a more complex set of equations

replaces them when generalcoordinatesystems are uged. In such cases,

a great simplification is caused by avoiding any special treatment for

points at the slipstream boundary. • - wing with
The first set of results are calculatedfor a zectangula.

3°NACA 0012 sections,a angle of attack,and a maximum swirl angle4.
3°= . The rectangularwing planformis sketchedin Figure

S max

The calculationsfor the rectangularwing are carriedout on a 49x20x24

(z, r, e) mesh, with 14 mesh points along the wing chord and 20 points

along the wing span. The computational mesh extends 1.5 chord lengths

upstreamof the wing leadingedge, 5 chord lengthsdownstreamof the

wing trailingedKe, and the outer cylindricalcomputationmesh boundary

radius is 4 chord lengths. The first Iterativeguess is taken to be a

linearlyinterpolatedsolutionobtainedby solvingthe problemon a

rough mesh 40x16x16 (z,r, e) •

Profilesof the pressurecoefficient

C - 2(p - Pooo)/ P

at sections A and B of the wing (see Figure 4) are given in Figures 5

and 6. At Section A, the swirl angle effectively reduces the wing's

angle of attack. On the upper surface, the axial velocity increment in

the slipstream and the swirl angle produce opposite effects. They,

jo however, produce similar effects on the lower surface. _e swirl angle

tends to produce an upstream displacement in the upper surface shock

position, while the axial velocity increment tends to produce a downstream" I

/ displacement. At Section B, the swirl angle _ffective y increases the

. wing's angle of attacK. The axial velocity increment and the swirl

angle produce similar effects on the wing's upper surface and opposite

effects on its lower surface. Note in Figure 6 that ti,e slipstream

effect produces a downstream displacement in the shock position, and it

produces a stronger shock. This consequently contributes to an increase

in the wave drag. Figures 7 and 8 show the distributinn of Cp min

(the minimum .value of Cp along a chord) along the wi_.g span. In these

figures, we see that the slipstream effect is largest inside the slip-

stream but extends outside it, Figure 9 shows the distribution along

.
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the wing span of c_ , the section llft coefficient. It is concluded

( from this figure that the slipstream effect on lift distribution is

primarily due to the swirl angle.

The effect of the slipstream on the wing's wave drag is shown in

Table I. Estimates of wave drag are found (see Murman and Cole, 1974)

_ by integrating

f
shock

_z across the shock. In the table, the drag is normalized by that due

to the wing semlspan in the absence of the slipstream. The table shows

that the swirl effect on wave drag is that of redistribution. Its

effect on the total wave drag, however, is small. This is in contrast

to the slipstream axial velocity which produces a large increase in wave

...... -.."- drag. 2.

The effect of the slipstream on the wing's lift is shown in Table

Estimates of lift are found by integrating twice A_te (the difference

in _ between the upper and lower wing trailing elge surfaces) along

the wing span. The lift values shown in Table 2 are normalized by that

J ..... -" due to the wing semlspan in the absence of the slipstream. The table

Lhows that the effect of the slipstream on the wing's total llft is

minor.

A second example, attempting to calculate a case which is as close

as possible to the experimental configuration of Welge and Crowder,

(1978), is now presented. The planform of the wlng-body configuration

used by Welge and Crowder (1978) is depicted in Figure i0. Due to the

simplicity of the computer code in the present study, it is not possible

to simulate flows about complex geometries. The calculations have

therefore been done for a simple swept isolated wing configuration. The

wing planform is sketched in Figure Ii, and the defining supercritical

airfoil section is given in Table 3. This airfoil section is the game

" as that of the _xpe_imental wing section at the 35 percent semlspan

station. The use of a Cartesian coordinate system at the slipstream
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axis, in the manner discussed in Section 3.2, has been found to cause

solution inaccuracies near the leading edge of a swept wing. To avoid

this problem, an infinite cylinder whose axis coincides with the slip-

stream axis is assumed. The solid wall boundary condition is applied at

the cylinder's surface. The cylinder's radius is chosen to be half a

mesh spacing in the radial direction. A 4.5 ° wing angle of attack is

chosen to roughly match the sectional lift coefficient in the slipstream

region to that of the experimental lift coefficient in the absence of

slipstream effects (swirl and axial velocity increment). In the calcula-

tions, the total pressure distribution in the slipstream is assumed to

be that depicted in Figure 3. Calculations with both positive swirl

angle (_s max = 70) and negative swirl ang]e (es max = -70) have

been performed.

The calculation for the swept wing are carried out on a 107x20x20

(z, r, 0) mesh, with 16 mesh points along the wing chord, and 20 points

along the wing sp_n. The computational mesh extends 2.5 chord lengths

upstream of the wing leading tip, and 8 chord lengths downstream of the

wing trailing tip, and the oute_ cylindrical computational mesh boundary

radius is 5 chord lengths. The first iterative g_less is taken to be a

linearly interpolated solution obtained by solving the problem on a

\. rough me_h 78x14x14 (z, r, _) .

Profiles of the pressure coefficient at sections A, B, C, A _ B'

and C' of the wing (see Figure Ii) are given in Figures 12 through 17.

A comparison of the solutions at sections A and A', which are closest to

the axis, indicates a strong effect due to the cylinder co-centered with

the axis. The e_fects of this cylinder is to compress the flow at

section A, and to expand the flow at section A'. These effects may be

concluded from basic flow properties along swept wings and are confirmed

\ by comparing the solutions presented in Figures 12 and 15. At sections

" A, B, and C, the positive (negative) swirl effectively produces a reduction

(increase) in the wing's angle of attack, while the positive (negative)

swirl effectively produces an increase (reduction) in the wing's angle

of attack at sections A', B', and C'. Figures 18 and 19 show the distri-

bution of C along the wing span, and Figure 20 shows the distribution
p min
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of the sectional lift coefficient along the wing span. The effect of

the slipstreamon the wing's lift:is shown in Table 4. Drag calculations

have not been performed,since the solutionsindicatesupersonic-supersonic

shocks. The simple calculatienswhich are used to estimatewave drag

due to supersonic-subsonicshocksare cot applicablein the case of

supersonic-supersonlcshocks.

Resultspresentedin this exampleshow similar trends (for slip-

stream effectson supercritlcalwings) to thoseof the experimental

resultsproducedby Welge and Crowder (1978)(seeFigures 21 and 22). A

qualitativecomparisonbetween the experimentalresults and the numerical

results is not appropriatedue to differencesin the geometricalconfigura-

tions of the experimentaland numericaltest cases. The absence of a

body next to the wing and the presenceof a cylinderin the slipstream

in the calculatedexample,in additionto differencesin the wing planform

and its cross-sectionalprofilesbetween the experimentaland numerical

examples,contributeto differencesin the flowsabout the experimental

and numericalconfigurations. In additlo_to the currentcode's geometri-

cal limitation,it shouldbe noted that the use of the small disturbance

equationsnear Lhe blunt leading edge of a supercriticalairfoil causes

solution inaccuraciesin the leadingedge region° Precisenumerical

calculationsfor complexgeometricalconfigurationsmay be made by the

-- use of computercodes capableof handlingthese geometries. Leading-

edge inaccuraciesmay be avoided by using full potentialcodes.

_,e calculationswere done on a CDC 7600 computer. For the rectangu-

lar wing, I second and 2 secondswere requiredper iteration,respectively,

on the rough mesh and the final mesh. The number of iterationsrequired

Ii to reduce the maximum residualto 0.001 was approximately150 for the

rough mesh and I00 for the fina! mesh. For the swept wing, 1.36 seconds

-- _ and 4.6 secondswere requiredper iteration,respectively,on the rough

I mesh and the final mesh. The number of iterationsrequiredto reducethe maximum residual to 0.001 was appr_ _mately 7_ for the rough mesh/"

and 190 for the final mesh. _le values used for the relaxation factor
/

varied between 1.4 and 1.6. _e relaxation factor _ for calc,_lating

the Jump in potential at the trailing edge was taken to be 1.2, rud

K , the Czt term coefficiena, was set equal to 1.0.
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5. Concludin_ Remarks

In this report, an invlscld model for the interaction between a

thin wing and a nearly uniform propeller slipstream has been presented.

In this model, the perturbation velocities due to the interaction are

potential, even though the undisturbed slipstream reiocity is rotational.

This allows basic information about the interaction problem to be obtained

while avoiding the need for solving the Euler equations. _or typical

slipstream velocity distributions, only minor modifications to the free

fle_ potential equation and wing boundary conditions are required to

produce the slipstream effect. These modlflcatiuns can be easily incor-

porated into available transonic potential codes.

The slipstream effect on a wing in the transonic regime has been

demonstrated through a simple exsmple. Solutions obtained for a rectangu-

lar _ing indicate that the slipstream has a strong effect on the aero-

dynamic properties of the wing porticn immersed in the slipstream. The

effect of the slipstream on the rest of the wing is less, but t is

dlscernable. The results indicate that the slipstream swirl has a

strong effect on the wing load distribution, however, its effect on the

total _ing lift and wave drag is small. The axial velocity increment

inside the slipstream has little effect on the wing's llft; however, it

causes a large increase in wave drag.

Although the computer code used for the present study is a simple

code which does not al_ow calculations for complex geometrical configurations,

an attempt has _;_,enmade to calculate a case which is as close as possible

to the experimental configuration of Welge and Crowder (1978). The

calculated results indicate the general trends for slipstream effects on

a supercritlcal swept wing. However, solutions calculated are not

expected to be accurate near the blunt leading edge of the supercritical

_. wing, E_ince the small disturbance equation is used in the present calculations.
Therefore, the change in leading edge suction associated with the slipstream

swirl is not properly accounted for in the solution. The computer code

used in this study is a simple code for the purpese of demonstrating the

interaction effects for simple geometrical configurations. More sophisticated

codes are available (see Jameson and Caughey (1977) and Caughey and

!
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Jameson (1979)) and may be used for calculating slipstream effects on

" wing-body combinations, provided the assumptions efa nearly uniform

slipstream and a thin wing are satisfied.

i;
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Tables



Table1: NormalizedWave Drag for RectangularWing

Uniform SlipstreamAxial Slipstream Combined
. Flow VelocityEffect SwirlEffect Effect

Right 1.00 2.83 0.68 2.0_Wing Drag

Left
Wing brag 1.00 2.83 1.48 3.82 _.',

Total

I Wing 2.00 5.66 2.16 5.86Drag

.____

LeftWing RightWing



Table 2: Normalized Lift for RectangularWing

Uniform SlipstreamAxial Slipstream Combined
Flow Velocity Effect Swirl Effect Effect

Right
Wing Lift ! .00 1.05 r 0.83 0.87

Left i
Wing Lift 1.00 1.05 1.17 ! .23 !

!

Total
2.00 2.10 2.00 2.10

Wing Lift

Left Wing RightWing
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.... Table 3: Airfoil SectionCoordinatesfor Swept Wing.

% Chor_ UpperSurf LowerSurfaceCoordinate,y / Coordinate,y
,,,,

0.0 ---0.0568 - 0.0568
0.05 - 0.0540 - 0.0619
0.25 - 0.0491 - 0.0670
0,50 - 0,0455 - 0.0708
1.25 - 0.0393 - 0.0780
2.50 - 0.0327 - 0.0860

..... 5.00 - 0,0245 - 0.1256
7.50 - 0.0189 - 0.1030

10,00 - 0.0144 - 0.1081
15.00 - 0.0079 - 0.1151
20.00 - 0.0033 - 0.1197
25.00 0.0000 - 0.1228
30.00 0.0023 - 0.1250
35.00 0.0035 - 0.1260
40.00 0.0041 - 0.1260
45.00 0.0035 - 0.1248
50.00 0.0022 - 0.1223
55,00 0.0001 - 0.1179
58.50 - 0.0020 - O.1138
65,00 __0.0069• - 0.1041
70.00 - 0.0121 - 0.0952
75.00 - 0.0632 - 0.0860
80.00 - 0.0257 - 0.0771
85.00 - 0,0344 - 0.0696
90.00 -0.0444 - 0.0646
92.50 - 0.0502 - 0.0640
95.00 - 0,0565 - 0.0651
97.50 - 0.0637 - 0.0682

.... 100.00 - 0.0713 - 0.0734

y BASIC AIRFOIL

A

!



Table 4: Normalized Lift for Swept Wing

Uniform Slipstream Slipstreamwith
with Positive NegativeFlow
Swirl Angle Swirl Angle

!

Right 1.14 0.95 1.4!
Wing Lift

!

Left 0.86 1.13 0.63 ,=
Wing Lift

Total 2.00 2.08 2.04
Wing Lift

Left Wing RightWing
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• Appendix A

In general• the approximation of the radial velocity component at

the point (zi, rj-½, ek) is given by

vi'J-½'k. +i,J,k_ _i•J-l•k .
rj - rj-I

This, however, is not true at mesh points fox which _ m Js since the

slipstream boundary (across which the velocity components are discon-

tinuous) coincides with the cylindrical surface r _ rj-½ , where J = Js "
_- Expressions for the radial velocity components v.-i•k in the inner

region at the slipstream boundary and v+i'k in the outer region at the

slipstream boundary may be found in terms of the potentials _i,j•k. and

_i•J-l•k
, where J = Js ' as follows:

Define a fictitious potential _i,k at the point (zi• rJ' @k) ,

where J = J , so thatS

v_i,k = _i,k _ li•J-l,k ' J = Js " (A.1)
rj _ rJ-i

It follows from Equation (9) that

v+i'k _ A ¢i,k _ _i,J-l,k • J = _s " (A.2)
_".'j, rj - rj-I

The axial velocity perturbation components u-i-½'k in the inner

region at the slipstream boundary, and u+ i-½'k , in tile outer region at

the slipstream boundary, may now be expressed as follows:

u-i"_'k = l[_i,k_ ½ v.i,k(rJ_rJ-l)]

[ i-l,k, I
I(rj - rj'l)

4

i I (_i,k _i,J-l,k _i-l,k _i-l,j-l,k) , ,
= 2 rJ _ rJ-i + - - J = Js
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and

i

u+i-_,k = _ [¢i,J,k ½ v+i,k( u_ rJ-l)l

' - L - - i
I(rj - rJ-l)

= 1 (¢i,J,k -_^ ¢i,k +.f^ ¢i,j-l,k
r j _ r j-1

A _i-l,k h _i-l,j,k) ," _ ¢i,l,J,k + _ - _ J " Js "

i-½, k ,_.i-!_,kSubstituting the expressions f-or u- and into Equation (I0),

the following relation is obtained:

_i'k(l + AB) - 2B_i'j'k + (I - AB)_i'j-l'k

= ¢i-l'k(1 + AB) - 2B1 i-l'j'k + (1 - AB)¢ i-l'j'k

- G ' J = Js " (A.3)

RQ_is all)ws _i,k to be expressed as follows:

¢i, k 1
= i + AB (G + 2B_ i'j'k (i - AB)_ i'j-l'k) ' J = Js "

Substituting into Equations (A.I) and (A.2), the radial velocity components

become

i,k 1
v- = (G + 2Bi i'j'k -2¢ i'j-l'k) , J = J ,

(rj - rj-l) (i + AB) s

v+ i'k = _ (G + 2B_ i'j'k - 2_ i'j-l'k) , J = j
(rj - rj-l) (I + AB) s

,I
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Since relation (A.3) is true for all values of i , it may be

applied repeatedly for decreasing values of i , obtaining

G = _°'k(l + AB) - 2B_ °'j'k + (1 - AB)_ °'j-l'k 'J'Js"

Since the radial velocity component is zero at the upstream boundary,

this leods to the conclus!o, that

¢o,a,k" = Co , J = Js ' is. + 1 , .., J + 1
and

_o,k = _o,J,k = Cl - I ., J = 1, 2, . .., Js

Since
o,J+l,k

=0 ,

it is concluded that

\\ Co = ¢o,J,k = 0 " J = Js J

and

j._ G = 2C i .

The constant CI , and.therefore G , may be chosen arbitrarily. Choose

G=O .

The final expressions for the radial velocity components at the slipstream

boundaries are therefore

I k 2(B_i,J,k _ ll,J-l,k)
v-' ............. J = Js '

(rJ - rj-l) (I + AB)

and

....a v+i, k ,,_(B_i,J,k _ li,J-]_ , j = j •S

(rj - rj-l) (l + hi))
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