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Nomenclature

Definition

speed of sound/ﬁom

wing chord

section 1ift coefficient

wing mean aerodynamic chord

pressure coefficient

a2
enthalpy/Q_
computational
maximum value
computational
maximum value
computational

maximum value

mesh index in
of i-1
mesh indéx ih
of j-1
mesh index in
of k in the

the z direction
the r direction

the ¢ direction
first quadrant

index of mesh plane in the first quadrant, neighboring

the plane 0 = %

index of mesh plane in the third quadrant, neighboring

o = 3T

the plane

Mach number

~ A2
pressure/pom Q.

perturbation velocity vector/ﬁom

velocity vector/ﬁﬁm
flow spged/@ow
flow speed

radial coordinate/c

radial coordinate of slipstream boundary/c

perturbation velocity
velocity component in
deviation of U from
perturbation velocity
velocity component in
perturbation velocity
velocity component in

axial coordinate/c

component in the z direction/ﬁooo
et Q

the z direction/)om

its average value/Qom

component in the r direction/Q

the r direction/Qom ‘

component in the © direction/Qom

the 0 direction/ﬁom
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Nomenclature (Cont.)

Symbol Definition

oy glipstream swirliangle

Y ratio of specific heats

4 vorticity vector/(ﬁom/c)

n deviation of slipstream boundary from its

undisturbed position/c

n* % of semispan

6 angular coordinate

u = pax [ 0, (1~ 5; )]

Q

Cr stretching féctor inr direction
_ Ez stretching factor in z direction

50 stretching factor in 6 direction

P density/ﬁom

b density

¢ perturbation velocity potential/caooo

Y undisturbed radius of a qtreamline/caoco
Subscripts

i _ denotes inner region variables

o ' denotes outer reglon variables

s slipstream boundary

denotes total conditions

o denotes undisturbed conditions

Superscripts .

O average quantity
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1. Introduction

Interest in turbo—prop propulsion systems has been recently revived
due to the propulsion efficiency of these systems and the predicted fuel
shortages in the future. Propeller slipstreams will interact with wings
causing changes in their aerodynamic properties. The deteraination of
the effects of slipstream-wing interaction is therefore necessary before
any design decisions regarding the installation of turbo-prop propulsion
systems can be derived. Since current passenger flight cruise speeds
are in the transonic range, this is the rangé considered here.

The .interaction of wings with regions of high energy flow embedded
in uniform streams was studied by Shollenberger (1975), who used flow
singularities to simulate a jet interacting with a wing. The flow
solution and jet position were found by calculating the singularity
strengths and locations. Lan (1975) used a quasi vortex-lattice method
and a two-vortex-sheet representation of the slipstream to study the
interaction problem with different slipstream and freestream Mach numbers.

Ting, et al., (1972) used the method of asymptotic expansions to study

_the intarference of a wing with multipropellers. The effect of nonuniform

streams on the aerodynamic charactefistigs of wings has been atudied by
Chow, et al., (1970) and Kleinstein and Liu (1972). Boctor, et al.,
€(1978) have recently studied the interaction of the slipstream with a
wing~body configuration at high subsonic Maci: numbers, using the panel
method. Thais method does not include treatment of local patches of
supersonic flow and shock waves, Therefore, though it may indicate
qualitative trends, it fails to give quantitative descriptions of flows
in the iransonic regime. In addition to the theoretical studies mentioned
above, experimental tests were conducted by Welge and Crowder (1978) to
assess the magnitude of the aerodynamic interference of a propeller
slipstream on a supercritical wing.

Zxcept for the final experimental study, all previous studies
dealing with slipstream-wing interaction are limited to subsonic flows.
In this report a simplified model is used to describe the interaction
between a propeller slipstream and a wing in the transonic regiwme. The
undistarbed slipstresm boundary is assumed to coincide with an infinite

L
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circular cylinder. The undisturbed slipstrean velocity is rotational
and is a function of the radius only. In general, the velocity per—..
turbation caused by introducing a wing into the slipstream is also
rotational. By making small disturbance agsumptions, however, the
perturbation velocity becomes nearl& potentialn‘and an approximation for
the flow is obtained by solving a potential equation. Th's simplified
model allows us to obtain basic information about the interaction
problem while avoiding the need for golving the more complex Euler

equations.
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2, Formulation and Governing Equations

The present analysis considers a wing in a flow with a slipstream
(inner flow region) embeaded in a freestream (outer flow fegion). Far
upstream of the wing, flow conditions are undisturbed by the wing. |
There, the freestream Mach number is Mow , and thebslipstream is a
circular cylinder of radius R, with velocity distribution
gim = (Uim(r) , 0, wiw(r)) and total enthalpy htiw(r) . The flow
velocities and the enthalpy are normalized here by the freestream flow
speed and the square of the freestream flow speed, respectively. . The
cylindrical coordinates (z, r, 0 are used, with the z-axis coinciding
with the axis of the undisturbed-slipstream. The coordinates r and z
are normalized by the wing chord. The subscripts 1, o, ® , and t are
used

~used to denote inmer région properties, outer region properties,
undisturbed conditions, and total conditions, respectively. As the wing
is approached, the flow is perturbed from its basic undisturbed condition.
Since the flow is potential in the outer flow region, the velocity
perturbation there may be expressed as q, = V¢o . In the slipstrean,
the flow is rotational in general. Let q = (ui » Vi wi) be the
velocity perturbation there. Due to the wing effect, the slipstreanm
surface deviates from the undisturbed circular cylinder and is defined
by

r = R(z,68) = R_ + n(z,0) ,

where 1n 1is the amount of deviation from the undisturbed condition.

The conditions at the interface specifying zero normal flow to it

are
g
Vit U W =R, (1)
n
and 9 .
¢ =Uny* Yo xg +»r¥r=R ., (2)
r
s A o i et ta ik A3 o
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and the condition specifying zero pressure jump aéross the interface is

2 2
Q - Y, 2

2
3 " Mowa (3
Q, - 1

where Q is the magnitude of the velocity Q and a i1s the sound
speed normalized by the freestream flow speed.
The continuity equation governs the flow in .the outer region,

while the continuity equation in addition to the Euler equations governs

the flow in the inner region in general. The continuity equation is

A (pg) =0, (4)
3 ) 139 -
or Y (V) + 3 55 (reV) + < 55 (pW) = 0,

where p , the density normalized by the freestream density, 1s given by

- 1
2 _— -1
pzr,®) = 0,0 |1+ GE i [1- M—z—;&ﬁ]l N €
Q%)
where
Q. (W) /2, () V<R,
M_(9) =~I t t
» V>R,
2
Yp o, (W) /a5, (0) V<R,
P (V) =§' t :
1 , V> Ry

2 (oD (b - 3 Zw)] » v <,
am(w) ‘“l 2 :
l/Moco » > R

ik AR
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and the unperturbed pressure 'pim(W) is given by the relation

\Y
e

Pi ™ 1
ie0 2
™ o

(which satisfies the Euler equ. tions), where

Y YW
Vo= —% dr .
raw(r)
Roo

Here, Y 1is the ratio of specific heats, y(z, r, 6) is the radius of
the streamline passing through point (z, r, 6) in the undisturbed flow
region far upstream of the wing, and the pressure has been normalized by
the freestream density multiplied by the square of the freestream flow
speed.

In general, the welocity perturbation inside the slipstrecam is
rotational, and a complete solution requires solving the continuity

equation (Equation 4) in addition to the Euler equation
1 .
Q+MQ=-c%,r<k , (6)

inside the slipstream, solving the continuity equation outside the
slipstream, and determining the slipstream boundary R(z, 6) .

2.1 Small Perturbation Approximation

Two simplifying assumptions, under which the requirement for solving
the Euler equation-in the inner region is dropped, are introduced. The

first assumption is that the undisturbed inner region flow is nearly

uniform:

]

‘ N/w‘}w(r) + AUim(r) 1
Uy,

where

+ AU, (r)

in(r) = in
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and ﬁiw is the avefage value of Uim(r) . 'The second assumption is
the small disturbance assumption which limits the wings considered here
to wings with small surface slopes. To see the simplifyinrg effects of

these assumptions, vake the curl of Equation (6). This gives

(g-v>5=%<g-vip+<g-v>g+l2 W x Vo) ™
P

for r < R, where [ 1is the vorticity and
r =V xQ.

Under the two assumptions made above, Equation (7) to the lowest order

becomes

This allows the velocity perturbation inkthe inner region to be expressed

in terms of a velocity potential, and the governing equations simpllfy

to
) 1 3
L [pwm +op] v L & corp
1 3 1
+!‘ 30 [p(woo'*';‘be)] = Q0 >
where
‘Ui&(r) y ¥ <R
U =
e 11 » T > R,

‘wi (r) , * <R,
wco = 00

IO 'y ¥ >R
and p 1is given by Equation (35) with U replaced by r . The governing
equation is further simplified by replacing the full potential equation
with the transonic small disturbance equation

. A I 13 (1 -
9z {p(Uw + ¢z)] T (rp¢r) Y0 (r pm¢0) o (8

i S0
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where p 1s to be approximated by the first four terms of the binomial
expansion for Equation (5). The conditions at the slipstream boundary

reduce tc¢
) ¢l'(z’ Rm - €, 0).
3.z R, €, B Uy(Ry) » €0, (9)
and
¢ (z, R, - €5 6) w a2 R)
Z -2 - 0% foo* e ,640 ] (10)
¢z(z, R+ €, 6) uim(Rm)




3. Xumerical Approach

The solution to” the governing equations 1s found nunericaliy.
Therefore, define a net of discrete points (zi, rj, ek) in the com-

putational domain (see Figure 1) with

0<i<I®l ,
1<j<I+1 ,

1<k<K..

The computational domain is bounded by an outet cylindrical boundary

J+l) , an upstream vertical plane (z = 20) , and a downstream

I+l
z

(r=1r

i

vertical plane (z ) . The undisturbed cylindrical slipstreamkf

boundary (r = Rw) lies between the two cylindrical mesh surfaces

-1 3

r=r and =1 , 3= jé , such that

The wing extends in both the 9 = %- plane (which bisects the angle between

the two mesh planes 8 = Bk and 0 = 6k+l , ko= kw) and the 9 = ég
plane (which visects the angle :etween the two mesh planes 6 = 8 and
=0 k=10

3.1 Finite Difference Formulas

The finite difference approximation to the governing equation
(Equation 8) at the point (zi, rj, ek) , l.ﬁ i<1, 2<32J,
1<k<K, is ‘

(bi'*"\ﬁ)j,k Ui%,jyk) - ‘(b'i'_“!i:j’k Ui“’!i,j,k—)

! %
zi‘»z_.z 3

GhIPek ¥ Lty LItk 7 g3tk
3 R

Iy

1 (pwi’j’k""/i wi,j,k‘*’%) - (pmi:jvk”% wi,j,k"l’j)

=0, {11)

r BF+% ~ 0k~%




s oo

where
b3k g edy 4 (LI

vk o L3k

wi!j7k = ww(rj) o+ .’,iljbk

]

and fi’j'k denotes an approximation to the function f(zi, rj, Gk) .

The discretized density is first evaluated at points (xiik R rj ’ ek) .

1,584k

The value of p is then calculated using the relation

pi’jiﬁrk a Y (pi’%,j$k + pi*%.jiﬂ.k
+ pi+k:j)k + p1+%1ji;vk) .

~i“”ﬁ’J ,k

The modified density, ¢ s is given by

KON SRR SN

with Apif%’j’k - _uitjvk(pi+%bjsk - pi»&’j'k) R an
. +2
h it: ’ui "0
whexe =
iy Lt 40

and the switching function wu is given by

2
¥ = max [0, Q- EE') ] .
Q

The evaluation of the modified density p at points in the constant

14 ,

z= 2 plane, as done here and by Jameson (1976), produces sharper shocks
- i

than those produced by the evaluation of p at constant 2 planes, as

suggested by Hafez, et al., (1978). The switching function in

Equation-{(12) is evaluated at the point zi’j’k . The evaluation of the
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1,3,k , as done by Jameson (1976),

switching funetion at the point 2z
produces here a nonsmooth solution at the sonic line.

The artificial viscosity

Api**iojvk Ui*'&iojok) - (Api“';ﬁvjok Ui’;ﬁojvk)
zi+k - z‘"uli ..

phidik o (€
which is an approximation to

3
- 3z (UUDZAZ)

(vhere Az 1is the mesh spacing in the 2 direction), has been added to

the central difference approximation to Equation (4) in order to produce

a stable difference scheme in the supersonic zone. This form for the
viscosity was introduced by Jameson (1976) to solve the full potential
equation in conservative form. Since the flow is nearly aligned with

the z coordinate, it is sufficient to add the viscosity to the z derivative
only.

14';§'j’k ui-!i'j’k

The . perturbation velocity components u and are

defined by the formulas

i+1,3,k _ ¢i,j,k
i+l
2

uiw)jﬁk - ¢
' - &

and

PR R LI ki
1 i

Similar formulas for vi’j-w’k and vi’j_%‘k are used at all mesh
points except thosevwhere j= Js -1 and = js , respectively. The
appropriate formulas at these points are derived in Appendix A and are.
given by

2 (B{:\iujvk - (t‘iij_lik)

y=3,, a3
o - A +an)

S G-k




]l

. for points in the inner region at the aslipstream boundary, and

vi‘J-‘ﬁsk - ZA(IWi’j’k — q‘i-‘j"lvk‘l

PO T DS (14)
@ - 7h @+ ap & -

for points in the outer region at the slipstream boundary, where

1
A ”
Uim(Rw)
and
e el R
The perturbacion velocity components wi’j’k+% and wi’j'k"& are

defined by the formulas

R T R il ki
rj 0k+l - Gk
and
wigj,k""‘i . -’}- ‘I‘i’j’k - q)i,j)k‘l
rd ok - ot

at all points except those on the wing surface and those in the wing

wake. On the wing surface the small disturbance boundary condition

W (r) . v
= um(*’*" ) (15)

X ﬁ&(r)

is used, where 8 is the deviation of the wing surface from a horizontal
‘plane and is defined to be positive in the direction of increasing 0 .
The potential function ¢ 1s discontinuous at the wing wake. - There,

the following formulas ave used:

wi,j;k'*‘;ﬁ u....l.. (bitj'k'*'l o+ Cj - ¢iojvk k -k
: 4 TS v w
r 0 - 8 .
1,3,k 1.3, k-1 .
TR S W S A kbl =) RS
3 k k-1 * W
X 0 -0
i1,j.k+l N 1,1,k
R IE R t B LI M
kt+l k ’ w'
Y 6 -0
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+ cdy

Gledokets 1 g Ik 13kl

k=»k +1
] ek _ ek~-l 4 ")

where

and ¢i'“ R ¢%'" are, respectively, the values of the potential ¢ at

2 2
the upper and lower surfaces of the wing trailing edge located at
0= % . rj » and ¢i-§ﬂ R ¢i,ﬂ are respectively the values of the
2 2 v
potential ¢ at the upper and lower surfaces of the wing trailing edge
located at ¢ = 2% , I = rj .

The far field boundary conditions are given by

GOk g

and SRk

¢ o,

and on the downstream plane (z = z1+1) , Fguation (11) is solved with

the z derivative in that equation set equal to zero.

3.2 Finite Difference Formulas at the Axis

Define a Cartesian coordinate system (x; ¥y, z) with a horizontal
x~axis (O = g-) and a vertical y-axis (0 = 0) . The continuity

equation in Cartesian coordinates is
Lo, + o]+ (o0 + & (000 =0 (16)
dz L) z 9x eetx Jy o'y ‘

The finite difference approximation to Equation (16) is used for points

along the z-axls and is given by
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e e AR (1))
G s

1";51.1 vk

(Dvc)i'jﬂs'kw% - (?Vc)i’j%'kw'ﬂ

s + Ax
; (p I IPET (o y eI '
: . iy =0, a17)
where
Vom0
L Wemb
. 1’1%1‘( iaj"‘!isk ' -
OB L1 Y+ () “,“].
i’j""liﬁk i’j""ivk t
R LI W () w],

and Ax , Ay are the mesh spacings in the x and y directions, respectively.
The potential function ¢ 1s double valued at the exis. As the axis is
. approached ‘rom above, it takes a value ¢+ and as it is approached

from below it takes another value ¢- . Therefore, set

,0<06, <3
TR 2
¢ £
KA v G < B <
i- n 3n
— < e
I
% .
3 © and express the velocity components v, Vc , and Wc in terms of the

potential function ¢ by formulas similar to those used for mesh

points away from the axis.
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3.3 Iterative Procedure

Equation (11) written at all mesh points off the axis and Equation (17)
written for all mesh points on the axis constitute a nonlinear system of

1,3,k at the mesh

algebraic equations for the votential function ¢
points. Hafez, et al., (1978) and Holst (1979) have recently solved the
transonic full potential equation by a simple line relaxation scheme

which requires no special treatment for supersonic points., This simple
scheme 1s used here. The finite difference equations at all mesh points

may be written in the form

Eizk,.ug. Lo l,2, e L3 (18)
, k=1,2, ic0 ,X

E th element is given by

the left hand side of Equation (11) if j > 1 and is given by the left

hand side of Equation (17) 4f J = 1 . When the velocity components

where Ej’k is an I-component vector whose 1

appearing explicitly in the finite difference equations are expressed in
terms of the velocity potential the vector Ej'k bcan_be split in the

following manner

-Ej’knDj’k ¢*jak_£jrk ’Jw 1, 2, «eo

~ ~

» J 19)

s k=1, 2, «v. , K

where the vector ¢*j‘k is given by

BERY
¢2’j ’k’
k .
?*J. - .
¢1.J.k
e -
In order to solve Equation (18) iteratively, a sequence of vectors
¢1;k ,an=1,2, ... 1s defined. These vectors are obti:ined by solving
the linear system of algebraic equations '
kK 3,k k
oleh el et Laen 2

, k=1,2, ... , K




where Dj ? is the matrix Dj’ with its elements evaluated using the

st iterative solution, and fj' is the vector fj'k with the

~n,n~-1
n-lsc iterative solution used for evaluating the density and the last

n~1

availabie iterative solution used for evaluating the velocity potential.

The nt" iterative solution is given by
s .
iijbk - ilj i j k joj'k
¢n ¢)n--l (¢ ¢n~1 )

where ® 1is a relaxation factor. The relaxation sweep is done for
lines with k=1 to k = K on a cylindrical surface and is then
continued for cylinders with increasing radii. At the end of the relaxation

sweep, the jump $n potential at the wing trailing edge

p A
/ G*n
is found and the nth iterative value is defined by the relatior
g J h j
e Gy 7 Q(G G 1)

where § 1s a relaxation factor. Relaxation sweeps of the computational
domain are repeated until convergence occurs. In order to improve

stability and the rate of convergence, a ¢zt term

1=k, 4,k{ 1,3,k i k 1 k i-1,3,k
pn—? ! (q*nj ¢ j ) (@1 s ¢n-l 3 )
2 (zi 1~1)At

is added in the nth iterative sweep to the left-hand side of the
algebraic equation solved for the mesh point (i,j,k) where Kk 1is a

constant and we set

M2z, - 2.y "

";
3
3
3
{
¥
13
!
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4, Results ,
The method presented above for solving the slipstream-wing inter~
action problem has been used to modify a computer code developed by
M. Hafez (for solving the tramsonic full potential equation by the
artificial compressibility method, described by Hafez, et al., 1978).
Numerical examples are presented- here for two geometrical configurations.
The first is that of a simple rectanguiar wing, while the second is that
of a swept wing. _
A computational mesh with nonuniform spacings in the 6 direction

and with a stretching factor

gk - k-1
k 1

B = o
0% Gk _ g

is used. The mesh is symmetric about both the horizontal and vertical
planes. Inside a cylindrical region with an axis coinciding with the z-
axis and with its surface and end planes containing the outermost wing
tips, the mesh spacings in both the axial and radial directions are
uniform. Outside this cylinder, however, the mesh spacings are non~
uniform. They are stretched with a stretching factor & in the
positive radial direction. Downstream of the wing the mesh spacings
are stretched by the factar 52 in the positive z direction while they
are stretched by the same factor upstream of the wing in the negative
z direction. Therefore the mesh spacings increase in size as one moves
away from the wing., A value of i.l for each of three stretching factors
is used here. . ,

The results are calculated for a freestream Mach number M = 0.8 ,
The slipstream swirl angle o and total pressure Pt o distributions
of highly loaded propellers under development (see Welge and Crowder,
1978) are shown in Figures 2 and 3. These distributions are used in the
calculations presented here. It 1s noted that Equations (13) and (14)
are valid for general A and B wvalues. However, for the ptiw/ptow
distribution of Figure 3, both A and B are approximately unity. In
this case, it 1is consistent with the small disturbance approximation to
set A= B = 1, allowing the problem to be solved with no special
treatment for polnts at the slipstream boundary. Although the application
of Equations (13) and (14) {5 a simple matter in the present calculations
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where cylindrical coordinates are used, a more complex set of equations
replaces them when general coordinate systems are used. In such cases,
a great simplification is caused by avoiding any special treatment for
points at the glipstream boundary.

The first set of results are calculated fdr a rectangular wing with
NACA 0012 sections, a 3° angle qf attack, and a maximnum swirl angle
o = 3° . The rectangular wing planform is sketched in Figure 4.

s max .
The calculations for the rectangular wing are carried out on a 49%x20x24

(z, r, 6) mesh, with 14 mesh points along the wing chord and 20 points
along the wing span. The computational mesh extends 1.5 chord lengths
upstream of the wing leading edge, 5 chord lengths downstream of the
wing trailing ecge, and thé outer eylindrical computation mesh boundary
" radius is 4 chord lengths. The first iterative guess is taken to be a
. linearly interpolated solution obtained by sclving the problem on a
rough mesh 40x16x16 (z, r, ©) . v

Profiles of the pressure coefficient
¢, - 2(p ~ Py

at sections A and B of the wing (see Figure 4) are given in Figures 3
and 6. At Section A, the swirl angle effectively reduces the wing's
angle of attack. On the upper surface, the axial velocity increment in
the slipstrcam and the swirl angle produce opposite effects. They,
however, produce similar effects on the lower surface. The swirl angle
tends to produce an upstream displacement in the upper surface shock
position, while the axial velccity irncrement tends te produce a downstreanm
‘displacement. At Section B, the swirl angle §ffectively increases the
wing's angle of attack. The axiai velocity increment and the swirl
angle pioduce gimilar effects on the wing's upper surfacé and opposite
’effects on its lower surface. Note in Figure 6 that t.e slibétfehm
effect produces a downétream displacement in the shock position, and it
produces a stronger shoek. This consequently contributes to an increase
in the wave drag. Figures 7 and 8 show the distributinn of Cp min

(the minimum value of Cp along a chord) along the wirg span. In these
figures, we see that the slipstream effect js largest inside the slip-

stream but extends outside it. TFigure 9 shows the distribution along
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the wing span of Cg 3 the sectim 1ift coefficient. It is concluded
from this figure that the slipstream effect on 1ift distribution is
primarily due to the swirl angle.

The effect of the slipstream on the wing's wave drag is shown in

Table 1. Estimates of wave drag are found (see Murman and Cole, 1974)

[

shock

by integrating

" where the integral is taken along shock waves and “¢z ig the jump in

¢zv across the shock. 1In the table, the drag is normalized by that due
to the wing semispan in the absence of the slipstream. The table shows
that the swirl effect on wave drag is that of redistribution. Its
effect on the total wave drag, however, is small., This is in contrast
to the slipstream axial velocity which produceé a large increase in wave
drag.

The effect of the slipstream on the wing's lift is shown in Table 2.

Estimates of 1ift are found by integrating twice A¢te (the difference

in ¢ between the upper and lower wing trailing elge surfaces) along
the wing span. The 1ift values shown in Table 2 are normalized by that
due to the wing semispan in the absence of the slipstream. The table
~hows that the effect of the slipstream on the wing's total 1ift is
minor. :

A secdnd example, attempting to calculate a case which is as close
as possible to the experimental configuration of Welge and Crowder,
(1978); 1is now presented. The planform of the wing-body configuration
used by Welge and Crowder (1978) is depicted in Figure 10. Due to the
simplicity of the computer code in the present study, it is not possible
to simulate flows about complex geometries. The calculations have
therefore been done for a simple swept {solated wing configuration. The
wing planform is skatched in Figure 11, and the defining supercritical
airfoil section is given in Table 3. This airfoil section is the came
as that of the experimental wing section at the 35 percent semispan

station. The use of a Cartesian coordinate system at the slipstream
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axis, in the manner discussed in Section 3.2, has been found to cause
solution inaccuracies near the leading edge of a swept wing. To avoid
this problem, an infinite cylinder whose axis coincides with the slip-
stream axis is assumed. The solid wall boundary condition is applied at
the cylinder's surface. The cylinder's radius is chosen to be half a
mesh spacing in the radial direcéion. A 4,5° wing angle of attack is
chosen to roughly match the sectional 1lift noefficient in the slipstream
region to that of the experimental 1ift coefficient in the absence of
slipstream effects (swirl and axial velocivy increment). In the calcula-
tions, the total pressure distribution in the slipstream is assumed to
be that depicted in Figure 3. Calculations with both positive swirl

5 max s max
been performed.

angle (o = 7°) and negative swirl angle (& = -7°) have

The calculation for the swépt wing are carriéd out on a 107x20x20
(z, r, 6) mesh, with 16 mesh points along the wing chord, and 20 points

_along the wing span. The computational mesh extends 2.5 chord lengths

upstream of the wing leading tip, and 8 chord lengths downstrean of the
wing trailing tip, and the outer eylindrical computational mesh Boundary
radius is 5 chord lengths. The first iterative guess is taken to be a
linearly interpolated solution obtained by solving the problem on &
rough mesh 78xl4xl4 (z, r, G) .

Profiles of the pressure coefficient at sectiohs A, B, C, A", B',
and C' of the wing (see Figure 11) are given in Figures 12 through 17.
A comparison of the solutions at sections A and ', which are closest to’
the axis, indicates a strong effect due to the cylinder co-centered with
the axis. The erfects of this cylinder is to compress the flow at
section A, and to expand the flow at section A'. These effects may be
concluded from basic flow properties along swept wings and are confirmed
by comparing the solutions presented in Figures 12 and 15. At sections
A, B, and C, the positive (negative) swirl effectively produces a reduction
(increase) in the wing's angle of attack, while the positive (negative)
swirl effectively produces an increase (reduction) in the wing's angle
of attack at sections A', B', and C'. Figures 18 and 19 show the distri-

bution of Cp ain along the wing span, and Figure 20 shows the distribution
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of the sectional lift coefficient along the wing span. The effect of
the slipstream on the wing's 1ift is shown in Table 4. Drag calculations
have not been performed, since the solutions indicate supersonic~supersonic
shocks.  The simple calculations which are used to estimate wave drag
due to supersonic-subsonic shocks are not applicable in the case of
supersonic~supersonic shocks.

Results presented in this example show similar trends (for slip-
stream effects on supercritical wings) to those of the experimental
results produced by Welge and Crowder (1978) (see Figures 21 and 22). A
qualitative comparison between the experimental results and the numerical
results is not appropriate due to differences in the geometrical configura-

tions of the experimental and numerical test cases. The absence of a

body next to the wing and the presence of a cylinder in the slipstream

in the calculated example, in addition to differences in the wing planform
and its cross-sectional profiles between the experimental snd numerical
examples, contribute to differences in the flows about the experimental
and numerical configurations. In additior to the current code's geometri-
cal limitation, it should be noted that the use of the small disturbance
equations near ile blunt leading edge of a supercritical airfoil causes
solution inaccuracies in the leading edge region. Precise numerical
calculations for complex geometrical configurations may be made by the

use of computer codes capable of handling these geometries. Leéding—

edge inaccuracies may be avoided by using full potential sodes. _

The calculations were done on a CDC 7600 computer.' For the rectangu-
lar wing, 1 second and 2 seconds were required per iteration, respectiQely,
on the rough mesh and the final mesh, The nuﬁber of iterations required
to reduce the maximum residual to 0.001 was approximately 150 for the
rough mesh and 100 for the final mesh. For the swept wing, 1.36 seconds
and 4.6 seconds Qere required per iteration, respectively, on the rough
mesh and the final mesh. The number of iterations required to reduce
the maximum residual to 0.001 was apprc. .mately 77 for the rough mesh
and 190 for the final mesh, The values used for the rélaxation factor
w varied between 1.4 and 1.6, The relaxation factor @ for calculating
the jump in potential at the trailing edge was taken to be 1.2, rud

K , the ¢ term coefficient, was set equal to 1.0.

zt
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5. Concluding Remarks

In this report, an inviscid wmodel for the interaction between a
thin wing and a nearly uniform propeller slipstream has been preseated.

In this model,lthe perturbation velecities due to the interaction are
potential even though the undisturbed slipstream selocity is rotational.
This allows basic information about the interaction problem to be obtained
while avoiding the need for solving the Euler equations. Tor typical
slipstream velocity distributions, only minor modificaticms to the free
flou potential egquation and wing boundary conditions are required to
produce the slipstream effect. These modificatiuns can be easlly incor-
porated into available transonic potential codes.

The slipstream effect on a wing in the transonic regime has been
demonstrated through a simple example. Solutions obtained for a rectangu-
lar wing indicate that the slipstream has a strong effect on the aero-
dynamic' properties of the wing porticn immersed in the slipstream. The
effect of the slipstream on the rest of the wing is less, but 't is
discernable. The results indicate that the slipstream swirl has a
strong effect on the wing joad distribution, however, its effect on the
total wing lift and wave drag is small. The axial velocity increment
inside the slipstream haé little effect on the wing's lift; however, it
causes a large incfease in wave drag.

Although the computer code used for the present study is a simple
code which does not aliow calculations for complex geometrical configuratlons,

ban attempt has licen made to calculate a case which is as close as possible

to the experimental configuration of Welge and Crowder (1978). The

calculated results indicate the general trends for slipstream effects on

a supercritical swept wing. However, solutions calculated are not

expected to be accurate near the blunt leading edge of the supercritical

wing, since the small disturbance equation is used in the present calculationms.
Therefore, the change in leading edge suction associated with the slipstream
swirl is not properly accounted for in the solution. The computer code

used in this study is a simple code for the purpcse of demonstrating the
interaction effects for simple geometrical configurations. More sophisticated

codes are available (see Jameson and Caughey (1977) and Caughey and
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Jameson (1979)) and may be used for calculating glipstream effects on .

wing-body combinations, provided th
slipstream and a thin wing are satisfied.

e assumptions cf a nearly uniform
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Table 1: Norma!iz:ed Wave Drag for Rectangular Wing

Uniform | Slipstream Axial | Siipstream | Combined
Flow Velocity Effect | Swirl Effect Effect
Right R |
Wing Drag 1.00 2.83 0.68 2.02
Left _ , ' .
Wing Drag 1.00 2.83 1.48 3.82
Total '
Wing Drag 2.00 5.66 216 5.86
f"\
H i

<

Left Wing Right Wing
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Table2: Normalized Lift for Rectanguiar Wing

Left Wing Right Wing

Uniform | Slipstream Axial | Slipstream Combined
| Flow Velocity Effect | Swirl Effect Effect
{Right R , |

Wing Lift 1.00 1.05 0.83 0.87
i\;sgg e | 1.00 1.05 117 123
Total |
Wing Lift 2.00 2.10 - 2.00 2.10

. i D

</

ngz—
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Table 3: Airfoll Section Coordinates for Swept Wing.

p Upper Surface Lower Surface
% Chor; Coordinate, y Coordinate, Y
0.0 - 0.0568 ~0.0568
0.05 -0.0540 -0.0619
0.25 -0.04% ~0.0570
0.50 ~0.0455 -0.0708
1.25 -0.0393 -0.0780
2.50 -0.0327 -0.0860
5.00 -0.0245 ~0.1256
7.50 -0.0189. -0.1030
10.00 -0.0144 ~0.1081
16.00 -0.0079 ~0.1151
20.00 - =0.0033 -0.1197
25.00 -~ 0.0000 T =0.1228
30.00 0.0023 -0.1250
35.00 0.0035 - =0.1260
40.00 0.0041 -0.1260
45.00 0.0035 -0.1248
50.00 0.0022 -0.1223 -
§5.00 0.0001 -0.1179
58.50 -0.0020 -0.1138
65.00 -0.0069 -0.1041
70.00 -0.0121 -0.0952
75.00 -0.0632 - 0.0860
£0.00 -0.0257 ~0.0771
85.00 - -0.0344 ~0.0696
90.00 -0.0444 "~ ~0.0646
92.50 -0.0502 -0.0640
95.00 -0.0565 -0.0651
97.50 ~0.0637 -0.0682
100.00 -0.0713 -0.0734
BASIC AIRFOIL
. ——
\ /




Table4: Normalized Lift for Swept Wing

=8¢~

. | Slipstream Slipstréam with
U:;;f;;m ' with Positive Negative
Swirl Angle Swirl Angle

Right i 114 ! o085 1.4
Wing Lift

Left | 0.86 113 - 0.63
Wing Lift

Totai - 2.00 2.08 2.04
Wing Lift | . »

LeftWing RightWing
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Appendix A

In general, the approximation of the radial velocity component at
the point (zi j 8, 6 ) is given by

1,3,k

yhiznk SIS L2 S

N QU1

This, however, is not true at mesh points for which j = j - since the -

slipstream boundary (across which the velocity components are discon-

tinuous) coincides with the cylindrical surface r = rj 4 » Where j = js

Expressions for the radial velocity components Vni’k in the inner

region at the slipstream boundary and v+i’k in the outer region at the
1,3,k

slipstream boundary may be found in terms of the potentials ¢ ‘and

¢>ij -1k » where j'= 34 » as follows: ‘
Define a fictitious potential ¢i R at the point (zi, rj, Qk) ,

where § = "s s So that

Ve - ¢i)k = q)i;j-l,k_ s 3 nbjs . (A.])
rj - rj—l

It follows from Equation (9) that

: k

whba ag g j AR TN T (a.2)

r
The axial velocity perturbation éompouents u~i—%’k » in the inner
i-%,k

region at the slipstream boundary, and u+ » in the outer region at

- the slipstream boundary, may now be expressed as follows:

A {[®i,k - v_i,k(rj_rjul)]
[®i—1,k oy v_i~i,k(rj_rj—l)] :
T o
1,3-1,k

i~1,k i~1,j-1,k

- ¢

---—-»vi’k b i &
7 (@ + ¢ - ¢ ) L= Iq




S
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and
S :
v : wiTik { '[¢1’J'k - 3w REY - rj-l)]
: o o | Ti-1,4,k 1§1kj -1 1!
3 _ —[@-”-‘sw G ¢ )]‘
/a3 - 2
- 1 »(‘bi'j’k _A q)1,k + A Q)i,j—l',_k
3 j=1 2 2
{ r - X )
- ¢iel,j,k + A ¢i—1,k _A ¢i—1,j,k) Jeg .
2 2 §
: ) B ‘
Substituting the expressions for u--i %k and n+i Bk into Equation (10),
- the following relation is obtained:
ot R+ amy. - 2mptr bk 4 (1 - apyprdTDok
o = ol bk 4 oapy - 2mpl b IR 4 (g - Ayl
E S » 3 =13 ) | . ' (A.3)
This alloyws ¢i'k to be expressed as follows::
o _ Y 1 £,i,k 1,3-1,k |
L . ’ @-’{em(c'f'ZB(b »d —(l-AB)d)_’j ,.\( 'j“js'
Substituting into Equations (A.1l) and (A.2), the radial velocity components
become S ' ' ‘
IS vtk @ + mpto ek gghedmloky gy
- , ' (r’. - r' ) (1 + AB) . v
s . | |
V.}.i’k Qo (G + ZB:t)i’j'k - qujf’j*l’k) s =3 .

_.(rj - rj“lj (1 + AB)
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Since relation (A.3) 1is true for all values of 1 , it may be
applied repeatedly for decreasing values of 14 s obtaining

.G " ¢0,k(1 + AB) —VZB¢0,j,k + (1 - AB)@O’jnl’k v y - js .

Since the radial velocity component is zero at the upstream boundary,

this leads to the conclusioa that

A SR T SRR R '.f.' G I+ 1
and : : .
R LR T 21,2, 04 -1 .
Since _ . .
¢0,J+l,k =0 ,
it is concluded that
R N N T
and
G = 2C .

The constant Ci , and .therefore G , may be chosen arbitrarily. Choose

G‘,Oo -

-

The final expressions for the radial velocity components at the slipstream

boundaries are therefore

i:jvk i,j“l,k

ylik 200 - ¢ ) ST B B
| (rd - ¥ @+ an)

and
iik - 2A(B¢1’J'k - ¢i’j“l,k

(d = 3 (4 A
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