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FINAL REPORT

NEG-2112

INTRODUCTION

This final report delineates research activities on NASA Grant
MSG-2112 from 1976 to 1980 These research activities were also
supperted in part by the AFOSR and the ONR. This research TrTesulted
in +fifteen publications to October 21, 1280; four additional
publications are planned as a consequence of this Tesearch. The
publications are listed in chronoleogical order 1in the Appendix. The
list is annotated tc indicate the cited source of funding for the
research rveported upon in the publication. The Appendix also lists
the talks given by wvarious investigators supported by this grant,
as well as the eleven Transonic Fluid Dynamic Reports we have
issued during the grant period.

SHOCK-FREE AIRFDIL aAND WING DESIGN

For most of the grant period we had an active research pragram
on the dirvect and indirect design of shock—Ffree airfoils and wings.
kle report on thiz research here, noting that while some minor
activities continuve, the major thrust of this rtesearch has been
completed. We limit the main part of our discussion to results that
have not yet been published.

Transonic Axrfoils with a Given Pressure Distribution

Our orzginal collaboration with Dr. Helmut Sobieczky rTesulted
from a plan to adopt his rheograph design method tha=s used analog
computations to a completely digital approach. As a result of +this
collaboration, we have developed 2 procedure that uses a map of the
hodograph pliane to find transonic airfoils with a given pressure
distribution. This work complements related studies that provide
airfoil modifications to achieve shock—free flow. The method 15
limited to a prescription of the subsonic portion of the pressure
distribution and to shock—free supersonic flows We have no plans
to extend this capability further. The procedure we have developed
is fairly efficient for subcritical flows:; we feel that this will
remain true for supercritical flows, but we have oniy preliminary
results for this case.

The procedure we use is the following: We first note that if
we uyse the Prandti-Meyer function, v , and the flow deflection
angle, & ., as independent variables, then the equations for the
stream function and velocity potential are not only l:onear, as thoy
would be with the hodograph transformation, but they are also in
canonical form. That is, the cecond-order derivatives either +arm
the Laplacian or the wave operator depending on whether or not the
fiow 1% subsonic or supersonic. Thus the equations for the subsonic
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flow are invariant in form wunder a conformal transformation. We
thus assume that a conformal map from the two-sieeted HKiemann
surtace of Ethe subsonic portion of the v 8-plane into the wunit
circie. Part of the boundary of the unit circle corresponds to the
airtoil surface wetted by subsonic flowi the other pa~t corTresponds
vo the sonic line. These portions are then chosen and the pressure
on the subsonic part of the unit circle is prescribed On the sonic
line segmen< the pressure takes its critical value. With the
pressure given on the boundary of the wunit circle, and with the
subsonic portion of the flow 1inside the unit cicle. we take
ddvantage o° the fact that the mapping teo this plane is conformal.
Thus the Prandtl-Meyer function and the flow deflection angle ave
conjugate harmonics. Because the pressure is given on the wunit
circle we snow the Prandtl-Meyer function there. We then solve
Laplace’s equation for the Prandtli-Meyer function inside the unit
circle using Fourier series:; this immediately determines the flow
deflection angle to within a constant.

On the portion of +the airfoil surface that corresponds to
subzonic flow the stream function is zero. We prescTibe a
distribution for the stream function on the sonic line to complete
the boundary value problem for the stream function. This boundary
value problem 1is then solved wusing a fast Poisson solver,
determining the stream function and thereby the velocity potential,
as functions of v and 6 in the subsonic portion of the flow and
on the sonic line. These results are then mapped back to the
physical plane to see if the corresponding airfoil is a reasonable
one. If it is not, then the input must be modified. When a suvitable
airfoil 1s “ound, the data on the sonic line is integrated in the
v, B —plane to find the zero streamline. This, then, determines
that portion of the airfoil wetted by supersonic flow. This
talculation may fail due fto a singularity in  the mapping back to
the physical plane. This indicates that the sonic line data 1is not
consistent with shock-free flow and requires that the input be
thanged.

There are several minor points that cause great difficulty and
have required some imagination to circumvent. These include the
iogarithmic singularity in v at q = 0, a ~1/3 power singularity in
the normal derivative of the stream function at the sonic 1line in
the v . 6 —pilane, and the need to <choose +the circulation of the
far-field singularity, which occurs at the origin in the
v, 6 -plane, so that the stagnation streamlines are mnormal to the
hody. The latter two are especially difficult because they must be
resclved very accurately in order to achieve satisfactory rtesults.

Fictitous Gas Techniques

The concept of the fictitious gas has been described in
earlier grant Teports. Thus, we only give a brief synopsis of +this
research here. In two dimensions we have extended our studies to
include viscous effects. Qur rasults are rteported in a recent AGARD
paper. As we suggested in last year’s brief proposal, shock—free
designs can be found with little computational effort even when



globally weak and locally strong wviscous - inviscid interactions
are included. This is simply a consequence of the fictitious
pressure gradient in the supersonic domain being cloaose enough to
the actual pressure gradient for the design process to essentially
duplicate the boundary layer displacement thickness of the real
shock—free Fflow.

In a collaborative effort with Dr. Sobieczky of the DFVILR in
Cottingen we have examined adaptive airfoils and wings in order to
achieve shock—free flow over an extended range of Macn numbers and
1lift cpefficients. These results are reported in a3 rvecent ICAS
preprint.

During the past year we have implemented the fictitous gas

procedure with the full potential code FLO 22. Farallel work at
lLockheed by Drs. Miranda and Ray has also been successful.

CONTROL ALGORITHM FOR ADAPTIVYE WALL TUNNELS

As  part of our NASA supported research w2 have been
investigating a control algorithm for three~dimensional adaptive
wall transonic wind tunnels. This research was interrupted last

year when the student ctarrying out the investigation, was forced +to
return to Poland because his visa expired. These political problems
now seem to be resolved and he is back with us. We have developed
a3 relatively fast ADI algorithm for the subsonic flow past 1lifting
wing—body in & circular or rectangular wind tunnel. The boundary
conditions on the wind +ftunnel wall corresponding to variable
porcsity and plenum pressure are modeled by

¢r0gR,6)+-abg6)¢x (x,R,6) = B(x,6)
for a cylindrical wind tunnel of radius R. Here a and B are

directly, but empirically, related to the porosity and plenum
pressure.

A similar algorithm is wused to compute the external {low.
Thus, we may simulate adaptive wall strategies numerically. The
algorithm is now being extended to the transonic range. When this
is complete our studies «can begin in earnest. The Ffundamental
question we wish to address is this: Given a measurement of wr arid
wx on some surfsce near, but not at, the wind tunnel walls, what

strategy is to be invoked to modify o and B so that the errors
in, say lift and drag, due to the wind tunnel walls are minimized?
There are, of course, alzo constraints on the values that o and
B can assume since they model to some degree the efects of wall
porosity and plenum pressure.

We are thus faced with an optimal control problem which
involves a nonlinear partial differential equation. There 1is not
much literature on optimal control with partial differential
eguation constraints and we may have to invent our theory for the
case at hand. To do so we will begin with the 1l.near subsonic
equation. HWe can set up certain simpie model situations and write
down formuias for analytical solutions wsing Green’s functions. We
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presume that we will be able to discern an appropriat2 strategy +or
determining the changes to be made in a and B in arder to find
their optimum values. With this body of theery in hand, the results
willi be verified by numerical experiments for the pratotype linear
protlem. We will next extend these results to the 3jeneral Ltlinear
problem. Wh2n we are convinced that we have a workablsz strateqy for
subsonic flow we will then attempt to generalize it to transonic
flou. Mo doubt changes will be required to aczount for the
possibility that part of the tunnel supersonic flow will extend ¢to
the wind tunnel wall. It is, of course, not clear that the problem
we have pased has a unique mathematical solution. 5till, i f
adaptive wall wind tunnels are to be developed for truly
three-dimensional flows, then some practical strategy for control
is essential.

UNSTEADY TRANSONIC FLOW

In the course of refining our time-linearized algortihm for
unsteady transonic flows it became clear that acoustic waves were
beirg reflected from the boundary and contaminatingy the results
computed for indicial motions. This would not ~necessarily be
noticed in a harmonic analysis, nor is 1t especially easy to
discern in the indicial motion. It is clear., however, that serious
ertors in phase lag occur if the boundary conditions for the
far~field rteflect acoustic waves as the common ¢ = (O boundary
condition does. In order to remedy . this situation Dr. K-Y. Fung
derived the correct unsteady far-field and this is niw implemented
in our algovithm. The tesults of this research have been accepted
for publication in the AIAA Journal.

Our study of two-dimensional time—linearizad flows 19
essentially complete except for the studies of the unsteady
behavior of shock-free airfoils to see how their buffet boundaries
might diffe~ from supercritical airfoils with well daveloped shock
waves. A paper is being prepared by Dr. Fung that will report the
tonclusions of this study. We note several here: 1) Faor determining
fiutter boundaries a time—linearized algorithm that zaptures shock
motions of arbitrarily small size is probably more efficient than a
nonlinear algorithm; for more moderate amplitudas either a
nonlinear or a time-linearized algorithm will do; for larger
amplitudes a nonlinear treatment is essential. 2) 0One must be
concerned about the accuracy of wind tunnel data for wunsteady
trarsonic flows as wall reflections may lead to seriaous errors in
the phase lags. Numerical simulations give strong evidence of such
phase lag errors due to boundary reflections. 3) Shock—-free
airfoils have markedly diffferent phase lags than their
rounterparts with well formed shock waves



COMPUTATIONAL FACILITIES

This NASA grant was, at least in part, responsible for the
development of an advanced remoted job entry capbility in the
University of Arizona’s Computational Mechanics Laboratory. We now
have an Eclipse £/140 computer with 256 kilobytes of core memory,
two CRT terminals with local intelligence, four standard CR1
terminals, and a TI 745 portable terminal. Funds from the College
of Engineering have been used for some of these facilities; thoey

have also besen wused to provide work space for eight graduate
students. Tnese facilities provide us with remote access to the
NASA Ames CDC 7600 via a UT 200 interface. The scame interface is
used to go directly to the University’s Cyber 175. Thare is also a
direct line to the Interactive Graphics Engineering Laboratory’s
Eclipse 857230, and thereby te its other facilities such as the
Ramtek color display.

PAPERS AND TALKS 1980

We list here the papers and talks for our last g3grant year as
they have not previocusly been reported. As noted earlier, the 1list
for the complete grant period is to be found in Appendix A.

Tijcdeman, H and R. Seebass. "Transonic Flow Past Oscillating
Airfoils, ' Annual Review of Fluid Mechanics, Vol. 12, 1980.
Fung, K.-Y.. Sobieczky, H., and R. Seebass. “Shock—Free Wing

Design., " AIAA J., Vol. 18, 1980.
Fung, K.-Y. "Far-Field Boundary Conditions for Unsteady Transonic
Flows, " (to appear AIAA J.).

Fung, K.-Y. "Shock Wave Formation at a Caustic, " SIAM J. APPL.
MATH. , Vel. 39, 1980.
Nebeck, H. E., Seebass, A R. and H. Sobieczky. "Inviscid - Viscous

Interactions in the Nearly Direct Design of Shock—-Free Supercritical

Airfoils, " (to appear AGARD Conference Proceedings)
Sobieczky, H and A, R. Seebass. "Adaptive Airfoils and Wings for
Efficient Transonic Flight," ICAS preprint, October 1980.

Seebass: Unsteady Transonic Flow, NASA Langley, February 1980.

Seebass: Shock-Free Airfoil and Wing Design, Caltech Colloquium
April 1980,

Sieebass: as above, University of Colorado, April 1980.

Seebass: as above, University of Minnesota. April 1980.
. Seebass: DFVLR Seminars on Unsteady Transonic Flows, Shock—-Free

Design: and Nonlinear Waves, May 19€0.
R. Seebass: as above at Haifa Universtiy, Tel Aviv University,
Mathematics and Fluid Mechanics Departments, May 1980

Seebass: General Aviation Appplications of Shock~F-~ee Design,
General Aviation Technolgyfest, Wichita, November 1980.
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APPENDIX

PAPERS, REPORTS, TAIKS 1977 - 1980

Paﬂs

Seebass, A. R. and Fung, K.-Y., "Unsteady Transonic Flows: Time-Linearized
Calculations,’ Numerical and Physical Aspects of Aerodynamic Flows (to
appear) .

** 2. Fung, K.-Y., "Far Field Boundary Conditions for Unsteady Transonic Flows,"

(accepted ATAA J.).
* 3. Fung, K.-Y., "Shock Wave Formation at a Caustic," SIAM J. Appl. Math., Vol.
39, No. 2, pp. 355-371, October 1980.
** 4. Fung, K.-Y., Sobieczky, H. and Seebass, R., "Shock-Free Wing Design,"
ATAA J., Vol. 18, No. 10, pp. 1153-1158, October 1980.
5. Sobieczky, H. and Seebass, A. R., "Adaptive Airfoils and Wings for Efficient
Transonic Flight," ICAS Preprint, Mmich, October 1980.
** 6. Nebeck, H., Seebass, A. R. and Sobieczky, H., "Inviscid-Viscous Interactioms
in the Nearly Direct Design of Shock-Free Supercritical Airfoils,' AGARD
Fluid Dynamics Panel Symposium, Computation of Viscous-Inviscid Interactionms,
Colorado Springs, Septermber 1980.
* 7. Moran, J., Cole, K. and Wahl, D., "Analysis of Two-Dimensional Incompressible
Flows by a Subsurface Panel Method," AIAA J., Vol. 18, No. 5, pp. 526-533.,
May 1980.
** 8. Tijdeman, H. and Seebass, R., "Transonic Flow Past Oscillating Airfoils,"
Amn. Rev. Fluid Mech., 12, pp. 181-222, 1980.
Jxdd 9. Cramer, M. S., "'Lifting Three-Dimensional Wings in Transonic Flow,' J. Fluid
Mech., Vol. 95, Part 2, pp. 223-240, 1979.
*** 10. Sobieczky, H., Yu, N. J., Fung, K.-Y. and Seebass, A. R., "A New Method
for Designing Shock-Free Transonic Configurations,' AIAA J., Vol. 17, No. 7,
PP. 722-729, July 1979.

** 11. Sobieczky, H., ""Related Analytical Analog and Mumerical Methods in Transonic
Airfoil Design," AIAA 12th Fluid & Plasma Dynamics Conference, Paper 79-1556,
Williamsburg, Virginia, 23-25 July 1979.

*x

4+ AFOSR and ONR joint funding

R, NASA, and ONR joint funding
R and NASA joint funding

NASA funded



#*% 12. Seebass, A. R., Yu, N. J. and Fung, K.-Y., "Unsteady Transonic Flow
Computations,' AGARD Conference on Unsteady Aerodynamics, CP No. 227,
pp. 11, 1-17, 1978.

** 13. Fung, K.-Y., Yu, N. J. and Seebass, R., 'Small Unsteady Perturbations in
Transonic Flows,' AJAA J., Vol. 16, No. 8, pp. 815-822, August 1978.

** 14, Cramer, M. S. and Seebass, A. R., "Focusing of Weak Shock Waves at an
Aréte," J. Fluid Mech., Vol. 88, Part 2, pp. 209-222, 1978.

#4%%k 15, Yu, N. J., Seebass, A. R. and Ballhaus, W. F., "Implicit Shock-Fitting
Scheme for Unsteady Transonic Flow Computations,'' AIAA J., Vol. 16, No. 7,
pp. 673-378, July 1978.

Talks

7th Armual General Aviation Technologyfest, Wichita, November 1980. (Seebass)

International Council of the Aeronautical Sciences Meeting, Munich, October
1980. (Sobieczky)

AGARD Fluid Dynamics Panel Symposium on Viscous-Inviscid Interactions, Colorado
Springs, September 1980. (Seebass) :

University of Haifa Colloquium, May 1980. (Seebass)

University of Tel Aviv Mathematics Seminar and Fluid Mechanics Colloquium,
May 1980. (Seebass)

Israel Aviation Industry, Tel Aviv, May 1980. (Seebass)

DFVLR, Gottingen Colloquia (3), May 1980. (Seebass)

University of Mimmesota Colloquium, Mirmeapolis, April 1980. (Seebass)
University of Colorado Colloquium, Boulder, April 1980. (Seebass)

California Institute of Technology Colloquium, Pasadena, April 1980. (Seebass)
Unsteady Transonic Flow, NASA Langley Workshop, February 1980. (Seebass)
Shock-Free Flows, NASA Lewis, November 1979. (Seebass)

ATAA 12th Fluid & Plasma Dynamic Conference, Williamsburg, July 1979. (Fung)
ATAA 12th Fluid & Plasma Dynamic Conference, Williamsburg, July 1979. (Sobieczky)
Lockheed-Georgia Company Seminar, July 1979. (Seebass)

AFFDL/AFOSR Review, Dayton, June 1979. (Seebass)

Lockheed-California Company Seminar, April 1979. (Seebass)
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University of Washington Colloquium, Seattle, February 1979. (Seebass)

Ohio State Meeting on Unsteady Transonic Flow, Columbus, February 1979. (Seebass)
University of Southern California Colloquium, Los Angeles, October 1978. (Seebass)
ATAA 11th Fluid & Plasma Dynamics Conference, Seattle, July 1978. (Sobieczky)

AGARD Fluid Dynamics Panel Symposium on Unsteady Aerodynamics, Ottawa,
September 1977. (Seebass)

AIAA 10th Fluid & Plasma Dynamic Conference, Albuquerque, June 1977. (Yu)
ATAA 10th Fluid & Plasma Dynamic Conference, Albuquerque, June 1977. (Fung)
University of Arizona Colloquium, Tueson, April 1977. (Fung)

University of Arizona Colloquium, Tucson, Arpil 1977. (Yu)

Dr. H. Sobieczky of the DFVIR in Gittingen was a Visiting Adjunct Professor
at the University of Arizona in 1977 - 1978 with ONR and AFOSR support.

Dr. Sobieczky gave a series of lectures on Transonic Fluid Dynamics at the
University of Arizona. He also gave the seminars listed below.

California Institute of Technology, Pasadena, Jamary 1978.

Stanford University, Stanford, February 1978.

University of California, Berkeley, February 1978.

Naval Postgraduate School, Monterey, February 1978.

University of Southern California, Los Angeles, February 1978.

NASA Research Center, Hampton, Panel Member, Airfoil Conference, March 1978.
Virginia Polytechmic Institute, Blacksburg, March 1978.

University of California, San Diego, March 1978.

University of California, Los Angeles, May 1978.

Transonic Fluid Dynamics Reports - Engineering Experiment Station

Report TFD 80-03, Seebass, A. R. and Rung, K.-Y., "Unsteady Transonic Flows:
Time-Linearized Calculations,' October 1980 (same as Paper 1).

Report TFD 80-02, Nebeck, H., Seebass, A. R., and Sobieczky, H., "Inviscid-

Viscous Interactions in the Nearly Direct Design of Shock-Free Supercritical
Airfoils," October 1980 (same as Paper 6).
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Report TFD 80-01, Sobieczky, H., "Computational Algorithms for Wing
Geometry Generation, Transonic Analysis and Design,' July 1980.

Report TFD 79-02, Sobieczky, H. and Seebass, A. R., "Shock-Free Supercritical
Aerodynamic Structure and Method for Designing Same,' August 1979.

Report TFD 79-01, Fung, K.-Y., Sobieczky, H. and Seebass, A. R., '"Numerical
Aspects of the Design of Shock-Free Wings," July 1979 (same as Paper 4).

Report TFD 78-05, Ballhaus, W. F., Cramer, M. S., Yu, N. J., Fung, K.-Y.,
and Seebass, A. R., "Unsteady Transonic Flow Studies," [Focusing of Weak
Shock Wave at an Arete (same as Paper 14); Unsteady Transonic Flow Computa-
tions (same as Paper 12); Small Unsteady Perturbations in Transonic Flow
(same as Paper 13); Implicit Shock-Fitting Scheme for Unsteady Transonic
Flow Computations (same as Paper 15)].

Report TFD 78-04, Sobieczky, H., Fng,'K.-Y., Seebass, A. R. and Yu, N. J.,
"A New Method for Designing Shock-Free Transonic Configurations,' July 1978
(same as Paper 10).

Report TFD 78-03, Sobieczky, H., "A Computational Algorithm for Embedded
Supersonic Flow Domains,' July 1978.

Report TFD 78-02, Sobieczky, H. and Seebass, A. R., "Adaptive Airfoils and
Wings for Shock-Free Supercritical Flight,' May 1978.

Report TFD 78-01, Sobieczky, H., "A Computer Program for Analysis of Transonic
Flow Past a Wall Ramp," January 1978.

Report TFD 77-01, Sobieczky, H., "Transonic Fluid Dynamics Lecture Notes,"
October 1977.

Patent Application

"Adaptive Shock-Free Supercritical Aerodynamic Structures and Method for
Designing Same," Serial No. 06/049,846 (with Sobieczky), 1979.



UNSTEADY TRANSONIC FLOWS: TIME-LINEARIZED CALCULATIONS

A. Richard Seebass and K.~Y. Fung
Aerospace and Mechanical Engineering, University of Arizona, Tucsoun, Arizona

An accurate and efficient method of computing unsteady transonic flow is

described.

The flow is linearized about an experimentally measured or numeric-

ally calculated steady state, as represented by a given pressure distribution.
For a given mode of motion, the amplitudes and phase lags of the 1ift and
moment coefficients at a given reduced frequency are found by superposition

from an indicial response.

The computational effort is reduced by treating shock

waves as discontinuities, and by applying the correct linear far~field behavior.
A novel method of modeling the indicial response provides an analytical formulas
for the dependence of the amplitude and phase lag on the reduced frequency.

INTRODUCTION

A combination of technical advances should
improve the fuel efficiency of transport aircraft
by fifty percent in the next decade. Analogous
improvements in the transonic performance of mili-
tary aircraft should also be realized. These large
gains will come from a combination of improvements
in engine, structural, and aerodynamic efficiency.
More than half will come from improvements in the
aerodynamic efficiency, including active control,
and the use of composite materials in the primary
structure. Part of the improvement in aerodynamic
efficiency will result from flight at supercritical
Mach numbers with subcritical levels of lift to
drag ratio and high lift coefficients at near sonic
flight conditions.

This improved transonic performance mandates
an accurate prediction of aeroelastic behavior at
transonic Mach numbers. Of special concern are
flutter boundaries. In 1976 Farmer and Hauson (1)
reported that che flutter boundaries of two dynam-
ically identical wings were markedly different at
transonic Mach numbers due to very minor differ-
ences in wing profile thickness. The results of
their measurements are shown in Figure 1, indica-
ting the reduced flutter boundary for the wing with
a "supercritical” profile.

Today we understand well the qualitative
behavior of inviscid steady and unsteady transonic
flows, and we have rudimentary understanding of
viscous effects. For flight regimes that involve
ungeparated flows the main ingredient in the calcu-
lation of flutter boundaries is an accurate deter-
mination of the steady pressure field. This may be
determined either by experiment or by calculation.
But once it is known, the response of the wing to
pitching, plunging or aileron motion may be found
ty numerical means. The most essential ingredient
in predicting this response is an accurate predic-
tion of the motion of any shock waves present in
the flow (see, e.g., (2)). Numerical algorithms
that capture shock waves must use relatively fine
grid spacing near the shock wave if they are to
predict its motion due to the small changes of
interest in flutter studies. But this shock
motion may be predicted accurately bya time-linear-
ized algorithm using a relatively coarse grid {f
the calculations are done correctly. This has not
generally been the case, with other investigators
ignoring this essential effect (3,4,5).

We report here on our two-dimensional, time-
linearized computations, which not only properly
account for shock wave motion, but are able to
resolve them even though the grid used to calculate
the flow is relatively coarse. In order to avoid
the reflection of the unsteady disturbances from the
grid system, only a moderate amount of grid stretcn-
ing is employed away from the airfoil. To avoid
unnecessarily large computational domains, the
linearized far-field for an unsteady vortex with a
circulation determined by the airfoil's 1lift is used
to evaluate the potential there (6). The airfoil's
response to a given mode of motion is determined by
superposition from that for an indicial motion. In
many cases this indicial response can be modeied in
a simple way, providing an analytic result for the
dependence of the lift and moment coefficient’'s
amplitudes and phase lags on reduced frequency. A
novel feature of this modeling is that of a sequence
of harmonic oscillators, each of which improves the
previous simulation of the indicial response. Thais
provides an analyvtical formula for the dependence
of the amplitudes and phase lags on the reduced
frequency (7).

The computational efficiency of the time-
linearized calculation of the amplitudes and phase
lags for a range of reduced frequencies is compared
with nonlinear and frequency domain computations.

The time~linearized calculation of an indicial
response can result in a faccor of ten or more
reduction in computational effort; this is especially
significant in three dimensions. The modeling of
the indicial response by a sequence of two harmonic
oscillators can also reduce computational effort.

GOVERNING EQUATIONS

As noted abeve, time-linearization about a
known steadv state is an effective mechanism for
determining the unsteady response to a given mode of
motion. For flows that are unseparated, and not at
incipient separation, an inviscid treatment of the
unsteady £low should be adequate for flutter studies.
It is important, however, that the nonlinear and
viscous aspects of the underlying steady staze be
determined accurately. This may either be done by
experiment, or by a reliable computational algorithm
such as Grumfoil (8). 1In any case, we assume that
an accurate steady state pressure distribution has
been used to provide the input fcr the inverse cal-
culation of the airfoil shape that will provide this
pressure distribution when the steady state flow is



computed using the small perturbation approximation.

As Lin et al. (9) observed more than thirty
years ago, within the context of the small perturba
tion approximation the basic equation governing the
unsteady motions is linear unless the reduced
frequency, k, is 0(60). Here 60 is the measure of

the perturbation potential and k = wc/U, where w is
the frequency, c the chord and U the freestream
speed. Thus, if we write the velocity potential,
$, as

9 = Ucix + 600}

where ¢ is the perturbation potential and 50 is

some measure of the disturbance, the governing

equation is
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where terms O(k ¢tt/6°) and 0(k¢c¢xx

neglected because k = 0(50).

) have been
(Here the time has

been nondimensionalized by the circular frequency
and the spatial coordinates by the airfcil chord,
and the VY coordinate is scaled by 601/ .) The

second is of little consequence. Neglecting the
first is equivalent to disregarding one of the
characteristics and assuming disturbances propagate
downstream at infinite speed, and has important
computational advantages. The boundary condition
at the body is
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~where the body 1is given by
y = 8Y(x) + 8Y(x,t).

Across the airfoil wake the jump in the pressure
coefficient must vanish. Thus,

L s o0 = - o, ix,0,0)
+ k¢t(x,o,c)ﬂ =0,

where E(--~)ﬂ indicates the jump across the wake.
This implies that in the wake
A¢(x,0,t) = T(x - kt)/UcGo. (3)
In both these boundary conditions we have retained
terms of O(k), which is not consistent with the
approximation made in Eq. (1). But as Refs. (10)
and (11) demonstrate, this gives good agreement
with the results of linear theory for values of k
up to, and even above, 1.0. This term 1s, of
course, also retained in the evaluation of the
pressure coefficients. As noted in Ref. (2),_ the
appropriate measure of 6 is max(s3 3/2 63/7 (k6)3/2)
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and normally 5°'°, Far from the airfoil (see (6)),

.
f(x,y,t'

1o1y o Lt AT CEl) Lo ;
"(xvat ) 27 to)—-gi-gn— dtO (4)
where
f 't') = ' 2 ) 2
(x-y.t ) H(t' + x - /(x +y )) x
tant /(% 4 axe! —v'?) 4 g

v

"~

-1 v 12 2 - ' 2 - ¢!
- tan 1 (t'° + _xf v'" t

y

and

¢ = et - Dl Ly = g/ - s

Here H is the Heaviside unit step function.

In addition to Eq. (1) and the boundary condi-
tions (2)-(4), a shock jump condition needs to be
{imposed if the shock wave is to be treated as a
discontinuity rather than "captured” by the numeri-
cal calculations. Because the former is the intent
here, we need to note that

2 2
- /s )L o I (ax/de)

[ - 0ss, - &+ owls T TP+ To T
on

(dy/dx)_ = - [["J/f[%ﬂ
where E(' )H and (-°+) indicate the jump in and
average of (-:+) across the shock wave. Equation (5a)
insures the conservation of mass. The conservation
of momentum is replaced by the irrotatiomality con-
dition Eq. (5b) or its equivalent, [ ¢][ = 0.

(5b)

Time-linearization

We use the ADI technique introduced by Ballhaus
and Steger (12) to compute the steady state solution
of Eq. (1), wo(x,y), subject to the steady boundary

conditions implied by Eqs. (1)-(4), using the
coordinate stretching of Ref. (13). Aside from the
far-field condition (4) and the inclusion of terms
of O(k) relative to 0(1) in (2) and (3), this is
equivalent to NASA Ames computer code LTRANZ of
Ballhaus and Gooriian (14). We next linearize about
this steady state by assuming that

sxyat) = 5 069 + 3162 sy, + 078},
where 8/63/2 = o(l). This gives, with § = 50.
2,0\ 2
- QLS e+ fa - w73,
2 - .
SR AL T N N ‘6a)
with
5y<x,o,c) - ¥ 6,0+ kY (x,0) (6b)
and
iI:»x(x,o,:) + k;;t(x,o,t,‘ﬂ = 0. (6¢)

With the linearization of the solution about a
steady state at time t = 0, we use (4) for the
potential far from the airfoil as the circulation
departs from its steady state value.

As noted earlier, the proper account shock
motions are of prime importance in unsteady transo-
nic flow. We thus use the procedure of Ref. (13)
to account for shock motions. Because the shock
waves are nearly normal to the freestream we assume
that this is the case and satisty

Cel=



on the normal shock approximation to Eq. (5), viz.,

2 -
dx oy XY El Mol L,y
de 2k (Y+1)M£ x

Again we linearize about the steady state, writing
in this approximation

x () = x_ + /82 Dy

which gives

dx(e) | x k18 (x _,0,0) )
& T

as the equation that keeps track of the shock wave
osition, Straightforward linearization of
ﬁ:¢o + (6/63/2)¢ = 0 gives the expression that

determines & behind the shock from its value ahead
of the shock (13):

E;(xi,t.y)ﬂ =

y + 1 B €T, Al
- G s, LT 1 (0 D de. (8)

This must be integrated in conjunction with (6a).
The ADI procedure is again adopted as outlined in
Ref. (13), to effect a solution of Eq. (6) in
conjunction with Eq. (8), subject to the time-
linearized boundary conditions at Eqs. (6a) and (6b).

INDICIAL RESPONSE

One of the major advantages of time-lineariz-
ation is that, for a given mode of motion, the
amplitude and phase lag of the lift or moment
coefficient for a given reduced frequency may be
computed by a linear superposition of the results
obtained for a step change. For example, if the
change in 1lift coefficient as a function of time
for a step change in angle of attack, Ci , is that

a
sketched in Fig. 2, then the lift coefficient for
an angle of attack variation, a(t), is

da(t - 1)

ar dt. (9a)

c, (&) = ¢, (thalo) + rfe, (o
X b3 a

Thus, for a periodic motion a(t) = LN + uelmc,

-iwt

T iwt © —
C) = ae™ [sz") - iwfol:cla(w)-clu(r)_]e dt] (9b

+ )
CQ ( )uo.
2

The low frequency approximation made in Eq.
(1), viz., that kz@tt was negligible, is, of course,

not valid for the high-frequency components of the
indicial response calculation. It is, however,
perfectly satisfactory for the computation of the
indicial response, provided this response is only
used to compute motions for which k = o(l). In
order to calculate the response for low reduced
frequencies, however, we must accurately resolve
the indicial response as the motion approaches its
asymptotic state. Typically, this requires the
computation of the indicial response for 300 chord
lengths of airfoil motion. In this time the un-
steady perturbations have travelled a little more
than 300 chord lengths normal to the freestream.

As a consequence, any boundary condition imposed on
a ly] = constant boundary that is less than 150
chord lengths away can contaminate the indicial
response through a reflection from a boundary. Our
experience has been that an erroneous boundary
condition such as ¢ = 0 has to be imposed at |y]|
greater than 80 chord lengths in order to avoid
errors in the phase lag determined from an indicial
response. The same must be true for the computation
of a harmonic motion, although it would be more
difficult to determine chat the phase lag was in
error in such a computation. This same observatlion
should also be applied to unsteady wind tunnel
tests. If there are significant acoustic reflect-
ions from the wind tunnel walls, the observed phase
lags may be in ervror. This experimental difficulcy
warrants further investigation, especially in two-
dimensional studies.

On the other hand, we know that with the
appropriate steady state value of the potential
applied at about twenty chord lengths, the steadv
state solution is perfectly adequate. With the
imposition of the unsteadry boundary condition (4),
or its time-linearized analog, we find that once
again 20 chord lengths will suffice. For low to
moderate vreduced frequencies, viz., k = 0.1 to 1.0,
the acoustic wavelengths associated with the motion
are about 1.0 to 10 chords. The grid spacing
employed may be stretched, but grid spacing compar-
able to or larger than the acoustic wavelength will
result in acoustic reflections from the grid itself.
Thus, while a grid stretching is emploved in the
calculations, the largest grid spacing used remains
a fraction of a chord length.

Harmonic Oscillator Mcdeling

Typically, the indicial response of the lift
coefficient to a step change in angle of attack,
flap angle, or imposition of plunging velocity, is
like that as shown in Fig. 2. The same is also
approximately true for the moment coefficient taken
about the airfoil's leading edge (Fig.3).This suggests
that, to a first approximation, the response is
nearly exponential and governed by a simple first-
order differential equation. And, further, that to
a second approximation, the difference between :his
response and an exponential function can be modeled
by a damped harmonic oscillator. Thus, if we iet
u(t) be a normalized indicial response such that
u(0) = -1, u(=) = 0, we should write

u(t) = 1 + :lo(t) + ul(c) + oo (10)
where

Lu = 8 4+iu =0
50 o 9

and, in general,

= u a3+ = 0.
L% O COI PU R

The constants X.pi,qi are.determined to best

model the indicial respomnse.
to these equations, viz.,

That is, the solutions

6 (t) = et
o]

(12a)
and

u (6) = ui(o)e"’i‘sm(n:)/a, (12b)



where
2
-'/ - “
Q (@ - py ),
are combined to best approximate the indicial

response. To be specific, if we let £, " u(e) -
uo(c), then we choose A such that

© 2
IO = fo@os;] de (13
is minimum. Setting aIU/BX = 0, we find
e 270 - uo e, (14)

In an analogous manner we let € * u(eg) - 1 - uo(t)

—ul(t) and choose p; and q; so that

o

2
1,(py,q)) = IO[L15. dt (15)
is minimized.

@ . 2
_ (@(e) =n)? and q, = Jol8 = B0)7de (10

2700 = 4 ®(a -
"o(u uo) dt fo(u uo)dt

This gives

The extent to which the simple first approxi-
mation is justified for selected examples is shown
in Figs. (4) and (5). In many instances an accept-
able determination of the phase lag requires the
second approximation. This will be discussed more
fuily in (7). The constant A and the Io(x) of the

first approximation can be determined immediately
from Eqs. (13) and (14) as the indicial response is
being calculated. If I_is not sufficiently small,
then the constants pl and ql can be calculated

from Eqs. (16). If the second approximation is not
judged sufficiently accurate because Il is not

acceptably small, the modeling is abandoned as the
computational expense of computing 1Y and 93 is

comparable to that required for three reduced
frequencies.

Some time ago it was noted by Tijdeman (15) and
the authors (13) that the amplitude of a harmonic
respons: decays like k! with increasing k. A

somewhat more zeneral result is implied by Egs. (12).

If F(t) is a harmonic response, e.g., CL (t), then
a
with
F(t) = Fo(c) + Fl(c) + e, (17)

we find that the first approximation gives

19
FO/A = (1 + k'2>' sin(kt - eo) (18a)

where

sing = k'/(1 + Wtz "(18b)
Here A is the amplitude of the indicial response to
a unit change and k' = k/A. The second approxima-

tion gives

- - ] ] 5 - z
rl/A ul(o)k Q'sin(ke 61)

- 2 4
e G e e+ w0 o- Y2 Qoa

where

'2-1)e

sine1 = (k'2 -Q
0+ & +ar]l+ @ - 2ay]?

and Q' = Q/A.

(19b)

We see immediately from Eq. (18) that in the
first approximation the amplitude of the harmonic
response is

O+ anaf] M2

as indicated in Fig. 4, which behaves like k—l for
large k, and that the phase lag is

sin Ly + amyZyt/?

which grows linearly with k/A for small k/A, and
thereafter is nearly independent of k/A, as can be
seen from Fig. (5).

We limit our discussion to the simple variation
of the amplitude and phase lag of the 1lift and moment
coefficients for an NACA 64A006 in pitch with
reduced frequency. Earlier, more detailed results
depicting the shock motion, etc., are to be found
in Refs. (13) and (16). Because we have linearized
about a steady, small perturbation solution, we
draw no practical conclusions from our study.
Tijdeman (personal communication) reports that the
applicacion of LTRAN2 to determine the respomse
about an experimental steady state for the F29 air-
foil at varying incidence, in conjunction with strip
theory and the results of panel methods for subcri-
tical flow to account for three-dimensional effects,
was successful in predicting the flutter boundary
of the F29 wing.

Figures 4 and 5 give the amplitudes and phase
lags of the 1lift and moment coefficients for an
NACA 64A006 airfoil oscillating in pitch at selected
reduced frequencies with M_ = 0.86 and 0.88., Indi-

vidual results are shown by symbeols with the reduced
frequency noted below them. Generally, they are
well described by the first approximacion of the
harmonic oscillater model. For M_ = 0.86 the lift
and mid-chord moment results are indistinquishable,
but their phase lags are not correctly captured by
the modeling of the first approximation. In this
case, the initial part of the indicial response is
not correctly captured. This is easily dealt with
in the model without going to the second approxi-
mation (7).

COMPUTATIONAL EFFORT

As noted earlier, a time-linearized calculation
requires substantially less computational effort
than a nonlinear one. We delineate those differ-
ences here, noting that the larger grid spacing that
may be used with our shock-fitting procedure
implies a computational saving in addition to the
considerations discussed here.

1f we let T represent the number of time steps
required to calculate a time periodic solution in
an LxMxN spacial domain, then the total computa-
tional effort for a flutter study using either a
nonlinear or time-linearized algorithm is propor-
tional to the product TLMN. If we do not time-
linearize, this must be done at K reduced frequen-
cies to give a total computational effort that is
proportional to KTLMN. If a time-linearized
procedure is used to compute a single indicial



response, the effort is TLMN. This can be used to
generate the mode response for any reduced frequen-
cy in about T2 additional steps, giving a total
computational effort proportional to TLMN +
(const)-TéK. Typically, T is 500 and L,M,¥ are
about 50, 25, 25, respectively. Thus, a nonlinear
analysis at ten reduced frequencies has a computa-
tional effort of about

10+ 500+ 50-25+25 = 10°.

On the other hand, a time-linearized computation
requires a computational effort of

500+50:25.25 +
2, . .A7 6
(const) (500)710 = 10° + (const)-10

providing a factor of K reduction over the nonlinear
analysis. The constant of proportionality, and the
less refined L grid spacing required, also favor

the time-linearized algorithm, contributing roughly
another factor of ten reduction over the nonlinear
procedure.

In two dimensions, the two computational compo-
nents of the time-~linearized calculation, viz., the
indicial response and its linear superposition for
each reduced frequency, are comparable and an
efficient integration algorithm must be used for
Eq. (9b).

CONCLUSION

The amplitudes and phase lags of the 1ift and
moment coefficients, at selected reduced frequencies,
can be computed accurately and efficiently by time-
linearization about a measured or computed pressure
field. For three-dimensional studies the linear
superposition of the results of a single indicial
response substantially reduces the computational
effort. Further reductions are achieved by using
the linearized far-field for the unsteady flow, and
by treating the shock wave as a discontinuity in
the computations. In many cases, the indicial
response can be modeled by a simple harmonic oscii-
lator, and this provides an analytical resulc for
the dependence of the lift and moment coefficients
on reduced frequency, further reducing the compu-
tational effort.
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Figure 2. Lift coefficient as a function of time for a step
change in angle of attack; NACA 64AC06, M= 0.88.
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function reduced frequency for an NACA 64A006 airfoil.
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Far Field Boundary Conditions for
Unsteady Transonic Flows

K.-Y. Fung*
University of Arizona, Tucson, Ariz.

Analytical results are given for the far field of the unsteady transonic flow due to an instantaneous change in
lift at the origin. These results may be superimposed to provide boundary conditions for numerical com-
putational of unsteady transonic flows. A typical numerical experiment using these results shows substantia)
reductions in the size of the computational domain sre possible. In two dimensions this procedure is at least as
effective as the nonreflecting conditions suggested by the local characteristic relations. It is also much easier to
implement in three dimensions than the nonreflecting conditions.

Introduction

THE computation of unsteady transonic flow is of fun-

damental importance in determining aeroelastic response
and flutter boundaries.! At supercritical Mach numbers the
flow past airfoils and wings usually includes embedded shock
waves; the motion of such shock waves plays an important
role in determining the airfoil or wing’s response to a given
mode of motion. Indeed, there is experimental evidence, ? and
supporting theoretical work,> suggesting that serious decrease
in the flutter speed with increasing Mach number can occur
for some wing designs because of this shock wave motion.

An efficient time-accurate algorithm for solving the
transonic unsteady small perturbation equation has been
developed by Ballhaus and Goorjian* for the important case
of low reduced frequencies. Unsteady flows, in one sense, are
easier to compute without having the results affected by
approximations in the boundary conditions. One can, for
example, simply insist that the boundary be far enough away
that none of the waves reflected from it have sufficient time to
return to the airfoil or wing and contaminate the results. For
indicial and periodic motions the computational domain must
be large enough that the asymptotic state is achieved before
the reflected- waves return to their source. This, un-
fortunately, turns out to be a rather large domain (typically
100 airfoil chord lengths in two dimensions). Magnus,$ as
well as other investigators, have discussed the effects of the
boundary conditions on the result of their calculations, with
the general conclusion being that they cause serious errors. To
remedy this difficulty one may use one of several techniques.
The one frequently used for steady flows, viz., grid stretching,
may not improve the resuits, even for low reduced frequencies
where the disturbance wavelength of interest is, at most, no
more than 10 chord lengths. Any grid spacing larger than a
few chord lengths will effectively reflect the incident waves.
Another remedy, used, e.g., by Enquist and Majda, ¢ is to use
boundary conditions that reduce the reflection of incident
waves. Such boundary conditions are a local statement that
outward going waves should be transmitted through the
boundary. Our experience with these boundary conditions
indicates that this local approximation is much too crude to
allow computational domains of size satisfactory for steady
flow calculations. A better procedure is to use the global
unsteady far field for the linearized equation, first attempted
by Krupp and Cole.’
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If we assume the far field is governed by a linear equation
then the far field for an indicial response can be used to
construct that for any response. Additionally, we note that an
effective way to proceed with flutter studies is to linearize the
steady state about some experimentally or numerically
determined steady state.® This must be done in a way that
accounts for shock motions, as they represent the
predominant effect in supercritical flows.?

Equation of Flow
For simplicity, we consider the nonlinear flow to be
governed by the small perturbation for small reduced
frequencies, viz.,

~ 2k + (k= (Y+ )b, b +0,, + 6. =0 M

Here the spatial coordinates, the time, and the velocity
potential have been nondimensionalized by the chord, the
freestream Mach number times the reciprocal of the angular
frequency, and the freestream velocity times the chord,
respectively; x is the usual transonic similarity parameter, and
k is the reduced frequency, viz., k=wc/U, i.e., the angular
frequency multiplied by the time it takes the airfoil to move
one chord length. The appropriate boundary conditions are
then

¢, (x,0,z,t)=7[Y,+kY,], onwing

and

[ k¢,(x.0,2,¢) +6,(x,0,z,¢)] =0, onwake

where we have included terms of O(k) as suggested by
Houwink and van der Vooren,' rY(x,y,z1) is the body
shapeand [ ] means the jump in the argument.

Unsteady Far Field
We now derive the unsteady far field boundary conditions
for Eq. (1). Far from the body the unsteady disturbances will
satisfy a linear equation. Considering the whole flowfield to
be a small unsteady disturbance superimposed on the steady
solution to Eq. (1), we let

S (x,0,2,1) =0° (x,5,2) +8¥ (x,5,2,1) +0(8)
and
Y=Y%4+(6/7) Y
to find

=2k + { (k= (Y + ) 1¥x )+ ¥y +¥,, =0 )
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with
¥,(x,0,2,t) =(Yy+kYY¥), onwing

where & characterizes the size of the unsteady disturbance
compared to the basic steady disturbance. While this is now
the framework for a time-linearized analysis, we note that the
linearized version of Eq. (1) always applies in the far field. As
indicated in other studies, e.g., Klunker,!' the nonlinear term,
here correspondingly, [(y+1)¢%¢¥,] has a doublet like con-
tribution to the steady far field. We will show later that such a
term contributes equivalently to the unsteady far field and
hence we can neglect it. Only changes in lift contribute to the
lowest order; thus, we need only derive the far field for an
incremental change in incidence. This we do by solving the
following boundary value problem for the upper half-space

>0
~2b,+%,+%,+%,=0 3
with
& (x,0,2,1) = AT (2,8, ) H(t— 1) H(x)

Here, the dependent and independent variables are properly
scaled. The solution we seek is, of course, antisymmetric in y.
The boundary condition in Eq. (3) models a vortex sheet that
originates at x=0, producing a jump in potential, AI'(z),
instantaneously at time r=1,.

Far Field Solutions

We employ the standard techniques of Fourier and Laplace
transforms to solve Eq. (3) subject to the boundary condition
for a change in the circulation, AT'(z,7,), at time ¢, for both
two-dimensional and three-dimensional flow. We outline the
steps briefly here.

Three Dimensions

To solve Eq. (3), we let $(x,y,z,5) be the Laplace trans-
form of &

$,+é,+d,-254,=0 @
with
$(x,0,2,5) = AT () (1/5)H(x)

The substitution $=ey, reduces Eq. (4) to the standard
Helmbholtz equation, viz.,

\l'yy+¢xx+'1’u _52¢=0 (5)

with
¥(x,0,2,5) = 2AT (2) (e~ /s)H (x)

We let J(E.y,z,s) denote the Fourier transform of y with
respect to x and J«(E,y,f,s) the Fourier transform of Jz with
respect to z. Applying such transforms to Eq. (5), we find

';yy‘({2+£:+52)¢=0
with
s—it

¥(£.0.8.5) = 1Al (f) SOTTED

which has the solution

V(E255) = 1541 Sk

P S, (2 2 2\ %
G SRl E H s @)

After performing the inverse transforms to Eq. (6) with
respect to {,£,s correspondingly, we have, then, in three-space
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dimension, that

y b12
dr Z ~Z1-1p)dz 7
= g—b/) AT (Z,40)8(x,,2— 21— 15)dZ )

4

where b is the wing span and
gx.y.5t) =H[t+x— (x? +y? +27) %)
X [T+x(x24+y2+2?) ~"17(22 +y?)

Because the derivation is for an incremental change AT (z,¢;)
at =1,, a more suitable form of Eq. (7) for ¢ would be

y T a2
¢(X’y’z11)= - E S 512 Ar(fv’o)g(X,y‘Z—f,"‘to)df (8)
Tg) ¥~

Equation (7) is essentially the steady-state result modified by
the Heaviside function which switches on the value given by
Eq. (8) when

[~ty=(x?+y? +22) ¥ —x

This implies the far field phase lag is simply
(x2 +y?+2%) % —x. Such simple behavior is found only in
one- and three-dimensional wave propagation (see, e.g.,
Lighthill'?). Equation (8) simply retards the value of the
potential ¢ so that it is the potential produced by the cir-
culation at an earlier time corresponding to the time for a
wave front to travel from the origin, to the location where ¢ is

being evaluated. Thus, by letting

y 672
dér (x,,2,00) = — S AT(L ) [ +x(x? +y?
4% J-b72
+(z-D) ")y +(z-9)?%)'az

Equation (8) becomes

l —
®(x,5,2,1) = S, . H(t—t,+x-\x?+y7¥22)dé,
0=

-V s+ 2 +x
S dér =¢r (xy.2.0— (X2 +y2 +27) " +x]

4

Two Dimensions
In two dimensions we have

-29,+%,+¢,,=0 0]
with
$(x,0,0) =[AT () /12 H(x)H (1~ 1,)

instead of Eq. (3).

Following the same procedure used in three dimensions, we
have the result in two dimensions that

&= [AT (1) /27)f(x,p,t—1p) (10)
where

N+ 20—y’ +1t

Sx.p,t) =H({t+x—x? +y})[tan‘ "

N +2xt—y2-t]
y

+tan~!

This result is more complex with the time appearing not only
in the unit step function, but also in the argument of the
arctangent function. In the limit, as we approach steady state,
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Eq. (10) becomes

X
S(x,y,0) = 2T an- X
Iyl 2 y

which is the steady result of Klunker." For an arbitrary
circulation change AT'(f), we must superimpose the results
Eq. (10) to find the general two-dimensional far field

dr(z,)
dr,

l 4
‘b(x;y;’)=2— gof(x’y:t-IO) drO (]l)

T
In the case of harmonic motion, e.g.,

ar) L

dt max

we simply change the lower limit in Eq. (11) to find

eiul )
‘l>(x,y,t) /Fmax = ;’ Lf(x.y,r)e"“"dr (12)

which gives the phase lag at each location of the far field
boundary. The condition given by Krupp and Cole’ may be
viewed as an attempt to approximate the resuit given by Eq.
(12).

We may also use Eq. (10) to examine other far field
boundary conditions. For example, the one given in Ref. 6
states that for large y

b,+4, =0 (13)
while analytically we see that

(XFy)(x+1) +x2 432

d, b, =—
Xy (P +2xt—-y?) %

¥

~(X2+)'2) -

which shows that Eq. (13), while asymptotically correct, is not
a suitable replacement for Eq. (10).

Nonlinear Effect
We examine here, following one reviewer’s suggestion, the
nonlinear effect on the far field by adding to the right-hand
side of Eq. (9) a term proportional to (#2,), [see Eq. (2)).
Denoting the solution of Eq. (10) as ¢,, we may write an
integral equation for the solution & that

~

¢ (x,p,0) =®, - 30 F(x,y+n,9,0)dy

y o™
+ So F(x,y—nn,t)dn+ Sy F(x,n—yn,¢)dy (14)

where

> (= H{ +x-x'-VJal+(x=x')7?)
Fix,an,t) =
(X.e,m,1) S-m S—m VI + (x=x")]7 = [a?+ (x=x)?]

a3
s [@% (x" )&, (x',9,0~1") )dt'dx’

X
ax

We only need to examine Eq. (14) for y>0, since
®(x,0,6) =®, (x,0,/). For large x, or large o, we may ap-
proximate F(x,a,n,1) by evaluating the time integral near its

singular point, i.e., 1" = - (x=x’) +Va? + (x—x') 2. Thus

N |
Flxam,1) =§ o+ (1) o (62 €, (¢ n,14x

-x"=vVal+ (x=x")?)dx’
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Fig. 1 Indicial pitch response for an NACA 64A006 at M, =0.88.

or

’

bl X=X

F(x,a,n,8) = 5_“’ mm—]‘bf»d’x (X', nt4+x—x’

—Val+ (x=x")7)dx’

Since both ¢2. and ¢,. decay as (x’ +7?) ~'*, we may further
approximate F(x,a,n,t) by

Flramn) —"— S-., 628, (x',ml+x—x’
VT TR as)

We recognize Eq. (15) as a doublet with strength in proportion
to the compressibility effect. At large distances from the
airfoil this term is negligible compared to the term we retain in
Eq. (10). Thus ¢ (x,y,7) approaches ¢, (x,y,/) asymptotically.

Example

We illustrate the effectiveness of our results by applying
them to the time development of the lift on an airfoil sub-
jected to a step change in angle of attack. The time-linearized
small perturbation algorithm of Ref. 9 is used as the test bed
for the comparison.

Figure 1 compares the lift response of an NACA 64A006
airfoil at M, =0.88, computed using different boundary
conditions. Results obtained in a stretched grid with the outer
boundary at a y,,,, of about 100 chord lengths away from the
airfoil is compared with results obtained in a grid with a Yemax
of about 13 chord lengths.

For the large grid we find no significant difference between
solutions using different boundary conditions for the times
indicated in Fig. 1. In the case of the small grid, we compare
solutions obtained by setting y, =0 at y= +y_,., by using the
nonreflecting boundary condition vy, + Y, =00ny=%yn,,.
and by using the result of Eq. (1) on y= * Voax- The
solutions are rather insensitive to upstream boundary con-
ditions and are subject to the same downstream conditions,
viz., ¥, =0. The nonreflecting boundary condition of Ref. &
achieves about 91% of the steady-state lift and gives a sub-
stantial improvement over the conventional calculation.
Results from the time-accurate boundary condition we have
derived here are in very good agreement with those found
using the large grid; these are uncontaminated by reflections
from the boundary for 1 < 200.

Conclusion

We have derived the far field unsteady solutions for a step
change in the lift of an airfoil and a wing. These results can be
used 1o reduce the size of the computational domain required
for either time accurate or frequency domain calculations. We

/!
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have illustrated their application with a time-linearized
computation of a step change in the angle of attack of a two-
dimensional airfoil.
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SHOCK WAVE FORMATION AT A CAUSTIC*

K -Y. FUNG?t

Abstract. The behavior of a weak acoustic compression near a caustic surface has been determined for a
special class of specified incoming signals. This problem arises in various contexts, including the propagation
of sonic booms generated by supersonic aircraft. The solution derives from a mapping of hodugraph-like
solutions to the physical plane. The maximum amplification for this class of signals of fixed amplitude depends
on the width of the incoming signal. The solutions contain reflected shock waves that satisfy the appropriate
shock jump conditions, provided the width of the incoming signal is greater than a certain critical value.

1. Introduction. There are many sources of weak shock waves. These include the
commonly experienced phenomena of thunder and the sonic boom of supersonic
aircraft. At supersonic speeds, aircraft generate a nearly conical wave pattern. These
wave fronts propagate along their normals at the local sound speed, i.e., along acoustic
rays. Variations in the sound speed (due to temperature changes), aircraft maneuvers,
and winds can lead to ray crossing and a focusing of the wavefront. In the case of the
sonic boom this results in a so-called 'superboom™ if the rays form an envelope, or a
“super-superboom" if they meet at a point. In the case of a sonic boom, the pressure
signature is, nominally, an N-shaped wave. More specifically, a weak shock wave
provides an essentially instantaneous rise in pressure; subsequently the pressure falls
linearly (in space or time) and is returned to nearly the ambient pressure through a
second weak shock wave. The focusing of this weak shock wave is examined here. For
simplicity, we phrase the problem in the context of the behavior of a weak shock wave
generated by an aircraft in slightly supersonic flight in a flow with a Mach number
gradient. Such gradients occur naturaily in the troposphere where the ambient
temperature decreases nearly linearly with altitude.

Sonic booms as well as weak shock waves from other sources are, under normal
circumstances, adequately described by a nonlinear adaptation of geometric acoustics
[11, [2], [3]. In geometric acoustics, as in geometric Optics, a ray is the path of a signal
point on a wave. Neighboring rays form an infinitesimal ray tube. The area of a ray tube
will, in some situations, vanish at a point in space-time, which we shall call a focal point.
Such focal points may form a hyper-surface in space and time that, in most cases, is an
envelope of the rays in physical space. Such a hypersurface is an acoustic caustic, and
will be referred to hereafter as a caustic or caustic surface.

The nonlinear adaptation of geometric acoustics needed for signals of finite (but
small) strength corrects the phase of a given acoustic signal by an amount proportional
to the amplitude of the local signal strength. Except near surfaces, lines, or points of
focusing, such as a caustic, this is the only nonlinear correction needed for small but
finite amplitude signals.

In the absence of winds, the theory of geometric acoustics states that the Rayleigh
acoustic energy, p'?A/(pa), is constant along a ray tube. Here p’ is the perturbation
pressure, A is the differential ray tube area and pa, the acoustic impedance, is the
product of the local density and sound speed.

This, and the more general conservation law of Blokhintsev [4] applicable in the
presence of winds, require that the perturbed quantities such as p’ become infinite when

* Received by the editors August 6, 1979.
+ Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona
85721, This research was sponsored by the Office of Naval Research under Grant N00014-76-C-0182.
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the differential ray tube area A becomes zero. In these cases, geometric acoustics fails to
describe the behavior of a signal and a local treatment is required.

Guiraud [S] and Hayes [6] have given the equation that describes the behavior of
the pressure signature near a caustic. Guiraud's derivation is quite lengthy; Hayes is
intuitive and short. Recently, Pechuzal and Kevorkian [7] obtained the same equation
as a limiting result of an inner expansion governing the behavior near the caustic. In a
coordinate system that is fixed with a wave front, the local behavior at a caustic is not
difficult to delineate, and the nonlinear effect needed to provide the correct equation is
easily deduced for normal situations. Cramer and Seebass [8] have derived the equation
for a focus point, i.e., an aréte.

Despite a fairly large number of experimental, numerical and analytical investiga-
tions, there has not yet been any truly adequate description of the local behavior of a
nonlinear acoustic signal at a caustic. Because the nonlinear behavior at a caustic is a
very local one, experimental measurements have proved difficuit. Numerical cal-
culations are not very reliable because some of the local details, such as the Guderley
patch, if one occurs, are difficult if not impossible to resolve [9]. Analytical studies are
difficult because of the inherent nonlinearity of the problem. Perhaps the most
informative results are the measurements from the French flight tests discussed by
Wanner et al. [10]. Laboratory investigations have used spark generated N-waves {11],
[12] artificially stratified steady and unsteady flows [13], [14] and, more recently, weak
shock waves generated in shock tubes [15], but have failed to resolve the local details of
the flow.

The results presented here derive from a hodograph technique first used by
Seebass [16] and later extended by Giil [17]. Their analysis resulted in functions which
satisfied the governing partial differential equation and one of the shock jump condi-
tions exactly; but the other jump condition was not satisfied. This paper extends this
earlier work by considering a broader class of incoming signals. This provides solutions
for compressions of sufficient breadth that the reflected shock wave is never so strong
that the flow behind it becomes subsonic.

In this case we are able to satisfy both the partial differential equation and the
shock jump relations. More severe incoming compressions are not dealt with as this
would require a double-valued hodograph plane, a situation not considered here.

2. Governing equations and boundary conditions. For simplicity we consider the
modelsituation of slightly supersonic flight in an idealized stratified atmosphere with an
adiabatic lapse rate and hydrostatic equilibrium, as sketched in Fig. 1. The governing
equation is

M3
(1) ¢)'Y_B§>¢xx_ 2 ¢)’=8(7+1)M§0¢x¢xn
IM,
where
Mo =Mi[1-(y=D8(y/]"" and BL =M% -1

Here ¢ is the usual perturbation velocity potential, ¢ is a small parameter that
characterizes the perturbations produced by an aircraft of characteristic length /, § is the
small parameter characterizing the ratio of this length to that determined by the
temperature statification, and M, is the operating Mach number of the aircraft and M«
is the local Mach number at infinity. The first two terms of (1) are the usual ones for
steady supersonic flow. The third term arises because of the gravitational force and
should be retained in a consistent approximation. The last term is the lowest-order
nonlinear term and must be retained in transonic flows.

1
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At y-=0 we give boundary data that is representative of an incoming signal, say
&, =flx) for 0<x </, with undisturbed upstream parallel flow. We require that the
solution vanish in the subsonic domain as y » —00. Waves will be reflected from the
intervening caustic surface where M. =1 and they must be allowed to pass through
y =0 w'thout reflection. This may be thought of as a radiation condition.

o / s
e

Maly)

Caustic Region

F1G. 1. Sketch of model problem depicting the linear wave fronts. Qur interest is in the local nonlinear
behavior in the caustic region.

Because of the thermal stratification a caustic occurs when B8, =0, i.e., at
=l
(y—-1)8

In order to eliminate the ¢, term in (1) we make the transformation

- (y=2)/(y=1)
=[(-e) ]

Ye (Mg“l)

under which (1) becomes

5’2-v)’
12

Note thatat y =0, y =0 but thatat y = —o0, y = —1 (for 1 < y <2). Thus, the domain of

interest is finite in y. Except in the subsonic far field where y - —1, y is small. Using a
Taylor’s Series for small y, we may reduce (2) to the simple form

8°2~v)? 1 .
-L—zl by —[(M?, —D+—(y-Dy+e(y+ I)Mi¢x}¢xx
[ 2~y
=OML-1)*+0GH+OME-1)y)+- -,
yZs

(2) Gy = (1+5) CINML _(145) VI L (v + DM ) =0

(3)
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valid away from y = —1. The caustic now occurs at

).'(z_g_—_):(Mi_l)

andy.is O(M?Z - 1) which is taken to be small. Hence, the representation of (2) by (3) is
valid in the caustic region.
A simple scaling of y, x and ¢ reduces (3) to the form

(4) G —(1+ 1 +dx)dxx =0,
where
(M2 -1 . ML-1D(2-y)

__ (MI-D
Te(y+DHMI(y-18 "

The boundary condition at n =0 becomes

: _(y-DMee
(4a) bn =WF(X), 0=X =4,

where F(X) gives the shape of the incoming signal. The other boundary conditions,
which are homogeneous, were discussed earlier.

With the vertical coordinate shifted to 1 + = Y and, for simplicity, replacing ¢ by
@, (4) can be reduced to the canonical form

(5) (Y +dx)dxx ~dyy =0.

The boundary condition is now prescribed at Y = 1, corresponding to n =0 or y =0.
Equation (5) was derived by Guiraud [5] and also given intuitively by Hayes [6]. It is
invariant under the transformation X » aX, Y » a*/? Yd>a 5/3¢. Thus the transonic
parameter (y— DMle/(M2-1)*? in (4a) can be absorbed by the scaling o =
(y—1)Mze/(M: —1)*".

A general solution of (5) then has the form

d=0(X,Y;F),

where F characterizes the incoming signal shape, and must have ¢x ~ Y~ '* on the
characteristic X = -3Y*?if,as Y = » o0, the behavior is to be consistent with the linear
solution [6] where the ray tube arc is proportional to Y'/? and, with ¢éxxp’,
éx ~ Y "* according to the theory of geometrical acoustics.

Pechuzal and Kevorkian [7] have derived (5) from (1) using matched asymptotic
expansions with ¢ as the small parameter. The inner equation, that is, the equation that
applies for B = O(¢), reduces to (5). They give a particular solution applicable to the
case where the signal is totally reflected from the sonic line, that is, when the surface
M. =1 is replaced by a solid surface.

Equation (5) is a nonlinear partial differential equation of the mixed type. It admits
discontinuous solutions that satisfy the jump relation corresponding to continuity of
the velocity component tangential to the discontinuity surface

1/4

(6a) lox (Y +éx) =[ov]’
along
(6b) %=(Y+$x)-”2»

/6
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where [ - | means the jump across the discontinuity and " the average value of a function
evaluated on each side of the discontinuity.

A general approach for solving this equation with general boundary data has not
yet.been discovered. This equation can be linearized because there are variables in
which its characteristics are fixed. Unfortunately, the appropriate boundary conditions
in the new coordinates are nonlinear. We digress here to determine the analog of the
physical boundary data to (5) in the coordinates in which (5) becomes linear.

3. Hodograph equations. The solution of the nonlinear Tricomi equation (5) that
is of main interest is that for an incoming step wave. This signal must be terminated in
some appropriate manner, e.g., an N -wave signal, in order for the solution to be finite.
The local behavior of the step wave front at the caustic will be insensitive to the overall
signal shape. This problem remains to be solved. Gill and Seebass [17] examined a
simpler problem, viz., that of an incoming step wave in the hodograph plane, which of
course, follows the linear characteristics. Because the image of the characteristic is a
simple wave, the incoming signal in the physical plane is a continuous compression. This
compression steepens as it approaches the sonic line and finally terminates in a shock
wave formed by coalescing compressions that originate on the distorted sonic line. The
“solution” they give which satisfies the partial differential equation, but only one of the
two shock jump conditions, no doubt gives the general character of this process
correctly, but fails to be strictly correct locally. The shock wave that occurs has a
subsonic zone behind it and, presumably, they need to consider a double-sheeted
Riemann surface to augment their functions to satisfy both shock jump relations.

Using a transformation suggested by the characteristics of (5), we write

T=Y+U, S=X+V,
where

U=¢x and V =1y
Then (5) can be replaced by the linear equations
N TUs-Vy=0 and Vs-Ur=0.

Equations (7) have the solutions (see § 4) of the form

U, T)= g wiT>*Fi(£),

(8)
V(S, T) ==Y wT>*2Gil8),
k

where
£=98%/4T>.

Referring to the scaled physical coordinates, we prescribe a signal F(X) at Y =1, say
F(X)= Vo(X, 1) on a set of incoming characteristics. Equation (8) can be used to relate
F(X) to Fi(¢) and Gi(£) to determine the coefficients uy, provided that F(X) has a
simple analytical expression.

To demonstrate this, suppose U is negligible compared to one, then with T=Y
(8) has the form

dx(X, 1)=Uo(X) = ¥ wiFilé) r=1 = L mFi (X + V(X))
Ox (X, 1)=Vo(X) = =Y kG (Olr=1=—Y, #kék(X+ V(X)),

/7
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where
F 98 /4)=F X+ VX1 and Gx(9§°/4)=GulX ~ V(X))
The relation Vy(X)= V(X + Vo(X)) holds on the boundary Y = 1. Suppose

0, X<0,

V =
ol X)) L X>0.

then we have the following table:

X  VoX) St=X+V) V(S)

X <0 0 X 0
X>0 1 1+X 1

The function V(S)is undefined in the interval 0 < § < 1. Alternatively, if V(X ) =0 for
X <0and —1 for X >0, then the function V(§) would be multivalued in the interval
-1<85<0.
These two examples illustrate that if we prescribe simple boundary data in the
S, T-plane, the boundary data in the physical plane may not have any physical meaning
or a special interpretation is needed there. Signals at different values of Y are different
in the S, T-plane because of the nonlinearity in X = § — V; therefore, there is no analog
of the asymptotic boundary condition in the §,T-plane. Boundary data must be
prescribed at a finite distance. This means that the asymptotic prescription given in {11,
(2], [5]is inadequate; Pechuzal and Kevorkian [7] pointed this out and have shown how
the asymptotic behavior of the solution in the caustic region is to be matched with the
incoming signal by means of corrections to the linear characteristics.
If we suppose that V(X)) is smooth enough so thatat T =1, V(S§)issinvie-valued,

e.g.,

0, X<0,
0, S$<O,
Vol X)=<-X, 0=sX=1, then V{(S)=
1, §>0,
-1, 1<X,

and V(S), while discontinuous, is defined for all §. It is obvious then, thatif Vy x <— 1,
V(S) will be multivalued. While this multivalued behavior may be used to find the
solution for an incoming wave that is discontinuous in the physical plane, a more
difficult problem, we limit our attention to the class of solutions with single-valued
incoming signals in the §,T-plane.

We will consider incoming signals of the shape sketched in Fig. 2, characterized by
their overall length A, and the gradient V, x = —1+b, both evaluated at some Y =Y.
Thus our general solution, as discussed in the previous section, has the form

d=d(X, YA D),

where the signal shape F has been replaced by the two parameters A and b. As we will
see, with the relatively simple form of the solutions considered here, viz., continuous
solutions in the S,T-plane, valid results are obtained only for b’s greater than some
critical value, b.. The parameter A is not an important one in our study because, for large
values of A, the behavior of the front of the signal becomes independent of A and our
primary interest is in the behavior of the compression.

15
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4. Similar solutions. In this section we delineate the properties of a particular set of
solutions, U, and Vj, that satisfy the equations (7) or the equivalent second-order
equations:

(10) TUss—Urr=0 and Vss—(V-r/T)7-=0.

Although a unique determination of the u, cannot be given without prescribing
boundary data and, more importantly, without delineating the complete set of functions
for (7), we can study the corresponding solutions for each Ui, as well as some simple
combinations of these functions, to see what physical behavior these solutions imply.

If welet Uy = T3"Fk(§) and V, = T3"”/ZG,‘(§), where £ = 952/(4 T3), then equa-
tions (10) become

(11a) £ -EF+{1/2-[(-k)+(1/3-k)+1)¢}Fi —(-k)(1/3-k)F, =0

and
E1-8G+{172-[(1/2-k)+(-1/6 - k) +1]¢}G

—(1/2~k)-1/6-k)G, =0.
Equations (11) are in the form of the hypergeometric equation
EQ-OF +{c—[a+b+1)¢}F' —abF =0

(11b)

with the general solution
(12) F=A Fi(a,b;c;&)+Bt " SF(a-c+1,b-c+1,2-¢; &),

with A and B arbitrary constants. The function ,F,(a, b; c; &) is the usual hyper-
geometric series [18). Comparing the corresponding parameters a, b, ¢, of (11) and
(12) we find that the restriction on k in order that the series ,F; converge is
k>—15 (-1<c-a-b). Another bound on k comes from specifying the asymptotic
behavior of Ui as T tends to infinity. For the caustic problem, k =—15 gives the
required T~ '* decay (¢, ~y /%) and k < —75 an allowable more rapid decay; terms
with & = —15 are included to match the outer solution. If boundary conditions are
prescribed at a finite distance, then the second bound for k is relaxed, but the vanishing
far-field condition in the subsonic domain is still essential.

To determine the coefficients A and B in (12), we need to study the behavior of the
hypergeometric series near the regular singular points £ =0, 1, co. After putting the
appropriate values of a, b, ¢ in (12) we have

Fi=A Fi(-k,3—k;3; E)“‘Bf”z 2Fl()i—k,%—k;%§§)-

The behavior at the three singular points is given by an arbitrary linear combination of
the two functions listed in the following table:

E-0 | 1=V RG+ki+k k8 | £€70-Y RG+k1+k:38)
£=0 1 0

-1 | FiG—k ~k;2-2k;1-¢) A=V R G+ k b+ k2 +2k;1-¢)
£=1 |1 O(1-¢)"/o*2*

-0 | £V RG-kE-k;35:1/8) e aFi(-k,i-k;3,1/8)

E=00| 0 0

/Y
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We see that, within the range of k allowed, the only singularity occurs at £ =1 ti.e.,
§=+3T*7). The singular behavior of F; there is (1 —£)'* for ~h<k < -5 and
In(1-¢)fork= —$5(T > 0). There are two loci in the §,T-plane where ¢ =1, namely

§ =F3T? °, corresponding to the incoming and the outgoing characteristics. By setting

B_ -T) Ta-c+Dlb—c~1)
A Tl r2-c)

’

we can remove the singularity on the positive side of the incoming characteristics
(j€]< 1). Using this result, we write (12) in the form

F=u*Gla,bic:&)+¢& Gla-c+1,b-c+1;2-c; )],

where

L _Nalwe)
G(a'b'c"’c)_-_—l“(c)

oFila, bici )
and p* is a complex constant.

Because £ =1 is a singular point, in order to evaluate >F; for arguments greater
than one we need the analytical continuation of the function F throughout the complex
£-plane, insisting on smooth behavior in the elliptic domain, viz., T <0 (Re { < 0). We
introduce a cut in the £-plane from £ =1 to infinity on the real axis and choose the
branch that makes F continuous everywhere except on the branch line. By this means
we can extend our solution to |£|> 1. By setting

w*=pul[l+itan 2mw(a+b)],

we can eliminate the other singularity on the negative side of the incoming characteristic

(I¢1>1).

Thus solutions of equations (10), with a behavior that we anticipate will prove
acceptable in the physical plane, take the form

U=j U, dk =ReH wi¥T™F, dk],

(13)
V= j V. dk =Re [—j wET* VG dk],
where
Fo=Gil-k -k 500+ £°GGE~k 1-k:3: 6
and

Gi=Gl—k —t~k: % &)+ G-k 3~k 3 6).

Representations of Uy, Vi appropriate to different domains of the S,T-plane are
tabulated in [19].

5. Construction of solutions. Were we able to do so, we would now proceed to
determine the appropriate equations needed to determine the values of u¥ in (13) that
would satisfy certain prescribed boundary conditions, although it is unlikely we could
solve them analytically. This formidable task is not resolved here. Alternatively, we
may try to combine the F;'s and Gi’s in such a way that they represent a meaningful
solution in the physical plane that corresponds to physically interesting boundary data
and satisfies the jump conditions (6) for any discontinuity that may arise. The results are
instructive in that their physical interpretation is believed to be more meaningful than
any numerical results might be. Furthermore, they provide the basis for further
analytical advances. 2
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The function U,, discussed in §3, has a jump in S across the incoming
characteristic and a singularity of (1 —&*V® or In(1-¢) on the reflected charac-
teristic. The jump behaves like the Heaviside unit function multiplied by a decay factor
T3 the function V, has similar properties with a decay factor 77"/,

Suppose we know the shape and the leading power by which the incoming signal
amplifies, then k is determined and signal shapes can be constructed as described below.
With only the range of k specified, we can examine a finite set of k’s and try to find
useful combinations of the functions Uy and V.

If, for example, we have an incoming step wave at T, with k specified,

0, S+SQ<O,
U, To)=<1, 0<S+8o<A,
0, A<S8+S,,

where So = 2T3/%/3 then the function U, (S, T) of (13) gives an increase in U fromOto 1
at So, To for To sufficiently large, while —U, (S — A, T) provides a decrease in U from 1
to 0. Thus we can construct the solution for a step wave of length A from the simple
combination

(14) US. T)=UdS, T)-UdS—A, T).

The larger Ty, the closer U(S, T) is to a step function. For the case k = —15. this is the
solution Seebass [16] found using a Fourier transform with the asymptotic boundary
condition of an incoming step wave; this solution was examined in some detail by Gill
[17]. While the image of the initial part of the wave is obviously a simple wave, as it is the
image of a characteristic, the image of the terminal part of the wave is multiple-valued
and needs special interpretation. To avoid this difficulty we may construct the solution
for an “*N-wave.” It can be verified that the behavior of the initial rise of these two
signals is effectively the same if A is not small. The “N-wave” behavior of U, arises
naturally in many nonlinear acoustic problems, such as in the sonic boom, and has

0, S+5,<0,
S+
U, To)={1-2 AS°, 0<S+So<A,
0, A<S+S.

As before Uy (S, T) gives the jump; the integral of U, with respect to X

2 S
-= J U X, T)dX
A Js_a

gives the linear variation from S, to So + A; and finally, U, (S — A, T) returns the value of
the function to zero at Sg+ A. Thus

S
(1s) USTI=US. -2 [ UX )X+ UalS=A, T)
S-A
represents an incoming N-wave.
The solution of primary interest here is a step or N-wave with a finite step
thickness B corresponding to the incoming signals Vj x = —1 + b. Because the first of
these is simpler, and the local behavior of the compression is the same if A is not small,

we limit our discussion to it. Locally the two solutions differ by only a constant.
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Proceeding as above, we find the solution

S+B 1 S-A )
(16) UST:B=g [ UXT) dX—Ej Ue(X, T) dX,
S

S$-A-B

which we will discuss in some detail. Notice that
Lir% UGS, T;B)=US, T)-U(S—A,T),

which is (14).

Solutions to Ux(S, T) and Vi(S, T) corresponding to (16) with A =1, B =0,
u =0.1 have been evaluated numerically for many values of k. The main differences
between these solutions lie in their behavior near the origin and in different jump
behavior. In general the jumps in the values of U and V across the incoming
characteristic satisfy

UJ/IVil=alk)/ T2,

where a is a constant (which can be negative) that depends on k.

The relationships between Uy, Vi, their derivatives and their integrals are found in
[19]. Only the values of Ux and Vi have to be calculated to determine any of these
functions, as their integrals and derivatives can be expressed in terms of Uy and V.. For
example, (15) and (16) can be reduced to combinations of Uy and V.

6. Finite width compression. Here we examine an incoming signal for which the
flow behind the shock wave that forms may remain supersonic. In this case we are able
to satisfy both shock jump relations. We first construct, by linear superposition, the
solution for an incoming signal in the hodograph plane that increases from 0 to 1
linearly in § for fixed T as S varies from So— B to So, remains 1 until § = Se+4, and
then decreases, again linearly, to 0 where S = So+ A + B. The physical plane image of
this signal was discussed in § 3, and the behavior sketched in Fig. 2. We then examine
the structure of this solution as a function of the signal breadth B (for Gill and Seebass
[17], B=0).

For values of B larger than some critical values, B., the resulting shock wave is
embedded in a supersonic flow. In this case we are able to satisfy the partial differential

-V

14

L ——
= 1-b A
FI16. 2. Sketch of incoming signal.

2%
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equation and both shock conditions. For B's smaller than B,, a subsonic zone appears
behind the shock wave and we can satisfy only one of the two shock jump conditions.
Either jump condition may be chosen as the one to be satisfied, giving, of course, slightly
different shock wave shapes. Obviously, for B's< B, we do not find a solution to
physical problems posed.

As pointed outin § 2, the boundary data in the hodograph plane that correspond to
meaningful physical signals might be multivalued or undefined near discontinuities. If
the incoming wave is discontinuous, it must be represented by a multi-valued function
in the physical plane. This gives rise to a boundary value problem we do not yet know
how to solve in the S, T-plane. Rather than starting with prescribed data in the physical
plane, we examine here, in some detail, a continuous solution in the hodograph plane
and describe the corresponding behavior in the physical plane.

Consider the finite width step signal of signal length A in the hodograph plane. For
Ty sufficiently large

r

0, S<So—B,

1

E(S-FB—SO), So“B<S<:So,
17 F(S, To)~4 1, So<S<So+A,

1
—E(S—So—,\ —B), So+A<S8<S,+A+B,

0, So+A+B<S,
where

So=—3T0".
For k = —15, it can be shown by Fourier transforms that the solution

Ug=U(S, T;B)
S+B S—-A

1 1
=§I Ui(X, T)dX—E U(X, T)dX

s S-A-B

=% '3_('E'1;_T){[%(S+B)Uk(5+3, T)~3SUL(S, T)+ TVi(S+B, T)-TV.(S, T)]
i .

~B(S-NU(S-A, T)-¥S-2-B)U(S-A—-B, T)
+TVi(§—A, T)-TV,(S-A-B, T}

satisfies (17) asymptotically.

We note that Uy is continuous and finite everywhere in the S,T-plane when
k > ~1. This follows because Us is an integral of Uy and B # 0. Examining U (S, T) at
its singular points for k = —5, the case of interest here,

U_.1y12~S"® for§-0,T=0,

and

W

U.1/12~1n(1— 7Sm) for S>3T*2, T>0.

”
D]

2
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Therefore the behavior of Ug is given by

1 S$+B
EI U—I/IZdX"B'l/éy $§-0,T=0
S
and
1 S+B 3 S 3 s i
EIS U-I/IZdX~(l-§-7m) ln(l——z- Fa—/.i\) S—’§T3/L’T>0.

Thus Ug is finite and continuous everywhere, with first derivatives that are dis-
continuous at § =372

V-based shock

U-based shock
no V-based shock possible

— Y T Y

FIG. 3. Location of the reflected shock wave for four B's k=-% un=01,A=20

For small B, U(S, T; B) and limg., U(S, T; B) are not significantly different in
the S,T-plane except where limp.o Us is singular and where it has a jump. Here,
changes in B significantly alter the behavior of the solutions U and V in the physical
plane. These are regions where shock waves form. The transformation from the
solutions U(S, T)and VS, T) to the physical plane requires a high degree of familiarity
with these functions. The transformation that gives U(X, Y) and V(X, Y) for fixed
values of Y and at specified intervals of X, is accomplished by a digital computer,
primarily through Newton's method. Thus we solve the implicit relations

Y=T-U(S,T),
X=8-V(T)

numerically and to a high degree of accuracy; it is important that we can evaluate U and
V to any desired degree of accuracy throughout the S,T-plane.

Notice that U and V have discontinuities in their first derivatives because Uy and
V, are discontinuous. It is essential to know in advance from which region of the

2f

(18)
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S, T-plane a point X, Y derives: otherwise Newton's method will fail to converge to the
correct values, if it converges at ail. Constant Y(S, T) contours in the S,T-plane are
particularly helpful in designing the numerical code to effect this evaluatlon For the
results we discuss later, equations (18).are satistied to one partin 107%; this limit is set by
the accuracy we specify in evaluating the functions.

Above a certain value of Y, U(X, Y)and V(X, Y)become multivalued, indicating
the formation of a shock wave. The solution is then made single-valued by introducing a
discontinuity so that both the integrals

X X
(19a, b) : J’ U, Y d, I Vi, Y) dt

are continuous and single-valued. As noted by Seebass [16], this implies that the jump
relations (6) are satisfied if the position of the shock jumps calculated from both
integrals coincide. The shock determined by (19a) implies conservation of momentum
while that determined by (19b) implies conservation of mass. We carried the integra-
tions in (19) using a pointwise trapezoidal rule with varying intervals. The values of Ul
and [ V] were determined by linear interpolation. We have calculated the shock
position by both methods and the difference between the two shock positions becomes
negligible for values of B greater than a critical value, B, when no subsonic zone can be

TABLE 1
Inputsignalat 'Y = 1 B =0.1
Signal width AX = .29480 A=20
Signal strength AU = —.10870 u=0.1
Y X, U] vl R/L
0.14 -.2046231 ~-.321434x1072 314971 x107? 1998263
—-.2046225 ~.321199x 1072 .314570x10 ° 998468
017 —.200442 -.011451 196838 x 1072 997718
’ -.200436 -.011442 196547 <1077 998058
0.20 -.194564 -.018516 402860 x107* .997680
: —.194551 -.018501 402236 x1072 .998071
0.30 -.167396 -.037737 011986 997954
’ -.167352 ~.037704 011968 998294
0.425 -.122108 —.056853 - 022892 998227
’ -.122019 —-.056791 .022855 1998549
0.5 -.089789 -.062301 .029384 999673
: —.089691 ~.062219 .029344 1.00020
0.6 -.037158 -.062501 .036056 1999902
) —-.037069 -.062421 .036010 1.00015
08 095230 —-.061519 .045499 999982
’ 095302 -.061463 .045458 1.00008
1.0 2565717 —-.060413 .052557 1.00001
’ 256643 -.060364 052515 1.00006
15 759148 -.057630 .065034 1.00001
’ 759198 -.057601 065001 1.00003

{ [ indicates the jump across the shock wave.
R/L is the ratio of the right to left-hand side of equation (6a).
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found behind the shock wave. We conjecture that the solution is an exact one. We know
it satisfies the partial differential equations, and, to the accuracy with which we can
check them, the shock jump relations. We have not tried to establish the value of B,,
precisely; we do know however that B, =0.10. With B = 0.06 the maximum error in
satisfying the shock jump relations, as measured by the ratio of the right-hand to the
left-hand side of (6a), is 6% ; with B = 0.10itis 0.3%.

Detailed numerical calculations have been carried out for five values of B: 0.01,
0.025,0.04,0.06 and 0.10. The other parameters, p and A, were taken to be 0.1 and 20,
respectively, for the convenience of comparing our results with those of Gill and
Seebass [17]. Shock locations, and the extent of the subsonic zone based on (19a), called
U-based or (19b), called V-based, are depicted in Fig. 3. Note that as the extent of
the subsonic region behind the shock wave diminishes the two shock locations become
more nearly one curve. This, as was noted earlier, is to be expected because we don’t
expect our single-valued solution (in the S, T-plane) to be valid if the flow behind the
shock is subsonic.

incoming wauve

" multivalued region \ . /

~ / shock wave

~UX, Y) l 7 ‘\

+.

Ymc line

+

+ S~

X

FIG. 4. An incoming step wave of finite width terminated by the reflecied shock wave using the area
balance rule in the multivalued region B = .06.
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Table 1 delineates the shock positions and shock jumps LU’ and V, determined using
equations (19a) and (19b) for selected valuesof Y when B =u =0.1 and A =20. Also
tabulated are the ratios of the right- to left-hand side, R/L, of equation (6a) obtained
using (19a) and (19b). The general agreement between the results for the shock position
computed both ways and the fact that R/L is 1.0, to the accuracy with which we can
calculate the shock jumps using (19a) and (19b), supports the claim that the solution
satisfies both shock jump relations.

Figure 4 depicts the value of U as a function of X for fixed values of Y for
B =0.06. We see that the distortion of the sonic line gives rise to weak compressions
which become much stronger as they meet the incoming compression and then
propagate away from the interaction, slowly decreasing in strength.

We now anticipate, but did not do so originally, that if a shock wave arises, and if it
has a subsonic portion as sketched in Fig. 5, then a saddle point in speed (or Mach
number) will occur. Such behavior occurs on the physical plane when the solution in the
hodograph plane is multivalued. Because we have limited our solutions to single-valued
functions of S and T we can only expect to find solutions for large enough B, that s, for
waves thick enough that the shock wave remains embedded in the supersonic flow.

Y
oo

.S
F 0.3

UR]

"""" . saddle point in T values o

(possible local structure )

-0.24 -0.21 -0.18 -0.15 ~-0.12 ~0.09 -0.06 -0.03
FIG. 5. Reflected shock wave, sonic line, characteristics.

A shock will always occur even for large B it will form further above the sonic line
and decrease in strength with increasing B. This follows because the value of V is not
zero at the sonic line (T = 0), and its maximum values increase in the supersonic domain
as Y'/4 along the outgoing characteristics. The location of a given U and V in the
physical plane is always stretched by V.ie, V(X =S-V, Y), U(X =S-V, Y). The
larger the Y, the more they are stretched. Nevertheless, they weaken because the region
of stretching is confined to a thinner and thinner strip, which eventually corresponds to
the immediate neighborhood of the singular characteristic.

Starting from the lowest point where the solution becomes multiple-valued, the
reflected shock strength increases almost linearly with Y (this behavior is most distinct

L7
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1.0 4

0.8 4

0.6 4

0.4 1

0.2 1

Unal YY/AU(L)

Y v T v v v
1.0 1.5 2.0 2.5 3.0 3.5

FIG. 6. Maximum reflected shock strength, divided by the incoming wave strengthat Y'=1.0,asa function
of YforB=0.1.

for large B) to its maximum value at a Y of about 0.4. The shock strength then
decreases with Y increasing, as shown in Fig. 6 for B =0.10. This case was used for
Table 1.

7. Conclusion. The role of nonlinear effects in the amplification of certain weak
acoustic signals at a caustic has been studied through a hodograph-like transformation.
Nonlinear distortion of the boundary data plays an important role in determining the
appropriate boundary data in the hodograph plane. We have reformulated the equation
governing the nonlinear behavior of an acoustic signal at a caustic in a way that avoids
supplying asymptotic boundary data. In the new coordinates, the solutions for the inner
caustic region are represented by similar solutions whose behavior depends upon a
single parameter k. Boundary conditions in the hodograph plane are then related to
physically prescribed data. Unfortunately the relation is nonlinear. We have not
resolved the problem of determining the corresponding boundary data in the hodo-
graph plane.

Through a study of finite width step waves, with k = —75, for a small range of step
width, we have shown that small changes in asymptotic boundary data near dis-
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continuities in derivatives in the hodograph plane have a substantial influence on the
solution’s behavior in the physical plane.

The maximum strength of the reflected shock wave decreases monotonically with
increasing signal width. When the width is larger than a given critical value, the shock
that forms satisfies the jump conditions with a high degree of accuracy. Solutions for
other values of k, discussed to some extent here, should prove useful in obtaining
acceptable results for more general incoming signals. It seems unlikely, however, that
the parameterization in k provides a complete set of solutions. Still, solutions for other
incoming signals should be possible. But a single-sheeted Riemann sheet in the
hodograph plane won’t suffice for these more interesting signals.

For signals whose widths are larger than some critical value, solutions with a
discontinuity representing a reflected shock are obtained that are essentially exact.
These results represent an advance over previous results and should prove valuable in
testing numerical methods designed to solve mixed nonlinear equations.
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governing equati

Introduction

NCREASED fuel efficiency, and in the case of commercial

aircraft, productivity, can be achieved by operating aircraft
at supercritical Mach numbers, provided that shock waves can
be avoided or made acceptably weak. Two-dimensional
procedures for prescribing airfoil sections that are shock free
have alreacly provided improvements in aircraft efficiency by
employing these airfoils on swept wings. Three-dimensional
effects have compromised such designs to some extent, and
extensive wind tunnel development tests have been required to
recapture the benefits of these “‘supercritical airfoils."”

Sobieczky et al.! demonstrated a method of modifying
baseline configurations so that they would be shock free at a
prescribea Mach number and lift coefficient. This procedure
provides « special opportunity for improving aircraft per-
formance through a careful selection of the baseline con-
figuration in order to provide wings and wing-body com-
binations - hat are shock free at supercritical Mach numbers,
and that 1ave acceptable off-design performance. Yu? and
Yu and Riibbert? have also documented that this procedure is
possible and demonstrated its application.

As was first described by Sobieczky,* a numerical
algorithr.. is used to solve a fictitious set of equations for the
flow pa-i the baseline configuration. These equations are
identical +o the correct equations for subsonic portions of the
flow, but .hey are modified when the flow becomes super-
sonic, so tiat even though the flow speed is larger than the
local speec of sound the equations themselves remain elliptic.
This procedure generates a numerical solution that satisfies
the appropriate equations where the flow is subsonic, and the
appropria‘¢ boundary conditions on the configuration outside
of the sug ersonic zone. The results of this calculation provide
the flowfi:ld at the sonic surface. This surface and flowfield
‘ define an ill-posed initial value problem for the supersonic

domain ttat is to be solved using the correct eguations.
Because tiis problem is ill-posed in three dimensions any
numerical method must, in principle, be unstabie. This in-
stability, however, is of no consequence for moderate to high
aspect ravos. However, if the detailed definition of the
spanwise modifications required to make the wing shock free
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Shock-Free Wing Design

K-Y. Fung,* H. Sobieczky,t and R. Seebass}
University of Arizona, Tucson, Ariz.

A simple numerical method for generating wing shapes that will be shock free st a specified supercritical Mach
sumber is described. The method involves using a fictitious gas Iaw for the supersonic domain to make the
elliptic. Requirements on this gas law are detailed and a method for computing the real flow
in the supersonic domain, given initial dsta on the embedded sonic surface, is described. The failure of the
method to yield a shock-free flow when a limit surface occurs in the supersonic flow, and the difficuities that
arise because the initisl-value problem for the supersonic domain is ill-posed, are delinested. Finally, = small
perturbation algorithm is used to illustrate the procedure and results are given for a simple basefine wing.

are comparable to those for the streamwise direction, as they
will be for low aspect ratios, then the instability may com-
promise the calculations.

Fictitious Equations
The flows we scek are to be shock free. As a consequence,

they will be irrotational and the governing equation will be the
conservation of mass, viz.,

V- (0V$)=0 m
where
- 7_——[ _ 22 y-0n
plo. [1+ 5 U-(vé)/a)] @
or
2
v¢-v(—véi -a?v2g=0 o)
where -
a’=az+1—;-'la£—(v¢)*1 “)

Here ( ), refers to the critical flow conditions where g=a.
While the conservative formulation, Eq. (1), is to be preferred
over its nonconservative analog, Eq. (3), numerical com-
putations using Eq. (3) should be satisfactory prov.ded that
the flow being computed has no shock waves.

In order to generate smooth data on embedded sonic
surfaces that are potentially consistent with shock-f-ee flow,
we elect to modify the gas laws (2) and (4) so that Egs. (1) and
(3) remain elliptic when g = a,. Thus we require

o) )>0 if g>a, (5a)
pr3q

or :
a,>q if ¢g>a, (sb)

where o, and a, are a fictitious density and a fictitious sound
speed and the partial derivative in Eq. (5a) is taken along a
streamline. 1f we restrict p, and a; to be functions of q alone,
then :

ff =°""[' Y a;::)]

The choice of the fictitious equation or gas Iayv is a tool or
technique available to produce a range of designs that are
shock free; the initial data found with one gas law may lead to
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a limit surface above the wing, while that with another gas law
will not. The main consideration in choosing the fictitious
equations is that the equation must imply a conservation law
and that the conserved quantity must be identical to the mass
flux at sonic flow conditions. This insures that the initial data
for the supersonic domain is consistent with the conservation
of mass in the subsonic flow.

Examples of fictitious gas laws which lead to an elliptic
equation include:

o/p.=(@./q)%, or a;=P-%q, P<]

pslps=expli/L{(a,/q)t~1]/L), or a;=q(q/a,)+,L>0

!

2
Pr =[ a6 ] 21+p)
pe  Lg?+p(g?-al)

» or a}=q? +u(q?-al),
u>0

These ga: laws are all of the simple form p=p(g). It may
sometimus be of value to consider an equation that has an
explicit spatial dependence in order to alter the shape of the
sonic domain. If this is done, care must be taken to insure that
a conservation law is implied. Thus we may use Pr=p,(x,,2)
and be sure a mass flux is conserved but not, in general,
a,=a,(x,5,2).

Supersonic Domain
Given a suitable numerical algorithm for solving Egs. (1) or

(3), with the fictitious density or sound speed used for

supercritical speeds, we may then locate the embedded surface

where g=a, and evaluate the velocity components there,

Those may be the physical components, viz., &, v, w in the

Cartesian coordinates x, y, z or the components U, V, W, in

some mapped space X, Y, Z. Because the equations are.
hyperbolic we choose to work with a first-order system

(@7 ~u?)u, + (a2 —v?)u, + (a2 —=w?)w, —2uww,
—2uvy, —-2uwy, =0 ©)

We—u, =0, w,—v,=0, (u,~v,=0) o
with one of the three irrotationality conditions being
redundant.

We must then set up a suitable numerical algorithm for the
computation of the supersonic flow, marching inward in some
fashion toward higher Mach numbers until the stream surface
upon which the supersonic surface rests can be continued. In
the process two difficulties may arise. The first is that the
computation may indicate that the solution has become
multivalued because a limit surface intervenes between the
sonic surface and the body; then no physically acceptable
solution is possible with the initial data supplied. The second
is that the inherent instability of the algorithm may become
manifest, providing an unacceptable solution. We discuss this
problem further shortly. .

A nonsubstantive difficulty that may arise with an ap-
proach using rectangular coordinates is due to the topology of
the supersonic domain. We can expect the supesonic region to
wrap around, or more picturesquely, ‘‘grab,” the wing
leading edge, as shown in Fig. 1a. When this occurs, one of
the derivatives in the two equations selected from Egs. (7)
may vanish, leading to a singular system of equations. This is
most ecasily avoided by mapping the solution domain to a
coordinate system in which this does not occur, as discussed in
Ref. S, The coordinate systems of the computational
algorithms to be used may provide the essentials of the
mapping. Thus the coordinate systems used in the com-
putational algorithms of Jameson and Caughey® and
Caughey and Jameson’ provide natural coordinate systems

In
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Fig. 1 Local supersonic region in the physical and, computstional
domains. \1

for the computation of the supersonic domain. In the first of
these the wing surface is mapped 1o the plane 2’ =0, and we
may envision the sonic surface to be as depicted in Fig. 1b.

A subsequent mapping

Z=Z'1Z (X,

where Z:(X,Y) is the sonic surface, then leads to a com-
putational domain like that sketched in Fig. 1c.

In this domain, with U, V and W the X, Y and Z com-
ponents of the velocity derived from some appropriate
potential, we have a system of equations of the form

AUy+BU,+CUp=0

which we use to advance the solution from one Z level k to the
next:

Ue=Up, +1 (C"Ah-n (Ux)gosns
+(C-'B)_y (Uy),_p)AZ

Here we use the subscript k — #; to indicate a suitably iterated
average value of the subscripted quantity and AZ is the
decrement in the Z coordinate. At each Z station the X and Y
derivatives of U are calculated using three-dimensional cubic
splines to specify U. Presumably the spiine used should be one
that avoids introducing, or perhaps even filters out,
oscillations in the numerical results.

A
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Fig. 2 Change in the flow inclination on the original wing surface
that is used to define the new wing surface.

The calculation of U proceeds from one Z level to the next
until the original wing surface, in this example Z=0, is
reached. A new stream surface is then extrapolated from the
values of U there, or the computation may be pushed further,
to negative Z, and the new stream surface interpolated from
the additional values so calculated. If we simply wish to
extrapolate the new body surface we may do so in the original
physical coordinates x, y, z, or in the mapped coordinates X,
Y, Z.

In the original coordinates we may use the new velocity
field on the original body (uy, vy, w,) to define the slope in
the stream direction,

tanf, =w,/Nui+vi=w,/q’

As sketched in Fig. 2, the local stream direction is then
determined in order to integrate the angular difference A8 (o)
along the arc length o from A4 to B. The new body surface may
be constructed by marching in the downstream (or upstream)
direction and using a cubic spline in the spanwise coordinate
to define the body at the computational nodes.

This procedure assumes small surface deviations so that the
velocity field’s initial surface is also that of the new surface.
Extrapolation of the results on the initial surface, and an
iterative correction of the new surface found, may be carried
out if higher accuracy is required.

Limit Surfaces

Shock-free designs are not always possible for a given
baseline configuration, Mach number, and lift coefficient.
The initial data generated by given fictitious equations may
imply a multivalued solution before the body stream surface
intervenes. When this occurs a limit surface will be found in
the flowfield. The first occurrence of a limit surface is along a
line where U,, V,, W, =o; the algorithm used to compute
the supersonic domain should be constructed so that it can
recognize when this occurs, otherwise results may be obtained
that have no meaning. Such a surface might look like that

B L L T,
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Fig. 3 Sonic surface with a limit surface embedded in the supersonic
region.

Fig.4 Sketch of Mach conoids for a two-dimensional flow.

Initial Value Problem

As we mentioned earlier, the initial value problem for the
supersonic domain is ill-posed in three dimensions. That is,
small changes in the initial data will cause large changes in the
solution in the domain of the problem. If we return to the
well-posed two-dimensional problem and consider it to be a
three-dimensional problem with no variations in the third
direction, then we may sketch the Mach conoids, as shown in
Fig. 4. The fore and aft Mach conoids define the influence
and dependence domains of P. Because we find shock-free
solutions the flow is reversible and we may consider the time-
like direction to be in either the +¢q direction. When we
calculate the solution at P using data from the sonic surface
we are effectively replacing the data along A4’ by that along
BB’. Alternatively, in two dimensions, the normal to the
streamline may also be considered time-like and we calculate
the solution at P using the data on CB. In three dimensions
this alternative approach fails because the solution at P now
depends upon the infinite domain CC’B’B.

An informative simple example is that of the linear wave
equation

0 td,+0,,=0

with data given on the z=0 plane as sketched in Fig, §; viz.,

-
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Fig. 5 Mach cones of the linear wave equation and their intersection
with the plane where the initial values are given.

We can construct the solution by Fourier superposition of the
modal solutions

¢ =expli(k,;x+k,y+k;z2)]
in the x and y directions. But then
ky= ki —k}

leads to exponential growth in the 2 direction when the
wavenumber in the y direction, k,, is larger than that in the x
direction. In this simple model, then, we may expect the ill-
posed nature of the problem to manifest itself when the y
variation of the initial data is comparable to or larger than the
x variation. Translating this to practical terms, we can expect
the inherent instability to cause difficulty for small aspect
ratio wings. Payne!© has used energy arguments to show that
exponential growth in the z direction must eventually occur
for a large class of functions f and g. We demonstrate this
instability in a subsequent section.

Small Disturbance Equations: An Illustration

We illustrate the procedure for computing the supersonic
domain, as well as the difficulties that may arise, with the
small disturbance equations. The small disturbance ap-
proximation introduces difficulties unique to this ap-
proximation; these we do not discuss. We first compute the
elliptic flowfield using fictitious equations in supersonic
regions to maintain elliptic behavior. While we use the
Ballhaus-Bailey-Frick line relaxation algorithm as im-
plemented by Mason et al.® for our computations, we use a
simpler equation in this discussion, viz.,

-[%(K-¢x)2]x+[¢y]y+[¢z]z=0 (8)

When (K—¢,)<0 we make a change in the difference
algorithm that corresponds to changing the first term to

[ip,—KIP/P],, Pzl )

The sonic surface on an AR=6 rectangular wing
corresponding to P=2 is shown in Fig. 6. Figure 7 shows the
corresponding vertical velocity component of the redesigned
airfoil for selected spanwise stations. We note that the more
elliptic we make the fictitious gas (i.e., smaller P) the broader

AJAA JOURNAL

Fig. 6 Sonic surfaces for a rectangular wing with AR=6, P=2,
M, =0.87.

-0

Fig. 7 New surface slopes for the rectangular wing with R =6, P=2,
M, =0.87.

that the body will be thinner; this is reflected in the vertical
velocity component. For the original parabolic arc section the
body slope, and hence the vertical velocity, decrease linearly
with x.

The numerical solution then provides values of ¢, and
hence its derivatives, on an embedded sonic surface,
z=2, (x,y), as sketched in Fig. 6. The hyperbolic problem for
the supersonic domain is solved using the simplified system of
equations corresponding to Eq. (8).

-V (K-u)?], +v,+w, =0, w,—u,=0,
wy—v:=0, (u,—v,=0)

We may define a new variable £(x,y) to replace the coor-
dinate z, and facilitate the computations, e.g.,

t(x,y) =2/2.(x%,))

In this variable the equations become

(K-u)E, 0 1+§]
u=D-! | (K-u)§, 0 — (K-, U,
—(K-u) 0 (K-u)k,
0 Ex _Exsy
+ 10 £, 1+(K-wis U, : (10)
n -1 £

<1
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where u has the components u, v, w and D=1 +E2 4+ (K-
u)¢2. Our choice of the irrotationality conditions was dic-
tated by the requirement that the determinant of the system D
be nonsingular. Any other choice of equations gives D’ =¢ D y
and the system is singular when £,(x,y) =0, which always
occurs. Limit surfaces occur only |f D changes sign. For the
system considered here this occurs when (K-wu)£2(<0)
becomes larger in magnitude than 1+£2. But D may also
vanish because the coordinate system used for the set of
equations chosen is not the appropriate one. This failure can
be remedied by another choice for the coordinate system and
must not be confused with that which occurs when a true limit
line is present.

As discussed earlier, the initial value problem we solve is ill-
posed. The implied numerical instability becomes more
serious when the spanwise gradients are large. Indeed, as we
can see from Eq. (10),

=D~ ((K-u)ku + (1 +E)w, +E 0, - £ 8,w,) (11)

- %% + - xx x=-F

Consider the sign of the individual terms on the right-hand
side for an unswept rectangular wing with a profile sym-
metrical about the midchord and midspan lines. (The up-
per/lower sign corresponds to ahead of/behind the midchord
line.) Then, because we are solving an elliptic boundary-value
problem where the terms have the indicated signs, all of the
terms in Eq. (11) except £,v, give #; <0. The smaller the
aspect ratio the larger the local values of £,v,. A similar
conclusion holds for v, witha ¢,v, term provndmg a change in
Vg that increases v and v,. With a spanwise instability present
in the numerics we can antncxpate that as it grows in amplitude

Fig. 8 Effect of numerical instability on the streamwise velocity
component for: a) R=3, M_ =0.88; b) R=2, M_, =0.89. There is
-

nn anldoman afluctabhilite wbaw D _ £ 34 _new
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v, will grow and affect the magnitude, and eventually the
sign, of u,. Figure 8 depicts the surface values u(x,y,0)
computed for the supersonic region on rectangular wings of
aspect ratios 3 and 2. For an aspect ratio 2 wing numerical
instabilities obviously override the generally smooth nature of
the flow. Inspection of the other velocity components strongly
suggests that the instability has a wavelength four times that
of the spanwise grid spacing and amplifies v more rapidly
than « or w. The initial data for the two cases are similar,
except for the larger y gradients when R =2,

Wing Design

The art of aircraft wing design involves many variables and
requires knowledge and expertise beyond that of the authors.
We believe, however, that by using fictitious equations with
suitable baseline configurations various design goals can be
met and the wings will be shock free at reasonable flight Mach
numbers and lift coefficients. To aid the aircraft designer in
understanding this technology we briefly describe the shock-

free design process for a simple wing.

The approach outlined in the previous sections results in
wings and airfoils with upper surface curvatures that are less
than those of the baseline configurations. Additionally, the
more acute the intersection of the sonic surface with the body
surface, the less the likelihood of a limit surface intervening
between the sonic line and the body. For this reason, baseline
configurations should have reasonable upper surface cur-
vatures and more thickness than required by the final designs.
Designs that are close to the limit of what can be achieved, in
terms of Mach number and lift coefficient, will have limit
surfaces that nearly penetrate the wing surface. This may
occur near the leading edge of the wing or near the aft end of
the supersonic region, or in both locations simultaneously.

We will illustrate some of these points with a simple tutorial
example. We take a well known airfoil, the 64A4xx, and use it
for the wing sections. The planform is chosen to have straight

% % \_
A
A [

Fig. 9 Intersection of the sonic surface with the wing and pressure
coefficients for: the wing designed to be shock free —; the baseline

—— . asg a na
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Fig. 10 Sonic surface on the supercritical wing of the AFTI 111 using
fictitious equation in the supersonic region.

leading and trailing edges with sweep angles of 30 and 15 deg,
respectively. We take the aspect ratio based on wing area to be
8, and the thickness distribution to be elliptical and 10% thick
at the wing root. The twist is varied from 4 deg at the root
section to 0 deg at midspan, and the angle of attack is 0.4 deg.
With a freestream Mach number of 0.80 these conditions will
lead [at least for the fictitious equations with P=2 in Eq. (9)]
to sonic surface data for the system Eq. (10) that are con-
sistent with shock-free flow; that is, no limit surface in-
tervenes before the wing surface is found. Figure 9 shows the
intersection of the sonic surface found with the wing, and the
center sections of both the baseline configuration and the
shock-free design. The design wing is 0.7% of the chord
thinner than the baseline wing at the center section. Also
shown is a comparison of the pressure coefficient at selected
span stations. Both wings have a lift coefficient of 0.50. The
small modifications to the baseline wing, over the portion of
the upper surface wetted by supersonic flow in the solution of
the fictitious equations, results in a wing, that when analyzed
numerically, has the shock-free pressure distribution shown.
The pressure coefficient on the baseline configuration is also
shown for comparison. The inviscid drag evaluation for the
original wing gave 96 counts; that for the design wing 86
counts, reflecting the changes in the pressure coefficient.
Presumably a viscous calculation that correctly modeled the
shock-wave boundary-layer interaction would reflect further
improvements.

The selection of a baseline configuration is important to the
success of this method. Wings that employ traditional

26
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supercritical airfoils will lead to sonic surface data that result
in a limit surface. Figure 10 shows the intersection of the sonic
surface with the wing for the AFTI 111 wing; again we have
used the fictitious equations with P=2. The complex nature
of this surface, and the occurrence of a limit surface when
redesign is attempted, is due to the supercritical design of the
AFTI 111 wing. Modifications to the baseline configuration,
such as this one, are essential ingredients of any attempt at
shock-free design. This is illustrated further in Ref. 9, where
analytical functions are used to modify supercritical airfoils.

Conclusion

A procedure for designing wings that are shock free has
been described in general terms and illustrated by using the
small perturbation equations to modify a simple baseline
configuration so that it is shock free. In using this procedure
the designer must select the baseline configuration to be
modified and the fictitious equations to be used. These
determine the flowfield on the sonic surface of the ultimate
design. A good choice will allow high Mach numbers and lift
coefficients to be obtained. A poor choice will result in a limit
surface in the supersonic domain at the design Mach number
and lift coefficient. Instabilities in the numerical calculation
of the supersonic flow that provides the wing design occur
whenever the spanwise gradients are large. These can be
suppressed by smoothing both the chordwise and spanwise
data at each successive step of the calculation.
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SUMMARY

F simpls design method for tuwc- and three-dimensionszl
snock-free configurastiaons is used for systematic airfo
modification to maintain shock-free flow at varying cae-
rating cancditions. A mechanical rezlization is propcss
since only minor and loczl changes of the contour are re-
cuired.

INTRCODUCTICN

High speed aircraft design has beccme one of the mos:t
cnallenging fields of the aeronautical sciences. With
availability of large computers new tools for design znc
analyslis of alrcraft components became zvailsble within *he
last decace, which encouraged the introductian of new asro-
dynamic ccncepts to increase fuel efficiency which is pre-
partional to the ratio of 1ift over drzg, multiplied by the
flight Macn number. Rapidly increasing fuel -costs within

the last y2ars underlined the urgant call faor technigues
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IGN PRCCEDURE FOR SHOLCK-FRCZ FLCUS

The purpose aof this paper is to illustrats same recent
results obtzined with a systematic ccmputationzl procecdurs
for supercritical eirfgils and wings which sre shock-Frae

at prescribecd oocerating conditions. Since the design methcd
may be developed Oy extension of any reliable &anzlysis zico-
rithm, we give a short description of the ccncent with a
physical interpretation in order to allow fer an implemen-
tation of the idea intoc new and more scphisticated analysis

methods becoming operationsl now and in future.

1>
s

oca2l supersaonic domain embedded intc a2 subsonic flouw

P
[N

4]

lg is enclosed in general bv a surface consisting of the
sonic isaotach and a2 recomgrassion shock. If the flow is
shock-free the sonic surface forms a smooth convex bubble
situzted on the bady suriace. In this latiter case the struc-
ture of the flow is gualitatively similar to a subsonic
flow: isotachs of velocity higher than velccity at infinity
form also bubbles with smooth tranmsiticon of the flow pro-
perties. This relationship of subsonic and shack-free
transonic flows gave rise to the following idez *tc czlcu-

late examples of shock-free flow (see Fig. 1):

In & first sten we sclve a partly fictitious prablem by
gltering the governing isentropic density - velocity,

?is(q) relation in the domain of supersonic velacities.

An artificiesl compressibility relatian_PF(u) > a"/g where
a>a® (2% the speed of sound) definmes a fictitious sunar-
sonic flow with subsonic flow quality. The basic differesntis
equation cf the complete flow is now of ellintic type
locally describing physically realistic subsonic flows &and
fictitious supersonic flow. Such a flcow will have no re-
compression shack, the sonic line will qualitatively re-
semble orne of a physicz2lly realistic shock-free transcnic

flow. Examples of such flows may be aobtained with use of

3

umerical elliptic solver routines, we obsefve that anly
the locesl supersonic domain is ohysically not real, the
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nstruct g complete resl shock-free flow.

ure consistes of an integraticn
erential equations, with restored
conditions of this hyperbclic type
are prescribed slong the given sonic surface with
city directions resulting from the previous solutian
T the fictitious problem. This ensures a smooth conmection
cetween the two physically r=z2l parts of the solution.
icz]l merching procedures based on the method of charac-
teristics allow an integratior of the potential equation,
at the sonic surface asnd proceedirg toward the
ce. The latter wes part of the first step ellip-
dery valusz problem but the resultino hody stream
om the hyperbolic initial value problem (initial
velues 2t the sonic surface) will be different from the
dv where wetted by supersonic flow. The body will

providing more space for the resl flow than
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of this method are described elsewhere, this
pzp=2r is intended to present some illustrative resultcs in
tne lignt of &n epplication to advanced technology compu-

taztionel aircraft design tools.
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SELECTICN OF AMALYSIS ALGORITHMS, FICTITICUS GAS MODELS
£ND BASELINE CONFIGURATIONS

Cur design procagdure rsguires in its 7ir
analysis algocrithm far e2lliptic parti
tions tc solv2 the sugssonic parit of th
flgw properties alcng the sonic surface. Many caomoutatiocnal
codes are cperationel for inviscid flcw past airfoils. We
prefer salvers for the basic eguaticns in conservation
form. A finite difference rtelaxation code was extended

to be & design togl'. 2 houndary layver metheod and - far thea
analysis version - a method to treat shcck - boundary layer
interaction was =adde . Ancther computer code‘s based an

the same analysis algorithm tr

=]
nd make“ . Results obtzined with these
[V,
e

{u] [

=ts viscous interzction be-
tween bcundary layer 2
computer progrems will be illustratsZ in the following.
Wing design codes based aon the gutlined method have been
developed, tog, but an implemsntation of 30 viscous efiects
5till needs to be done. 8oth ncon-ccnservative finite diffe-

rence and fully conservative finite vclume codes have been

extended to be shock-free wing design Drogramsls’w . With
rapid progress in numerical methods more efficient codes
will becoms cperationgl, exzamples given her are intended
to stimulate the engineer to introduce the idea into neuw

computer progrems for transonic flow problems.
Given an analysis algorithm for transonic flow we have to

introduce the design option by providing anm zlternate

formula for the isentraopic flow density

0. /0" = ((y+1)/2-(y-1)/2. (asat)?) Ve

ensuring elliptic partial differential eguations. The

q2L



formulsa

0,/0" = ¢”(q/a" + ¢ - 1)7"

2-parametric varietion of fictitious gas proper-

a
ies and elliptic equetions if p <« 1, ¢ > p. A continuous
«

cigpe at sonic conditiorns g = 8 |, where fis is switched
to £, is abtained if c© = p, but useful results with smooth
tcoy surface modificaticns may &lso be obtsined for c £ o.

ihe vzlue c = 1 gilves

0,/0" = (q/a”)™?
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results © is gas model heve bteen situdied extensively.
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defined by p and & result is illustrat-

i)

Q

b2

a @)
Rl

[ I
0

L]

~

-

(o]

L]

)
“h
P

®
3

c

g1}

I

ifferent values of p to demonstirate the
3

-y
ot
T
e
n

c parameter cn thes resulting new surface
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AR conventiogngl NACA 0012 airfeil is flattened by
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esign procedure, we obssrve that a long flat sonic
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on the airfaoil is obtained by low velues of p,
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= 0, which describes zn incompressitle -fictitious
urface changes between 2 and 47 percent chord are
d, the maximum deviation of the new contour is

percent chord.

Focr nigher values of p the surfsce deformations are smaller
2nc more local, but surface curvature changes become sub-
stantiel if p — 1. This example illustrztes the fact

that shock-free mocification of a pgiven (initial-) confi-
gureticn for prescribed lift coefficient and flioght Mach
numter does not result in a unigue new shape. A variety

of shape changzs within certain limits is possible and

the criterion of choice of the fictitious gas model is
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desired resulting pressure distribution cn the zirfeci
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0ff-design propertiss of an airfoil or wing are
b m

y the occurrence of shack-waves and co

)

e
mplicated by viscous
inter2ction, but the design pressure distribution is cruclsal
for prediction of these effects. This leads us to the selsc-
tian of baselins configurations. Extensive experimental

work was performed to arrive =t the widely used and well
Gocumented NACA airfoils. One of the first results of this
method was a series of shaock-free moaifications cof a

MACA 64A410 zirfoil. The results zre illustrated in Fig. 3,
in e Mach-cL-diagfam. We see the zmount of thickness reduc-
tion and the limits for shock-fres redesign of this airfoil

and chosen gas parameter (p = 0).

A thickness recuctian uéua-ly tends to shift the occurrence
of shock-waves znd drag rise toward higher Mach numbers.

So 2 shock-free modification requiring thickness reductian
sezms not very surprising. A shcock-free modificztion without
reduction of the maximum thickness sszems important for prac-
ticzl désign requirements. Fig. 4 illustirates another re-
sult, the verification of a known shack-fres inviscid figw
(KORN airfaoil 75-05-12) with our method. A local surface
thickness bump had 4o be added to the upper surface, a care-
ful variation of its shape and the ges parameter p finally
resulted in equal thickness addition and subseguent design
thickness resductiion so that the criginazl KORN airfoil and

its pressurs distribution was verifieasd.

These inviscid test results illustrated above lead us tao

the conclusicon that we have computational tools to

- modify conventionel corfigurations to be shock-free

at transonic operating conditions,

- specify the type of shock-free flow by a selectian of

fictitious gas model and initial canfiguration geometry
changes, iy




- obtizin 2 whole series of neighboring shock-free flow
scivtions for variable oner=ating conditions

this third cepacity cf the method we will investigzte

]

-
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SHOCK-FREZ AIRFOIL SERIES:
CoNCERT CF ADAPTIVZ CONFIGURETION

~ercdynamic efficiency of 3 wing is defined by the ratio
C e Tlight Mzch numbear.
Jith crsg rising sharply i¥ the Mazch number azpproaches
vnity, efficiency drops and it is therefcre 2 principsl
cczi of hioh subsonic speed aircraft desiogn to delav drag-
Tisg T2 higher Macn numbers Tor prescribed lift. This is

~suzlly achieved by deleaying the occurrence of shock waves

1o nigner Mach numbers through a careful veriztion of wing
sinzpesg, many anslysis computetions and very costly wind
tunnel experiments
Dur desicn methad seems to be a useful tool to gbtzin
ogtter zirfoils snd wings fer transonic flighi. Moreover,
thz cocmputetionsl definition of surfzce modifications for
vzrying free stream conditiions gives an idea about possible
macnznicel adjustments of the configuration in order to
mzintain efficient operztion even at different flight

conditicns,

We choose a design example for illustration of the reguired

fzce modificetions 2t varving flight Mach number at

n
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lift coefficient, Fig. 5. A given airfoil A is

)
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to be shock-free st Mach = 0.73, c_ = 0.55. uWe

toer its performance 2t Mecn = 0.75 and CL = 80.6. Anelysis

cluding viscous interaction gives & result with a recom-

n
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ssicn shock. A bump, added to the uppar surface gave
initial configuration 0.3 percent thicker than airfoil A,

eriginal thickness was cbiainad from thez subsequent design

0
0

mputaticn. The rew 3airfoil B8 is investigated by the zna-

ilysis version of the code to confirm the design rasult

Fig. & shows off design analysis results, we see that zn
increase of C0.G1 of the drag rise Mach number has been

achievzad.

Geometry meodifications whicn led from airfcil A to B a
depicted in Fig. 7. Aiddition of a bump (a) which extends
from 0 to 85 percent chord end subtractiaon of a design
Bump (b) within the superscnic regicn from 2 tc 68 percent
chord leaves twc small bumps to be added %te the original

0il., These bumps are only 0.002% and 0.0013 percent
chord hich. At this point we might think about a tecnhnical

on of such a bump =dditicn in order to have haotn

girfoils available for operzticn. Experiments with a possible
T elastic or prneumaiic devices should be csrrizd out.

use o
Another concept is a controlled distribution 27 suctien
d b

=n lowing a2s already investigated for laminar flow con-
trcl and similar efforis tc influence flow guality. Boun-
T cisplacament o7 Lhe flaow past elirfcil B at design

0aly srcayer
d

onditions is drawn in Fig. 7 (curve c) fer comparison with
the reguired surface modifications

Another examole to investigate sensivity of the celculated
shock-free design is shown in Fig. 8. NACA CO012 airfoil
wes modified tc be shock-free using incompressible ficti-
ticous gas (p = 0). We are interested now in an apprecximate
representstion of the calculated surfacsz medifications by
a smocoth analytical Curge. For simplicity we choose a spline
functionr with few supperts which is the mathematical mcodel
cf an elestic beam defarmed by single loads. Analysis
results are cocmpared with design pressure distribution

and to our pleasant surprise we find that this airfoil
with an elazstic section is practicslly shock-free, tco,

%%
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ough the pressure distribution and sonic line are
cifferent from the griginal desigon. The reason for this
i obvicusly releted to the mulitiplicity of possible shock-

cee designs with different fictitious gas psrameters,

Hzving proved thst desirable flow quality could be echiev=-
ec Sy shape changes generzted by mechanical devices we g0
one step further and prcpose” 38 system for automatically
opw quality, Fig. 2. In the sysiem shouwn,
lpw quslitiy senscr F determines the opersting condi-

n

rfeace pressure 2t selected stations and is

v
3
et
(0
]
o]
&)

rocomputer M that determines the
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es cf thes effective contour necessary for shock-

]

chean
wzve rezduction., Dur experience with the presented design
meinod enzbles us to set up the programming of the micro-

t hich energizes 2 servo system 5 which appropriste-
the effective shnazpe. This is accomplished by
ors for mechanicelly adiusting sections of the
wing surviace, and other mechaniczl devices on the structure

Tcrt the gpening or closing of apertures on the wing surface
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from (to) the
upper surfzce of the wing. Any combinzation of the z5ove

™

sy 2lso0 be used. As seen fTrom the illusirated examples
1

[
o
14}

surfsce zrez thzt needs to be chznged is limited znd

!
o}
1]

amount of chance recguired is small.,

e have outlins=d 2 concept of transocnic design and illus-
trated some cesa2s of sirfeoil flow. At this stage experiments
ns=2d o be perfermzc to prove both new dessign results and

somz rezlizaticn cf aczotive airfoil technology in the wind

i1
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Parzllel to exnerimental verificaticn an implementaticn

of the idea intg new and relisbles 3D wing and wing - 2oCY

b
73

o,

confiquration analysis codes 1s necessa Cur experience

"1
g

with wing cesign is limited to date, 2lso because of 3
izck of 30 boundary layer and viscous interacticn methods.
Design studies of inviscid shock-fre=2 wings are presently
car-ied out to refine the 3D marching procedure and det

e
mine the siruciure of 3D local supersonic shock-frees flouw

-y

n
o

fields. Fig. 10 shows a result obtasined by extensieon

. o . 16 .
finite difference snalysis code tc 3 cdesign tocl

»n O

simple wing based on NACA 5LAL10 section is modifizd to

ne cshock-free.

Viscous effects may

o
Y]

sccounted for by =2dding estimated
displacement thickness to the initial cecnfiguration. Results
of 2 finite volunme anal\/siscv:]de]8 design extansion for a
shcck-free supercriticel wing with added displzcement thick-
ress ig shown in Fig. 11, Extent of the supersonic domain
on thisg "flying wing® without bedvy definmes the ares of
possinle adeptive surface changes. A thick span loader
flying wing seems to he a suitzatble test bed for expszrimenis
th 3D adezptive device

COMCLUSTOM

We have apaolied the elliptic continuatiaon shock-free flow
decsign method to some illustraetive tesi =2xzmples to farm

a theorztical hase for the concept cf adaptive wing geo-
metry at variable gperating conditions. A system for zuto-
matic shape variations of wings based on experiznce with
systematic computationzl design is proposed. B8oth special
designe and the zadaptive shape control system need toc be
tested experimentally, possibly in combination with neuw
asrodynamic cancepts for higher efficiency of transonic
aircraft like variable geometry and bocundary layer contrel

investigaticns,

174




N3

M

(W1

i

<~

[§¢]

(g

ERZNCES

ticrzweitz, C.5.,"0n the Non-idxistence of Continuous
Trensonic Flows Past Profiles, I, II anc III", Communi-
caticns cn Pure end Fpplied Mathematics, (1956, 1937 anc
7%35), p. 45-68, 107-13% =nc 139-144,

Whitcomb, R.T., "Review of NASZ Supercritical ERirfoileg",
Ninth Inuernational Congress on AReronzutical Sciences,
Haifa, Israel, (1974).

Pearcy, H.H., "The Lorodvnamlc Design of Section Shapes
for Swept Wimgs," Advances in feronautical Sciences,

Vol. 3, Pergamon Press,(??é?), B, 277-322.

Czrzbedian, P.R. and Kaorn, D.G., "Numericzl Design of
Trensonic Airfcils," Numericszl Solutiosn to Partial Diffe-
rential zZgusztions, Vol. II, Acagemic Press, New York,
(1878), p. 29532-27:%.

bocerstoel, J.&., "Design and Anslysis of = Hodograon
“ethod fcr the Celculetion cof Supercriticsl Shockfrese
~irfpils," NLR Repi. TR 770L5U, Amsterdam, The Nether-
lz=rds, (1S577).

Sovieczky, H., "Entwurf Uberkritischzr Profile mit Hilfe
cer rih2oelektrischen fnalogie,” DFVLR Repi. DLR-F3 75-L413,
GEitingen, dsst Gezrmany, {(1973).

Sobisczky, H., "Die Berechnung lok=zlar rtiumlicher Uber-
schellfelder", ZaMM, S5ET, (197&), p. 215-215.

Scoieczky, H., "Rheoorsph Transformation and Continuation
Methods," Von Karmen Institute for Fluid Dynamice,
Lecture Series 15380 - 4, "Mathematicazl Metheds ir Fluid
Mechznics", (788C).

Socieczky, H., N.J. Yu, K.-V. Fung, A.R. Seebass, "New
Method for Designing Shock-frzs= Transonic Configurations",
~IRR Journal, Vol. 17 No. 7 (7973).

Fung, K.-Y., H. Sobieczky, A.R. Seebsss, "Numercial As-
rects of the Design of ahock frze Wings and Wing-Body
Ccmbinmeticns." AIAR paper 75-1537 (1879).

-
AP

99



RN
[AS]

16

-
~)

13

Jzmescn, A., "Iterative soclution of ftranmsonic flc
airfoils &nd wings, including flcows at Mach 1." Cc
Pure Apol. Math, 27 (i874).

Nandanzn, M., Z. Stanewsky, G.R. Inger, "A cecmputaticn3al
procegure Tor transonic airfoll flocw including 2 specizl
soluticn for shock-Scundary leyer interaction”, AIAR
naper 80-1389 (1%80).

Melnik, R.Z., Chcw, R. and Mead, H.R., "Theory of Visccus
Trensonic Flow Over Airfoils at Hich Reynolds Number',
AIAR paper 77-680 (1977).

Neseck, H.Z., A.R. Seebass, H. Sobieczky, "Inviscid-
viscous interzciions in the nesrly-direct design cf
shock-free sunercriticzl sirfoils”, AGARD FDP Symposium

cn computaticn of viscous/inviscid interacticon (1980).

Yu, N.J., "Efficient Trenmsanric 3hock-rfree Ying Red=sign
Prcceoure, Using 2 Fictitious Gas Method." RIARA Jaurnal,
vel. 18 No. 2 (1980), p. 43-148.

Jameson, A. and LCaughey, D.A., "Numericel Calculstiaon of
the Transonic Flow Past a Swepst Wing", New York Universi
ERDA Report CO0-3077-140, (3577).

‘Scbieczky, H., A.R. Seehass, "Shock-Fres Sucsrc-iticsal
Aeroguynemic 3Jtveciure a@nd Methou Tor Jdssigning dams",
Inventicn Disclosure, University of Arizena, Tucson AZ.,
FES Repart TFD 79-02, (1879).

gberle, A., "Eine Methode der finiten Volumen zur Berech-

nung der transsecnischen Potentialstridmung um Fligel aus
dem Druckmiminumintegrzl®, MBB Report UFES 1407(8), (1878).



Q Qis

qQ

q a
- *
FICTITICUS COMPRESSIBILITY (a >za*), ISENTROPIC COMPRESSIBILITY Q.(g>a ).
ELUIPTIC EQUATIONS FOR Q > q“ . HYPERBOLIC EQUATIONS FOR q >a* ,
TOUNDARY VALUES, ELLIPTIC SOLVER . INITIAL VALUZS, MARCHING PROCEDURE.
L)
Fig. 1 Elliptic continuation shock-free design.

&) First step: Fictitious gas flow analysis
b) Second step: Supersonic domain integration
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Fig. 2 Surface modifications and structure of local supersonic

flow field for different fictitious gas parameters
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REDESICHN KORN 1 AIRFOIL
INVISCID FLOW . MARCH = 0.750. ALPHA
CL = 0.628. €D = 0.C30. cH
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Fig. 4 Design verification of an inviscid shock-free flow:
Korn 1 (75-06-12) airfoil.
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Fig. 5 Shock-free redesign with constant thickness for
prescribed Mach number and lift coefficient, including

viscous effects.
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7 Surface modifications:
(a) addition for fictitious cas analysis

{b) resulting additicn after redesicn;
(c)

for comparison: upper surface boundary layer
displacement thickness.
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Shock-free redesign of a rectangular wing with
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SUMMARY

An especially simple procedure for finding airfoil shapes that have desirable aero-
dynamic characteristics and that will be shock free at Mach numbers close to the highest
values possible is described. The procedure accounts for overall inviscid-viscous
interactions that are weak and includes the locally strong interaction at che trailing
edge as incorporated in the Grumfoil algorithm.

INTRODUCTION

In the last decade substantial progress has been made in the computation of aerody-
namic flow fields in which the global inviscid-viscous interaction is weak. For two-
dimensional transonic flows the fundamental interactions, carefully delineated nearly a
decade ago by Green (1), are now adequately modeled by computational analysis, provided
that the global interacrion is weak and that the boundary layer suffers at most mild
separations. This is accomplished by coupling a numerical analysis of the inviscid flow,
which assumes the main body of the flow is irrotational, hence derivable from a single
scalar potential, with a numerical solution of an integral formulation of the boundary
layer equations. Much more sophisticated computational tools, such as large eddy simula-
tion, are becoming available but they are not yet efficient enough for their application
to design problems.

The apolication of these analysis tools in design can take many forms. Perhaps the
most basic is that of prescribing a pressure distribution and determining the airfoil
that will generate this pressure field. This inverse problem is not well-posed and
extensive computations are usually required in order to obtain useful results. A variant
of this procedure is to prescribe desired changes to an already existing pressure field
that is generated by a given airfoil. Here the inverse problem may be linearized about
an existing flow and the resulting problem is more amenable to anmalysis. Another proce-
dure is to use numerical optimization to find which of a family of possible airfoils will
srovide the best airfoil performance. Here the main limitations are the family of air-
foils considered and the computrational exvense of exploring incremental changes for
improvements in performance that are only marginally larger than the errors in the compu-
ted performance parameters. A third, but more limited, possibility also exists, namely,
decermining the changes required in a baseline airfoil to make the flow past it shock
free at a prescribed lift coefficient and Mach number. This presumes that an airfoil
baseline wnich meets performance goals for subecritical Mach numbers is known. One then
invokes the "fictirious gas' procedure of Sobieczky (2) to find a new shape for the upper
surface of the airfoil that will produce shock-free flow at the prescribed conditions.
This shape is not unique, nor is it possible to find such shapes for all flow conditions.
For a prescribed 1lifc coefficient and airfoil thickness, there is a freestream Mach number
above which a shock-free shape is not possible. While the feasibility of this procedure
has been amply demonsctrated for inviscid flows, indeed, even for three-dimensional flows

(3,4), its success for flows with inviscid-viscous interaction has not previously been
docurented. .

The goal of this paper is to demonstrate the ability of the fictitious gas procedure

to design advanced shock-free airfoils at little computational expense even when inviscid-
viscous interactions are taken into account.

ANALYSIS ALGORITHMS

A number of numerical algorithms have been developed to calculate the transonic flow
past an airfoil in the presence of weak inviscid-viscous interactions. One of the early
successes was the algorithm of Bauer et al. (5), which we will call BGKJ. It erploys a
nonconservative formulation of the potential equation, coupled with the integral boundary
layer code of Nash and MacDonald (6) and a constant thickness wake model. The nonconser-
vacive difference scheme fails to conserve mass and underpredicts the irrotational shock
strength. As a consequence, the inviscid version of this algorithm gave results that
agreed well with experimental results for the pressure coefficient when compared at the
same Mach number and lift coefficient. Collyer and Lock (7) modified the inviscid
analysis portion of this program to include a combination of conservative and nonconser-
vative differencing in orcder o0 Detter capture the correct shock pressure rise, and
comled ir wich Greens lag-entrainment method (8) for computing the turbulent boundary
layer. They included the modification of the inviscid flow due to wake curvature but did
not model the strong interaction that occurs at the trailing edge. Nandanan, Stanewsky,
and Inger (9) have used Jameson's conservative version (10) of the BGKJ algorithm tcge-
ther with Rotta's integral dissipation mechod (11) and Inger's model of shock-boundary
layer interaction (12) to compute flows with weak embedded shock waves. Perhaps the wmost
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advanced algorithm of this type in the U.S. is that due to Melnik, Chow, and Mead (13).
They coupled Jameson's inviscid algorithm with Green's lag-entrainment method for the
boundary laver. The effects of the strong interaction near the trailing edge are also
included in the algorithm. This is accomplished by incorporating the results of Melnik
and Chow (14) for the multi-lavered turbulent boundary layer at a cusped trailing edge.
This coupled calculation provides a self-consistent result for the inviscid flow, the
boundary layer, and the wake. It also removes che singularity in the inviscid pressure
associated with the trailing edge of the airfoil. Wake curvature effects are included
and are found to have a significant effect on the results. This algoricthm has becn
called "Grumfoil” by its authors, and we will use the same appellation here. While no
shock-boundary layer interaction model is included, the algorithm seems to be accurate

for shock strengths for which the irrorational approximation is itself satisfacrory.

SHOCK-FREE DESIGN

Inviscid analysis algorithms such as those discussed above have amply demonstrated
the generality of Morawetz's (15) result of the wid-1950s, namely, that shock-free flows
are mathematically isolated one from another. Despite chis isolation they have played
an important role in providing moderate increments in aircraft performance. Wind tunnel
research by Pearcev at the National Physical Laboratory (16) and Whictcomb (17) at NASA
Langley Research Cenzer first demonstrated that such flows could be realized and would
have important applications. Subsequently, Garabedian and XKorn (18), Nieuwland (19y,
Soerstoel (20), and Sobieczky (21) developed analytical tools for the prescription of
shock~free airfoil shapes. These tools relied on the hodograpn transformation, and
viscous effects could only be accounted for to the extent that the boundary laver could
be computed independently of the inviscid flow. The extension of this capability to the
paysical plane by the introduction of a fictitious gas for a preliminarv calculation of
the supersonic portion of the flow field makes it possible to design shock-free airfoils
with a proper accounting of the coupled nature of the inviscid and viscous flow fields.
This capability requires one crucial approximation that has now been justified by
numerical experiment, namely, that the boundary layer displacement thickness is not
altered in any consequential way by the difference between the pressure field of the
fictitious zas and that of the real gas. Given no essential differences in the boundary
layer displacement thickness in the supersonic domain due to the difference berween the
real and fictitious pressures there, nor any due to the minor thange in airfoil thickness,
then the inviscid and viscous flow fields must be correct and correccly coupled.

We begin the design process with the selection of abaseline airfoil. Normally, this
would be an airfoil that meets suberitical design goals and that has a reasonable amount
of upper surface curvature. Here we have used a supercritical section, both for conve-
nience and to see if we can improve its performance somewhat. Our goal here, however, is
not advanced airfoil design, but rather, to show that the fictitious gas design procedure
is feasible in the presence of coupled inviscid-viscous interactions. We then medify
the Grumfoil algorithm to incorporate a ficritious density-flow speed relation when the
Mach number exceeds one. Both the baseline airfoil and the fictitious density relaction-
ship are at the investigator's disposal and they inreract in a way that allows the
generacion of a limited family of candidate airfoils. Because our concern is with demon-

strating the feasibility of the proposed procedure we limit our attention to the simple
relation

olo* = (a*/q)F, (1)

where > and q are the fictitious density and real flow speed and »* and q* are ctheir real
sonic values. The exponent P is a parameter that varies the gas law (l). For values of
P less than one relation (1) insures that the governing equation, namely,

div(pg) = O, (2)

where ¢ = 7o, and s is the velocity potential, remains elliptiec. For such relacions the
ficricious mass flow in the supersonic domain is greater than it would be for a real gas.
The solution to this fictitious flow problem is used to provide values for the flow
deflection on the embedded sonic lime. To insure the accuracy of this data we generally
insist on convergence to a maximum residual of 10-6 on a 160 by 32 grid. This data on
the sonic line is used to compute the velocity potential and stream funcrion there. A
simple characteristics routine is then used to march down from the sonic line to find

the streamline consistent with stream function values at the sonic line airfoil juncture.
(This must be done in a way that is consistent with the mass flow added to the flow by
tie doundary layer displacement effecc.) This defines the new body streamline if cthe
characteristics calculation succeeds. It may not, but may rather signal the interventicn
ot a limit line and indicate the failure of the sonic line data to be comsistent with
shock-free flow. 1In this event the baseline airfoil and fictitious density law can be
zodified in an attempt to circumvent the failure. The new airfoil surface will be
thinner than the baseline airfoil because the real density is less than the fictitious
density and, hence, for the fixed mass flow entering the sonic line, the real gas requires
Jore area. The amount that the airfoil's vertical coordinate is thereby reduced can be
added to the baseline airfoil and the process repeated until the baseline airfoil thick-
ness is retained in the shock-free design. Changes in the choice of the gas law, here
simply limited to changes in P, also have an effect on airfoil thickness, albeit a small
one. Further progress in airfoil design requires an underscanding of the relationship
between the baseline airfoil and the fictitious gas law chosen. We do not explore that
cuestion further here. oy
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airfoil must now be analyzed by the original algorithm to see how well
boundary layer calculation used in the design process was based upon

the pressure gradient of the fictitious gas calculacion. The designed airfoil will have
a somewhat different pressure gradient. If the displacement thickness were correct, then

only cthe pressure

field in the supersonic domain is altered. However, this change in

the pressure field alters the boundary layer displacement thickness and, to some degree,

che extent of the

supersonic domain. We find in practice, however, that the error in

the displacement thickness is so small that we need not correct for it.

RESULTS

We selected the VFW airfoil Va2 for our baseline as characteristic of che wing
sections that will be used on future commercial tramsport aircraft. This airfoil, which
is 12.5% thick, has a design Mach number, M., of 0.73 and a design lift coefficient, C,;
of 0.525. Our coordinates are slightly different from those for the Va2 and we have
used our own designation, 47070M, for this baseline airfoil. As this airfoil is already
an advanced design we only examined a modest increment in design conditions, namely, M, =
0.75 and C; = 0.550 at a flight Reynolds number of 35 million. Figure 1 depicts the

pressure distribu
new flight condic

tion and sonic line - shock wave shape for the baseline airfoil at the
ions. It has a drag of 67 counts. When we repeat this calculation

using the fictitious density law (1) with P = 0.9, we find results like those depicted

in Figure 2. Bec

ause we are solving an elliptic equaction we obtain a smooth pressure

distribution and well behaved sonic line. Although it has no physical meaning we note

the drag is now 6

1 counts. None of this can be wave drag because we solved an.ellipcic

equation and we must attribute it to viscous effects. The undulations in the upper
surface pressure near the leading edge are due to irregularities in the airfoil shape

and the boundary

layer's transition to turbulent flow.

We now use the flow speed and defleccion angle on the sonic line to calculate the
flow in the supersonic domain in the manner described above. This defines the new body

surface. Since i
with a baseline a

t is thinner than the original body, we choose to repeat the process
irfoil shape that is the original airfoil plus a multiple of the differ-

ence between the origzinal and the shape calculated using the design procedure outlined
above. The pressure distribution and sonic line for the fictitious flow past this air-

foil are depicted

in Figure 2. Performing the design process on this new baseline

results in an airfoil that has essentially the same thickness as the original baseline
airfoil. We now compute the flow past this new airfoil (47073) to see if we have indeed
fcund improved performance.

The resulcts of this final calculation are shown in Figure 3. Shock-free flow has
been achieved. The calculation was done with the lift coefficient set to 0.550. The
drag coefficient, not too surprisingly, is the same as that calculated using the

ficritious gas.
foil wicth the ver

Figure 4 compares the redesigned airfoil and the original baseline air-

tical scale magnified five times so that the small differences between

the two airfoils can be observed. The improvement in lift to drag ratio over the base-

line at M, = 0.75
CDC 7600. It cou

The success
thickness for the
real gas analysis
the original air{
470703, and cthat
between the displ
the chord. This
coefficients for
manifests itself
tions of Figures
ence is so small
are overlayed.

is 10%. The entire design process required about 500 CPU seconds on a
1d be repeated to recover the very small loss in airfoil thickness.

of zhe design procedure depends on the boundary laver displacement
fictirious gas analysis being essentially the same as that for the
of the new airfoil. Figure 5 compares the displacement thickness for
oil, 47070M, that for the ficritious gas flow past a thickened airfoil
of the final design, 47073, There are very minor differences
acement thickness for cthe 47070B and the 47073 airfoils at about 627% of
is more readily noticed in Figure 6, which compares the skin friction
the three airfoils. This small difference in the displacement thickness
in a small difference in the subsonic portion of the pressure distribu-
2 and 3 just downstream of the sonic line airfoil juncture. The differ-
that it can really only be discernmed when the two pressure distribucions
The supersonic pressure is, of course, always different.

If we compare the off-design performance of the two airfoils we discover that the
improvement in the drag divergence Mach number is not even 0.01. Figures 7 and 8 compare
the pressure distributions and the sonic line shapes for the two airfoils at M. = 0.74
ard 0.76. From these results it is easy to see how the new design achieves the modest
imoprovement in drag at M. = 0.75. The variatjon in the drag coefficient with Mach
nuxmber at the design lift coefficient and with the lifr coefficient at the design Mach
nuzber Zor the two airfoils is depicted in Figures 9 and 10. If we repeat the design
process at a higher Mach number, and with a somewhat thicker baseline airfoil, we find
anocher new airfoil, 47081, which achieves a 0.015 increment in the drag rise Mach
number. The drag coefficient as a function of Mach number for the 47081 is also showm

’

in Tigure 9. TFigure 11 depicts che pressure discribucion and sonic Lli 4
2 L€ ; 3 e d i nic line shape for the
47081 airfoil and Figure 12 compares this airfoil with the 47070M baseline airfoil.

. . = < : : s .
while the improvement in drag rise Mach number ig very small, there can be no doubt that,

cther things being equal,

of a cormercial ¢
designs can be fo
line this would s

CCOHCLUSION

such snall izprovements are of major importance in the design
ransport. There is a limit to the Mach number at which shock-free

und for a fixed lifr and airfoil thickness. With the 47070M as a base-
een to be about M= = 0.77 for C; = 0.550 and 12.5%7 thickness.

We have described a computationally efficient method for finding airfoil shapes

with desirable ae

rodynanic properties that are also shock-Sree at supercritical Mach
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numbers. The process of making them shock free can be successfully carried out even in
the presence of coupled inviscid-viscous inceractions. The shock-free design process is
as reliable as the analvsis algorithm used to compute the flow field. A wide range of
airfcil shapes can be found, depending on zodifications to a selected baseline and on
the choice of the gas law. There is a limit to the maxizum drag divergence Mach number
that can be achieved for a prescribed airfoil thickness and lift coefficient. OQur expe-
rience with this process in inviscid flow gives us confidence that these limits can be
achieved with an arciul selection of baseline airfoils and fictitious gas laws.
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Analysis of Two-Dimensional Incompressible Flows by a
Subsurface Panel Method

Jack Moran,* Kevin Cole,t and David Wahl}
University of Minnesota, Minneapolis, Minn.

A new approach to panel methods is explored for two-dimensional steady incompressible flows. The method
uses linear distributions of sources and vortices on straighl-line panels, but satisfics boundary conditions on the
actual body surface, at nodes that are also end points of the panels. The result is continuity in body-surface
velocity distribution, without recourse to numerical quadrature for the velocily influence coefficients. The
method is unusually sensitive (o the distribution of the nodes. For example, it almost always fails to give ac-
ceptable results when the nodes are distributed randomly. However, the continuity of the velocity distribution
makes possible a unique node redistribution scheme, which may be iterated (0 give accurate results reliably.

Background

PANEL methods are now widely used for calculating
linear potential flows past aerodynamic bodies. The steps
involved in setting up a panel method are as follows:

1) Represent the perturbation potential by a distribution of
sources, doublets, and/or vortices of unknown strength over
the body surface and its wake.

2) Approximate the body and wake surfaces by the union
of panels of relatively simple geometry.

3) Parameterize the singularity strength on the pancls; eg.,
represent it by a polynomial of degree two or less.

4) For each unknown parameter in the representation of
the singularity strength, demand that the potential and/or
velocity field satisfy an appropriate boundary condition at
some control point.

5) Solve the resulting system of linear algebraic equations
for the parameters underlying the singularity strength.

Once these steps are completed, the velocity and potential
may be evaluated anywhere in the flow by summing con-
tributions from the individual panels.

Almost invariably, approximations made in the for-
mulation of panel methods lead to singularities at the panel
boundaries, and so restrict the usable output of the methods
to points near the pancl center. This is certainly the case if the
panels are plane or piecewise plane. However, even when
curved panels are used, spurious singularities somectimes
result. ! The integrals which give the potential and velocity
fields due to the singularity distributions on the panels cannot
be evaluated in closed form unless they are approximated
through series expansion by integrals over plane or piecewise-
plane surfaces. In effect, the source, doublet, or vortex
distribution over a curved surface is replaced by a series of
multipole distributions over a plane surface. At the panel
edges, each term of the expansion is even more singular than
the one preceding.
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A related problem of existing panel methods, at least in
three-dimensional situations, is the rather complicated way in
which they approximate the body surface. Since panel cdges
are not available as control points, there is generally just one
control point per panel, and thus (approximately) one
unknown per panel as well. Quadrilateral panels arc therefore
preferred to triangles, since the latter would double the
number of unknowns for a given number of points at which
data on the body shape are specified. However, to avoid
numerical quadrature, the surfaces on which the singularities
are distributed should be plane, and a curved three-
dimensional surface cannot be approximated by a continuous
system of planc quadrilaterals. Some methods simply allow
gaps between neighboring panel edges; others use a piecew ise-
planar quadrilateral (four triangles surrounding a planar
parallelogram whose corners are the midpoints of the sides of
the quadrilateral).

The use of (roughly) one control point per panel also
complicates the parameterization of the singularity strength.
Recent methods are based on quadratic doublet distributions.
In order to specify the ten coefficients of the quadratics
without creating discontinuities at panel or subpanel boun-
daries, one method uses a singularity spline based on a least-
squares fit of the quadratic in one pane! to the doublet
strength in twenty surrounding panels.

A more local support for the singularity splines is desirable
for a number of reasons. First, the more local the spline, the
easier it is to match the singularity strength at boundaries
between distinct networks of singularity distributions (c.g., at
wing-body junctions). Also, a wide support suggests that the
effective mesh size is much larger than the distance between
nodes. Finally, a more local spline would probably simplify
and, hence, expedite the analysis.

The objective of the present research, therefore, is to
develop a panel method with the following characteristics: 1)
the velocity distribution on the body surface should be
continuous, even at panel edges; 2) integrals giving the
velocity field should be evaluated in closed form; and 3) both
the body surface and the singularity strength should be
specified by splines of local support. Thus far we have suc-
ceeded in implementing a two-dimensional version of a
method which promises to meet all three objectives. This
paper reports our progress.

Analysis
We want to determine the aerodynamics of an airfoil of
specified geometry immersed in a uniform steady in-
compressible inviscid flow. A general representation of the
perturbation velocity potential may be constructed by
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distributing sources and vortices over a surface S:

1
op= Ix Ss (oobrg, —vpbop)ds H

Here P is a typical ficld point, Q a point on §, and rp,f,p
polar coordinates of P relative to Q. The quantities v, and v,
are the strengths per unit length of the source and vortex
distributions, respectively, at Q.

For any given source and vortex distributions, Eq. )
satisfies the conditions of continuity and irrotationality and
also the boundary condition at infinity. To make Eq. (1) the
solution of a particular flow problem, it is only necessary that
it also meet the flow-tangency condition on the airfoil surface
and the circulation condition.

Before we can proceed further, we must specify the surface
S—the “panels” of the method—on which the sources and
vortices are distributed. Equation (1) is essentially cquivalent
to Green's third identity, according to which the potential
outside S is representable by a source distribution of strength
8¢/3n and a doublet distribution of strength ¢ on S. The
restrictions on the validity of Eq. (1) are therefore the samc as
those on Green'’s third identity; namely, that ¢ is a continuous
single-valued solution of Laplace’s equation outside the
surface S on which the sources and vortices are distributed. A
safe choice for the panel surfacc, therefore, is the surface of
the body under study.

However, it is difficult to evaluate the requisite integrals if
the panel surface is curved. In the subsurface pancl method,
therefore, we distribute the sources and vortices on straight-
line panels, whose endpoints are nodes on the body surface, as
shown in Fig. 1, but continuc to satisfy the flow-tangency
condition on the actual body surface. This distinction between
the panel and body surfaces is consistent with the limits on the
validity of Green's identity, provided the flow has an analytic
continuation across the body surface to the panels’if, as is
usually the case, the pancls lie within the body. Since the panel
surface can be made to approximate the body surface as
closely as desired simply by increasing the pancl density, this
condition is not expected to be overly restrictive. However, it
does necessitate the special treatment of (if not exclude from
consideration) flows that are truly singular; in particular,
flows past bodies with convex corncrs or sharp edges (aside
from edges at which a Kutta condition removes the
singularity).

Even with the panel surface S of Eq. (1) specified, the flow
tangency and circulation conditions do not determine the
source and vortex strengths uniquely. It is possible to specify
one of them almost arbitrarily and then to determine the other
50 that Eq. (1) meets all the conditions it should. A convenient
way to supply a closure condition is to specify a fictitious
velocity field inside the surface S. In our work, this fictitious
field has zero velocity. Then o and v are, respectively, the
normal and tangential components of the total (not per-
turbation) velocity on the outside of the panel surface.

In order to discretize the problem, we approximate the
source and vortex distributions as lincar over each pancl. Such
distributions may be parameterized in terms of the source and
vortex strengths at the vertices of the panels, which in turn
equal the velocity components normal and tangential to the

. panels at their vertices. Since the vertices are also nodes on the

Fig. 1 Subsurface paneling.
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body surface, these are components of the total fluid velocity
on the body surface.

Specifically, let the jth panel be the straight line between the
jth and (j+ th nodes, 0 its length, and £ the distance from
the jth node, as shown in Fig. 2. Then we take

n(£)=00+(0,—00)(£/(’,), Y(E)=7,+ ('Y(_'Yn)(s/r,) (2)

in which, because the singularity strengths at £=0and/ arc
components of the total fluid velocity at the jth and (j + Ith
nodes, respectively,

(:Z)=[R(9,—B,)l< :j/)

() =R - y1) @

f Gl
Here V,, and ¥, arc the velocity components normal and
tangential to the body surface at the Jjth node, 8, the in-
clination of the body surface at the same point, 3, the in-
clination of the jth panel, and {R] a rotation matrix:

cosf sinf ] @

[R(())]—[ —sind  cosf

This parameterization allows us to achieve our first major
objective, continuity of the body-surface velocity. The
velocity field due to any one panel doces blow up at the ends of
that panel. However, with our parameterization, the
singularities due to neighboring panels cancel cxactly, as is
shown in the Appendix.

Note, on the other hand, that the source and vortex
strengths themselves are not continuous from one panel to the
next. The singularity strengths are, as previously pointed out,
velocity components normal or tangential to the panel. At a
node, the source and vortex strengths on the pancls which
meet there are components of the same velocity, the local
body-surface velocity. But, because panels generally meet at
an angle, the components of that velocity normal and
tangential to the panels differ, and so, then, do the local
source and vortex strengths.

Since V,, is known at each node from the flow-tangency
condition, our unknowns are the nodal tangential velocity
components. These we determine by satisfying an integral
equation for V¥, at each node,

I - - -
vV, = 7n KS [ogti- Vilarg, —Yoli" Vifiglds+ Ve -t; ()]

i

which is derived by differentiating Eq. (1). Contributions to
Eq. (5) from the panels adjacent to the ith node must be
subjected to a limiting process, in which the field point ap-
proaches the ith node from the outside S; see the Appendix for
some of the details.

~

Fig. 2 Nomenclature used in formulas for source and vortex
strengths. 7Y
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An alternative approach is 1o require the velocity tangential
to the body surface to vanish on the inside of each node.
Because of the jumps in velocity across the panels, the
resultant formula is exactly equivalent to Eq. (5), and we shal}
refer to Eq. (5) both as an “integral equation for the external
langential velocity” and a “‘requircment of vanishing internal
langential velocity."

Circulation Condition

For sharp-tailed airfoils, the circulation is fixed by the
Kutta condition, that the velocity be finite at the trailing edge.
Unless the trailing cdge is cusped, this implics that the trailing
edge is a stagnation point. Although we can show that, in
principle, our solution yields finite velocities at sharp-but-not-
cusped trailing cdges if, and only if, the flow stagnates there,
simply replacing Eq. (5) at the trailing-cdge nodes by the
stagnation condition

V,{. =0 at trailing-edge stagnation points (6)

yielded obviously incorrect results, including pressures higher
on the lceward side of the trailing edge than on the windward.

Similarly poor results were obtained when we attempted a
variety of alternative circulation conditions, including
cquation of the tangential velocities at the trailing-edge nodes
and requiring the trailing-edge biscctor 10 be a streamline,
with such conditions used in place of Eq. (5) at one or both
trailing-edge nodes. What such formulations seem to ignore is
that the circulation condition is a requirement that the
solution must satisfy over and above the integral equation
approximated by Eq. (5). In any case, we obtain good results
only by solving an overdctermined system comprised of an
cquation like Eq. (5) for each node and a circulation con-
dition. For bodics with trailing-edge stagnation points, we use
Eq. (6) in place of Eqg. (5)at the trailing-cdge nodes.

For bodies with sharp trailing edges, the circulation con-
dition used is that the velocity component normal to the
trailing edge bisector vanishes at a point very close to the
trailing edge; specifically, at a distance from the trailing edge
of about 10-% times the average length of the two pancls
adjacent to the trailing edge. For the present case of steady
two-dimensional flow, it makes little difference whether this
point is inside or outside the airfoil.

The rationale for this form of the circulation condition was
the suppression of the trailing-edge singularity which would
follow from failure to satisfy the Kutta condition. However,
the singularity is only logarithmic, and, as we discoverd by
accident, the results change very little if we simply delete the
logarithmically near-singular terms in calculating the velocity
at the control point near the trailing edge. On the other hand,
no logical alternative circulation condition suggested itself. In
particular, we cannot simply require tangential velocities at
the two trailing-edge nodes to be equal and opposite. This is
already accomplsihed, in effect, by setting Eq. (5) or (6) at the
two nodes.

Real airfoils—certainly if viscous displacement effects are
taken into account—do not have sharp trailing edges. A
cutoff trailing edge is usually modeled by hypothesizing a
constant-pressure wake to emanate from the edge. Thus we
require that the tangential velocities at the nodes on either side
of the trailing edge be equal and opposite. The trailing edge is
closed by a single panel, on which the velocity is determined
solely by requiring the velocity to be continuous at its two
nodes, where it is tangential to the main airfoil surfaces.
Thus, the trailing-edge pancl supports a fairly strong source
distribution. Equation (5) is imposed at the trailing-edge
nodes, which implies that the internal velocity tangential 1o
the main airfoil surface vanishes at those nodes (as well as all
the others).

The various forms of circulation condition for sharp,
cusped, and cutoff trailing edges are summarized in Fig. 3, in
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Fig. 3 Summary of houndary conditions imposed at teailing edges of
various types: a) cusped, b) sharp but not cusped. and ¢) cutoff.

which the X’d arrows indicate velocity components that are
set to zero.

As noted above, adding the circulation condition to the
system which governs the nodal tangential velocities over-
determines those unknowns. To solve the resultant system, we
generally follow Bristow? in introducing an extra unknown
for cach extra equation, namely, a constant crror term in all
equations like Eq. (5), the constant varying from one element
to another in multiclement problems. We also provide, in our
program, the option of using a least-squares technique.
Generally, the two mecthods give quite comparable results.
Bristow’s is much cheaper, and so is preferred, bui the least-
squares method is occasionally more reliable in the node
redistribution process to be described below,

Input Requirements

It should be noted that, to obtain a solution for the source
and vortex strengths, the only data which must be known
about the body shape are its coordinates and slope at the
nodes. No assumption or approximation s made concerning
the body shape between nodes. Thus, the only approximation
made in the analysis is that the source and vortex strengths are
assumed to vary linearly with distance along the panels. By
invoking the momentum  and moment-of-momentum
theorems, we reduce force and moment calculations 1o in-
tegrals over the panels rather than over the body surface, so
that that part of the calculations, too, is independent of the
form of the body surface between nodes. Further, the
assumed lincarity of the velocity distribution on the paneis
makes it possible to evaluate in closed form the integrals over
the panels required for the force and moment,
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Fig. 4 History of root-mean-squared
error during node redistribution process
far elipse of thick aess ratio 0.125. Nodes
initialty dislributed by cosine formula Eq.
(11). Circles, 1, panels; triangles, 32 -
panels; squares, 6. panels.
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Error Estimation

A unique feature of our method, made possible by the
continuity of its results for the velocity distribution, is a
capacity for ch:cking its own accuracy a posteriori. As noted
above, the only approximation made in the analysis is the
assumption th1t the velocity distribution is linear on the
pancls. Once ti e nodal tangential velocities V,, are calculated,
Eq. (5) can he sdapted to calculate the velocity induced by the
panels and the onset {low at the middle of the ith panel, V,.
Then the non.inearity of the velocity distribution on the ith
panel is measured by

AV, m P, =YV, + V) )

in which ¥,, V,,, are the (now known) velocitics at the end
points of the ith pancl. .

Now the contribution of any panel to any quantity of in-
terest {the potential or velocity, for example) at any ficld point
is calculated dy integrating over the panel the products of the
source and vortex strengths with appropriate kernel func-
tions, or, what is the same thing, the dot product of the
velocity distribution on the panel with some vector kernel K.
The error incurred in this calculation due to the nonlincarity
of the velocity distribution on the panet is, therefore,

S AV,-Kds~t,AV, ®
ih panet .

where ¢, is the length of the ith panel. This product, £V, is
called the pancl error function. Again, note that it can be
calculated for each panel a posteriori, once the V,, have been
determined, whether or not the exact solution is known.

From calculations of flows past ellipses, Joukowski air-
foils, and Karman-Trefftz airfoils, using various numbers and
distributions of nodes, we found the root-mean-squared error
in the pressure cocfficients at the nodes 10 correlate fairly well
with the maximum value of the pancl error functions. This
suggested a node redistribution algorithm, in which a solution
is obtained with a given set of nodes, which are then relocated
so as to cven out variations of the panel error function and so
to reduce the maximum panel error. Since the nonlinearity of
the velocity distribution on the ith panel is of order £,

Lav,=0() )]

Thus we stretch the panels so that their new tengths ¢/ arc
given by

t=ct,/ VAV, 76 (10

1 1 I | J |
wd Ww? :
MAXIMUM PANEL ERROR

in which c is chosen so as to fix the locations of the starting
and ending points of the group of nodes being redistributed.§

Results obtained with this node redistribution algorithm for
symmetric {low past an cllipse of thickness ratio ¥ are shown
in Fig. 4. For three different numbers of panels (16, 32, and
64) the nodes werc initially distributed according 1o a cosine
law

x{i—1) .
X; =COS N=] for i=1,...,.N (i

The root-mean-squared errors in C, at the nodes observed in
successive redistributions of the nodes are shown connected
by solid lines.

In cvery casc shown in Fig. 4, the redistribution algorithm
reduced the maximum panel crror; i.c., the history of the
algorithm goes from right to left in Fig. 4. Usually it also
reduced the rms error in the nodal C,,, although, given the
order-of-magnitude basis of the algorithm, it would be t0o
much to expect such a reduction every time. Indeed, the initial
result in the 16-panel case was somewhat better than the final
results, at least according to the measure of rms cffor in C, at
the nodes. However, with higher numbers of nodes, the
algorithm improved the nodal C, by factors of 3-5. (Al least
part of the worsening of the rms error with redistribution of
16 nodes is due to the fact that the initial distribution did not
concentrate so many points near the stagnation points, where
C, ismore rapidly varying.)

Because the algorithm cannot be guaranteed to optimize the
node distribution, its efficient utilization required some
experimentation. Since the objective is to reduce the
maximum panel error by smoothing out variations in the
panel error from onc panel to another, the redistribution
process is generally terminated when the ratio of the
maximum panel crror to the minimum is less than some fixed
number on every network. Our expericnce shows little im-
provement in the solutions when this max/min ratio is
reduced below about 4.0. This is illustrated in Fig. 4, in which
the itcrations were pursued in the 32-panel case until the
max/min ratio was under 1.2. Points for which the ratio was
under 4.0 are flagged. Note that the iterations do appear 1o be
converging (though not necessarily to an “‘optimum”’ solution
50 far as the rms crros in nodal C,is concerned). This has
been the case in all our calculations, at icast when we use, as d

§Such a group of nodes, with fixed stanting and ending points, is
called a nenwork in what follows. For cxample, separaic networks are
used for a wing's upper and lower surfaces, with their leading and
1railing edges being fixed inthe node redistribution process.
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closure condition, stagnation conditions within the panels. An
alternative approach, in which the closure condition was that
the velocity inside the panels equaled that of the onset flow (so
that the source and vortex strengths were components of the
perturbation velocity normal and tangential to the panels),
yielded divergent results for the case that is the subject of Fig.
4.

To avoid oscillations which otherwise were found in some
cases, the node movement is under-relaxed by a constant
factor when and if necessary to avoid an increase in the
average node movement from one trial to the next. Even so,
as will be seen later, we occasionally find that the maximum
panel error increases with node redistribution. This usually
indicates that further redistribution would not improve the
solution significantly. Therefore, if the maximum panel error
increases, we terminate the redistribution process and reject
the distribution which yields the higher panel error.

Calculations similar to those reported in Fig. 4 were per-
formed in which the initial node distribution was random.
The histories of the rms error were quite similar (o those
shown in Fig. 4, except that the initial errors were much
higher. In three trials with different initial distributions of 32
nodes, the rms error in the nodal C, decreased during the
node redistribution process from 0.3-0.4 to about 0.04.

While the final results obtained with the node redistribution
algorithm are usually quite acceptable, the very magnitude of
the improvement it brings is evidence that the subsurface
panel method is extremely sensitive 1o the node distribution.
This is brought home still more graphically by Fig. 5, which
shows the history of the pressure distributions calculated at
various stages of the node redistribution process. In that case,
the ellipse initially exhibited a lift coefficient of about 1.5!

Studies of flows past a variety of other airfoils—including
NACA four-digit airfoils and other formula-generated
sections as well as Karman-Treffiz airfoils of varying
thickness, camber, and trailing-edge angle—confirm the

7
8
EXACT SOLUTION

a2

DO X
L T I

DN

Fig. S Pressure distributions in successive stages of node
redistribution process for ellipse of thickness ratio 0.1285, starting with
random distribution, 24 panels. Numbers indicate successive
solutions. 7 7
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implications of Figs. 4 and 5, both as 1o the sensitivity of the
subsurface panel method to the node distribution and the
effectivencss of the node redistribution algorithm. The
troubles of the basic method are not restricted 1o initially
random distributions. The results of Figs. 6 and 7 were ob-
tained starting with the *‘reasonable’’ distribution of Eq. (11).
The implausible crossing over of the pressure distribution
near the trailing edge shown in Fig. 6 is seen in Fig. 7 to lead
to a 25% deficiency in the calculated lift coefficient, even
when 64 panels are used. A possibly related anomaly was
encountered near the sharp-but-not-cusped trailing edge of
the highly cambered Karman-Trefftz airfoil to which Fig. 8
refers. In both cases, the anomaly was eliminated after a
single application of the node redistribution algorithm,

Our final example, a multi-element airfoil, is displayed in
Fig. 9 to demonstrate the prowess of the program used (o
implement the method.

Discussion and Conclusions

The effect of node distribution on results is not often
discussed in the literature. Hess' gives a few results which
indicate the effect can sometimes be substantial, but not
nearly to the extent observed in the present study. From
private communication with several of the authors of the
present’ paper’s references, and some limited experiments of
our own with the classical constant-singularity-sirength flat-
panel method,* the subsurface panel method seems (o be
unusually sensitive to node distribution.

The cause of our oversensitivity to node distribution is not
known. It is not the case, as has been suggested, thar we are
not satisfying the Kutta condition; the velocities we calculate
are properly directed near the trailing edge. Nor docs it seem
to have to do with the O (sfns) behavior of the velocity near the
nodes. Similar results were obtained when we used cubic
distributions of sources and vortices 1o reduce the singularity

Fig. 6 Pressure distributions on simple uncambered airfoil with
thickness proportional to Vy(1-x)°, angle of attack=35 deg.
Triangles obtained with cosine node distribution, circles after 4 node
redistributions, 32 pancls.
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Fig. 7 History of fift cocfficient during node redistribution process

for airfoil of Fig. 6. Nodes initially distributed by cosine formula bq.
(11). Triangles, 32 panels; squares, 64 panels.
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Fig. 8 History of lift coefficien! during node redistribution process
for highly cambered Karman-Treffiz airfoil (22% camber, 10%
thickness) at zero angle of attack. Nodes initially distribuied by
equally spacing angular variable in circle plane. Circles, 16 panels:
triangles, 32 panels; squares, 64 panels.

to O(s26s) and to make d¥/,/ds vanish at the nodes (along
with ¥V, itself). On the other hand, if we compute, a
posteriori, the velocity induced by the panels at points along
the body surface, we find that our worst solutions are
characterized by a large amount of leakage.

In order to eliminate this problem, we tried to control the
normal velocity component in a way that would account for
the velocity induced by all the panels rather than just the local
flow-tangency condition. Simply replacing Eq. (5) by one
which would set the paneci-induced normal velocity com-
ponent to zero leads, as is fairly well known, to an ill-
conditioned matrix and to oscillations in the velocity from
node to node. Similar results were obtained when we sought to
minimize, with respect to the tangential velocity components
V., the integral along the inside of the panels of either the
square of the velocity component normal to the panels or the
square of the magnitude of the velocity. An attempt to make
the potential constant inside the panels also led to an ill-
conditioned matrix. As would be expected our parameterizing
the source and vortex strengths with derivatives of the
potential diminished the diagonal dominance of the matrix,
enough to give oscillatory answers. Less well understood are
the failures of the results to improve when the equation set
was amplified by the addition of requirements that the net
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Fig. 9 Pressure distributions on (wa-clement airfoil consisting of
NACA 0012 sections: nose of flap 1% of wing chord below wing
trailing edge: flap chord 30% of wing chord; flap deflection 10 deg.
angle of attack 3 deg. Numbers indicate successive stages of
redistribution process.

source strength vanish, or that the integral of d¢/0n along the
inside of the body surface vanish (which is required to make
the solution of the internal problem unique when its boundary
condition is that the tangential velocity vanish on the inside of
the body surface).

Late in the course of the rescarch reported herein, it was
recognized that the parameterization of the source and vortex
strengths in terms of the nodal velocity components as
described by Eqs. (2-4) was not unique in so far as obtaining a
continuous velocity ficld is concerned. As noted in the Ap-
pendix, the V. and V,. in Eq. (3) can be replaced by arbitrary
functions of the node indices without altering our conclusions
so far as continuity is concerned. In particular, we can devise
a continuous version of the Douglas-Neumann method? by
replacing the V,}. by say, a constant I and the V. by variables
S;, and determining those unknowns so as to make the panel-
induced normal velocity component cancel the normal
component of the onset flow at every node, and to satisfy a
Kutia condition (such as equality of tangential velocity
components at the trailing edge). The results we obtained with
this method were even worse than those reported herein
possibly because of reduced diagonal dominance in the
coefficient matrix. As shown in the Appendix, the diagonal
coefficient of the matrix associated with Eq. (5) (the cocf-
ficientof V) is ~

—I1+1/2%(v,_, +v)

in which (v;_, +v;) is the angle subtended at the ith node by
the (i — 1)th and (i + Nth nodes, an angle that is generally less
than =, much less so at the leading- and trailing-edge nodes.
In our subsurface version of the Douglas method, the
corresponding coefficient is simply

(r,_, +v)

which can be relatively small.

Kemp® has devised a panel method very similar to the
present one, in that it yields a continuous body-surface
velocity distribution. His “‘loading vector'’ is essentially the
nodal tangential velocity V, of the present method, and he
sets the nodal normal velocity component ¥V, in accordance
with the local flow tangency condition, as do we. A major
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difference is that Kemp determines the ¥, so that the velocity
induced by the panels is normal to the panels al their mid-
points. Following publication of his report, we performed
some limited experiments with Kemp's method. For swm-
metric flows past ellipses, we found it considerably more
accurate than the present method. However, it seems 1o share
our sensitivity to node distribution, yiclding spurious results
when the nodes were distributed randomly on the ellipse, and
for an airfoil with a cusped trailing edge. Our node
redistribution algorithm did not help in such cases. OF course,
it could be that our implementation of Kemp’s method was in
error. In any case, satisfaction of boundary conditions at
panel midpoints, while no problem in two dimensions,
complicates the treatment of three-dimensional problems. As
will be discussed in the cpilogue which follows, use of the
nodes as the sole control points lcads 1o a very attractive
singularity spline.

It is hoped that the evidence presented on the utility of the
node redistribution scheme is convincing. In every case we
have tried, it has enabied us 1o overcome the sensitivity of the
method to the starting node distribution. Except when we play
with random distributions, five or fewer iterations arc suf-
ficient 1o reach our criteria for terminating the redistribution
process. Of course, this means that the method may require as
much as six times the computation time of other methods for
the same number of nodes, without any improvement in
accuracy relative to higher-order methods like those of Hess, !
Johnson and Rubbert,? and Bristow. Therefore, the method
is of practical intcrest only as a prototype of a method for
three-dimensional flows.

Epilog

Whatever their worth for two-dimensional flows, panel
methods are much more interesting in three-dimensional
situations, where their ability to treat complicated geometries
far exceeds that of currently available ficld methods. A three-
dimensional version of the subsurface panel method described
hercin would cnhance these advantagces considerably. We
have such a version in the dcebugging stage and enumerate here
somc of its features, since it may be of interest 1o know how
much of the existing two-dimensional analysis which is the
subject of this paper can be carried over to the three-
dimensional case.

The method is based on distributions of sources and vor-
tices (see Ward® for the basic equation) on plane triangular
panels whose vertices are nodes on the body surface. Their
strengths are components of the tota) fluid velocity on the
outside of the panels and are assumed (o vary lincarly over the
panels. The parameters of the source and vortex strengths are
then the three components of the body-surface velocity
distribution at the nodes which are vertices of the panel,

Since the velocity component normal to the body surface is
known, we have two unknown singularity-strength
parameters per node. For a given set of nodes, this gives us
about twice as many unknowns as would be dealt with by
other panel methods. This disadvantage may be overcome by
the extremely local nature of our singularity splines; on any
panel, our source and vortex strengths depend only on
parameters associated with the vertices of (hay panel. Thus, as
noted earlier, our effective mesh size may be considerably
smaller than that of another panel method which uses the
same node distribution.

The use of triangular panels greatly simplifies the geometry
problem. All we must know about the body are its coordinates
and the direction of its surface normal at each node. No
approximation need be made for the body shape between
nodes, even in calculating forces and moments. To be sure, we
do require continuity of the body surface velocity, which
excludes from current consideration flows past wings of zero
thickness and other idealized problems.

The method vyields a continuous body-surface velocity
distribution. This will aliow an estimate of the deviation from
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linearity of the veloci'y distribution on the panels, just as .
the two-dimensional case. At this point. we do not know wh,
would be the optimal way to use such mformation 1o impro
the node distribution, but that remains well within the real
of possibility. For example, we could use the preser
algorithm directly to redistribute the nodes in a given o
and/or column. If the number of iterations required to cis
cumvent the sensitivity of this method (o node distributios
which musi be assumed to be as bad in the two-dimension:
case, can be kept to the five or fewer required in the tw.
dimensional case, the simplification of the singularity spling
and elimination of the geometry problem should make th
subsurface approach quite competitive in three-dimension..
situations.

Appendix
Let Vi (x,3:0) be the contribution of the Jth panel 1o ti
component of velocity in the direction 6 ai Py, Te
evaluate V', it is helpful to introduce local coordinare
oriented with the jth panel:

XY= (v -y, Yeoss, + (v -y, )sing3,
rr=-v)coss, - (x—x,)sing, (AN

Then, if #* and ¢* are the velocity components at £ along the
(x*, v*)axcs.

l(,:t(‘cos(lz—[i/) +utsinif~3,) (A

Differentiating Eq. (1) and taking the source and vortes
strengths to follow the linear laws of Eqgs. (2), we find

ur(xt vty Mg Up u, v Ly
(s :("" ! ";;’3, (Al
Lot o) L vp—u, vp~u, o
(4
where
= o (1 "")f y
Hp (X" %)= — — (]~ ==
0¥ 2 0 [
(=2 M
(5, v)y= — — —
! ) 2r 0 : l, !
x* y*
v, (.\”‘_V')= ([— — )f, —_ ’—f‘
t, £,
B\ v
U (x* v )= —f 4 — . Ad
p(x*,v") (, f, G f (A4)
and
Je=172m)ba(r,, /1)) (AS)
f,=(l/27r)v, (A6)
Here r; is the distance from the Jth node to P(x,v) and pois

the anéle subtended at P by the jth panel.

When P approaches either the jthor (j + I)h node, f, blows
up and /, depends on the direction of approach. However, if
we consider the jth and (/ - I)th panels in combination, then,
near the jth node, we find

27 Vi, + V) =l'n(,»|o,flcos(0—6j)

—GY-J_I‘COS(O_B,;/) —'/OISin(o_ﬁj) +7",,.]Sin(0_61‘/) ,
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+ v/lﬂ,“"cos(ti—ﬁj) +oolsin(6—6,) )
+v,. /lv,v/__lcos(ﬁ—ﬁ/-,) +"i,_/5i"(()_3_/»-l y)

+ terms regular near the jth node (A7)

~

Here subscripts j and j—=1 have been put on the source and
vortex strengths to indicate the panel with which they are
associated; recall that the singularity strengths are not con-
tinuous from one panel to the next.

& On substituting for the o's and ¥’s in Eq. (A7) from Eq. (3),
we find that the logarithmically singular terms cancel once
another, while the remaining terms reduce to

V, i+ V, =1/20(v, +vj_,)[V,,Jsin(0-9,)+ V,Jcos(()—oj)]
+ terms regular near the jth node (A8)

While v, and »,_, are indeterminate as P approaches the jth
node, their sum approaches the angle subtended at the jth
node by the (- 1)th and (f + 1)th nodes. Thus the velocity due
to the linear singularity distributions Egs. (2), with
parameters given by Eq. (3), is continuous on and outside the
pancls. Near the nodes, it has an sftus-type behavior. It is casy
to show that these same results would obtain if ¥V, and V, in
Eq. (3) were replaced (consistently) by arbitrary functions of
the node indicator /.

To apply these results to Eq. (5), simply let 8 in Eq. (A8)
become ¢, Then the integral in Eq. (5) becomes

172w (v, +v,_, )V, +terms regular near the ith node

Theretore, in forming the coefficient matrix which governs
the nodal 1angential velocity components, we simply set far,
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and v, cqual to zero whenever they threaten to become
singular and indeterminate, respectively, and compensate by
adding (v, +»,_,;) /27 10 the coefficient of V, .
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Practical combustion systems are almost all based on turbulent combustion, as distinct from the more elementary
processes (more academically appealing) of laminar or even stationary combustion. A practical combustor, whether
emploved in a power generating plant, in an automobile engine, in an aircraft jet engine, or whatever, requires a large and
fast mass flow or throughput in order to meet useful specifications. The impetus for the study of turbulent combustion is
therefore strong.

-l In spite of this, our understanding of turbulent combustion processes, that is, more specifically the interplay of fast
oxidative chemical reactions, strong transport fluxes of heat and mass, and intense fluid-mechanical turbulence, is still
imcomplete. In the last few years, two strong forces have emerged that now compel research scientists to attack the subject
of turbulent combustion anew. One is the development of novel instrumental techniques that permit rather precise
nonintrusive measurement of reactant concentrations, turbulent velocity fluctuations, temperatures, ctc., generally by
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optical means using laser beams. The other is the compelling demand to solve hitherto bypassed problems such as iden-
tifying the mechanisms responsible for the production of the minor compounds labeled pollutants and discovering ways to
reduce such emissions.

This new climate of rescarch in turbulent combustion and the availability of new results led 1o the Symposium from

which this book is derived. Anyone interested in the modern science of combustion will find this book a rewarding source
of information.
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INTRODUCTION

Under certain conditions structures like airplane wings and tail surfaces
may experience vibrations of an unstable nature. This phenomenon, called
“flutter,” is an aeroelastic phenomenon governed by the interaction of
the elastic and inertial forces of the structure with the unsteady aero-
dynamic forces generated by the oscillatory motion of the structure itself.
In general, two or more vibration modes are involved, e.g. bending and
torsional vibrations of a wing, which, under the influence of the unsteady
aerodynamic forces, interact with each other in such a way that the
vibrating structure extracts energy from the passing airstream. This leads
to a progressive increase in the amplitude of vibration and may end with
the disintegration of the structure.

For a given wing structure the aerodynamic forces increase rapidly
with flight speed, while the elastic and inertial forces remain essentially
unchanged. Normally there is a critical flight speed, the “flutter speed,”
above which flutter occurs. Because of the potentially disastrous character
of this phenomenon, flutter speeds of aircraft must be well outside their
flight envelope. In many cases this requirement is the determining factor
in the construction of wings and tail surfaces. Because the vibration
characteristics of the structure at zero airspeed can be determined ac-
curately by current numerical methods or by ground vibration tests, the

! The authors thank the NLR, the AFOSR, and the ONR for their support of this review
and related studies.
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182 TIJDEMAN & SEEBASS

accuracy of the flutter prediction depends mainly on the knowledge of
the unsteady aerodynamic forces.

In subsonic and supersonic flight unsteady aerodynamic forces can be
predicted reasonably well by theoretical and numerical means. For tran-
sonic flight, with its mixed subsonic-supersonic flow patterns, prediction
methods are less advanced. The current practice for wings of general
planform is still rather arbitrary, with interpolations and extrapolations
being made on the basis of calculated airloads for pure subsonic and
supersonic flow. And, in many cases, one must resort to very expensive
wind tunnel experiments.

Currently there is a renewed interest in transonic flight for both military
and civil aircraft. For military aircraft this stems from the need for a
new generation of air combat aircraft, like the F-16 and F-17, which
require an optimal maneuverability at transonic speeds. In civil aviation
there is a great need for more efficient aircraft, made possible by techno-
logical advances that include the so-called supercritical wing. Such wings
make it possible to cruise at transonic speeds without the usual drag
penalty associated with the presence of shock waves. This is achieved by
shaping the wing geometry in such a way that the transition from local
flow regions with supersonic flow to the adjacent subsonic regions does
not take place with strong shock waves as it does on the conventional-
type wings, but with only very weak shock waves or even without them.

In the present review we describe the nature of transonic flows past
oscillating airfoils and discuss recent developments in unsteady transonic
flow calculations. We place emphasis on plane flows because most of the
published studies deal with this type of flow. The first section starts with a
general description of the flow past airfoils. Experimental results are then
reviewed and used to illustrate the interaction between the steady and
unsteady flow fields, the periodic motion of shock waves, and the effects
of frequency and amplitude of oscillation. In the subsequent section we
discuss the inviscid equations forming the basis of the various theoretical
methods and review techniques for their solution, all essentially numerical.
Viscous effects and calculation methods are then described. Finally, in the
last section we assess the present status of the field and the future develop-
ments expected.

The reader should be aware of four related reviews. Landahl (1976)
reviews the unsteady aspects of transonic flow, while a recent review of
unsteady fluid dynamics by McCroskey (1977) also has informative
sections on unsteady transonic flow and unsteady boundary layers.
Computational aspects of steady and unsteady transonic flows are re-
viewed by Ballhaus (1978) and the dissertation of Tijdeman (1977) contains
a more complete discussion of many of the topics addressed here.

2 2
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FLOW PAST AIRFOILS
Steady Flow

A brief survey of the behavior of steady transonic flows past airfoils
provides an introduction to the discussion of the transonic flow past
oscillating airfoils. When the free-stream Mach number of a purely sub-
sonic flow past a symmetrical airfoil is increased, the flow pattern usually
develops in the manner sketched in Figure 1. The so-called critical Mach
number M* is reached when the maximum local Mach number in the flow
becomes unity. Beyond the critical Mach number a supersonic region
appears on the airfoil, which, in general, is terminated by a nearly normal
shock wave through which the flow speed is reduced from supersonic to
subsonic. With a further increase of the free-stream Mach number, the
shock wave moves aft and the size of the supersonic region and the
shock strength both increase. After the pressure jump through the shock
wave has become sufficiently large, so-called shock-induced separation

M<] My<M

::"> [ sy SUBCRITICAL FLOW

M=1 SONIC LINE

~

Ml '/M>l' Me< M<Mo<1
o SUPERCRITICAL FLOW

M<M, <1

SUPERCRITICAL FLOW
(WITH SEPARATION)

Figure I TInfluence of Mach number on flow pattern.
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184 TIIDEMAN & SEEBASS

of the boundary layer occurs. For a turbulent boundary layer, this shock-
induced separation starts when the local Mach number just upstream of
the shock wave is about 1.25 to 1.3. When the boundary layer downstream
of the shock wave separates completely, the flow around the airfoil is

PRESSURE
COEFFICIENT
_2r

NLR 7301 AIRFOIL
Mg = 0.7

£ LOWER

1L

Figure 2 Influence of incidence on pressure distribution and flow pattern in transonic flow.
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changed considerably, and often unsteady-flow phenomena such as
“buffet” and “buzz” start to occur.

When an airfoil’s incidence is increased at a supercritical Mach number,
the flow changes in the manner sketched in Figure 2. Initially the airfoil
carries a well-developed supersonic region on its upper surface, terminated
by a shock wave. When the incidence is increased, the speed over the
upper surface increases and the supersonic region and the shock wave
develop in much the same way as described above for increasing free-
stream Mach number. This example shows that small variations in
incidence may lead to considerable changes in the pressure distribution,
shock position, and shock strength. .

Across the nearly normal shock wave that occurs on the airfoil, the
velocity is reduced from supersonic to subsonic. In two-dimensional
inviscid flow the foot of the shock wave must be normal to the airfoil.
For a convex airfoil the pressure will increase and the Mach number will
decrease with distance above the airfoil ahead of the shock wave. The
pressures behind the shock, given by the Rankine-Hugoniot relations,
must still balance the flow curvature demanded by the airfoil. This can
only be accommodated if the shock wave has infinite curvature at its
foot (Zierep 1966). This results in a rapid expansion there (logarithmically
infinite pressure gradient); this expansion can often be noticed in surface
pressure distributions of airfoils, where it manifests itself as the so-called
Zierep cusp, or Oswatitsch-Zierep singularity, as sketched in Figure 2.

Usually transonic flow patterns are characterized by the presence of
nearly normal shock waves on either the upper or the lower surface of
the airfoil, or on both surfaces at the same time. Occasionally even two
shock waves, one behind the other, occur. An exception to this rule is the
flow around a so-called supercritical (shock-free) airfoil at its design con-
dition. This type of airfoil is shaped in such a way that, for a specific
combination of incidence and free-stream Mach number, the “design
condition,” the transition of the supersonic region to the adjacent subsonic
regions takes place without a noticeable shock wave. This requires a
careful tailoring of the airfoil so that a smooth recompression is obtained.
Changes in the Mach number and angle of attack affect this tailoring,
and away from the design condition the flow will normally have at least
a weak shock wave. The flow past a supercritical airfoil in its design
condition, shown in Figure 3, clearly reveals that small changes in inci-
dence are sufficient to disturb the shock-free flow condition. An important
question with respect to the practical application of supercritical airfoils
is how gradually the transition from shock-free flow to the neighboring
flow conditions with shock waves takes place, or, in other words, what
are the margins within which the Mach number and incidence can be

X



186

TIIDEMAN & SEEBASS

NLR 7301 AIRFOIL

PRESSURE
COEFFICIENT

_2,

SHOCK - FREE
DESIGN CONDITION

SHOCK - FREE
DESIGN CONDITION

g = 0.8%°

g =0°

Figure 3 Influence of incidence on pressure distribution and flow pattern of a “shock-free”
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varied around the design condition without a serious deterioration of the
favorably low-drag property of the shock-free flow condition.

An aspect that cannot be discarded when considering the flow past
airfoils concerns the effects of viscosity. In an attached flow viscous effects
are confined to a thin layer adjacent to the surface of the airfoil, the
“boundary layer,” and to its wake. In the boundary layer the velocity
rises rapidly from zero at the surface to the local flow velocity at the
outer edge. The boundary layer starts at the leading edge as a laminar
boundary layer, which in cases of practical interest changes from laminar
to turbulent after a small fraction of the chord (typically 5-109;). The
presence of the boundary layer changes the effective contour of the airfoil
and, thus, has an effect on the pressure distribution and the aerodynamic
loading. The magnitude of this effect depends, among other things, on the
Reynolds number, which is an important parameter for the growth of the
boundary-layer thickness and the location of the transition point. The
behavior of the boundary layer is of even more importance in transonic
flow than in subsonic flow, since here it has a considerable influence on
the position and strength of the shock wave.

Unsteady Flow

When an airfoil performs sinusoidal oscillations around a given mean
position, the circulation and, hence, the lift force and local pressures
show periodic variations. In order to keep the total vorticity constant
(according to Helmholtz’s theorem), each time-dependent change in
circulation around the airfoil is compensated by the shedding of free
vorticity from the trailing edge. This vorticity, which has the same strength
as the change in circulation but is of opposite sign, is carried downstream
by the flow as sketched in Figure 4. Due to the velocities induced by the
free vortices around the airfoil, the instantaneous incidence of the airfoil
is changed in such a way that the oscillating part of the lift lags behind
the motion of the airfoil.

The main parameter governing the unsteady flow is the so-called
reduced frequency k, defined as k = wl/U ,, which is proportional to the
ratio of the chord length 2/ and the wavelength L (see Figure 4). The
reduced frequency is a measure of the unsteadiness of the flow; for
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Figure 4 Flow around an oscillating airfoil.
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similarity of the flow past an oscillating full-scale airfoil and its wind-
tunnel model representation it is required that the reduced frequencies be
the same.

Figure S5a shows the time histories of the local pressures and the resulting
1ift and moment on an airfoil performing oscillations in pitch in a subsonic
flow. Both the pressures and the overall loads show almost sinusoidal
variations around their mean values. In this case the pressures and loads
may be described by the first harmonic of a Fourier series, viz.,

p=p,+ Ap’ cos wt + Ap” sin wt = p, + | Ap| cos (wt — @)

where p and p, denote the local and mean pressures, while Ap’ and Ap” are
the components of the fundamental. The coefficient Ap’ can be interpreted
as the actual pressure perturbation at the instant the oscillating airfoil
reaches its maximum deflection, while Ap” represents the pressure per-
turbation at the instant the airfoil passes its midposition.

This way of describing unsteady pressures or loads is valid only if the
aerodynamic quantities vary sinusoidally in time, or, in other words, as
long as a linear relationship exists between the displacement of the airfoil
and the unsteady pressures. This is usually the case for moderately sub-
sonic and supersonic flow, at least as long as the flow remains attached.
For transonic flow, however, this is no longer true, particularly in the
region of a shock wave, as illustrated in Figure 5b. In such cases one
has to give the complete time history of the signals or to add higher
harmonics to the Fourier series.

Nonlinear Character of Unsteady Transonic Flow

The combined influence of airfoil thickness, incidence, and amplitude of
oscillation is different for moderately subsonic and supersonic flow than
for transonic flow. For subsonic and supersonic flow both the equations
and the corresponding boundary conditions can usually be linearized. This
implies that the problem of an oscillating airfoil can be decomposed into a
steady problem (thickness + incidence) and the unsteady problem of an
infinitely thin plate oscillating in a uniform flow. The unsteady-flow
problem can be treated independently of the steady-flow problem. The
main parameters for the unsteady flow then are the reduced frequency k,
the free-stream Mach number M, and the mode of vibration.

For transonic flows at low to moderate reduced frequencies the equa-
tions governing the motion cannot be linearized. This implies that the
unsteady flow field can no longer be treated independently of the steady
flow field. For the aeroelastician this means a considerable complication.
In addition to the aforementioned parameters for subsonic and supersonic
flow, he has to consider also the mean steady flow field around the airfoil,

G
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which is determined by the geometry of the airfoil and its mean incidence
with respect to the oncoming flow. For a normal flutter investigation in
subsonic and supersonic flow, unsteady airloads already have to be
computed for 50 to 100 combinations of reduced frequency, free-stream
Mach number, and vibration mode. For the transonic flow regime this
number increases considerably because then the computations have to be
performed for different values of the incidence. The complication becomes
even worse if it is not possible to linearize the unsteady transonic-flow
problem by assuming the unsteady flow to be a small perturbation super-
imposed upon a given mean steady flow field. Then the unsteady airloads
are no longer linear functions of the amplitude of motion, which implies
that in aeroelastic calculations, where the unsteady aerodynamic forces
have to be combined with inertial, stiffness, and damping forces of the
aircraft structure, linear systems of equations no longer apply. So it is
quite evident that from the practical point of view there is a strong demand
for some sort of linearization. Of course, in theory, this linearization can
always be enforced by making the amplitude of oscillation small enough,
but the question arises whether the amplitudes that occur in practice
will be that small.

OBSERVATIONS FROM EXPERIMENTS

Results Available

The first transonic-flutter accidents occurred during World War II with
aircraft of advanced design at that time that were able to penetrate the
transonic regime during a diving flight. These accidents gave the transonic
regime its veil of mysticism and contributed to the many myths about
the difficulties associated with crossing the “sound barrier.” At that time
it was impossible to get aerodynamic data for the transonic speed range
because there were no transonic wind tunnels and there was little or no
support from theory. During the first fifteen years after the war, the
knowledge of transonic flows improved considerably through experience
gained with research aircraft, like the Bell X-1, and the development of
transonic wind tunnels with slotted and porous walls. The latter greatly
enlarged the possibilities for obtaining aerodynamic data under controlled
conditions. From that period stem a number of unsteady aerodynamic
load measurements on oscillating wind tunnel models. The majority of
these experiments had an ad hoc character and were directly related to
problems encountered in flight.

The first measurements of local unsteady pressures on an oscillating
wind tunnel model in transonic flow were made by Erickson & Robinson
(1948). Their method, in which electrical pressure cells installed flush

7
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with the model surface are used, was applied successfully by Wyss &
Sorenson (1951) and their colleagues at the then NACA. Although they
actually measured the pressures on oscillating control surfaces and on
airfoils and wings oscillating in pitch, only overall aerodynamic coeffi-
cients were published, along with some typical oscillograph records of
local pressure fluctuations. The first detailed unsteady pressure distribu-
tions in the transonic regime were reported by Lessing, Troutman &
Meness (1960) and by Leadbetter, Clevenson & Igoe (1960).

A series of exploratory wind tunnel investigations on some characteristic
airfoil sections was initiated by the NLR in the late sixties. With the
aid of a special technique in which scanning valves and pressure tubes
were used (Bergh 1965), steady and unsteady pressures were measured on
the conventional NACA 64A006 airfoil with oscillating trailing-edge flap,
on the shock-free NLR 7301 airfoil oscillating in pitch (Tijdeman & Bergh
1967, Tijdeman & Schippers 1973, Tijdeman 1977), and on the same
airfoil with an oscillating control surface (Schippers 1978). Parallel with
thisbasicresearch program, unsteady pressure distributions were measured
on a variety of three-dimensional wings, under contract with aircraft
industries (see, for example, Bergh, TijJdeman & Zwaan 1970, Tijdeman
1976). About the same time Triebstein (1969, 1972) performed experiments
on a rectangular wing with and without control surface. In his tests he
also applied the measuring technique with tubes and scanning valves. In
France, successful tests on a supercritical airfoil section with control
surface were reported by Grenon & Thers (1977), who used a large number
of miniature pressure sensors placed inside the model. Recently, a similar
technique was applied by Davis & Malcolm (1979), who performed
exploratory tests on the conventional NACA 64A010 airfoil and the NLR
7301 airfoil of Figure 3. In the NASA experiments a sophisticated test
rig that makes it possible to drive the models into pitch as well as
plunge motions was used ; moreover, the tests could be performed at large
Reynolds numbers. Finally, a preliminary series of measurements on an
NACA 64A010 airfoil oscillating in pitch has been reported (Davis 1979).

Interaction Between the Steady and Unsteady Flow Fields

Some of the results for an airfoil with flap (Tijdeman 1977) will be recalled
here to demonstrate the mechanism of the interaction between the steady
and unsteady flow fields. This example is chosen because it lends itself
well to physical interpretation.

Low-speed steady and unsteady pressure distributions on the sym-
metrical NACA 64A006 airfoil with flap are shown in Figure 6-1. Figure
6-1a shows the steady pressure distributions along the upper surface of
the airfoil for three flap angles, viz.,, — 1.5, 0, and 1.5 degrees, respectively.

7/
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From these steady distributions, the “quasi-steady” pressure differences,

_ Cpldo—A8)—C (59 + AS)
P 2A6 ’

are determined, and the resulting chordwise distribution is shown in
Figure 6-1b. This quasi-steady pressure distribution can be interpreted
as the “unsteady” pressure distribution when the oscillations are infinitely
slow. Figure 6-1c depicts the first harmonic of the unsteady pressure
distribution for a frequency of 120 Hz and an amplitude of about one
degree. The unsteady pressure distribution very much resembles the quasi-
steady distribution ; both show the characteristic peaks at the leading edge
of the airfoil and at the hinge axis at 75% chord. For the unsteady
example the results of “thin-airfoil theory,” assuming an infinitely thin
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Figure 6-1 Steady. quasi-steady, and unsteady pressure distributions in low subsonic flow.
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wing in a uniform main flow, are also given. At this low speed, the
agreement with the experimental amplitude and phase distributions is
satisfactory, which indicates that the unsteady-flow problem can be treated
independently of the steady flow pattern around the airfoil.

Results for the same configuration in high subsonic flow are shown in
Figure 6-2. Around the 50% chord point, where the flow is almost critical,
a bulge occurs in the magnitude of the measured distribution of both the
quasi-steady and unsteady pressures. This bulge and the phase variation
are not predicted by the thin-airfoil theory. Another characteristic feature
is that the phase lag on the front part of the airfoil is consistently larger
than that given by the theory.

NACA 64A006
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Figure 6-2 Steady, quasi-steady, and unsteady pressure distributions in high subsonic tlow.
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Results that are typical for a transonic flow with a nearly normal
shock wave are given in Figure 6-3. It is clear from this pressure distri-
bution that a change in flap angle is followed by a shift in shock position,
and this leads to a peak in the magnitude of the quasi-steady and unsteady
pressures in the vicinity of the shock. This peak, which is a significant
contribution to the overall unsteady lift and moment, cannot, of course,
be predicted by a fully linear theory. Note that the pressure perturbations
in front of the shock wave are smaller than those predicted by theory,

NACA 64A006 ACe
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-0.50 4L
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Figure 6-3 Steady, quasi-steady, and unsteady pressure distributions in slightly supercritical
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and that the measured phase variation shows a sharp change in gradient
in the region of the shock wave.

To illustrate that the observed effects in the preceding examples for
high subsonic and transonic flow are caused by the interaction of the
steady and unsteady flow field, a graphical experiment has been performed.
A pulsating pressure disturbance is assumed to be located at the airfoil’s
hinge axis. Acoustic waves propagate from this disturbance into the sur-
rounding nonuniform flow. The acoustic wave patterns, as obtained with
the well-known construction of Huygens for the airfoil under considera-
tion, are shown in Figure 7. This figure displays the position of the wave-
fronts after equal time intervals At for two different Mach numbers. The
part of the figure above the airfoil depicts the time histories of the wave-
fronts in the actual flow field. Below the airfoil the same wavefronts are
shown, but now for a steady uniform flow field in which the local Mach
number everywhere is equal to the free-stream Mach number. The corre-
sponding travel times (time lags) are given in the diagrams at the bottom
of Figure 7. At M = 0.8 the flow is subcritical and the upstream-moving
wavefronts encounter more “head wind” in the actual flow than in the

NON-UNIFORM FLOW FIELD
~——— UNIFORM FLOW FIELD
Mg, = 0.80 My, = 0.875

ESTIMATED.
SONIC LINE

38103 6t 103

TIME LAG (sec) TIME LAG (sec)
b

Figure 7 Upstream propagation of wavefronts generated by a source at the hinge axis:
(a) wave propagation ; (b) time lag derived from wave pattern.
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uniform flow, as can be seen from the closer spacing of the fronts and
from the time-lag curves. Moreover, the velocity gradients normal to the
chord in the actual flow cause a forward inclination of the wavefronts.
When it is recognized that the spacing of the wavefronts is a measure
of the intensity of the local pressure perturbation gradient, while the time
lag is a measure for the phase shift, it becomes clear that the high subsonic
effects observed in Figure 6-2 can be attributed mainly to the influence
of the nonuniform steady flow field. At M = 0.875, when a supersonic
region is present and terminated by a shock wave, the inclination of the
wavefronts is essential to enable the waves to penetrate the region of
supersonic flow. Some portions of the upstream-moving wavefronts close
to the airfoil surface merge into the shock while other portions bend
around the top of the shock and penetrate the supersonic region. This is
reflected in the time-lag curve. Since the energy content of the wavefronts
penetrating the supersonic region has decreased, due to geometric dilata-
tion, only small pressure changes occur in front of the shock wave. These
findings correlate very well with the effects observed in the wind tunnel
results presented in Figures 6-2 and 6-3. Note that the main contribution
to the peak at the shock position is due to the oscillatory displacement
of the shock waves, which is not included in this simple graphical result.

Periodic Motion of Shock Waves

From the preceding discussions it should be clear that the periodic motion
of shock waves makes an important contribution to the overall unsteady
airloads. Optical flow studies on an airfoil with flap (Tijdeman 1976) have
shown that in the oscillating case three different types of periodic shock-
wave motions can be distinguished. They have the following main
characteristics, which are depicted in Figure 8.

SINUSOIDAL SHOCK-WAVE MOTION (TYPE A) This type resembles, more or
less, the shock-wave motions discussed by Lambourne (1958) and
Nakamura (1968). The shock moves almost sinusoidally and remains
present during the complete cycle of oscillation, although its strength
varies. Due to the dynamic effect, phase shifts exist between the model
motion and shock position and between shock strength and shock
position. The maximum shock strength is not reached during the maxi-
mum downstream position of the shock, as in quasi-steady flow, but
during its upstream motion.

INTERRUPTED SHOCK-WAVE MOTION (TYPE B) This motion is similar to
Type A, but now the magnitude of the periodic change in shock strength
becomes larger than the mean steady shock strength and, as a consequence,
the shock wave disappears during a part of its backward motion.
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UPSTREAM-PROPAGATED SHOCK WAVES (TYPE C) At slightly supercritical
Mach number a third type of periodic shock-wave motion is observed,
which differs completely from the preceding types. Periodically a shock
wave is formed on the upper surface of the airfoil. This shock moves
upstream while increasing its strength. The shock wave weakens again,
but continues its upstream motion, leaves the airfoil from the leading
edge, and propagates upstream into the oncoming flow as a (weak) free
shock wave. This phenomenon is repeated periodically and alternates
between upper and lower surface.

The type of shock-wave motion that occurs in a given situation depends
on the Mach number, its chordwise distribution ahead of the shock wave,
and on the amplitude and frequency of the motion of the airfoil. The
types of shock-wave motions mentioned above are observed not only on
oscillating airfoils, but also on steady airfoils with severe flow separation
downstream of the shock waves (see, for example, Finke 1975, McDevitt
1979). Under these conditions the shocks do not always remain normal,
but cyclically become lambda-type shocks.

Optical flow studies on an airfoil oscillating in pitch (Tijdeman 1977)
reveal that the amplitude of the shock-wave motion decreases with fre-
quency, as shown in Figure 9. This is consistent with the observation
made in the next section dealing with the theoretical developments. As
a consequence, the large pressure peaks generated by the periodic shock
motion become smaller with increasing frequency, or, in other words, the
contribution of the shock waves to the overall unsteady airloads, which
forms one of the dominant effects in transonic flow, will be largest at low
to moderate frequencies.

Another interesting feature, observed in the mentioned experiments and
in those of Grenon & Thers (1977), is that an almost linear relationship
is found between the frequency of oscillation and the phase shift between
the motion of the airfoil and the motion of the shock wave for low to
moderate reduced frequencies. This means that there is a constant time
lag between the motion of the airfoil and the shock-wave motion. This
corresponds with the findings of Erickson & Stephenson (1947), who
observed a fixed relation between the phase lag of the shock motion and
the time required by a pressure impulse to travel from the trailing edge
to the shock wave.

In a flow pattern with a well-developed shock wave, the shock motion
takes place nearly sinusoidally, with an amplitude of the shock motion that
is proportional to the amplitude of the motion of the airfoil. Further, in
spite of the presence of the oscillating shocks, the overall lift also varies
almost sinusoidally while the moment sometimes shows irregularities
(Figure 5b). Locally, underneath the foot of the moving shock wave, the
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pressure signal is highly nonlinear. However, as illustrated in the data of
Figure 10 from Schippers (1978), the distributions of the higher harmonics
of the pressure signals along the chord show the characteristic that they
do not contribute noticeably to the overall lift and only slightly to the
moment. This behavior can be explained very well by considering the
pressure changes at such a point to be entirely due to a sinusoidal
oscillation of a shock that spends part of its time on each side of the
point (Tijdeman 1977). Neglecting the local pressure gradient, then, gives
a field whose higher harmonics do not contribute to the net lift and only
to second order in shock amplitude to the net moment.

Effect of Frequency and Amplitude of Oscillation

As mentioned earlier, it is important for the aeroelastician to know to
what extent a linear relationship holds between unsteady airloads and

NLR 7301 WITH FLAP

10k —O0———— 13t HARMONIC
Ac’ —-——0—-—— 2nd HARMONIC
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Figure 10 Unsteady pressure distribution showing the first three harmonics.
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the amplitude of motion of the airfoil. For his purpose, linearization
of the unsteady airloads makes sense only as long as small, but still
practical changes in incidence or flap angle (say of the order of 0.5 and
1 degree, respectively) give rise to linear changes in the aerodynamic
loads. Also, he must have a procedure for selecting a minimum number
of suitable mean steady flow conditions for which the unsteady airloads
should be determined. At this moment the experimental and theoretical
evidence is not yet conclusive in this respect, but there are a number of
observations that certainly throw some light on the problem.
Theoretical analysis (see the next section) shows that the unsteady
transonic flow problem becomes a linear one for sufficiently high fre-
quencies. From this, coupled with the observation that the amplitudes of
periodic shock-wave motions are largest at low frequency, we can expect
that the nonlinear characteristics of unsteady transonic flows will manifest
themselves mainly at low to moderate frequencies and in quasi-steady
flow. Therefore, we can expect that the behavior of the slopes of the
steady lift and moment curves versus incidence or flap angle may serve
as an effective guide to detect possible nonlinear regions and to select
the mean incidences or flap angles around which linearization is possible.
As noted above, we may also expect that at sufficiently high frequency
the measured results will approach the results of thin-airfoil theory. Un-
fortunately, the experiments show that this does not happen within the
frequency range of interest for flutter investigations (k < 0.5). Figure 11
compares some of the results of Davis & Malcolm (1979), whose studies
cover a considerable range of frequencies, with a thin-airfoil theory. It is
clear that the unsteady airloads cannot be calculated with a linear theory
that does not account for the mean steady flow field. However, if the
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Figure 11 Effect of frequency on unsteady airloads.
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amplitude of oscillation is small, we can expect that in most cases
linearization for a practical range of amplitudes of oscillation should be
possible as long as the flow remains attached. This expectation is con-
firmed very well by the tests Davis and Malcolm performed on the NACA
64A010 airfoil in a flow condition with a well-developed supersonic region
terminated by a relatively strong shock wave. They found a linear relation-
ship between the real and imaginary parts of the lift coefficient with
amplitude for 0.25, 0.50, and 1.0 degrees, and further demonstrated that
the unsteady airloads for a motion that was a linear combination of two
other modes were a linear combination of the airloads for those modes.

THEORETICAL AND NUMERICAL METHODS

In this section we discuss the theoretical and numerical methods developed
in recent years to calculate the inviscid transonic flow past oscillating
airfoils, stressing the conclusions we may deduce from them. The dis-
cussion proceeds from the so-called Euler equations, which can be con-
sidered as the most complete set of equations describing inviscid flow
problems, through increasingly less complete models to the small-
perturbation equation.

Euler Equations

Because the flows of interest here occur at high Reynolds numbers, viscous
effects are, for the most part, confined to the boundary layers and wakes.
For flows in which the boundary layer remains attached over most of
the airfoil, the inviscid flow is the correct first approximation for most of
the flow field.

For inviscid flows, the conservations of mass, vector momentum, and
energy give a system of four first-order partial differential equations in
five scalar unknowns. These equations are usually referred to as the Euler
equations. An additional equation relating the state variables is required.
The system of equations is hyperbolic and quasilinear. Weak solutions
to a hyperbolic system, viz., solutions with discontinuous behavior, may
be found numerically if the difference equations are deduced from the
conservative form of the equations, that is, from the equations in the form
of a space-time divergence of a vector unknown. The physics governing
the structure of shock waves is one of a balance between viscous and
inertial terms involving viscous dissipation in the wave. Thus, the dif-
ference schemes are usually constructed so that the truncation error is
predominately dissipative rather than dispersive. In such calculations
the mesh size must be small in order that the viscosity implied by the
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truncation error be small compared with the length scale typical of flow
in the vicinity of “captured” shock waves.

Numerical solutions of the Euler equations have been carried out by
a number of investigators. Warming, Kutler & Lomax (1973) describe
an effective third-order and consequently dissipative, finite-difference
scheme with minimal dispersion. Beam & Warming (1976) report com-
parable results for a dispersive-dominant algorithm, with a switch from
central to one-sided differencing where appropriate. The desire to compute
steady flow fields originally motivated such computations. Some of the
first methods used were explicit in time, time-accurate solutions being
computed until a steady flow was achieved. A series of publications by
Magnus & Yoshihara (1975, 1976, 1977) and Magnus (1977a, 1977b, 1978)
provide many useful results for oscillating airfoils and include studies of
the influence of various approximations on the accuracy of the solution.
Other interesting results were reported by Beam & Warming (1974), who
made a computation for small unsteady perturbations to an already
established steady flow, by Laval (1975), and by Lerat & Sidés (1977).

Magnus & Yoshihara (1975) gave detailed unsteady pressure distri-
butions for an airfoil oscillating in pitch; subsequently (1976) they gave
analogous results for an airfoil with an oscillating flap, including here
an ad hoc procedure to account for the shock—boundary-layer interaction.
More recent studies were for the NLR 7301 supercritical airfoil (Magnus
1978). The results, among other things, reproduce the three types of shock
motion observed experimentally. To illustrate this, Figure 12 depicts the
instantaneous surface pressure distributions for pitch oscillations of an
NACA 64A410 airfoil displaying a Type A shock motion. An interesting
feature that appears in all numerical results is that the lift and moment
vary nearly sinusoidally, despite the presence of strong shock waves.
Figure 13 illustrates this behavior for an NACA 64A006 airfoil with an
oscillating flap.

The paper of Magnus (1977a), which summarizes his previous studies
using the Euler equations and comments on errors introduced by the
boundary conditions used, is of considerable interest. For the low to
moderate reduced frequencies, the finite computational domain often leads
to the reflection of disturbances from the far-field boundary and their
interference with the flow field near the airfoil before a harmonic motion
is established. In Magnus’ studies the far-field data were determined from
vortex and doublet singularities located somewhere near the airfoil.
Another approximation invoked in these studies was that the unsteady
boundary conditions were applied at the steady-state location of the
oscillating airfoil. Substantial differences are found when the correct
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boundary conditions are imposed, with the incorrect boundary conditions
causing larger disturbances in the flow. Other studies, e.g. those of Lerat
& Sidés (1977) and Steger (1978), avoid this approximation at the
computational expense of time-dependent mappings. It is clear from these
studies that it is essential to impose boundary conditions on the airfoil
unless the amplitude of the unsteady motion is small, and to use a
computational region that applies boundary conditions that either allow
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Figure 12 Instantaneous pressure distributions for an NACA 64A410 airfoil pitching

around midchord calculated using the Euler equations.
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waves to pass through it, or that is sufficiently large that incorrect
boundary conditions on its extremities do not cause unacceptable errors.

Explicit calculations such as those discussed above require substantial
central processing (CPU) time. Three or four cycles of a harmonic motion
may require a comparable number of hours on a CDC 7600. Their main
inefficiency occurs at the low to moderate reduced frequencies of practical
interest, where improved computational times can be achieved using
implicit methods. Beam & Ballhaus (1975) report that the numerical
effort per time step for the implicit solution of the Euler equations is
four times that required for their explicit solution. For reduced frequencies
below about 0.2, however, the larger time step allowed by an implicit
calculation results in reduced computational times.

The Potential Approximation

The flows of primary interest here are, for the most part, irrotational,
with vorticity introduced by viscous effects in the boundary layers and
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Figure 13 Time histories of the unsteady airloads calculated using the Euler equations.
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shock waves. In the inviscid approximation shock-free flows that are
originally irrotational will remain so ; flows with shock waves will have a
rotational component downstream of the shock wave. Crocco’s theorem
implies that in steady flow the vorticity behind the shock wave will be
proportional to the cube of the change in the pressure coefficient across
the shock wave multiplied by the speed of sound and divided by the
vertical extent of the shock wave. For many practical situations this
means that the flow behind the shock wave, and hence the overall inviscid
flow, will be affected to a nonnegligible extent by the vorticity introduced
by the shock wave. However, the assumption of irrotational flow makes
it possible to simplify the problem to one with only a single unknown,
the velocity potential. This leads to a considerable reduction in CPU time
and storage requirements.

Under the assumptions mentioned above, the following equation for
the velocity potential, ®, can be derived:

@, + (VD2 +31VD - V(VD)? — a?V2d = 0, (1)
where
a=a—(y—[®+3VD)*—3U?],

and the symbols have their usual dimensional meaning. This is subject to
the boundary condition that the flow remains tangential to the airfoil
surface:

F,+(V®)-VF =0
on
F=y—08Y(x)—8Y(x,5)=0.

Here & and § are amplitude parameters for the steady and unsteady
motions.

Numerical algorithms for the steady potential equations, due principally
to Jameson (1974, 1978), are now highly developed and provide reliable
results for shock-free flows. Isogai (1977) has solved (1) using a non-
conservative time-marching algorithm with unsteady boundary con-
ditions applied at the airfoil’s mean surface, a mean steady-state far-field,
and an approximate vortex-wake condition. Results for a supercritical
airfoil at its design condition oscillating in pitch (Isogai 1978) are shown
in Figure 14. The more nearly linear behavior of the unsteady pressure
distribution with an increase in frequency is clearly evident.

More recently, Chipman & Jameson (1979) have developed a conserva-
tive alternating-direction algorithm that uses a time-varying coordinate
system to satisfy the exact boundary conditions. A conservative calculation
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will capture “shock” waves that conserve mass but add momentum to the
flow to balance the wave drag on the body. These will be stronger dis-
continuities than Rankine-Hugoniot shock waves for a given Mach
number ahead of the “shock™ wave (van der Vooren & Slooff 1973).
More definite comparisons of numerical solutions to (1) with those for the
Euler equations are needed to determine quantitatively the adequacy
of the potential approximation when shock waves appear in the flow.
Isogai’s computations indicate, as expected, that the results are unreliable
if the cube of the pressure jump across the shock wave is not small.

The calculation of one cycle of harmonic motion requires the equivalent
of a minute or so of CDC 7600 CPU time; the number of cycles required
to achieve harmonic results will depend on the reduced frequency, with
even the lower frequencies requiring at least three cycles.

T he Small-Disturbance Approximation

The most basic approximation in inviscid aerodynamics is that of a small
disturbance. With the assumption of small disturbances, the vorticity
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Figure 14 Unsteady pressure distributions on a 70-10-13 supercritical airfoil oscillating
in pitch around the design condition calculated using the potential equations.
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introduced by a shock wave will be small and the flow may be assumed
irrotational. The least trivial balance of terms then leads to the equation

k*MZ, k {1——M§,3

KM o K Mz - — 2 1y—1
45, ¢n+50 Mz bx (y+ 1Mz [¢x+ kd)t:‘} dxx

2y+1
—$,=0, ()

where the perturbation velocity potential ¢ is defined by

0

@ = Uc[x+dod],

where @ is the velocity potential. Here the time has been nondimensional-
ized by the circular frequency and the coordinates by the airfoil chord,
and the vertical coordinate scaled by Jy. Application of the mean-surface
boundary conditions requires that
Y'(x) | Y(x0) k.
530,(t,%,0) = —5 1= —o[—ﬁ+2— 7, z)], 3)

C c

and hence that
53 = max (9,3.kd).

For k = O(1) a linear theory applies. This theory is fully developed
in the monograph by Landahl (1961) and will not be discussed further
here as the cases of most practical concern are those of small reduced
frequency. The theoretical limit of interest here is that with k = O(do).
In practice, however, k is often large enough that contributions of this
size, viz., O(k), are important, and retaining them provides a bridge to the
linear theory. Neglecting the first term of (2) makes the equation parabolic
and is equivalent to disregarding one of the characteristics and requiring
disturbances to be propagated downstream with infinite speed. There are
numerical advantages to doing this. Couston & Angélini (1978) and
Houwink & van der Vooren (1979) have shown that marked improve-
ments are obtained at larger values of k when terms of order k are retained
in the transport of shed vorticity, the boundary condition (3), and the
pressure coefficient.

In the strict limit k = O(J,), that is, for low reduced frequencies, a fully
nonlinear theory applies and the conservation of mass takes the form

—(k/BIM2 ¢+ (1= M2)/00— (7 + DMZ s} hxx + @4y = 0, @

a result first given by Lin, Reissner & Tsien (1948). The corresponding
“shock™ jump relations are
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with ¢, the average value of ¢, and [@,] the jump in ¢., across the
discontinuity.

Explicit procedures for the solution of (5) are unstable unless the time
step is much smaller than that required to resolve low-frequency motions.
A fully implicit alternating-direction algorithm with a time-step limitation
consistent with that required for accuracy has been developed by Ballhaus
& Steger (1975). The far-field boundary conditions used are mean steady-
state values on all but the downstream boundary where ¢, = 0. This
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Figure 16 Unsteady lift coefficients for a pitching airfoil showing the effect of reduced
frequency.
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algorithm resolves shock waves and their motion well, provided the flow
changes from supersonic to subsonic across the shock. Using this al-
gorithm Ballhaus & Goorjian (1977) were able to reproduce observed
features of experimental studies. To illustrate this, Figure 15 gives the time
history of pressure distributions, which reveal a Type B shock-wave
motion. Another interesting feature, shown in Figure 15, is that good
agreement with results obtained with the Euler equations can be achieved.
This is accomplished by introducing arbitrary powers of the Mach
number into the equations and boundary conditions to “tune” the results
to provide this agreement.

As another example of small-disturbance theory, Figure 16 shows the
two components of the lift coefficient for a pitching airfoil as a function
ofreduced frequency. These computations, by Houwink & van der Vooren
(1979), include wake vorticity transport in the Ballhaus-Steger algorithm.
They agree reasonably well with the linear theory that applies for
k = 0(1), but which also retains the ¢, term. Figure 16 clearly shows
that results for the airfoil with thickness and incidence approach the
results for the infinitely thin plate as the frequency increases. Calculations
of this type may be useful to determine, for a given airfoil, the frequency
range within which a transonic computation method should be applied.

Time-Linearization

The small-disturbance equation (2) can be linearized by assuming the
unsteady flow field to be a small perturbation superimposed upon a
given mean steady flow field, or, in other words,

P(x,1) = o(x, y)+(8/0)P(x, y, 1) +0(8/5)
where
8/6 = o(1).

The linearizéd version of (5) must be retained to account for shock motion.
The steady flow field may be defined either by experimental or numerical
means, providing an accurate description of the shock wave’s geometry
and strength. Because of the ease of the practical implementation in
aeroelastic computations, time-linearization is attractive for the flutter
specialists. Their main interests are the magnitude and phase of the lift and
moment perturbations for the relevant modes of motion. Since the un-
steady loads are supposed to be linear, they can be solved in two ways,
namely, in the frequency domain or in the time domain. In the frequency
domain a steady equation with the frequency as parameter has to be
solved for each frequency of interest. In the time domain the time history
of the aerodynamic response to a step input (indicial response) has to be
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calculated. The results for a harmonic motion of the required frequencies
then can be obtained by linear superposition, using Duhamel’s integral.
Solutions in the time domain have been obtained by Beam & Warming
(1974), who considered small unsteady disturbances to a basic steady
state defined by the Euler equations. The results compare favorably with
the linear results obtainable from the theory of Heaslet, Lomax & Spreiter
(1948). Noting the advantage of the indicial approach, Beam & Warming
further observe that a ramp change (i.e. linear growth for an appropriate
time) can be used in place of a step change, avoiding some difficulties
in the numerical computations.

Ballhaus & Goorjian (1978) have used the nonlinear algorithm of
Ballhaus & Steger (LTRAN?) to calculate indicial responses. They must
use an amplitude that is small enough to produce linear results and yet
large enough for the response to be computed correctly, a minor difficulty
that is avoided by a strict time-linearization. Fung, Yu & Seebass (1978)
have given a time-linearized version of the LTRAN2 algorithm that
includes explicitly the effects of shock-wave motion through the time-
linearized analog of (5). Steady-state shock jumps are obtained from
another modification of Ballhaus’ algorithm that uses shock fitting (Yu,
Seebass & Ballhaus 1978). A detailed comparison of nonlinear and time-
linearized calculations (Seebass, Yu & Fung 1978) verifies that the latter
is accurate when 8/6 is <10~ !. If shock-wave motion is not included,
the lift and moment variations are incorrect. It also appears that most
indicial responses are approximately exponential for the frequency range
of most interest and behave as exp (—1/7), where 1 is usually large, say 15.
This implies that the amplitude of any response is the asymptotic change
times [1+(2kt)*]~*, while the phase angle is 2kt[1+(2k7)?]~%. This
behavior is consistent with the experimental observation noted earlier,
viz., that the amplitude of shock-wave excursions is proportional to k!
for moderate reduced frequencies, and the phase shift is proportional to
k for low reduced frequencies (K.-Y. Fung, private communication).

Time-linearized algorithms for the frequency domain have been de-
veloped by Ehlers (1974), with subsequent studies by Weatherill, Sebastian
& Ehlers (1977, 1978), by Traci, Farr & Albano (1975), and by Fritz (1978).
They solve for ¢ using a relaxation procedure. Computations in the
frequency domain have an inherent limitation on kM2 /(1— M2) that
depends on the mesh size. This is a consequence of the generation of
standing-wave solutions, which Weatherill, Sebastian & Ehlers (1978)
have unsuccessfully tried to eliminate by various means. This restriction
is a serious one. More importantly, none of these studies allows for shock-
wave motion, although in principle the procedure of Fung, Yu & Seebass
(1978) can be carried over to the frequency domain.

7
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To conclude this section on theoretical methods, a few words have to be
said on the integral-equation method, since this type of approach has
been highly successful for unsteady fiow problems governed by linear
equations. Such methods were probably the first to provide results for
transonic flows with shock waves. The integral method is more suited
for the time-linearized equations and, as described by Nixon (1978) for the
low-frequency small-disturbance equation, shock-wave motions can be
included. A disadvantage is that time-linearized calculations require an
effective definition of the steady-state solution. Because finite-difference
type time-accurate methods are frequently competitive with other methods
of finding the required steady-state solution, one most probably will select
a time-accurate procedure to determine the steady-state solution. How-
ever, in that case it is more convenient to continue the study of the
unsteady response with the same method, instead of switching over to the
integral-method approach.

Before the recent advances in computational methods, local lineariza-
tion proved to be a useful but limited tool (for a review see Spreiter &
Stahara 1975; for some recent results see Dowell 1977). Better tools,
namely finite-difference algorithms, are now available.

Remarks on the Kutta Condition

With the approximation of inviscid flow, we must impose a Kutta con-
dition at the trailing edge in order to obtain a unique solution. The
imposition of the Kutta condition in the form of continuity of the pressure
at the trailing edge requires that neither the average velocity nor the jump
in velocity be zero if the circulation is to change with time. Consequently,
in the strict inviscid limit the flow must follow either the upper or the
lower surface of the airfoil at the trailing edge. Which surface it follows
depends upon the past history of the motion. More specifically, the rate of
change of circulation, I' (measured counterclockwise), is given by

_ 44, fqu dp _dq*
dt dt q-dr § dr + 4;( >

) ©
where the right-hand side is to be evaluated at the trailing edge and the
velocities are those sketched in Figure 17a.

Though this view is satisfactory from a computational standpoint, it is
rather too narrow. The Kutta condition is an idealization of the behavior
for infinite Reynolds numbers. The correct picture is given by Sears (1976),
who notes that for viscous flow, Equation (6) applies provided u and / are

13
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a b

Figure 17 Flow patterns at the trailing edge for inviscid and viscous unsteady flow.

the instantaneous locations of the upper and lower points of boundary-
layer separation adjusted for their motion, as shown in Figure 17b. Un-
steady computations using the Euler equations normally impose some
requirement equivalent to the (steady) Kutta condition, e.g. that the fiow
leaving the trailing edge bisect the trailing-edge angle. While this is in-
consistent with results given above (Basu & Hancock 1978), the error
involved in doing so is usually inconsequential, nor are time lags of
consequence at the frequencies of interest here (see, for example,
McCroskey 1977).

Viscous Flows

Viscosity determines, through the Kutta condition and the presence of
a boundary layer and a wake, the basic structure of the flow past airfoils.
The important parameter here is the Reynolds number, which has a
significant influence on the thickness of the boundary layer, on the location
of transition and separation points, and on the way in which the boundary
layer interacts with a shock wave. A relatively simple method to determine
the viscous flow past airfoils is the use of a combination of an algorithm
to compute the inviscid flow field with an algorithm to compute the
boundary layer. For steady, attached flows such methods are availabie:
first, the inviscid flow field is determined; next the boundary layer is
computed and the displacement thickness of the boundary layer is added
to the airfoil contour. For this new airfoil the inviscid flow field is calcu-
lated again, followed by a new calculation of the boundary layer and so
on. An illustration of a result obtained in this way with the method of
Bauer et al (1975) is given in Figure 18. This figure reveals that both the
steady and the associated quasi-steady pressure distributions are signifi-
cantly altered by the presence of the boundary layer and that a consider-
ably improved agreement with experiment is obtained. For quasi-steady
flow (Figure 18b) the effect of the boundary layer is even of the same order
of magnitude as the effect of wing thickness. This indicates that reliable
predictions of the unsteady airloads on actual airfoils can be obtained
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only if the boundary layer is included. Provided the flow remains un-
separated, computations as shown here for quasi-steady flow are satis-
factory also for unsteady flow, as was demonstrated recently by Grenon,
Desoper & Sidés (1979). Computations for steady flow that model viscous
effects at the trailing edge and the shock—boundary-layer interaction have
been reported by Melnik, Chow & Mead (1977); they achieve good agree-
ment with experimental measurements. To take the shock-wave-
boundary-layer interaction into account the unsteady methods are still
limited to the simple ad hoc procedure devised by Magnus & Yoshihara
(1976). They incorporate, in a quasi-steady manner, a wedge-nosed dis-
placement ramp at the foot of the shock wave, providing a qualitative
improvement in inviscid results.

There is much yet to be learned about both the steady and unsteady
coupling of the boundary layer with the inviscid flow. The main problem
areas are the modeling of the interaction between shock waves and
boundary layers (Melnik, Chow & Mead 1977 have made considerable
progress in this respect) and the accurate treatment of the flow past the
trailing edge. Further, a better physical understanding of turbulence is
essential if the more complex models are to provide acceptable results
for modeling separated flows.

The equations that govern the complete viscous flow are the Navier-
Stokes equations for a compressible medium. Questions regarding the
existence and uniqueness of the solutions to these equations, even when
the medium is incompressible, are generally unanswered. From an en-
gineering point of view, flows of practical interest have turbulent boundary
layers, and the Reynolds-averaged form of the Navier-Stokes equations,
in conjunction with suitable turbulence models, is an appropriate and
necessary basic approximation. The main difficulties that arise are in
determining the adequacy of turbulence models, delineating their ability
to produce reliable results over a range of conditions, and providing
the central processing time needed, and storage required, to effect a
numerical solution of the equations. Comprehensive reviews of such
calculations may be found in Peyret & Viviand (1975) and MacCormack
& Lomax (1979).

Algorithmic advances for the Reynolds-averaged Navier-Stokes equa-
tions have recently improved computational efficiency by more than an
order of magnitude. One marked improvement was the time-split method
due to MacCormack (1976) that separates the equations into a hyperbolic
part, which is treated explicitly with a local characteristic method, and
a parabolic part, which is solved by an implicit method. The efficiency
of this algorithm is sufficient to allow complex three-dimensional flows
to be calculated (Hung & MacCormack 1978). Beam & Warming (1978)
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have extended an earlier algorithm for the Euler equations to the
Reynolds-averaged equations, and Steger (1978) has implemented this
algorithm with unsteady grid generation and the “thin-layer” version of
these equations. The “thin-layer” approximation is essentially the
boundary-layer approximation, except that the normal momentum equa-
tion is retained, obviating difficulties in matching viscous and inviscid
calculations (see Baldwin & Lomax 1978).

In the framework of the Reynolds-averaged Navier-Stokes equations,
Seegmiller, Marvin & Levy (1978) studied the flow past an 189 thick
circular-arc airfoil in a channel at Mach numbers of 0.76 and 0.79 for a
Reynolds number based on a chord of 107, This study is part of a con-
tinuing investigation to determine the adequacy of numerical algorithms.
They use the time-split algorithm of MacCormack. Separate turbulence
models are used for the boundary layer ahead of the shock, the separation
bubble following the shock, the wake of the separation bubble, and the
outer boundary layer and wake. Each is modeled with a simple scalar

CHORDS TRAVELED

Figure 19 Computed Mach contours for flow past an 18°; thick circular-arc airfoil at
M, = 0.754, Re = 107, from Levy (1978).
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eddy diffusivity. This numerical simulation yielded an unsteady solution
when the Mach number was 0.76, but a steady solution was found again
when the Mach number was increased to 0.79. This unsteady motion,
an alternate fore-aft motion of the shock wave with shock-induced
separation on each side of the airfoil, was also observed experimentally
over a narrow range of Mach numbers for the Reynolds number used
in the calculations. The numerical results reproduce well (within 20%)
the frequency of this oscillation at the lower Mach number. Figure 19,
from Levy (1978), depicts the Mach contours exhibiting this behavior
for a free-stream Mach number of 0.754. Velocity profiles at various
chordwise stations were found to be in qualitative agreement with those
measured. The main difficulties encountered in this numerical simulation
were the inadequacy of the turbulence modeling near the trailing edge
and a tendency of the numerical algorithm to capture strong (supersonic
to subsonic) shocks where weak (supersonic to supersonic) shocks were
observed. The time to carry out a cycle of the unsteady computation on a
CDC 7600 was 1.8 hours.

In an exploratory study, using the “thin-layer” algorithm mentioned
above, Steger & Bailey (1979) simulated the aileron buzz observed in
flight tests of the P-80 and subsequently documented in the Ames 16-foot
wind tunnel. These coupled aeroelastic computations were able to re-
produce the Mach number of the observed onset of buzz at two angles of
attack. This result, and that discussed above, demonstrate that con-
temporary algorithms and computer hardware are able to simulate
complex flow phenomena.

CONCLUDING REMARKS

During the past five years sufficient experimental observations and
measurements have been made to provide a good understanding of the
transonic flow past oscillating airfoils. Furthermore, recent studies have
provided results essential for the design of transonic aircraft. The main
limitations of these experiments are their failure, for the most part, to
duplicate full-scale Reynolds numbers and an inability to duplicate free-
flight conditions due to wind tunnel wall interference. Experimental
studies, both in progress and planned for the future, will be more nearly
at full-scale Reynolds number, and eventually these Reynolds numbers
will be obtained with minimum wall interference in new facilities now
under development.

Paralleling this progress has been a rapid development of reliable, and
in the small-perturbation approximation, efficient numerical algorithms
for the computation of inviscid flows. Numerical results from these
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methods are in qualitative agreement with the experimental observations,
with the main discrepancies in quantitative prediction as a consequence of
the inviscid approximation. For steady flows coupled inviscid~boundary-
layer calculations of unseparated flows obtain quantitative agreement
with experimental measurements. We can expect this to be true for
unsteady flows in the near future. The numerical simulation of unsteady
separated flows is demonstrably possible, but the two orders of magnitude
improvement in computer speed that is projected for a special-purpose
aerodynamic computer will be essential for this simulation to have
practical consequences.

It is the authors’ opinion that the satisfactory prediction of unsteady
airloads for aeroelastic applications is within reach. This can be accom-
plished by “tuning” inviscid boundary conditions to model an experi-
mentally determined steady flow and then computing its unsteady
response using an inviscid small-perturbation algorithm. Thus, the time
is ripe to start with the incorporation of the new methods in aeroelastic
practice as recently demonstrated by Ashley (1979). Of course, the use of
two-dimensional methods is justified only for large aspect-ratio wings.
To treat the low aspect-ratio configuration the next, and not difficult,
step has to be made, namely, the development of prediction methods for

three-dimensional flows.
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Lifting three-dimensional wings in transonic flow
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The far field of a lifting three-dimensional wing in transonic flow is analysed. The
boundary-value problem governing the flow far from the wing is derived by the
method of matched asymptotic expansions. The main result is to show that corrections
which are second order in the near field make a first-order contribution to the far field.
The present study corrects and simplifies the work of Cheng & Hafez (1975) and
Barnwell (1975).

1. Introduction

This paper is concerned with the transonicflow over thin lifting wings. In particular,
the flow far from the wing is discussed. A number of authors have studied the transonic
flow far from wings and bodies. One of the most important contributions to our
understanding of these flows is the transonic area rule. This area rule (see, e.g.
Oswatitsch 1952) states that the transonic low far from a wing-body combination
is the same as that produced by an equivalent body of revolution having the same
axial distribution of cross-sectional area. This rule has been established for slender
bodies by Oswatitsch (1952) and Cole & Messiter (1957). Spreiter & Stahara (1971)
extended this to non-slender wings, i.e. wings having an aspect ratio of order one.
Ashley & Landahl (1965) also extended the theory to include wings at an angle of
attack comparable to their thickness. Generally, the area rule is deduced by deriving
the boundary-value problem governing the flow far from the wing or body; this
boundary-value problem is seen to be identical to that for a slender body of
revolution, provided that the streamwise rate of change of cross-sectional area is
the same for both.

Hayes (1954) has pointed out that the transonic area rule fails when the volume of
the wing is sufficiently small. Cheng & Hafez (1972, 1973, 1975) and Barnwell (1973,
1975) have studied the effect of lift on the transonic area rule. The study presented
here treats the case of a lifting wing with no thickness. With this simple case it is
easy to illustrate the basic theory and the main effect of lift on the far field. The
boundary-value problem governing the flow far from the wing is obtained through
a straightforward application of the method of matched asymptotic expansions.

Our main interest here is in the basic theory of lifting wings in transonic flow; for
a more complete discussion of the flow from aphysical point of view, and of extensions
to the basic theory, we refer the reader to the references cited above.

In §6 we review and discuss the previous investigations of Cheng & Hafez (1975)
and Barnwell (1975). In most respects our work agrees with the above authors. How-
ever, there are important differences in our expressions for the boundary condition

0022-1120/79/4336-7770 $02.00 © 1979 Cambridge University Press
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for the outer flow; the disagreement with the results of Cheng & Hafez is due to
fundamental differences in the matching.

2. Mathematical formulation

The co-ordinate system used is sketched in figure 1; the origin is taken at the nose
of the wing, the z axis is aligned with the undisturbed uniform flow, and the z axis is
taken as approximately perpendicular to the wing surface. A typical wing has been
sketched; it has a length I and a span of 2b. The equations defining the wing are

z=Z(x,y;l;b;a) =alZ (%’:;_/’lé)

for a,(z/1) < y/! < ay(x/l); the functions a, and a, give the leading edges of the wing
as well as the outer edges of the trailing vortex sheet. The function Z is taken to be
some sufficiently smooth function of z and y. Because it defines a single surface in
space, the wing has no thickness. The aspect ratio is taken to be of order one;i.e. b/l
will be assumed to be of order one. To eliminate unnecessary writing, the independent
variables z, y and z will be scaled by ; otherwise the quantity b/l = O(1) will appear
throughout the calculations. For the sake of simplicity Cheng & Hafez (1975) assume
that Z is such that there are no singularities at the leading edges. In fact, they assume
that the velocity perturbations are zero at the leading edges and the outer edges of the
trailing vortex sheet; here we assume this as well. By making this assum ption we
avoid the difficulties associated with leading edge singularities and separation addressed
by Barnwell (1975). The small parameters of the problem are «, which gives a measure
of the angle of attack of the wing, and MZz—1, which indicates that the flow is
transonic; here M, = U /a,, where U is the speed of the undisturbed uniform flow and
a, is the ambient sound speed.

1 Ly




Lifting three-dimensional wings in transonic flow 225

The flow is assumed to be irrotational; a velocity potential ¢ * therefore exists and
the inviscid equations of motion of a perfect gas may be written

V¢*.V(Y£—é—w) = a?V2g*,

where

_ * *
ot = aj+ 15 I[Uz—w5 L ]

a is the local speed of sound in the gas and the 7 is the ratio of specific heats. The last
equation is just the Bernoulli equation for steady isentropic flow. The velocity
potential ¢* contains a part due to the uniform stream and a part due to the per-
turbation of the wing. It will be convenient to work with the equation for the perturba.-
tion potential, ¢, defined by

¢* = Ux+¢.

In terms of ¢, the equation of motion is

2
U, + UL 1941+ 99.9(IVEL) — arvrg,

@ = (v~ [vg,+ 2L,

exactly. The boundary condition on the wing is
¢5= (U+¢x)gx+¢ygy (2)

onz = 2(z,y;1;b;a). As 22+ y?+2%->00, it is further required that |V¢g| 0.

In the following sections, solutions to (1) and (2) are sought which are valid for small
o and M2— 1. In § 3 the solution valid near the wing is derived; this will be called the
inner solution. Because the inner solution neglects certain nonlinear terms in (1}, it
fails to give a valid description of the flow at large distances from the wing. An
approximation to (1) which is valid at large distances from the wing is derived in
§ 4. There it is shown that, to lowest order, the flow is governed by the small disturb-
ance transonic equation; the region in which this is valid is called the outer regton.
The boundary condition satisfied by the first term of the outer expansion is ebtained
by a matching with the inner solution; this is done in § 5. There it is seen that every
term in the inner solution contributes to the boundary condition for the outer problem;
the resultant boundary condition for the outer problem will therefore be an infinite
sum of terms. The outer expansion will be written

@ = Ulfy Oy(2,7, w) +0(fo),

where Z and # are just scaled values of x and r (see figure 1b); the function ®, will be
shown to satisfy

Mi-1

fo
D(Z,7, w) ~ &f) +b(Z) [In?? + cos? w] + ¢(&) In? + d(Z) + ..., .

1 1
®0#+;(I)0ﬁ+ﬁq)0w= ®pzz + (¥ + 1) @g; Ppzz,

(3)

as?—> 0, and $-1®,, Dy, Oz~ 0, as #—>c0. Here the dots indicate terms which are of

/ Vz _'('
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order #In®# and higher in #. An analogous result has been obtained by Cole & Messiter
(1957) for the case of a slender axisymmetric body in transonic flow, see, e.g. their
equation 5.9. Note also that the terms shown in (3) are singular as # - 0, whereas the
unwritten terms vanish in this limit. In §5, it is further assumed that ®, may be
uniquely determined by a specification of the singularities at the axis; we may there-
fore truncate the infinite series and write the boundary condition as

Oy ~ %+b[1n2?+coszw]+cln?+d

as P> 0.

3. Inner solution

In the inner region the velocity potential ¢ and the independent variables z, y and
2 may be scaled as follows:

¢p=Ulp, az=I& y=1Ilj z=I

provided b/l = O(1); where &, 7 and Z are of order one in the inner region. Equations
(1) and (2) may now be written as

0 |Vo|? a?
M%[%ﬁag |V<P|2+V<P-V('—2‘I‘)] =a’®

. Vo2 (4)
a ¢
= 1= (= 1) M3+ D20
with
oy = a[(1+9:) Zz+9;Z;] on Z=aZ(Z,j), (5)

where all derivatives are now with respect to %, 7, Z.

Equations (4) and (5) will now be perturbed for small @ and MZ—1; the inner
expansion is written

9! = go 9o+ 91 91+ 0(92), (6)

where the g,’s are the as yet undetermined inner gauge functions. When (6) is sub-
stituted into (4) and (5) and when the coefficients of like powers of « and M2—1 are
equated, there results a set of boundary-value problems, each of which is of the form

Viv = #(7.%) }
'ﬁz(g» Oi) =fi(?7)» a, < g < ay,

where V2 = 92/022+ 62/02; here & only appears as a parameter and its dependence
has not been explicitly shown. At this point it is useful to review the method of solution
of (7); this will not only give a simple formula for the solution, but will also clarify
certain of its features.

Solutions to (7) are not unique; the operator is elliptic, but boundary values are
only specified on a slit Z = 0, a; < § < a,. It is easily seen that any two solutions of
(7) differ by, at most, a harmonic function. In this paper the arbitrary harmonic
function is determined by matching to the outer solution. We first decompose the
solution to (7) as follows:

(7)

¢' = ¢p+¢-H’ (8)
12t
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where ¥, satisfies
Vivp = 7(3.2)

Vi ':&H =0,
1p}ﬂ'=f:t""‘r/rp§é on Z= 0%, a < 37 < Gy.
In terms of the complex variables { = +i7 and { = §—1Z, the above equation for
¥, may be written _
Yoz = 1F(6,C);
thus ¢, may be obtained by integrating with respect to { and ¢:

Vo= 3| [ F D2,

and ¥ satisfies

where #, is any harmonic function and is composed of the two arbitrary functions
of integration. Because the function Fis given, the indefinite integral f f FdEdZ can
be calculated explicitly. At this stage, it is convenient, but not necessary, to choose
3,; the choice of #;, will only affect y;; and not the final result for y. This will be
chosen such that y,, is some simple known function, say ¥, e.g. when & = 0, #,, will
be taken to be zero as well. We now discuss the harmonic part of the solution y,.
Because no conditions at infinity are given, {;; will be arbitrary; we may always
rewrite ¢y as

where /;; is defined by
Vivn =0,

wf'l§=f:t_\¥5 on §=0i’ a’lsgsab
—

and Vi ~byInF+b,+... as F—>o0.

The function #}; may be any function satisfying
Vi =0,
Hyy=0 on Z=0f a, <F<a,
The solution for ¢/, is well known (see, e.g. Ashley & Landahl 1965):

;A fa L A VRE
Ui = .2-;[ [;&H,]lnrldy-kgj ['/fﬂ];%d?h"‘K’

where 7, = {(y, —7)%+2%}} and the square brackets indicate the jump in the quantity
across the slit. Thus, ¢, is given by

1 [a 1 [ z
Vi =gs [ U= n i [ S dn K+ oy

1 (a2 z

—%L‘ (4] ;% dy,.

Wkhen this is substituted in (8) and the fact that [/ ] = [y —¥] is used, we have
1 fa 1 fae z
V=Yg [ U-¥anndneg M-S+ K
1 [o z i

+H g —5- . (%] A% (9

/27
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Thus, (9) gives the desired solution to (7) in terms of the known functions f +(7) and
Z(4,%) and the unknown harmonic function #%. It is clear from the above results
that when & is not identically zero, the particular solution will induce a source or
doublet distribution on the slit; this is due to the fact that the second and third terms
in (9) contain ['¥;] and [¥] in their integrands. In the theory presented here the con-
stant K and the harmonic function 5}, (7,%) may also be functions of # and «.

We now return to the equations (4) and (5); when (6) is substituted in (4) and (5),
we find that

Vieo=0, pz=2Zx%§) on Z=0% ay,<F<a,
w

provided we choose g, = . The solution to this is given by (9),

1 (o 1 1 [ '# 5d X >
%:57 o [Poz] nrldy;+;r N [po— O]r-? Y1+ Ko(z) + (2, y, 2).

Because ¢4y is continuous across the wing the first integral may be dropped. Further-
more, the above boundary-value problem is satisfied by functions ¢, which are anti-
symmetric in Z, i.e.

Po(Z) = — @o( —2)-
Here we will assume that both ¢, and 5, have this symmetry; hence, Ky (%) = 0 and

.. 1 az z
9o(Z,7,2) = %J‘al [(PO_‘%]’T%dyl + 3.

In order to obtain higher order terms in the inner expansion, it will be convenient to
anticipate some of the results of matching to the outer solution. The inner expansion
of the outer solution is essentially the inner boundary condition for the outer problem;
this must be matched to the large 7 expansion of ¢,:

1
Po ~ sme' [po — ) dy, + 5+ O(72),

where ) has not yet been expanded and sinw = /7, cosw = jj/7. We require that this
boundary condition contain at least the doublet

f [@o] By

1 sin w

this will only be possible if, at large 7, 5, = O(7-1), at most. Thus, the matching gives
the large 7 behaviour of ,; %, therefore satisfies

V2H, =0, Hpy=0 on 2=0, a, <7< a,

Hy=O0(F1) as F-—>o0,
which implies that

1 aa zZ
=5 | 1 S
Thus,
20,5 = 3 [“le S (10)
This gives ¢, in terms of its jump across the wing and trailing vortex sheet. This
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Lifting three-dimensional wings in transonic flow 229

jump is not known a priori; (10) leads to an integral equation for [¢,]. Because the
primary concern here is the flow far from the wing, it will be assumed that this integral
equation has been solved and that [¢,] is known everywhere on the wing and in the
trailing vortex sheet.
For the purposes of matching, the large 7 behaviour of ¢, is of interest; this is
o H2E o) o
where

~ az
F@) = [ oy,
ay
This is immediately recognized as the potential due to a line doublet.
We now discuss the solution for ¢,. Substitution of the inner expansion (6) in (4)
yields
o [y+1 oly+1
Pppt Prz = a2§z [Y 5 Phz + @by + @35] + a91{2 "0'5[—2' Poz Prz

+ oy P1yt+ Poz ‘Plz] +(y=1) oz V3 oy + (MG — 1)“‘?055}

v+1 y-1
+ “3{ B) 96 Pozz + 5 Pozz(P8y + ©82) + P57 Pogy + P8z Poxs

+ 299z Poy Pozs T 2P0z Poz Pozs + 2Poy Poz %175}
+O[(ME—1)a?, (M§—1)g,]+o0(a3, ag,), (12)

where use has been made of the fact that V§ ¢, = 0 and that g, = a. In a similar manner
the boundary condition (5) may be expanded to yield

@ = aZ;— ¥ Z; ¢o: + (Zoop)i} + 20u{Z; 012+ 2y 015 — Zpras}

Z2
+ a3{ZZ.i Porzt (3 ‘?or/z) } +o(ad agy),  (13)
v

at Z = 0. Here the usual Taylor series’ expansions have been used to transfer the
boundary condition from the wing surface to the Z = 0 plane. In order to save space,
the left-hand sides of both equations (12) and (13) have been left in terms of the
exact potential ; these of course, must be expanded in (6) when the actual calculations
are performed.

At this stage, it is necessary to discuss the size of the (M — 1) aqy;; term appearing
in (12). In many theories of transonic aerodynamics, the matching of the near- and
far-field solutions establishes a relationship between M — 1 and the thickness or angle
of attack of the wing or body. If, in the present case, we were to make no assumption
about the size of M3 — 1, the matching would show that

Mi-1=0(0Y),

where ¢ is the ratio of the inner and outer length scales and is related to the angle of
attack, a, through the equation




230 M. 8. Cramer

In the following, we shall anticipate this result and use it wherever it is convenient;
the reason for doing this is to keep the discussion of the inner expansion as concrete
as possible.
We may now identify g, and the boundary-value problem for ¢,; this is
ofy+1

Vig, = é?z[T P52+ 935 + <P§z] (14)

with
P1eld, 0%) = Z; 9oz + (Z9g3)y

for a,(%) < § < ay(¥) provided we take g, = a% In appendix A, the result (9) has been

used to solve equations (14) for ¢,. Under the assumptions stated there ¢, may be
written

o T R O R R PR P AR
1 27 ) o, Poy 7 1 Po)z o). PolLzz 10T, 0Y,
+1 m 1 az pir ~
+'}'_2 {\F —E;Ia’[‘l’,]lnrldyl}-kf(x),

and the large 7 expansion of ¢, is

‘& 1
o, ~ S—2f)1nf+%(:z)+7+

3272

~ 3 ~

(F'?) (In®7 + cos® w) + O(I—Ilr—r 1) ,
where V" and y¥(#, 0%; &) are given by equations (A 7) and (A 5) respectively, and

dS(z X 1, .
dg”) 6@+ 12 1(9),

S'"(%) = 5

]

6@ = - j (o0 Zasdyn, I(3) = — f [¥41dy,,

and J'(Z) is an arbitrary function of Z; it may also have a weak, e.g. logarithmic,
dependence on a.

Inspection of (A 10) shows that ¢, contains a source-like term as well as one which
depends nonlinearly on the lift F'(#). Because [¢,] + 0 on the trailing vortex sheet,
G(%) + 0 there; hence, the source has an afterbody associated with it. The results
obtained here are equivalent to those obtained previously by Cheng & Hafez (1975).

It is clear from equations (11) and (A 10) that the inner expansion (6) breaks down
at large values of #; this is because nonlinear terms in (4) play an important role
far from the wing. In the next section the nonlinear equation governing the flow far
from the wing is derived.

4. Outer region

Far from the wing the § and Z co-ordinates must be stretched relative to the &
co-ordinate; thus, we define the outer variables § and 2 by

§=da)j %=da5
where § = o(1) as a— 0. The outer expansion is written
¢ = fola) Po(E, §,2) + o(f,)-
/3¢
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For the sake of simplicity we shall assume that @, is also a weak function of « or 8(«),
e.g. logarithmic in é. The results we obtain will be in accord with those found by
Cheng & Hafez (1975). The advantage of the procedure used here is that we need only
to discuss a one term outer expansion. Barnwell (1975) has approached the outer
expansion from a different point of view; he primarily discusses three terms of an outer
expansion having gauge functions which may be written

fo—do o
v 73] o]

where the coefficients of these gauge functions are now independent of a. The dots
indicate the higher-order gauge functions;aninspection of higher-order terms suggests
that this is an infinite sequence of terms of the general form f,/|In 8|4, where n takes
on integral values. The relationship between the two approaches is clear; the outer
expansion of Barnwell results from expanding our ®,(Z, #, w; In 8) for small . One can
show that the results obtained by either approach are equivalent to the appropriate
order.

When this scaling and outer expansion are substituted into the exact equation of
motion (4), this equation becomes

d({y+1
B Ou+ Qo) = (M3 1)y oz + 1312151 08) +006%,, (M3 - 0f0 1)

We now require that the four terms which are shown explicitly balance in the outer
region; thus
d=Jfy, and Mi-1 = O(f,) = 0(8?),

and the equation satisfied by @, is

82
The outer equation is immediately recognized as the three-dimensional, small disturb-
ance, transonic equation. The boundary condition for this equation must come from
a matching with the inner solution; this we carry out in the next section. In addition

to providing the boundary condition for the outer problem, the matching determines
the scale factor  explicitly in terms of a.

M2-1 o (y+1
Dopy-+ Buge = 02 Oosy + 52 (L5 03,). (15)

S. The matching

In this section the inner and outer expansions are matched. For the sake of sim-
plicity, Van Dyke’s (1964) matching principle is used. The more sophisticated tech-
nique of intermediate expansions gives results identical to the ones presented here.

The two term inner expansion reads

@' = apy+ate, +o(a?),

where ¢, and ¢, have been given explicitly by equations (10) and (A 9), respectively.
The one term outer expansion is given by

90 = fo @o(Z,9,2) + o(fy),
where § = 8(a)#, 2 = d(x)Z and & = j},} = 0(1). As we have already discussed, we will
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regard @, as depending logarithmically on &; furthermore, we shall take ®, = O(1)
as a—0. To match these two expansions, the inner expansion must be cast in the
outer variables and expanded to order f,. Because 7 = #/3, the large 7 expansion of
@o and ¢, will be useful. The resultant expansions are

F sinw [
~ 055+ 0(z).

8 y+ 1 (F2y
o1~ gy Ingt At T

2 | cos? Ot 2
(In 5+ cos w)+0(;lna,? .

We now introduce

S’ 7+ 1 (F'z)

.%’*Ef———la 5 In?d;

in order that ®, = O(1) as @ — 0, we require that #™* = O(1) as «~> 0. Thus, the outer
expansion of the inner solution reads:

F sinw S (F'2y
110 i 2 _
(%) ~ a6 o {[2 (y+1) Tont ln6] In?
g
e ";’”F ) (1n2h + cos?w )} (16)

Here we have dropped the terms of order «é? = af, which resulted from the expansion
of ¢y and the terms of order «?§1n ¢ and a2 which resulted from the expansion of g,.
The first of these is clearly o(f,) and, if we anticipate the result, a2 = §2/|Ind| as
discussed in §3, the second set of terms is also seen to be o(f;).

When the outer solution is written in terms of the inner variables #, w, # we have

9%)¢ = f, Oy(&, 87, w); (17)

thus the boundary condition for the outer problem is applied as #-> 0. The matching
principle requires that (16) and (17) match as « — 0; hence

1 I2
fo @&, 7, w) ~8a-2}7;sx;lw+a {[S —(y +1)(F )lné‘]ln

1672

(v +1) (F2)

* -
A S T

(In%? + cos?w)]. (18)

Fraenkel (1969) has pointed out that terms containing logarithms, viz. the term having
a? as a coefficient in (18), should be matched as a single term. With this in mind, we
see that the appropriate choice for f, = 62 is a?|Ind|, which further implies that
0 = &(«) is given implicitly by

a? = ¢%|Iné|. (19)
Thus, the matching requires that, as# -0,
1 Fsinw [8 1 (F'?)
®o(2,%,0) lln8|i27r T [2n]ln8[+( +1 16m 2]“1?

AN I 22 ¥

[Iné] * |lnd| 2 16n%

According to the analysis presented so far, this is the boundary condition for the
/32
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outer problem. When the third-, fourth-, and higher-order terms of the inner expansion
are calculated, they also make a contribution to this boundary condition; in fact, the
actual boundary condition is an infinite sum of terms. This is to be expected as we
seek the asymptotic expansion of @, as #— 0 rather than its value at # = 0. As an
example, we could continue the inner expansion (6) to include third- and fourth-order
terms '

®' = go o+ 91 91+ 92 P2+ 95 93+ 0(gs)

where an inspection of equations (12) and (13) shows that g, = (M2—1)a and g, = a3.

The procedure of this paper could be applied to these higher-order terms to determine

their contribution to the boundary condition (20). It may be shown that when ¢,

and @ are included in the inner expansion we must add the following quantity to (20):
£

B {%?sinwln?+8&t’é} +-|ﬁ|% {Zg-%—l-?sin W[3(F'B'Y Ind?

+(F'(4' =B —2In6B)) In% + (F'3B'— A’ + 24
+B’'Ind)) In#— (F'B’) cos?w]+ &#;} .

Here £ = M;—1/8% A =8'/2n, B = y+ 1(F'?)/32n% and #% and #°¥ are harmonic
functions proportional to #/4. In like mannerwe could also determine the contributions
of higher-order terms; these contribute terms of even higher order in #. In order to
simplify the boundary condition for the outer problem, we now make the assumption
that the outer problem is well-posed provided that the singularities in ®, at# = 0 are
specified. Because the higher-order terms, i.e. the termsg; 9;,7 > 2, in the inner expan-
sion contribute terms which vanish as # - 0, we may truncate the boundary condition
to include only those shown in equation (20). Thus, the outer problem may be written
2_
‘Don+; (Do?"‘% Doy = M?Tl Doz + (¥ + 1) gz Doz,

where, as 7> 0, ‘

o n 1 Fsinw [§ 1 (F2)7, .
V@5 0) ~ 3fan 7 +[§;una|+"’“)_‘16n2]'“’
A * 1 (y+ 1\ (F?) . 2
2
+]ln8|+|ln8|( 3 ) Ton2 (In2# + cos? w), (21)

and, as ? > 00, #710Q,,, Oy, Dgz—> 0.

Here we recognize the first term as a doublet and the second term as a sourcehaving
strength (8'/2m)(1/[Iné8|)+ (y + 1) (F'2)' /162 The first part of the source is due
to the nature of the second-order velocity perturbations on the wing and the
part depending nonlinearly on the lift is due to the fact that the flow in the neighbour-
hood of the wing, i.e. # = O(1), appears as a source flow when viewed from the far
field. We note also that in theories of transonic flow not involving lift, the solution
to the outer problem only depends on MZ—1/(y +1)42, i.e. the similarity parameter
of the problem. Here the solution also depends on (y+ 1) and Ind; hence, in lift
dominated flows, no simple similarity rule holds. Furthermore, it is clear that no
conventional area or equivalence rule applies for the wings treated here. We refer
the reader to Cheng & Hafez (1975) and Cheng (1977) for a further discussion of equi-
valence rules applied to lifting wings.
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Throughout this paper we have confined ourselves to wings having zero thickness.
The effect of a wing’s thickness is easily incorporated and we will now give a brief
discussion of it. The equation of a wing having thickness can be written

F=al 712,
where the subscript v will always denote functions associated with thickness effects.
The inner expansion corresponding to (6) would be
@' = agy+ T, +a%p+ ...

If we now proceed as we did in § 3, we should find that

1o
Py = ;TJ‘ sz]nrldyl'*"){;ﬂ
ai
and, as - 00,
1 . 1
00~ 55 8,17+ A, +0(3),
where

S, =2 f “ 2.5y

When this is cast in terms of the outer variables we have
()0 ~ = 8. Inp + %+ 02
v 271, v v ? 3

where ¥ = A, —(8,/2m)Ind = O(1). Thus, the thickness would contribute
7((S,/2m) In? + X7¥]

to equation (18). Inspection shows that the thickness and lift have an equal effect
on the outer problem provided r = O(f,) = 0(4?), where ¢ is related to « by (19). An
examination of higher-order terms shows that this is the only additional singularity
generated by the introduction of the thickness; thus, provided 7 = 0(?), the thickness
contributes 7/8%(S,/2m Inf + X "¥] to the boundary condition in (21). Generally, when
7 % 0(8%(a)), where &() is given by (19), we may neglect either the lift or thickness
when calculating the outer flow. For example, when 7 = O(x), the matching requires
that f, = 7,8 = 7} and that the boundary condition is

O, ~ t;;irlnn A*

as#—>0. When 7 = O(a3), the matching yields the same results as in the zero thickness
case; in this case the thickness effects may be considered negligible for the purposes
of calculating the far field.

6. Discussion of previous investigations

In this section we discuss the investigations of Barnwell (1975) and Cheng & Hafez
(1975), comparing their results and procedures to ours. Both papers give derivations
of the boundary-value problem governing the flow far from a lifting wing; their
procedures are seen to differ considerably in both appearance and content from each
other and the present study.
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Lifting three-dimensional wings in transonic flow 235

We first discuss the work of Barnwell. It should first be mentioned that Barnwell
uses a body oriented co-ordinate system in contrast to the wind oriented system used
here; hence care should be exercised in comparing Barnwell’s work to either ours or
Cheng & Hafez’s. Barnwell also provides a discussion of the effect of leading edge
separation; this complication will not be discussed here. Barnwell first presents an
inner expansion which contains gauge functions which are logarithmic in the ratio
of the inner and outer length scales. Although our inner expansion proceeded in integral
powers of @ and M2— 1, we allowed " and #%(7,Z) in (9) to depend on «; thus, the
resultant inner expansion is seen to be equivalent to that of Barnwell. A further
examination of Barnwell’s inner expansion shows that Barnwell has omitted the

following term,
P8, TP
X dT T

from his boundary condition (19). This produces an error in the strength of the equi-
valent source given by H(Z) in his equation (68).

Barnwell also presents a very careful study of the outer solution. As we mentioned
in §4 he finds the equations governing three terms of the outer expansion; in his
notation these terms are

€ Dy +6, Dy + 65 Dy,

where ¢;, €, and ¢; are the outer gauge functions and ®,, ¢, and ®, are independent
of any small parameters. The lowest-order term satisfies the small disturbance tran-
sonic equation and @, and @, satisfy linear equations which have coefficients dependent
on the lower-order ®,’s and their derivatives. To match the inner and outer expansions
he needs a small 7 expansion of the ®,’s. To obtain this he uses the iterative technique
of Cole & Messiter (1957) to solve the differential equations governing ®,, ®, and @,
for small values of 7; this assures us that the inner expansion of the outer solution
satisfies the outer equations. For the sake of simplicity, we have presented a more
intuitive approach to this than that presented by Barnwell. Essentially, we have
tacitly assumed that a small# expansion of our outer solution will contain all the terms
necessary to match. It is easy to show that when such an iterative procedure is applied
to our outer solution, a boundary condition results which is identical to the one pre-
sented here. Once Barnwell obtains his expansion of the outer solution he matches this
to the large 7 expansion of the inner solution. Except for the error in the source
strength mentioned above his results are in agreement with those given here.

As a final remark we note that Barnwell states that an intermediate expansion is
necessary in order to match the inner and outer expansions. He bases this on an
examination of the large 7 expansion of the inner solution (his equation 67) and the
small 7 expansion of the outer solution (his equation 68). Because the leading term in
(67) is a dipole and the leading term in (68) is a source, he concludes that an inter-
mediate expansion is necessary. In §5 we used a rule concerning the matching of
logarithrus; if this is applied to Barnwell’s expansions (67) and (68) it is clear that they
may be matched without recourse to an intermediate expansion.

We now discuss the results of Cheng & Hafez. Of the two previous investigations
the procedure of Cheng & Hafez has the closest resemblance to ours. Their inner
expansion can beshown to be the same as ours and they use a one-term outer expansion
similar to that given here. Throughout their paper, Cheng & Hafez use an elaborate
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parameterization scheme. They also correctly state that their results are valid for
A = b/l = O(1); this appears to be inconsistent with the parameterization scheme.
Specifically, in equation (2.10) they introduce a parameter

I, = 8/(y+ 1) A%jine,

where ¢ is the ratio of inner and outer length scales analogous to our 4; they further
require that I'y be non-vanishing as ¢ > 0. This would seem to imply that A must vary
as |Ine|~* which violates their A = O(1) assumption. However, this inconsistency in
the parameterization does not affect the final results.

In §4.3 the outer equation is introduced and a small 9 = er expansion of the outer
solution is given. In §4.5 the matching is carried out for the case corresponding to the
one discussed here. The boundary condition for the outer problem is given by their
equation (4.12); this is seen to disagree with our boundary condition (21). Specifically,
the terms

e =

o D,(x)(7') 2 cos w+ |In€’|Emgy(n’)~2sin 20]

appear in their equation (4.12), but are absent in ours. It may be shown that these
terms correspond to the O(d2/#?) term found in the outer expansion of ¢, and the
O(87-11In#/é, 8 /#) term found in the outer expansion of ¢, ; these higher-order terms must
be truncated in the matching. In a later publication, Cheng (1977) discusses the
application of this theory to particular wing configurations; the boundary condition
used in this study is equivalent to the one derived here.

With the exception of the errors mentioned above, the results of Barnwell (1975),
Cheng & Hafez (1975) and the present study are in agreement. The study presented
here approaches the problem from a more fundamental point of view and is therefore
believed to be more accessible to the reader.

7. Conclusion

We have presented a theory of thin three-dimensional wings without thickness in
transonic flow. The boundary-value problem governing the flow far from the wing
has been derived. The calculations presented here are intended to be simpler than those
of the previously published studies; they also correct errors found in these earlier
studies. Both the previous investigations and the present study show that there are
effects which are of second order in the near-field which produce first-order effects in
the far-field.

This research was carried out while the author was a Research Associate in the
Department of Aerospace and Mechanical Engineering and the Program in Applied
Mathematics at the University of Arizona, Tucson, Arizona. It was sponsored by the
N.AS.A. through Grant NSG-2112 and A.F.0.S.R. through Grant 76-2954. The
author is indebted to Drs R. C. Ackerberg, R. E. O'Malley, W. R. Sears and A. R.
Seebass for valuable comments and criticisms.
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Appendix A. Solution for ¢,

Because of the linearity of the Laplacian it is permissible to break ¢, up into three
parts:

= ¢ +9"+iy+ 1o
where ¢’ satisfies
Vie'=0
with 9: = (¢ Z); on Z=0% a, <§<ay
¢” satisfies
Vie" == (cpo,,+ )
With (P: = Qoz Zi’ on Z= O:t, al g a2,

and ¢" satisfies
0
2 m - 2 )

with 9s=0 on Z=0%, a,<7<a,

Equation (14) admits solutions for ¢, which are symmetric in z, i.e. ¢,(Z) = o,(—%).
In the following we will assume that ¢, as well as ¢', ¢”, and ¢” are symmetric in 2.

The above problem for ¢’ is homogeneous; thus, we will not only take [i/] = 0,
[#u]=0and f = (¢y; Z); in (9), but ¥ = 0 as well. Thus,

1
=30 (Bwl 2, nrydy+ Xy 3) + 8,

where 5" is the arbitrary harmonic function found in equation (9). An integration by
parts yields

¢ =5

»_ 1 [ Ny .
—;Tf (0] 2= 5= dys + A+ A

Here we follow Cheng & Hafez (1975) and require that [g,;] = 0 at the leading edges
of the wing and the outer edges of the trailing vortex sheet. Thus,

,_ 1 ,
=5 ). el 2 sy, + i3y 4ot (A1)

The large 7 behaviour of ¢’ is

COS W

@'~ A () + f loop] Z dy, + 5 (7, w i)+0(i12). (A 2)

In the large 7 expansions of ¢’, ¢” and ¢", we will not expand the arbitrary harmonic
functions; this behaviour must be obtained from the matching.

We now derive the solution for ¢”. The function (¢, {; %) in § 3 is seen to be equal
to 4(q>°§ cpog)f, Cheng & Hafez (1973) have shown that when the arbitrary function
3, in § 3is taken to be identically zero, the function ¥, or here ¥, is given by

= (%<P(z))5’
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and, from the boundary condition for ¢,, we have
V37,05 %) = @oz Za+ 9o Zszs-

Thus, the solution for ¢” which is symmetric in Z is

” 1 [ ~ ”
o = (08— gr [ Loo) Zaslnrady + H,@) + 7 (A3)
For large #, "

0" ~ -2-1;(;(5) 1nf+9£’2(az)+9f”+0(;f), (A 4)
where

G(&) = —f [9o] Zzz Ay
Finally, we consider the problem for ¢”. The function # (€, Z;%)in § 3 is seen to be
3(e2:(¢, ;%)) /0%, where
T
Poz 16"2fa1 fa, [Poz]1 [Poz]e -0 5 \—t -2 Y10Yss

where [0gz]; = [@oz] (¥:; &), © = 1, 2. Cheng & Hafez (1973) have shown that V", or here
¥ can be written

|\ L

f"’[%z]l[%z]zl (g Z;g yl)d?hdyz

T I L AL SR A

provided that we choose 5%, (see § 3) as follows

647r2 Bx ard ar Ye

#, = 6_172 a%f mf ™ [90sh [0le {In (€= 1) (€~ 92) + 10 (=) (€ o)} Ay

Ty oxfal f’" [‘Po:i]l [‘Poi]z !é’ln (g:g:) +&in (g zl)} dy.dy,.

AtZ = 0%, Cheng & Hafez (1973) have a]so shown that

Y4 1 ,, ~ ,
20,008 = 20 21 @9 2. ol (=145 55) an), - @ 9)

where the P.V. indicates that the Cauchy Principal Value of the integral is to be taken.
Thus, the solution for ¢"” which is symmetricin 2 is

1 a:
"oy [ dy @) £ (A 6)
7Ja
where, in terms of the real variables 7 and z, ¥ is

W o= 16”2 ax {falf [‘Po:]l [@01]2 In 1dy1 dyz} o 23 {f [<P0:]1ln 71 dyl} (A )

and Y7 (7, 0%; &) is given by (A 5). For large values of 7, 9" has the behaviour
1 In7 1

M s 25 2 r2yt —_— -

v 16ﬂz(ln 7+ cos?w) (F'?) +0( 7 ’i)
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where F' = (d/dZ) F(%). Thus, as # > o0

1 1 In7 1
" ~ 2- 2 I2I _ ~ ~ " -
P —16ﬂ2(1n 7+ cos?w) (F )+2”I(x)lnr+.%”3 +H# +0(—1_. ’F)’ (A 8)

where
16)= - [* w11y,

Thus, ¢, is given by the sum of the terms ¢, ¢” and }(y + 1) ¢”. The large # behaviour
of ¢, may be obtained by equations (A 2), (A 4) and (A 8); thls may be written

o1~ S ini 4 () +

7+ cos?w) + 5 +O(ln_r’ ;) )

where
e A8(E) L yal,
H(@) = A+ At Lo,
and
Hh,0:8) = 1o 4 LD,

As we did in the discussion of ¢,, we will now anticipate some of the results of the
matching to determine 5 for all values of &, jand 3. We will requlre that the boundary
condition for the outer problem contains contributions from o', »” and ©"; the only
way that this will be possible is #, = O(In#) at most, as # — co. This condition, combmed
with the fact that J#] is symmetricin z and satisfies

Vi, =0 forall i3,z
1 <

¥y <a,
implies that #] is a function of # alone. If we absorb this function of # in A (E) we may
now write

and Hz=0 on Z= 0%

f loo127= Ly, + Y (oD - f [0 Z5 In 7, dy,

'y+ 1 :11,/// f ["P'E"/] In 7 dyl} +f(£)y (A 9)
ax
and as #— o0,

(A 10)

S'(&), LY b e 2 In7 1
¢1~W1nr+f(x) o 5 (F'?) (In%7 + cos? w )+0(_'—’F)'
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A new method for the design of shock-free supercritical airfoils, wings, and three-dimensional configurations
is described. Results illustrating this procedure in (two and three dimensions are given. They include
modifications to part of the upper surface of an NACA 64A410 airfoil that will maintain shock-free flow over a
range of Mach numbers for a fixed lift coefficient, and the modifications required on part of the upper surface
of a swept wing with an NACA 64A410 root section to achieve shock-free flow. While the results are given for
inviscid flow, the same procedures can be employed iteratively with a boundary-layer calculation in order to
achieve shock-free viscous designs. With a shock-free pressure field, the boundary-layer calculation will be
reliable and not complicated by the difficulties of shock wave, boundary-layer interaction.

Introduction

ELL-KNOWN requirements for increased efficiency

and. in the case of commercial aircraft, productivity
have forced the operating conditions of compressors, tur-
bines, propellers, wing sections, and aircraft into the tran-
sonic regime. Unfortunately, once local regions of supersonic
flow occur, shock waves are likely with the attendant wave
drag and boundary-layer separation losses. In the mid 1950s,
Morawetz! proved that shock-free, two-dimensional,
irrotational, near-sonic flows are mathematically isolated. In
other words, any arbitrary{ changes in the flow or boundary
conditions that provide a shock-free flow will lead to the
formation of a shock wave. Thus, Morawetz’s theorem stated
that the shock-free inviscid flow solutions, if and when they
existed, were isolated by neighboring solutions that contain
shock waves. Recently, this result has been extended to three
dimensions by Cook.? Fortunately, it was recognized that
such flow would have practical significance if, as seemed
likely, the shock waves that occurred in neighboring flows
were very weak. Wind tunnel research by Whitcomb? at the
NASA Langley Research Center and Pearcey? at the National
Physical Laboratory, United Kingdom, led to the develop-
ment of practical ‘‘shock-free’’ airfoil sections. Subsequent
analytical studies by Garabedian and Korn,’ Nieuwland,®
Boerstoel,” and Sobieczky® established theoretical design
procedures for two-dimensional inviscid flows. More
recently, the development of sophisticated numerical codes
for the analysis of transonic flowfields has led to the design of
both airfoils and wings by numerical optimization.%!® The
practical success of the preceding efforts, as documented by
the recent NASA Conference on Advanced Technology
Research,!! has been substantial. Further progress, as
reported here, seems likely. The senior author recognized that
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4One of the consequences of our research is that, in two dimen-
sions, for any small change in the flow Mach number, there are an
infinity of smail changes in the airfoil shape that will insure that the
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the procedure he was using in the hodograph plane implied an
analogous procedure in the physical plane, and furthermore,
that this procedure did not seem to be restricted to two-
dimensional flows. !213 This paper reports the success to date
in using this idea to provide shock-free designs in two and
three dimensions.

The design procedure invoked here is, in principle, a simple
one. While there is no guarantee that a shock-free flow will
necessarily result from the procedure, our experience in two
dimensions has been that if the hodograph method will work
for specified flow and airfoil parameters, then the procedure
outlined here will work too. Also, it provides neighboring
shock-free airfoil shapes for fixed lift coefficient with varying
Mach numbers and varying lift coefficient for fixed Mach
numbers, as well as providing a multiplicity of closely related
shapes that are shock free at fixed lift coefficient and Mach
number. This wealth of shock-free, two-dimensional designs
is no great surprise; therefore, it is not surprising that they
are found with minimal computational effort. Two-
dimensional inviscid flow potential airfoil designs require less
than a minute of CYBER 175 CPU time and only a few
seconds of CDC 7600 CPU time.

For three-dimensional flows our results are less extensive.
Also, while it is clear that the procedure we use rests on a
sound mathematical foundation in two dimensions, this is not
the case in three dimensions. Indeed, for three-dimensional
(that is, nonplanar and nonaxisymmetric) flows we solve an
ill-posed boundary value problem.** That this problem can
be solved successfully is a result of the practical requirement
for specifying chordwise modifications more densely than
spanwise ones.

We have demonstrated the ability to modify three-
dimensional wings so that, within the context of the numerical
algorithm used, shock-free flows are obtained. We have not
yet demonstrated ar analogous wealth of shock-free flows in
the three-dimensional case, but see no reason to believe that
this situation is different there. The practical consequences of
this wealth should prove to be of interest to the aircraft in-
dustry. ' Its success will depend on the designer being able to
choose baseline configurations that will result in good off-
design performance and not compromise nonaerodynamic
requirements.

Design Procedure
The procedure we use to find shock-free designs assumes
that a reliable numerical code is available for computing the
flow past a given configuration, such as that sketched in Fig.

**The authors are indebted to A. Jameson of the Courant Institute
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Fig. 1 Sketch of shock-free flow past a lifting wing depicting the
sonic surface obtained by introducing fictitious behavior inside this
surface that results in elliptic equations.

1. Such codes are available for two- and three-dimensional
inviscid flows. When they are coupled with a reliable
boundary-layer code, the design procedure outlined here can
be used to calculate shock-free viscous flow designs. While
this would require some modest iteration, it is certainly
possible both in practice and in principle. With the existence
of a reliable analysis algorithm presumed we modify this
algorithm so that once the flow become hyperbolic we alter
the basic equations so that they revert to elliptic behavior.
This may be done in a number of ways, but it should be done
in a way that it conserves new, but fictitious, ‘‘mass’’ and
“momentum’’ fluxes to a satisfactory degree of accuracy. We
may, for example, change the density’s dependence from the
usual one to one that returns the equations to elliptic form.
We might suppose, for the purpose of illustration, that once
the equations become parabolic (i.e., sonic) on some surface,
then at higher velocities the density will be maintained at its
sonic value, giving elliptic equations. We use a numerical
algorithm to compute this fictitious flow past a configuration
of interest, chosen perhaps on the basis of previous design
experience. Because the equations are elliptic, this will result
in a discretized, pseudoanalytic description of the velocity,
density, and pressure fields on the embedded parabolic
surfaces, and this description will be consistent with the
correct governing equations. These initial data on the
parabolic surfaces are then used to calculate the correct
flowfield inside such surfaces. This new flowfield may or may
not contain shock waves. This depends on the choice of the
fictitious equations, or perhaps better, fictitious gas, used
inside the parabolic surfaces. This new flow will define a
stream surface that is tangent to, and has the same curvature
as, the stream surface at the intersection of the sonic surface
and the original body. Inside this surface a new body shape is
defined by the stream surface of the new, but now real, flow.
Here, of course, we must also address the question of well-
posedness. In two dimensions there is no difficulty because
either of the spatial coordinates may be designated as the time-
like variable. This is not the case in three dimensions where
only the spatial coordinate aligned with the flow is time-like.
Because shock-free flows are reversible, the domains of
dependence and influence may be interchanged. But neither
the normal (nor the binormal) to the stream direction can be
considered time-like in the three-dimensional initial-value
problem. Thus, data are given on surfaces that are not in the
usual domain of dependence and the problem is ill-posed. It is
this fact that has made us stress that a reliable analysis
algonthm should be the ba51s for the design computations. An
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variations in the spanwise direction that are on scale, that is,
small compared to the nominal axial (flow direction) distance,
will amplify; thus, the success of the numerical algorithm
depends upon not introducing such disturbances. This is not
the first time ill-posed problems have been solved to obtain
results of engineering interest (see, for example, Ref. 15, pp.
448-472).

Fictitious Gas

As just mentioned, modifications are made to the basic
equations to retain their elliptic behavior once the flow has
accelerated to sonic speed and a parabolic surface, with the
needed initial data, has been generated. The possible
modifications are manifold. Our discussion is limited to those
used to obtain the results reported here.

For two-dimensional flows we have used Jameson’s!6.!?
circle-plane algorithm for the full potential equation. Thus, in
the analysis mode, we are solving

(oo, )+ oo 1.=0 (la)
with

17y~

p/pm-[u———w (1-9¢2- ¢§>] (1b)

where ¢ is the velocity potential and p the density. If we limit
our consideration to fictitious gases for which the density is a
function of the square of the velocity, viz., p=p(g?), where
q?=U?[¢2+¢?], then gas laws of the form

P<l for

p/p.=(a./q)* g>a, (o)
will insure elliptic behavior; P=1 gives parabolic behavior
and the fictitious and real gases have the same value of
(dp/dq),. An alternative choice, and the one used most
extensively here, is P=0; in this case, Eq. (la) becomes
Laplace’s equation. When the flow would normally be
hyperbolic, Eq. (1a) is now solved with the density-velocity
relationship of Eq. (Ic). A fictitious mass flow, which
matches the real mass flux at the sonic surface, is thereby
conserved and the velocity field remains irrotational.

For three-dimensional flows we have used the Ballhaus-
Bailey-Frick algorithm,'® as implemented by Mason et al.'?
This is a small perturbation calculation, and the classical

conservative formulation is adopted here. Thus, in an
equivalent form, we solve the system

-Va(y+Di{u?}, +v,+w. =0 (2a)

v.—w,=0 (2b)

u,—w,=0 (20)

where the velocity vector is g=a,{(1 + w)i+ vj+ wk].

A simple modification, Eq. (2), is to replace [u?}, by -
sgn(u) {u?}, for all u. This system is elliptic, except on the
sonic surface where ¥=0. We may think of the first of Eqgs.
(2) as being the consequence of the small perturbation ex-
pansion for the density, viz.,

p 1

__..__1=_u_
Pe

v -

2 3)

u

whereas the fictitious equation, with u replaced by — lul for
u>0, results from

+3
—p——l=—u+7

Pe

ul

)

This fictitious gas has the same value for (dp/du), as the real
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solve Eqs. (2) with {u?], replaced by —sgn(u){u?],; this
corresponds to using the densities given by Eqs. (3) and (4) for
u<0and u>0, respectively.

Calculation of the Hyperbolic Flowfield

As previously described, we calculate the flow past a body
using the correct equations when the flow is subsonic and a
modified, incorrect, set of equations when the flow is
supersonic. This calculation serves to define sonic surfaces on
which the flowfield calculation is switched from the correct
equations to the modified ones. Outside this surface,
presuming the trailing edge of the wing is subsonic, the
solution satisfies the correct equations, and the potential at
infinity has the correct value for the circulation. If infinity in
the physical plane is not mapped to a finite part of the
computational plane, then there is, in principle, a need to
correct the doublet and nonlinear contributions; in practice,
these contributions are small and changes in them negligible.
Thus, the flow in the elliptic, subsonic domains is fixed and
known, as are the initial data we need on the parabolic sur-
face.

For two-dimensional flows, the calculation of the correct
hyperbolic behavior is carried out using the method of
characteristics. This is done in a hodograph-like working
plane in which the characteristics are orthogonal straight
lines. If we take £ =6+v and n=0—v, where 8 is the flow
deflection angle and » the Prandtl-Meyer turning angle, then
the velocity potential and stream function satisfy

¢L-K(E n)% ¢__K(£ n)%

or, equivalently,

&)

dv

- ~1
dé +K

£,m=const

where the =+ signs refer to £,7=const, respectively. Here

K(v)=Kp(@)]={ IM2(q) =11} "p(0)/p(q)

Values for the velocity potential on the parabolic line,
z=2*(x), and the shape of this line are used along with the
usual relations between the spatial coordinates and ¢ and ¢ to
find ¥ on the sonic line. These initial data are then integrated
using Egs. (5) to determine the locus ¥ (x,2) =0 which passes
through the intersection of the sonic line with the body sur-
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face. The values of z for which ¥ (x,z) =0 determine the new
body shape. This shape will have the same slope and, at least
theoretically, the same curvature, as the original body at the
sonic points. This follows from the observation that flow
quantities are not changed at the sonic line; thus, the
streamwise momentum and normal pressure gradient are
unchanged. Consequently, the local flow curvature must be
the same.

For three-dimensional flows, the calculation of the
hyperbolic flowfield is carried out by a procedure that
marches inward from the sonic surface by successive surfaces
of constant density (isopycnics) for the full potential
equation, or constant axial flow speed u for the small per-
turbation equation. We limit our discussion to the small
perturbation equations, as all the results reported here are
derived from them. Preliminary results using the full potential
equations have been obtained by N. J. Yu.

We may either write Egs. (2) in the appropriately scaled
form or work with them directly as we will do here.

We are given an isotach surface z* (x,y), as shown in Fig. 2,
on which we know w=u*=const, w=w*(x,y), and
v=0v*(x,y). We use the data on this surface, and the surface
shape, to calculate

wo Wy,

FATY A vy, Uy (6)

Because these data satisfy Egs. (2), we can verify that
V=W 2wy

which can be used, if needed, to check the consistency of the

initial data. The values given in Eq. (6) can now be used to

calculate the z derivatives of u, w, v on z*(x,y), where
u(x,y,z*)=const, by using

u.=[zoy —zyvr—-wil/J (7a)
w ={(y+ DHu*gwi—zrwr+ull/d (7b)
v.=[ly+Dutziv—wi-zvil/J (7¢)

where J, the Jacobian, a (u,v,w) /9 (x,»,2), is:
J=(y+Du*z -z22 -1

When the Jacobian, which is initially negative, vanishes, we
can no longer compute the z derivatives; this corresponds to
the subsequent formation of multivalued solutions, i.e., limit
surfaces. 1f J=0 occurs before the calculations produce a
suitable stream surface defined by w(x,y,0), v(x,»,0), then
they must be rejected.

With Eq. (7a) inverted to give (dz/du),, we take a set in-
crement in u, Au, to form a new isotach surface
2*(x,y) +Az* (x,¥). This new shape, along with the mean
value of u between the two surfaces and the second and third
of Eqs. (7), provides the new values, w*(x,y) +Aw*(x,y),
v*(x,») +Av* (x,y), of w* and v* on the next isotach. These
values and the shape of the subsequent isotach are then
converted to continuous functions by one-dimensional cubic
splines in the x and y coordinates. This ‘‘onion-peel”’-like
process is then continued until z=0, unless a limit surface
intervenes. In the latter event, the solution must be rejected. A
more detailed discussion of this procedure is given in Ref. 20.

Two-Dimensional Resuits
We have explored rather cxtensively some of the
modifications that can be made to an existing airfoil, namely,
an NACA 64A410 airfoil, to obtain shock-free flow. We will

call this the baseline airfoil; the airfoil shapes we generate are
identical with this airfoil over that nortion wetted bv subsonic
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Fig. 3 Comparison of the pressure coefficients and sonic lines for the
baseline NACA 64A410 and the shock-free airfoil obtained from it by
the direct design procedure.
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Fig. 4 Parameter space explored for the shock-free airfoils that can
be obtained when the baseline configuration is an NACA 64A410
airfoil.

flow; we need only modify the airfoil over a limited portion of
its upper surface to obtain shock-free flows. Further, this
modification is not unique for fixed flight conditions; rather,
if one such shape exists, there usually will be a family of
modifications of the baseline airfoil that will produce shock-
free flow corresponding to different gas laws. Modifications
to NACA 0012 and 64A410 airfoils that resulted in shock-free
flows were reported by Eberle in Ref. 21.

With a baseline airfoil selected here mainly for illustrative
purposes, we then pick a set of flight conditions for which we
wish to find a modification of the airfoil shape that will result
in shock-free flow. We choose M, =0.72 and the angle of
attack «=0.4 deg. At these conditions inviscid flow
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Fig. 5 Comparison of the pressure coefficient and the sonic line
obtained by the design calculation that modifies the airfoil shape with
those obtained by compuling the flow past the modified airfoil.

of 0.78 and a C,, of 0.0064. The design procedure discussed
earlier results in an airfoil that is 9.3% thick with a lift
coefficient of 0.703. The original and design pressure coef-
ficient, sonic lines and body shapes are compared in Fig. 3a;
these results and all other ‘‘analysis’’ results were computed
using the numerical algorithm of Ref. 16. Figure 3b compares
the pressure coefficients and sonic lines determined by the
design procedure with those computed for the design airfoil
shape.

With this shock-free design established at M=0.72 and
with C;, =0.70, we now wish to determine the families of
shapes that provide shock-free flow for a fixed lift coefficient
as the Mach number varies, and a fixed Mach number as the
lift coefficient varies. This has been done with P=0; that is,
with a constant density fictitious gas (at the critical value),
requiring an iterative procedure for the case at fixed lift
coefficient. Other shapes were then explored that will produce
the same lift coefficient, 0.70, at a fixed Mach number by

taking P to be —0.5, 0.5, and 1.0. Also, for P=0 we have.

determined the maximum Mach number for which the design
procedure will produce a shock-free airfoil as a function, of
lift coefficient. This Mach number is nearly a linear function
of lift coefficient at larger lift coefficients. The slope of this
variation is consistent with that given by Boerstoel.2?
Preliminary studies also indicate that for a fixed lift coef-
ficient of 0.6-0.7, an 0.1% increase in the maximurn Mach
number requires about an 0.2% reduction in the thic'kness for
shock-free flow when the nominal thickness is abhout 10%.
This result is less optimistic than the envelope of the
hodograph designs given by Boerstoel, 22 who found that only
an 0.1% reduction was required. In our studdy the generic

LS DR Y N A



726

ORIGINAL AIRFOIL Mg =066,a = 0.89°

Y SCALE = Sw{X SCALE)
Fig. 6 Shock-free airfoil shapes for fixed lift coefficient C;, =0.70
and varying Mach number. The fictitious gas has a constant density in

the supersonic domain (P=0). The baseline airfoil is an NACA
64A410.
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Fig. 7 Shock-free airfoil shapes for fixed Mach number M_ =0.72
and varying lift coefficient. The fictitious gas has a constant density in
the supersonic domain (P=0). The baseline airfoil is an NACA
64A410.

modifications required when the baseline airfoil is near the
envelope of hodograph designs. Positive values of P provide
less airfoil thickness reduction, since the fictitious and real-
gas densities are more nearly the same. The range of our
airfoil studies is depicted in Fig. 4, with shock-free airfoils
being determined for the points indicated. Also shown in Fig.
4 is the maximum Mach number for which a design was found
as a function of lift coefficient for P=0.

The accuracy of the design procedure was studied at a
number of design points by comparing the design’s pressure
distribution and sonic line shape with those obtained using the
unmodified numerical algorithm to analyze the design airfoil
shape. Typical results are shown in Fig. 5. The sonic line
shape and initial data on the sonic line are determined in the
circle-plane; then they are mapped back to the physical plane.
The method of characteristics in the hodograph variables is
used to compute the design pressure coefficient corresponding
to the calculated airfoil surface shape. The agreement, as
shown, is excellent. For designs that approach the Mach
number at which a limit line first penetrates the surface,
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Fig. 8 Shock-free airfoils for fixed Mach number M_ =0.72 and lift
coefficient C, =0.70, varying the exponent P of Eq. (Ic) and thus
changing the density's dependence on flow speed. The baseline airfoil
is an NACA 64A410.

obtain a converged solution. These designs have very rapid
expansions immediately following the sonic line. Indeed, as
Boerstoel*? has noted, the analysis code used with an op-
timization scheme will not produce designs of this character.

The shock-free airfoil shapes that are obtained for fixed C,
and P, fixed M, and P, and fixed M, and C, at various Ps,
are shown in Figs. 6-8. One can overlay the results for fixed
C, and find quite similar airfoil shapes that are shock-free
over a range of Mach numbers. Because modifications to the
baseline airfoil are required only over a limited portion of the
upper surface, and a family of specified changes in the airfoil
curvature is known for each set of flight conditions, a closely
related family of shock-free airfoil shapes can be generated.
Thus, the minor modifications to a limited portion of a wing
surface needed to produce shock-free flow over a practical
range of flight conditions can be easily determined.

Three-Dimensional Results

Our first design results using the method just described
were for two-dimensional, small perturbation flow past a
parabolic arc airfoil. Consequently, we initiated our three-
dimensional studies with a rectangular, unswept wing having
an aspect ratio of six and a parabolic arc airfoil. We utilized
the small perturbation approximation, Egs. (2), and a
parabolic thickness distribution; the airfoil was taken to be
6% thick at the centerplane. The flow was calculated using the
algorithm of Ref. 19, modified to return the equations to
elliptic behavior as described earlier. The initial data on the
embedded sonic surface were then used to compute the correct
flow in the supersonic domain using the ‘‘onion-peel”’
algorithm of Ref. 20. This defines new wing surface slopes.
The flow past this shock-free design was then analyzed using
the modified numerical algorithm. Figure 9 compares the
pressure distributions on the original and design wing at
various lateral positions for M = 0.87. Also shown are the
cross sections of the sonic surface at the same lateral stations.
The only essential differences in the pressure occur in the
supersonic domain, which is consistent with the design
process. The modifications made to the wing slope, shown in
Fig. 10 for several lateral stations, have eliminated the shock
wave,

A subsequent, more realistic, calculation was made for the
planform sketched in Fig. 11. The wing section chosen was an
NACA 64A410 profile at the center section and an elliptic
thickness distribution. The leading-edge sweep was taken to
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ANALYSIS OF DESIGNED WING
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Fig. 9 Sonic surface for the shock-free rectangular
wing obtained by modifying a wing with a parabolic arc
airfoil section and the pressure coefficients on the
original and modified wing, as calculated by the
numerical algorithm of Ref. 19. The thickness
distribution of the baseline wing is parabolicin y/c.
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Fig. 10 Changes required in the surface slope at various lateral
stations to provide shock-free flow over the rectangular wing of
Fig. 9.

ratio was 5. The sonic surface is also depicted in Fig. 11.
Figure 12 compares the pressure coefficients on the upper
surface of the original wing and the wing designed to be shock
free. While the reduction in drag for this wing is small
compared to the induced drag, it is clear that the wing
modifications have essentially eliminated the shock waves,
and, consequently, the wave drag. More importantly, shock
wave induced boundary-layer separation is avoided. Im-
pressive results for the ONERA M6 planform have been
obtained by Yu?2? using the full potential equation.

At this point we stress that the preceding comparison is
obtained by computing the flow past the original wing and the

decion wino ncino the came numoerical alanrithm Thae nrarace

!

that leads to the new wing shape also provides the pressure on
the wing.

Conclusion

A novel and simple procedure for determining
modifications that will make a baseline configuration shock-
free for supercritical flight conditions has been delineated.
For two-dimensional, inviscid flows, shock-free designs are
obtained in seconds on a CYBER 175. Families of airfoils that
are shock free at fixed, as well as varying, flight conditions
are found. The same procedure has been applied to three-
dimensional wings, resulting in wing modifications that make
the wings shock-free when the flow is analyzed with the
numerical algorithm that was modified to become a design
tool. It can also be applied to the design of shock-free
cascades. A unique feature of the procedure is that any code
that is effective in computing the flowfield may be modified in
various ways to be a design algorithm, if it is coupled with a
method for calculating the solution in the supersonic domains
for given data on the sonic surfaces. A straightforward
marching technique for such computations is described for
three-dimensional flows: in two dimensions, either the
marching procedure or the method of characteristics may be
used for the supersonic domain. The algorithm for the
supersonic domain serves to define the modifications needed
in the configuration to achieve shock-free flow; these
modifications will be limited to that portion of the design

chana that ara wattad hu cnimareanin flaw
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Fig. 11 Sonic surface on the shock-free swept wing designed from a wing with an NACA 64A410 center section profile and an elliptic thickness

distribution. The leading edge sweep is 30 deg: the trailing edge sweep 15 deg.
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Fig. 12 Comparison of the computed pressure coeffcient on the wing of Fig. 11 with an NACA 64A410 center section profile and an elliptic
thickness distribution, with the pressure coefficient obtained by computing the flow past the modified wing using the same numerical algorithm.
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RELATED ANALYTICAL, ANALOG AND NUMERICAL METHODS
IN¥TRANSONIC AIRFOIL DESIGN

Helmiut Sobieczky™*,

DFVLR Géttingen, West Germany,

Absiract

Design methods for iransonic airfoils are pres-
enied logether with a review of the preceding
analytical and analog flow studies both in hodo-
graph and physical space. Transonic analytical
resuits 1or cusped airfoils in sonic flow provide
details of solution structures in hodograph planes
to formulate a new transonic boundary value
problem. This is used subsequently for exiension
of the classical rheoelectiric analogy for sub-
sonic flow modelling, into the transonic regime.
Airfoil design with the resulting hybrid tech-
nique is described. Replacement of the analogy
by numericai solver roulines in the hodograph
plane finally leads to an application in physical
space and the development of effective computer
codes suitable jor design of shock-free airfoil

families inciluding adaplive wing seciions.

1. INTRODUCTION

The development of airfoils in the past has
always been an imporiant {irst step in design
aerodynamics. More recently, requirements for
increased efficiency have forced the operating
conditions of aircrafi and turbomachinery into
the iransonic regime. Broad emphasis is stll
iaid, therefore, on the development of two-
dimensional design components like airfoils

and cascades in the high speed regime'. Vari-
ous computational algorithms have been devel-
oped for analysis of iransonic flow past given
airfoils, but only few methods are available to
the design engineer for airfoil shape definition

wilh specified properiies.

*
Adjunct Professor, University of Arizons;
Member, AIAA

Research reported here was carried ou: within
the past six years at the DFVLR in Germany

and since 1977 at the University of Arizona. It

is the purpose of this paper to demonsirate
coherence between the first basic ana'yviical
models and recent effective computer codes
resulting from our research, including a method
which belongs actually into pre-computer time
but proved to have a high educational value:

the Rheoe'lectiric Analogy. This method was used
two decades ago for investigation of complicated
two- and three-dimensional potential distributions
and had useful applications in aercdynamics.
However, principal diifficulties arised in the high
speed subsonic flow regime which prohibited an
application for transonic flow research when still
no practically useful caiculation methods for tius
field of growing imporiance were available. These
difficulties, however, were overcome bv the
author in the case of design problems with

the aid of the aforementioned analyvtical findings
and an experimental anaiog procedure was devel-
oped 1o obtain airfoil designs of satlisiacilory

accuracy.

In the meantime, within the past five vears, we
witnessed the rapid development and widely dis-
tributed availability of numerical solver routines
for partial differential equations. It was, there-
fore, necessary 1o transfer gained experience

and techniques from the analog flow experiments .
to more economical digital computer programming.
Application of numerical subroutines and finally
the conversion of whole well-establiched analysis
codes into effective design tools are our current
practical results resting on previous basic

experiments and solutions.



BELTRAMI DIFFERENTIAL EQUATION iXN

PLANE POTENTIAL THEORY

2 1 Potenuial flow in 2D physical space

Ve consider steady, two-dimensional, 1seniropic
and irrotational flow of & polviropic. inviscid
gas The basic equations ol moton are then
cetermined by

- :
lal

(1b)

div (Q vi= 0,
curi (W =0 s
the continuity equation and irrotationalily, re-
spectively, with ¢ the density and ¥ the veloc-
ity vecior in physical space. lsentropic gas
properiies deltermine velocity q, sonic velocity
@ and density @ as functions of the Mach num-
ber M, for given stagnalion conditions, denoted

here with subscript 0:

-
g = v = al
2.2 a-l 2 (2)
a 210- 5 q
- 1

; ~-l 27541
Q: = (1 === A7) = F (D)

¢ 2

With (la, 1b! we n.av define a velocily potential
¢) and a stream funcuon Y, wilh their gradients
1n tne two directions X, v of 2D physical space

equal to the velocity components u, Vv in these

dgirections:
(n
(Iy:——q y =u=qcosd,
X g Yy
. €, (3}
S e e = v = 3 Q
@\, 3 l;x v =g sin ¥,

where ¢ is the {low angle. The system (3)is a
generalisation of the Cauchy - Riemann equations,
socalled Belirami equations. Elimination of [
or ¢ yields Poisson equations for ¢ or {,

respeclively:

B Q.\I Q\' X
QNX *q’}.y s - —Q~ Q)x - —-é- (iry (4a)
: -
L TR (4b)

with ¢ a function (2) of N, and thereiore

2 W2
Q=Q{q./a):Q‘¢‘\:' Q\*” (5)

the systen: (3: and the equaiions !+ are nonlinear
Furthermore, the sysien. is of elliptic tvpe when
Al <1, and of hyperbolic 'vpe when N > 1 with
& parabolic iyvpe dividing line M = 1, the sonic

»
line.

2. 2 Potentia! {low in the Hodograuvh p.ane

The aforementioned nonlineari:y of the basic
system (3) may be avoided il a new pair of inde-
pendent variables 1is introduced to replace phys:-
cal coordinatles x, ¥. These variables are suit-
able functions of the velocity components, ihey
are caiied hodograph variables. A special pair

of such variables is consisting of the {low angie
¢ and a function of the Mach number, known

also as the Prandtl-Meyer wurning angle

q
! 2
P PR V.1 X (6.
q
ai
with a* defining the critical velocity.
The coefficient
o /', 2
K=K(M(UH=—O—'-’ NMT -1 (7

will also be used in the following systen:.
The new variables ¥, $ may either be used
directly to define a hodograph plane wherein the

basic Beltrami svstem becomes linear:

> >
(v <0, M <1

"

¢

» = K(V)I;'S,

(6

d = KoY, .
or y and 3 more generally are functlions of a
computational working plane obtained from the
basic vy, & hodograph by conformal {{for M £ 1}
or characteristic (for M Z 1) mapping. For sub-
sonic flow including sonic conditions, (N <1, o

v < 0}, conformal mapping defines a working

plane {,
Ly
c():y-i\‘j' (9a
g = s+11=E(c0) 9b

with the mapping funciion E. The basic system

in { becomes then



q)s = -K s, U)oy
{10)
d»l = KWwis, 1) |,
with
-1
vie, 1} = Re(E " (g
(11}

Sus, o ImET )

Equations (10) forn:, as ($), a linear Belirami
svsiem, Wwhile (3) is nonlinear. Eliminatior of
U or @ vields linear Poisson equations for ¢

or U, respectiveiy:

Ks KI
<+ = Lo 7 a)
d)ss ' q)n K s * K d)l (12a)
K_ K!
; FU M = _ [ A )
liss Vo= - N I*s' N Wy (12b)

As we will see later, boundary value problems

for practically interesting solutions of the basic
svstem: (8) may be significantly simpler 1o solve
in & working plane { with (i0) rather than ir the

originat {0 where (8) iz valid.

The same is true, in principle, for the super-
sonic part of the flow. Here we introduce
characterisiic variables with a suilable mapping

function H,

§ = H(\:*"V),

(13
n = H{-yp),
vielding the system valid in the £, n plane
K. n)V
¢, &y,
(14)
==K (e, n) |
¢, vie.n) ¥
or eguivalently,
ayy IS | -
d—é- = =z K {10)

£, n = const

which is the basic relation for the method of
characteristics 1o integrate the flow equations
(&) for M > 1.

/o3

2.3 Near sonic flow in ihe nodograph plane

A given solution of (8) allows the integration of

physical coordinates x, ¥ with the formule

0

. ¢
dz = dx +1dy = e "o - iF"J dW'e (16

For flows with only sma.l periurbations ¢ a

sonic parailel flow,
(M- 1) <1,

9 < =/2

we may eliminate ¢ and | so tha: a basic
system for the physical plane coordinates X, v
is obtained. Furthermore, introduction of &
similarity parameter g allows the use of re-
duced variables for place (x, y) and staie (q, &
which contain the weil-known Transonic simi-

larity laws 2

T=¢ 3
(18
N = Q/ax
1
. 1/ 1/3 - 103,
NS A LA TP NPT Py ran

with posilive S for q2 a* and negative S ‘or
q £ a*, thus S = 0 equivalent 1 sonic flow con-

ditions.

The basic system (8) then vields a corresponding
Beltrami system for the reduced physical plane
Variables X, Y in the reduced variables of state

working plane S, T:

~s

173 (19)

Linearity again, and the simple siructure of the
coefficient gave rise 10 extensive studies of this
svstem and the structure of its solutions. I is
equivalent 1o the well known Tricomi equatlion
for near sonic flow®. Also, it is a special case
{ Generalized Axisymmetric Potential Theor}".

. . . s
Numerous particular solutions were described



and usec for betier undersianding uA experimer-
taliy observed transoric {low phenomena zat 2
time, when compulers and numerica. methods
were still not availabie. An anaiyviical example
for transonic airfoil flow will illusirate the

possibililies of this approach

2. 4 Cieciric Potentia:! in 2 Plane Conductlor

Le! us consider the distribution of eiectric cur-
rent in a ithree-dimensional conductor. Let E be
the elecirical potential and A (x, ¥, z) be the
conductivity. The intensity of current, di, which
crosses a surface element, dS is given by Ohm's
law:

o SE
an

di = ds (200

where n is the surface normai to dS. In the case
of z :wo-dimensional (x, v) conductor, variable
conductivity can be simulated by constant conduc-
tivity but variable thickness distribution, h (x, v),
o: 'ne conduclor. The current intensitv, di,
croscing the surface element, ds, described by
“he perpendiculars along the arc, ds, in the x, v

plane, 1g
di = - X - h(x, \~)-d—E— ds (21)
o dn

Wik the assumption of censervaiion withir the

canduclor,
div (h grad L) = 0, (22)

a pariial dilferental equation is obtlained then

for E:
h h

R 2 g . 2E (23)
XX vy h X h 7y

There exists, moreover, a current function, W,
which is associaled to the electrical potential by

‘ne Belirami system

IH

Ex= Th \'\}',
1 (24)
E).=- h \\‘\

Hawving described fiows by different forms of
Bellran.i equalions earlier, we note here the

analogy beiween subsonic gas flow and eleciric

current veriables: ihere are obviously 1wo vpes

. . 6,7 L
oi ana.cgr'’, called Rheoeclectiric Analogies A
and B:

Analogv A

Ve w (25
o/¢ «Equ. {31
Ah 2 1°
K’ (Equ. (8), (101"
Analogy B
¢ 2w
T 2 E 126

K Equ. (8), (10j.

As we stated earlier, the existence of 1he

analogies led to many applications, main'y ¢
solve svstem (3) for complicated fiow boungary
conditions and most effectively for the incon,-
pressible limit o = g, al a time when compulers
where not operational or available. From an
experimental standpoin:, the simpler operauon
is the measurement of the elecirical potential,

E. Analogy A thus gives with measured elecirica.
potential a distribution of ¢ in the analog warking
plane (x, ¥}, (b, ®) or (s, 1) in {3), (& or {10y,
respectively, while analogy B provides & sclu-
tion of the U-distribution, for & given and &nz-
logously soived boundary value problem in the

phyvsical or hodograph piane.

It is the purpoce of this paper to illusirate sone
applications of the outlined analogies to iransonic
flow probiems, in particular airfoil design. At

a time when the analogy already was used for

', transonic applications

numerous problems
seemed impossible due 1o difficulties near the

sonic flow conditions, as will be illusirated later.

The following chapter will outline a new idea,
which led to fruitful use of the analogy in trans-
onic airfoil design Al the same lime, however,
digitai computers became widely used and a:

first the use of analog computation of pureiy




e:liptic (subsonic flov’) probiems was more or
iess ierminaied. But iransonic computlational
serodvnamics remained a problem so that at
leas: few researchers considered 1t worth te in-
vestigate the use of analog computation. Results

shown in this paper stem Ironi such research.

Tirally, however, rapid progress in numerical
methods - also in transonic aerodvnamics-
invited to introduce some of the ideas developed
with the analogy into digital computation and

thus obtain solutions now much more economi-
cally. Results of these methods are presented
here, too, and it is the purpose of this paper

ic present a recent effective numerical approach
10 iransonic airfoil design as a logical siep to

be taken afier some very educational experiments

with rheoelectric analogy.

3. A TWQ-STEZP DESIGN PROCEDURE FOR
TRANSONIC FLOW

%. 1 Elliptic Continuation Principle and loca:

supersonic flow fields

Le: us recall tne basic equations (8) in the work-
ing plane Lo /8). Since the name "Hodograph
plane” is usually associated with the plane def-
1ined by the velocity components u, v (3), we

will use here the more general description
"Rheograph" for planes like Ly or ¢. With this
name it is intended 10 relate 1o the applicability
of ithe rheoelectric analogy for description of

two-dimensional gas flow.

Equations (8) are elliptic in 'he subsonic half
plane {1+ < 0, 9) and hyperbolic in the supersonic
nall plane (p > 0, §). A iransonic flow example
with occurrence of mixed subsonic - supersonic
flow, say, a local supersonic region embedded
in subsonic flow, with smooth iransition o the
flow properties across the sonic line wili, there-
fore, map into contacting regions E and H in
Rneograph go. see Fig. la, b. We wish to de-
scribe quantitatively a solution of system (8)

representing such a flow and ask for a method.

s
/o0

For z subsonic {low example a boundary value
problem might be formulated in the physicz!
plane z as well as in the Rheograpn ¢o by pre-
scribing Neumann- or Dirichiet-conditions

along & given boundary. For our transonic prob-
terr. ihis would reguire the solution of a noniinear
equation (3) or (4) of miixed 1ype in z, or solution
o? the mixed type linear system (8:in Lo Ior the
latter the boundary value probien in Lo is no:
well posed’. Tricom.i's voundary value problem‘o
is the proper formulation in Co' it is different
from: prescribing an arc [ = cons! in the super-

sonic part of the Rheograph CO'

We propose a different way o formutate the prob-
lem in CO' This is possible if we resirict ourself
10 obtain some solution with a resulting closed

arc § = const and not wath a prescribed one

First, we omit the change of sign in the Hirs:
equations (8). We 1ake the negatlive sign for both
half-planes p Z 0, thus having an elliplic system
for the subsonic and the supersonic Rheograph
§0. We now define a boundary vaiue problen, Jor
thiz linear, elliptic system, as skeiched in Fig
2a. It is well posed and we assume 10 have &
method o obtain a solution. This solution will,
locally, be one of the correct mixed type system:

(8) in region E, where y < 0, but it iz a Jicu-

1
tious one in E,_ for v >0, because reai con:-
pressible flow requires solution of the hyper-
bolic part of {8) with the possitive sign fory > G.
The solution in I, has here the purpose 10 pro-

vide a reasonable solution in E1 with sonic line

data

Pr (9 =G (v =0 9, 2929}

Ux (8) = § (v =0, SA 282\‘}8)

This can be achieved also with some modilication
of the fictitious elliptic system in E:

The coefficient K{y! can be changec in some
prescribed way, as long as il stayvs rea. and

positive in E,. One possibility is taking sirmply

K >0 = K_ = const (28)

a



Figure 1 - 4. Elliptic Continuation Principle

which would result in a Cauchy-Riemann sysiem
in E,. Inthis case, the partin E_ of the elliptic
soiullon can then easily be described anaiyticaliy
i’ the resuliing data O, {* (9% aty = 0 are ex-

panded in terms of a harmonic analysis

There is also a physical interpretation for this
artificial solution in the flow plane x, y if v in

E_ is reinterpreted

2

g
V(E,‘z\=v£=ln—§; {29)

and Kp takes tne vatue QO/Q*:

The solution of the elliptic system in E, repre-

sents an example of "supersonic incompressible
“low" with critical constant density ¢*, embedded
into the subsonic compressible solurion obtained
irn E_,

1
importan:, the sireamline [ = §'* = |'x
! Y7 URAC U

see Fig. 2b. Streamlines, and most
= const.
defining our {low boundary for this fictitious

ilow, are integrated by use of (16) with the ve-

r75€

locity variables ar %, and ¢ = o*. The whole
solution in El +E, results in a flow with density
obeving isentropic flow relations (2} only up to
sonic velocity, bevond it density is ‘rozen 10 the
critical value. This interpretation led 1o a design

1" . ) ) )
method which is not restricted 10 two-dimern-

sional flow, results will be presented later.

e return now to our problem in the plane CO'
We still have to solve the equations for the real
supersonic part of theflow, represented by the
hyperbolic system (8) with positive sign and valid
in the half plane CO (v > 0). We choose the
characteristic form of this sysiem as outlined

in (13) - (15). With the given data ¢=, §* alopg
the 9.axis in the given interval A B we can
solve this initial value problem at the sonic line
with the method of characteristics. Atlthough
well known and used {or many practical probilems

we would like 1o stress the fact, that we solve



L

the sysiern. in the characleristic triangie A BC

'

(Fig. 3a) by calculating downsiream aiwon

[Le]

charactieristics ¢ = const, and upsirean. along
characteristics i = const, with ¢, n definedin
{13). Stariing at AB we proceed towvard C, the
method therefore being a miarching procedure
normal 1o the flow direction, from the sonic line
10 a suriace sireamline yet 1o be determinec.
This concep: is, 1n principle, also used in a
procedure 1o calculate three-dimensional flow

. 1 . . .
:‘1eLdsn’3. A line I = lp’g = = const. is found

Vg
ir triangle ABC (it is different from the pre-
scribed boundary in E_1) and if it does not inter-
sect one of the characteristics § = const and

n = cons'. more than once, then iis integration
(16) in the physical plane, see Fig. 3b, will give
a new streamline arc AB and, along it, a veloc-
ity anc pressure distribution. \We use only the
part between this sireamline and the sonic line

for our {low example and call this flow field }IIA

WWe go back now to our a'l-eliiptic solution El -

E,, Fig. 2b, and replace the part E

ihe surface streamline arc AE by the soluiion

, and also

H, and iis new arc AB of Fig. 3b. This gives

—

us & mixed subsonic - supersonic flow field which
1s a solution of the linear mixed system {8} in
the hodograph plane, Fig. 4a, but also one of
e nonlinear mixed sysiem (3}, or equations
741, :n the physical plane, Fig. 4b. It can be

snown, that the new arc AE ol H, fits smoothly

1
into the El subsonic {low boundary, sireamline
curvalure acress any point on the sonic line is

coniinuous.

We have outlined a method 1o obiain solutions

for transonic flow, 1o be applied mainly to sub-
sonic fiowe with embedded local supersonic
regions. Applications to flows with predominantiy

supersonic flow and enibedded subsonic regions

involve the treatment of bow and tail shock waves,

resulis have been obtained {or airfoil flow with

w

oniy in special cases where analyiical solutions
of the near sonic equations (19} were applicabie.

An exampte will be illusirated later, to show

/75

irans:iiorn Ironm the problem of supercritice!
a2irfoil flow with subsonic {reecsirear. concitions.
to sonic anc slightly supersonic {rees.rear; con-
divions. However, supercritical flow is our main
concern here, and more precisely, “he use ¢f
the idea outlined for design of such fNows which

are shock-free.

3. 2 The Rheograph structure of supercritica.

airfeil flow

Tne structure of supercritical airioi! flow is well
known and needs no explanation here However,
some details are treated here shortiv because
they are of consequence for the practical indirect

design method which will be outlined :ater.

We know from incompressible {low past lifting
airfoils, that the isotachs in the flow field near
the pressure (lower) surface exhibit a saddie-
point. This is the result of localiy centracting
streamlines due to the far field-effective cir-
culation and the near field-effective budyv tnicx-
ness. For compressibie flow including suner-
criticai conditions with or without & recompres-
sion shock, this is equally true, lines of constani
local Mach number form a saddlepoin: N below
the lifting airfoil, see Fig. 2

This point is of

n
wn

interest for the marpping of a, sav, given resul

of airfoil flow Into cur Rheograph plane C("

onic or slightly supersonic {reesiream conditions

-4

Figure 5. Saddlepoint, lift coefficient and

Rheographs ;0, §2



because we wan: 10 know lhe principal siructure

7 the boundary conditions for such flows in order
o design new examples. The airioil imiage in
CO for shock-Iree flow shows two complications
in view of formulaiing a closed ellipiic boundary
value problem according to the first step of our

design procedure:

First, the stagnation point of the airfoii is
mapped into ¥ (M = 0) = - . Second, a pari of
the flow-field obviously covers the plane CO
twice, as indicated by the loop in the airfoil
image. The siructure of the field image has to
be completed now with the mapping of the afore-
mentioned saddlepoint N, defined by v (N..),

N
J,.. A second Riemann sheet provides the sec-

N
ond deck of CO’ it is connected with the basic
deck along a cut from the airfoil mapping inter-
section 10 the point N, forming a branchpoint
in the Rheograph ‘:O' A detailed description of
the mathematical structure of these flow prop-
erties has been given in'®. 1n arder 10 arrive at
a single-cheeted boundary value problem of
ciosed, finite structure we perform now two
mappings (Yi: first the stagnation point S is
moved into a finite domain with the mapping
eco .

¢, ° (30)

Another mapping unwraps the loop of the airfoil

image and we obtlain a single sheeted domain by

Cpoe @y - Clz\‘)l/2 :

y(NM_) +1i 3, (31)
CII\' = e N N
with ¢ an arbiirary scaling constant. The airfoil
image maps in {, into a closed curve including
the stagnation point S as illustrated in Fig. Sc.
The aforementioned saddlepoint maps into the
origin, the sonic line inic a Cassini curve or
ouler lemniscate with hal{ axes a, b. The ratio
b/a is a function of the local Mach number MI\'

in the saddiepoin::

b/a = - A\ (32)

,',-,'?

The value 1\'1\ ie related to the Mach number ay
infinity 1\100 ‘in a similar way as ihe velocities
in the saddlepoint and at infirity for an incom-
pressible flow exampie past @ Joukowsky airfoil
or a circular cylinder with circulation. These‘
latler examples are known analytically and from
these we arrive at the ratio M_./M _ as a {unc-
N (o)
tion oI the lift coefficient ¢

L :

2l
~ - Al 3
I\IN/MOO 1-Ac (33)

with a constant A. The circular cylinder example

gives at least an idea about the magnitude of A:

9
A~ 1/(2 7). (34)

These relations invite to be checked on airfoil
flow examples. We have a possibility to do this
with existing results for hodograph supercritical
airfoil design examples by I\'ieuv.'land's,
Boerstoel“, or by Garabedian and Korn'

Some of these authors' designs are evaluated in
Fig. 6, we see that the given relations (33), (34)

are fulfilled satisfactory for noi to00 large

-

by

We conclude that for given (b/a) in (22} and for
given Mm obsiously a certain band of 33 is
possible. We stress this fact because we will
later use an electric analog flow 100, which will
work with devices designed for fixed b/a where
the given relations and the diagram Fig. & pro-
vides possible lift coefficients ¢, (I b'a'.
L w'
1

x| X
Y
/|
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Nisuwlond Boerstoe!
x  (various designs)
+ (vorious designs )
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3 Free sirean. singularities in the Rueograph

p.ane

We further invesiigate the siruciure of supei-
critical flow in our working plane . \With the
r.apping of the airfoil intc a closed curve as
sketched in Fig 5c, the domain enclosed ig the
m:apping of the whole fiow. Infinity in the phyvs-
ical plane with M = M & = 0 maps into 2
point I, where the solution of sysiem (10) has

a singularity. It has the stiructure

C e -1
¢!_21\1§1=A(52.<2}) +Bln(C:,-C._,

The firsi term is a dipole, with the axig defined
by the complex coeificient A. The second term
is representing circulation, with B an inmagi-
nary coefficient. For nonlifting flow B vanishes
anc, in the case of a svmmetrical airioil, [ and
N coincide, MN = l\lm, the airfoil mapping is

svmmetrica! to the vertical axis of , For

ing airfoil flow the free siream singalarity

I is situated beiween saddlepoint N and the
sonic line Nl = 1. see Fig. Ta. For higher
subsonic Mach nunbers Mm' I mioves toward
the sonic line and, with ¢ fixed, MI\' there-
tore has 1o be higher too. This results in a
smaller "waist" b/a (32), as sketched Fig. 7b.
Finally, arriving at sonic freesirean: conditions,
the waist reduces io zero, Fig. Tc. This lim-
1ting case of airfoil flow with Mm = 1is already
bevord the relations (32) - (35%) for supercritical
conditions. Nevertheiess, it is an interesiing
1opic 1o study the change ol hodograph siructures

M

M _ =1, arriving fromi N < 1.
@ o)

{

Figure 7. Rheograph {, for freestream

condiiions N = 1
m

Airfoils with: round leading edge have a siagna-
“ion point, which resuiis in the fact, tha' the
arrioil image 1n [, inc.udes the mapped slagha-
tion peint S, see Fig Hc¢, or for sonic iree
stream conditions, Fig. 8a. There are ana'yv:-
1cal results of the near sonic equations (1Y) for
. 3,517 X
cusped airfoils in sonic {low, with & sharp
teading edge in smooth eniry conditions there-
fore having no siagnation point. The airfcil con-
tour wetted by subsoric flow mape inio & region
around the free stream singularity in I see
Fig. §b. This singularity is differen: irom, the
subsonic far field sotation (33), the iransition
from: one to the cther involves far fieid influence
of the iail shock wave, similar o ihe ‘ransition
from Mm >1 1o sonic iree stream involving tne
far field of a2 detached bow wave. The latter
problem is solved analylically" with use of the
transonic shock polar mapped into the near sonic

Rheograph Fig. 8c.

Ve give some detailed illusirations for the afere-
mentioned anaiyviical resulls of cusped airicos!
flow in Figures 8- 11 although their value or
practical flows is imited. On ‘he other hand,
hese resulls represent educalionatl exan.ples or
transonmce flow phienoriena, where ithe problen,

ie scived for the subsonic par: firs:, with the
supersonic part either given anaiviically together
with the subsonic resills, or being ceilculated
starling at suitable initial conditicns provided

by the subsonic solution.

|

; N |
.‘l'i \(ﬁ/ \1 BV
N
o b ¢

Figure 8. Rheograph {, for {reestream

P

(o}
conditions M 2 1
@



I terms of airioi: geomeiry, this exien: is
illusirated in Fig. i11bfora Guderiey cusp.
Stanc - off distance o a detached bow wiu e g4
obtained, €.g. fora 107 thick airiol’ the Low

wave attaches at \1 = 1. 17, The extern o7 1he
foe)

local subsonic fielg nermal to the flow direztinn
is large, as the far “1eld solution Fig. 11z indi.
cares. This is imporiant for wind tunne! iestg
wiih detached bow waves, where the tunne. wall
should not be reached by the subsonic fie.2. 2
10% thick Guderley - airfoi! placed in a wing

tunnel, at moo = 1.15 for instance, requires a

distance from airfoil to wall of about four tinies

the chord length, while the bow wave stand ndf

distance from the cusp is then only a Si7th 7 the
,

- 2 =30 Sn, 1] chord length.
Y- =T x~(7-l,',[2‘;w—:2 2 RSV Ly £
z I3 [ T o
Figare Y. Cusped lifling airfoil in sonic .
&l C & o ; I‘V-IM-;_”LZ.)‘/: {
) I 7 '
{reesiream I il Mo et .
, — _.--<:"\~_. \~
~g e
In F1g 9 the cusped airfoi’ and its geometry
N ° X T
. N T . [-% OOA \
‘ormu.e is drawn The sonic ‘ree-siream ; \
! ~.
M =1 nas a certain angie o avtack, g . which ’OE"*“‘
e

leade 1o sniooth entry condrtions, with g but
&.S0 he 10Ca. pressure on the airfori, lifi and

@rag, ‘unclions of the camber/thickness ratio

- . o M T
- T. see Fig. 10a, L. This analytical result ¢ e

'3 a2 generaitsation of Guderiey's cusp, where
. ) b4
« T = (. adecailed cgescripuorn is given in Figure 11. Detached bow wave:
a) Similarity solution for M = :
3%
’ ¢ e & = ! { 51 2 ~ : : )
There are results aiso for supersonic NMach b) Cusped airioil stand.ofs distance

nenbers, Figo 11a shows & configuration of &
bow wave and the local sybsonie fax fieldin a

siurrilarity flow piane, which illustrates the
i RHEOELECTRIC ANALOGY

e€xtent o a local subsonic region for I\Im ~ 1

4. 1. Rheoelectric tank for transonic flow

e nalog;\'

The structure of the particular solutions ysed
for the 1lusirated exampies gives informei.or
also abou: the deiails of the rapping near e

sonic une. p = 0. It s easy to verify, tha' z

o= — 2
.

i ISR solution for q; , U of svstem (2, describing an
—_—
Ccf-s' ;-U"“

e.erient of curved flow in ransition fron. sub-
Ficure 10, Cus lifel foil: § i oeniry g ;
£ure 20 Cusped lfting airfoil: Smootn entr sonic 1o supersonic flow, or reverse, ¢ ge.

1 if G \ . ; ;
conditions. hft, drag scribed by the locally valid expansior in S
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Gu, @ =¢me=-c -y T R =0T e (30

0/

LK 2 e s
Gip,oy=y=(at=c"" v SO O (v L8 (36

hie iz 2 very weakly singuiar behavior into the
1 - direction, 1 is a conseguence of generalized
axisvmmeiric potential theory meniloned eartier
and knowledge of this struciure enables us 10

a- oid certain difficuilies occurring when a solu-
tion (&) or (101 in [ has 1o be evaluated. The
fo.lowing description of transonic rheoeleciric
analogy mainly concentrates on outlining a tech-
nical solution for problems stemming {rom this

singularity.

7 rom definitions (23), (26) for the two iypes of
aralogy we see that local thickness h of a plane
conductor. multiplied by its conductivity A, is
anaiogous 1o the coefficien: K in analogy B, or
1o the reciproke }{_1 in analogy A. As we see
direc:ly from the near sonic equations (19}, the

coefficient has a cubic root zero at the sornic line

Km0 =Ke~ly > ° (37

which leads 1o the above mentioned exponeris
4.5 and 2/3 occurring in expansion {36). The
necessary requirement of a slowly variing thick-
ness h of a piane conductor for validity of the
plane Belirani sysier (24 for the elecirical

variables is therefore not fuliilied near the sonc

conductor thickness would have 10 go to

infinity or 1o rero with steep gradient.

A'mos: class:ical appiications of the analogy to
simulate aerodyvnamic problems some decades
ago include the compressible {low hodograph

. . L. 8,19
‘or subsonic flow ",

but iess actualily of trans-
oaic flow 2t this time in genera. and the above
n.entioned limitations stemming irom the zero in
1he coeificient (37) pronhibited an efficien: exten-
sion of the analogy inio the Mach number unity

regime

The i:rst acthor’'s research on the aforementionec
anaiviical structure of transornic flow in the

modilted hodograph plane, especially relation

3571 led 1o a practical design ¢f a new eiectrolyiic

tank - with water used as conductiar - which

Tlow

zl.ows an electric continuation of lhe anzicg
vevond the sonic line in a Rheograph . The
basic 1dee is ine use of an incinecd wal. bounc-
ary for the tank simulatior ol tne sonic ane. &s
shown in Fig. 12, The 1dea is tne uce o & (ocally
:hree-dimensional eleciric potential 1o be evei-
uated on the suriace. For Analogy A . Fig 12a.
sonic iine elecirodes are inclinec forming @ €7. 5
degree wedge of the watler body in the (v, 8, ui-
space. (n the surface y = 0, where eieciric
poientia’ is evaluated, exponent 4/3 for repre-
sentanion of {30 a) is observed and undersiooc

easilv ag a result of the local polential cisiri-

butiorn in the (v, p)-plane.

In Fig. 12b the idea is iliustrated for Analogy

bty

B: here we have an undercut sonic line with &

133°

water body 1o represent ihe exponea: 23

in (36 bl

f

\ Apalogy for velocity potential

/6 ")

b) Analogy for stream function Yu
Figure 12. Electrolytic tank Jor transonic {low

analogies



The 1dez of the ana'yviical proper - eva.uziion on the digitel conppuier. 3 s

ties of transonic f.ow in our Rheograph pilane. simulation of the rnecelectric tank with variab.e

& generalizaiion of axisymme:iric poteniia. dis- derih was achieved with accepiabie accuracy

iribution: the "Inclined Electroiviic Tank” or througzn the use of compressed sheels o graphile

e ryperbolic shape botiom with a 45 degree paper, the sheels shapecd parz.ie. 1o iso’achs 1n

wedge waier body is familiar 1o researchers the andwogy plane ¢ in order o simulate 0w

having used the anaiogy 1o represent incon:- Fig. 13 shows a cut view through 2 reclargulav

rressible axisymmetric flows ™20 “dry lank” outfiited with a gri¢ of probes Bu-

tween top and boitom plaie, and an elastic cu

4. 2. Application of the analogy for design of layer, ihe graphite paper sheeis are placed.

Supercritical airfoiis Thebasic sheet extends into the regime v > (¢ of

the Rheograph plane, where tne flow rray be
e outlined idea of the inclined tank walis influenced by source distributions. The basic
v o1ds the technical difficulties with infinite or sheet also 15 provided with electrodes for sing.-
zero depth of the electrolytic tank, but also larity representation. in the case of a sabsonic
@..ows the eleciric continuation of ihe potential lifling airfoil with a quadrupole in order lo rep-

1siributior vond e line der 1o . .
disiribution beyond the soric line in order resent a dipole with arbitrary ¢rientatior.

¢siablish a certain distribution on i, see Fig.

12 While the tank with water as conductior is a A sei-up for Anaiogy B has been estabiished anc
- - . < . 3 - - e . . .
very eaccurale way to mode! tne anzlogy, there for airfoil design applicaiion, Rheograph ¢ 1=
are other possibillties avoiding this "wet" i - : . - T
are cther possibiaiies avolaing this "wet” tech the working plane with the useiu! relations (21 -
Qe And sili 0: acceptav.e accuracy. One s (34! for Llting airfoils. In Fig. l4a the 7:icd o
The Lwse 0! concacung graphite paper. 1t 1s, of . . . L.

ewse o [CHng grap e s probes is drawn. with exierna. [iow and sing.-
course, oY constant thickness and has therefore larity feeding elecirodes. The iatter are placed
L - t 1 « B -3 . - . .
o DE in geniz in order 10 simulate vari- o o R R
v e 1ahomogenizec in order 1o simu ) into 2 nearly parallel eieciric fiow a2nd creae
able 'ank depth. Pertoration o the graphite paper .. : o .
ab.¢ 1ank depih. Perioration ¢ graphite pape: a line of constant E (= | ) with saddlepoints anc

wWes ased in some expe:*m:emszl with transonic
T.ow anaiog represemation. Il is the first step
1nte the discretisation of an electiric network.
Tz 12 an expensiie ool i the grid as Nine

_ b RHEGORAPH FLakE
€n0Ugh, il requires aulon.aied evaluallon, being

R e -~ -e\—\
art therefore of a nvbridd con.putationa’ system o N A RGN N
including a digitat compuier A& network Jor so-
Luiton of transonic hodog:-aph pr'oblun.s was used Singuilarity sources 10u'er frow sources
22 R ‘3
in France”™, whnere the anzlogy has a long tra- - - 1. j= « ' PN
N - Prebes e a Pl o e e 3 P ~
ditron. - 4 r — e
Top plote ——— L | | 7 ' ! i R
-
4 -y
Singularity tesder (" ¥ -
T . R Bosic conrdustor -
I'he present author used the less expensive pos- . b
Acditione! \
. 5 . . . conguciors €= N
sibilities given by the gravhite conducting paper e — | ™.

£11870 digital computational codes ror transonic

Sc!t lover — —.-

soterntia. f

=
/
|/

low analvsis were just beginning to

A ,’J7 ;
15

8ottom roote. -~

(

appear, Zesigr methods were no available & Compression screm_ o

project &t the BEVLE in Gerniany was, therelore,

the development of computational meihods for

. . . . .. . . PO Lo eina cmmmrrecced
transonic Tlow with the aid of the ana.og_\'n This Figure 12 Anaiog {low 1able using compressec
leC 10 experiments with simple sel-ups and daia graphite paper

/e



F:gure !42. Analog {low table for Rheograph
{, Evaluation grid, equipotentiai

line interpolation

forming & closed domain, Fig. 14b. One ol the
suddlepoints is shifted into the mapping of the
stzgnation poinl, $§, by variing ihe potentimeters
R, R
F2) ‘B

érawing of ihe sonic line lemniscate. If the en-

The subsonic {iow domain is shown by

closed domain extends ouiside of it, then the
demain mav be evaluated as an elliptic continu-
ation analog airfoil flow representation. The
line § = const. is located in a limited number

of intervals between probe grid poinis, Fig. 14a,
and 1he potential values are transferred to the
difital computer, along with the tmanually)
selected position of these probes. Interpolation,
potential gradienti evaluation anc data spline

fitiing along § = 0 and along tiie sonic line, as

well as integration of ihe supersonic {ield, bound-

ary laver computation and viscous displacement

sublraction, is carried out in the digital computer.

The analog part of this hybrid technique is shown

in Fig. 15,

/65
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'—-Lm—'
S
—t
' »—T—:———'
o

|

.
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Figure 15.

“ov-

Tigure 14b. Analog flow in {,. Exterior llow

and singularity

e T L A D AR -

dadd PS -
“cCctea g
Cddadaq
Ceaacqq

Analog flow evaluation with Analog
flow table (1), Solution orientation (2},
Bridge circuit {3}, Flow adjusiment

Potentiome ers (4), Digital Volimeter
(3), Data transfer unit and Scanrer (6),

Terminal and tape punch (7!



Tne metiod oulliined was intended o give mior-

metion aboul posaible simpldiiications of holo-

whnern e Iirst cesign resuliz were obilained,

acce.zraied the improvemenis and some airfoil
cesigns were obtained for furither use in super-
4

. : 2 e .
Ccritical wing cesign A result {s shown in Fig

{ransonic Wind Tunne!l
Cs

-1 4

/ :
.//

+1 -

Figure 16. DFVLR 48080 Airfoil

-

- Theorv: Al = 0.73, Re = 10,
: e}

(o8}

//‘ -
T

24

{, "he airioil was tested in the DFVLR Gattingen
25

rec

«l

This wae achieved by & local delormetion

0T ihe analog flow airfoil mapping ir 1 apnrc.

prizie area of ¢, . The characterisiic triang’

by

fo1r supersonic flow field iniegration

a150 drawn.

1
«
1

ool |

Tigure 15, DFVLR 49201 Airfoil

For airfoiis designs with a Mach numbe: Al >
(e 8]

o. 82 difficulties in the evaluziion occur &5 &

resclt of the siender "waisi” o7 the sonic line

lemniscate. The configuration Fig. 7b res.lis

Fe . Ao B L SR -y - - X
rom a projected ¢, of 0. 2and M = (.53 The
: pro) L s he

res it is drawn in

C
=
=
ot
o]

”
»
—
2]
>
O
4
-
w
3
s
N
”
o
.
o
o

Fig. 18 with the designed supersonic region.
Analysis calculations were carried oui Tor
slightly different Mach numbers and angics of

aitack, with the resel” that useful desigrz oboi-

ocusiy can be obizinec but design Mach nan.ber

and angle of attack diiffer somewha? ‘ron. e

B

values detining singuiarity location in the aneloc
fiow. The airioil was iesied in the Braunschwaig
- I . ;26 . .
Fransonic Wind Tunnel™ | some of the experi-

mental polars are shown in Fig. 19.
05

H i - .
H M= 08 )0/8§//. os

Figure 14. DFVLR 489201 Airioil Polars

Experiment Re = 4-10



S.ONUMERICAL HODOGRAPH METHODS

1 Parel Nelnods

Le preceding descriplion of airioil design re-

ng rvom: Rheceteciric anzlogy experumnents
was 1nienced o give a background of educational

Va.de 1or fariher, more economical treaimed:

o
»
o

onic design aerodyramics with numerical

Tne hodograph methods develoved by Nieuwland
anc Boersioe!, or by Garabedian and Korn be-
long inte this chapter, bui they are well-docu-

’ 1

and, al

mented elsewine re‘ o we want 1o re-
sirict this review on methods nm:aking use of the
outlined Eliipiic Continuatiorn Principle, Fig.

. .
1.2

Anzicg eieciric flow was replaced by a numerical
mehod Lirst by Eberle?. A panei method, ini-
11ally developec for incompressible flow past
girfoils, was modilied 1o scive the Poisson
eguation (12a! jor the velocily poiential ¢, in
& working piane where the appropriale boundary
\va.ae probien. :s similar 10 the one for a given

body in paratie’ flow. The Rheograph

o = (38)

€3 = 'L

Figure 20. Rreograph I, with panel grid

/8

18

table for s tormulaticen. In By

"

2¢ the

Lgrid for a chosen arbitrar: bound-

A similar meilod was developed ‘o the desizn
- . . A LI ; .
ol turbomachinery cascades It makes use of
anoirer working plane, wiere the stagnation
point :s miazpoed into infinity and the blage conlour
Into the real part axis. This nes the advaniage of
a2 limited area of compressibility influence and
application of an incompressible {low soilution

for the far field.

5.2 Use of a Fast Poisson Solver

The panel method is & useiut but relative:y 1ine-
consumang and therefore expensive compuier
code. Another, more economical way to soive
elliptic problems is the Fast Poisscon Solver
routine, which is used here for an airfoil/cas-
cade design code. Application of this method
requires formulation of a boundary value problen
on @ rectangle. We have (o leave, therefore, the
simple mappings [ = {(;0), as given by the ‘or-
mutas (30), (31), (38) and prescribe Zy ailong
the unit circle in a new plane ;C , whiclh subse-

quenily can be mapped into a reciangle.

The funclion

g i = - - P (2495
Co—v-n‘r ln(cC 1) Tcn C.o (34

with the coefiicienis Cn obtained froni harmoanic

anziysis of prescribed data yp, along the unit

0
circle in CC, (Fig. 21), defines the variables
of s*ale within the circle. We choose, for airfoil

design, a y,-distribution as skeiched in Fig. 21.

0
This will result in a saddle-like suriace of

v cc ). The saddiepoint on it plays the same

role as the point N in g, outlined in a previous
chapter. Choice of free stream conditions v(I\Iwi,
\&m defines the mapping ch of infinity into ;CA
As we will see Irom the follewing, the Elliptic
Continuation region E_ (Fig. 2)is reducec here
1 vanishing size, the sonic line is now pari of
the bcundary, sonic line dala are oblained

difierenily.



are usec 1o obiain closed airioil sections while

in

*he funciion Y*{s' cefines size anc shape 0! e

w

locel supersonic finw field

These boundary date form Dirichiet conditions

a solution U (s, 1) with pericdical connection on
the remaining sides. The solver routine can
handie this boundary value prouien. bu' an er-
auve procedure in two loops is required: TFirst,
the right hand side of the basic eguation (120
requires the partial derivatives K'.s‘ Il'_L . They
are obtained from the previous compuiation,

with a stariing solulion okbiained by iaking

Laplace’s equation for (12b). The process usu-
ally converges very fas:, 5 - 7 1terations are

. f 979 01 . . N Y i oy | .
Figure 21. Circle Rheograph plane found suflicient. The seconc iteraiion woop 1s
necessary lo obtain (a) the correct stagnation

point solution which is mapped into § on the

To solve our poiential 7low basic equations we . . Ve
' pot quati s-axis, and (b) a physically meaningful ¢ osed

use 1Polsson eguation (120) for the siream s L.
ols quat airfoil. A variatlion of the constlants c¢,, €. 1L

1 1
funciion . Application of the Fast Poisson R . - .
snction g pphca ‘ ' ! the {ar field boundary conditions eifectiveiy

Solver requires & mapping ol our circle plane . . . . .
it = pping ¢ 3 provides this in 3 iterations. Sonic Line daia

z w0 a rectangle. This is, with knowledge o .y . ; ,
et E LSS > e f* s}, ¥ (s) are available, but {={§ hes o
, performed with the Junctlion . . , . .
c;} P ! ' be oblained by use of the expansion (36ai. Wi
Y L . p - Q)", U* {$) given, the local supersonic regiorn
ip = iinfil g i - L I)]-lzn[u - € £
) (30] is con.puted with the miethod o! characleristics
{ i
{Cc -z as in the previously outlined techniques.

I" maps the uni* ciriie ¢f £ inte the real axis

ol
tp
interior of the circle is therelore mapped neri-

L
and infinity I into im (Z V= = . The

odically inic siripes of the upper halli plane in
o, Fig. 22.

P £
Flexibility in the formulation of boundary con-

. . . .29
ditions feor the chosen numerica’l soiver routine

allows a more direci creaticn of sonic line data:

the s-axis (Fig. 22; is boik subsonic airfoil
comtour U = ¢ and - within the interva. AB -

sun:¢ ane, where an arc % (s) may be pre-

goribed  Thefar Nield singularny {35)1s repre-

I, fst = ¢ +sin (s - sI) (41 Figure 22.
periodic boundaries for stream.
a.ong a line 1 = "I = const. The consiants o5 function

714




-1 o Design
Analvsis

+1

ANRLYS!S B8255 RIRFOIL
INV. FLOW MACH = 0.750. ALPHR = 0.0CDEG
CL = 0.531, ¢D = -0.000. th = -0.157

Flgure 23. Poisson solver design example,

and anaiyvsis verification

Ar example of airfcil design and its analyvsis
verilication is shown in I'ig. 23. The results
egree very satlisfaciory. The meiliod can be

switched o cascade design, bul the boundary

va.ue probiem for § is more complicated

Tne method outlined is closely related to
Garabedian's recen: version of a numerical
design n.ethod for airioils and cascades, which
15 a complex characteristics method. This is

& basically hyperbolic approach to the transonic
probiem, while our metiods are primarily
vlpiic, with an appended nyperbolic technique.

30

Garabedian's recent design code™ aliows a

prescripuion of the pressure distribution along
the junknown) airfoil suriace, this is a remark-
ab.e improvement of eariier versions, which

should be applicable also to the code outlined here.

/6

]

& A DIRECT NUMERICAL DESIGN METHOD

fi. 1 Ixtension of an analvsis code inte a desicn

100

L replacemeni of the analozy 10 so've the ellintic
part ol our basic equations by numerica. methods
for elliptic probiems was made possibie by
application of digital solver routines for ellipiic
low. Like all hodograph or indirect design
methods, the 2adavantage of linear equations is

ir; conirast to difficulnies with nonlinear bound-
ary conditicns. The latier requires n.uch ol the
designer's experience and iteration loof)s in the
compuler programs 10 arrive al reasonable
designs, as briefly outlined above Thereiore &
new idea, concerning application of the design
technigues in physical space, seemed 10 be the
necessary and logical step to be taken next. The
result obviously brings up some very effective
computer codes with applications on plane as

T . di . L
well as on three-dimensionati flow .

QOne of these methods is the extension of

2
Jameson‘s3

finite difference analvsis prograr
for compressible Ilow w:ith shocks, intc & desiga
code for shock-{ree airfoils. The idez 1s the
introduction of a fictitious gas tocaily if the fiow
becomes supersonic. This gas has 2 mocified

compressibility law

QNI/qP (=2

in the supersonic region replacing the correc:
iseniropic reiations (2). For an exponent P <1
this gas will result in elliptic basic equations lor
the fictitious supersonic flow, corresponding 1o
the Elliptic Continuation region E_ in Fig. 2b.
The sonic line in the flow field is found by inter-
polation and the supersonic region is recalculated
with the method of characteristics as performed

in the indirecti methods.

The first instructive results of the direct miethod
are the optimization of conventional NACA airicilg
into transonic shock-free configurations. Only
minor changes of a NACA airfoil upper surface

are required to arrive at a2 shock-{ree airfoil,



These first results were inviscid flow cdesigns.
the meinod is now operaiional including a bound-
aryv laver pregran: and serves as a compulationa’
tesi-bed for various theoretical approacnes 10
remaining probiemsin iransonic flow including

viscous inieracition ai the 'railing edge.

AT 1nLporiant quesiion was asked frequently since
the n.ethod becomie operational: ig there & way
1o veriiy a given shock-free airfeil - e. g. &
resull from the incirect methods - with this
computer ccde ? The answer is positive and will

be outlined now briefliy.

We observe fron: the calculated examples thal the
conventional input configuration 1s usually thicker
than ihe resuiiing shock-free airfoil. The reason
is. as skeiched in Fig. 2bard Fig. 4b, that the

‘ictitious eiliptic flow in E_ requires less space

2

[

ccording io higher flow density ¢ - q than the

real supersonic flow Hl' Tias results in a flatler

surlave o the resulling boundary sireaniiine in

ki 1o order 1o atlow the passing of supersonic
Slow at ixed some tine. Just this flattened region

LnoCneraclerisie for shock-iree airioil design

~onmte £:111 unknown thicke: contour within the

Know:n sonle Lune ar¢ o: a shock-Iree design there-

fore wou.d be the initial configuration 1o obian

nis Cesign. In the case o the use of & Lltoas

arapressible flow oWl o= 0dn 42y - he
in:tial coniour {or a design can be found theorei-
icalyy by using 1ne reinterpretlation formutla {29}

Tor e local incompressibie flow solution within the

n

onic Une. A flow boundary results and it usuatly

-

hickens the configuration. But there are caseg

of shock-free airioiie leading to initial contour

with surface discontinuities, representing singular-

intes stemming from Riemann culs like the hyper-

bolic imit lines. Thie means, that not every vpe

¢! shock-Tree airfoil can be obtained with the node!l

vl incompressible Victitious gas. However, our
recer’ findings indicate. tha: tor different con-

pressibility laws P = 0 obviously any 'vpe of

shocr-iree pressure distribution and the generating

2irjoi. mayv be verified. We illustrate this for the

case of the well-known Korn - 1 - airfoil,

/68

The airicil was made thicker in the interial be-

and 70 percen: of the upper sice suriace

[*1]

ween
using @ sumple anzlytical bump function. A COm:-

pressibility exponent of

P = 0.9 27

was found most useful. Oniy a few progran, runs
were necessary 10 find this anc the amount of
added thickness in order to obiain a shock-Iree
airfoil resembling KORN + 1 - airfoil very
closely. The result is drawn in Fig. 23. The
initial airfoil is approximately one hall percent

thicker than the resulting KORN-1 redesign.

The found initial airfoii contour can be vsed
now 1o design a whoie series of neighboring
shock-free airfoils for variing operatng con-
ditions M, & .
@© @
seems to be useful, i¥

For industrial praciice, "hig
an exiSUNE Wing sec.ion
design needs ¢ be modified for e. g. a sugh.»

different operating NMach number.

ce

(@]
1

INNAL SURSACT
\ fo——— .

- SRS
R

LIING EURTALE

RENESIGN KORN ' RIRFOIL
INVISCID FLOW . MRCH = $.75L. ALPH3 =z 0.L3JEG
CL = 0.626. CD = 8.000. €4 = -D.145

Figure 24. Redesign of KORN 1 Airfoil



G 2 Design of Adaptive Wang Seciions

Tne example ol Fig

23 1s an inviscid design,
the zirioil has & cusped trailing edge. In reat
Jlow viscous interactiun has 1o pe iaken inio
acvount, in the case of airioil design it means
el boundary iaver dispiacement has ic be added

e the zirfoil thickness. Special care 1s required

ihe bounaary laver miay occur. A lavorabie
trailing edge design avoids steep pressure gra-

cients on the upper suriace and expands the flow

ron. & rear ioaging of the lower surface Gen-

\

eralisations of the anziyvrical resulis of .ow past

cusped leading edges in smooth flow, Fig. v,
lead 10 shapes wiilli such favorable presz.re¢ dis-
T 33 \ ) .
ributlons™ and also provide outer Jlow made s
for computational treaimen of wake-boundary
- .34
interaction

laver Tiie probiem (s imporiant

ior design metneds since it influences circulalion
remarkably. Another application of the ¢ired:
desigr. method is illusirzted in the following, the

exemplie takes into account viscous ‘low effecis.

‘The aforementioned use of the initial configura-
tior. o obtain a family of shock-iree airfoiis led
to the idea of Adap:ive Configur‘allons:s Since
only a part of the upper surface has lo be modi-
fied for shock-free fiow in differen: operaiing
congitions, such modifications might be techni-
cally carried out on'a wing suriace by elasiic or
pneumatic devices, or by suction and blowing.
In Fig. 25 an airfoil with adaptive shape for

~q -
[T

shock-free flow ir the range of G.

is shown, with a fixed it coelficient. The basic

PN . . N1 ]
airioil is an indusirial desig:™ representing the

conliguration at 1\!00 = €. 73. Gradua! shape cheange

from 2 1o 70 percent chord illusirated in Fig.

26 extend the range of shock-free operation up

o M = 0.77. There was not one singie initiial
@
avec 3 SURFAIE NO2TFICARTION

msJ H

ool |
b Mer 72 \
1 - 75
09 4 . 3 I
T san ZE i
e i N !
ﬂDRPT]vE NlNG SECTIDN “g.a: :; 9. S- n.-;'? ;i’.' £.%0 .02 ' M LS
RE = 40.0MILL. MACH = 0.2770. ALPHA = 0.S5BDEG e ‘
CL = G.544. €0 = 0.coo0. CM = -0.123 ! Mo 7 i
: ) \
; o T, i
I ,'/-\M“-_77 d
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P S~
\ /'
\‘~ /’
ADAPTIVE RING SECTIGN \

RE = 40.0MILL. MACH = 0.730. ALPHA =
CL = 0.544, Cb = 0G.00C. cH = -0.111

Adaptive Wing Section:

pressure distribution

1.000EG \

Yigure 26. Adapiive \WWing Section:

Shape changes

/L1



conTiguratlion for the design of these surrace
zterations: Bumps of varliable size and height
were zdded to the bacic airfoil for the differen:
Alach numbers, the code subsequently subiracied
niore than ithe bump, resuiting in the illusiraied
surizce miodifications. The choice of different
:pitial sarfaces at the various Mach nunivers is

\

Cesirable inordes 1o oblain similar supercritical

pressure distribations. A fixed ininal surface
regu.is in sharp pressure peaks which set lower
timits in the Mach number range of shock-iree

flow.

7  CONCLUDING RENMARK

[97]

We have presented different techniques Jor trans-

onic awriort

design having in common the use of

2 new bouncary value problem for mixed flow,

she L.optic Continuaiion Principle.

Design

m~etheas resuling fron thls approach were shown

“ive conpiier prograng. Preseniaiion of

glepr LR 1NC aaklyva’ resulls Enc Thie

¢uperimenis with Rheovle2iric Anaogy was

Ote protide ininal understanding for the

nocre eecnonI aLl nUMmericE. noeluods.

[FRIAN coriunt an a lime when the design engi-
neer Jamidar to and dependent on large coni-

“inc faciliies, Lcoses contact to educational

Soaw pcdels oblained wilh nLore ciuassical iech-

nlauws.

r—s

jestdes th1g reviewing character of the paper.
we arrived al a new design meihod opening
several 1nteresuing possibilities. The concept
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UNSTEADY TRANSONIC FLOW COMPUTATIONS
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SUMMARY

We investigate the effects of unsteady modes of motion on two-dimensional transonic flows; we do so
in the context of the inviscid small perturbation approximation. The study is a numerical one and draws
upon the alternating-direction implicit procedure developed for such calculations by Ballhaus and his co-
workers at the NASA Ames Research Center. Our numerical algorithm treats shock waves as moving discontin-
uities. Results of nonlinear and time-linearized calculations of the transonic flow past an NACA 64A006
airfoil experiencing harmonic motions in several of its modes are presented and discussed.

1. INTRODUCTION

In unsteady transonic flows, relatively small periodic changes in the boundary conditions can lead to
substantial changes in the loads and moments with marked phase lags. These are of major concern in
the aerodynamic design of aircraft that operate in the transonic regime. A short, but timely, review of
various aspects of unsteady transonic flow may be found in Reference 1. Of particular concern are aero-
elastic behavior, and flutter and buffet boundaries. Here the unsteady perturbations may sometimes be
small enough that linearization about a nonlinear steady flow, as suggested by Landahl (2) long ago, is
possible.

In such flows the behavior of the boundary layer, especially as it is affected by the pressure rise
caused by any shock waves in the flow, 1s clearly of major importance. Additionally, in the neighborhood
of the leading edge the flow perturbations are large; consequently, highly accurate inviscid results
require the use of the full potential equation. It seems likely that eventually the computational algor-
ithms used in routine studies of unsteady transonic flows will use the Reynolds averaged Navier-Stokes
equations now used in research studies. However, such algorithms (3) currently require substantial
computer time and are too inefficient for exploratory studies such as this one. The ability of these
algorithms to model complex unsteady transonic flow phenomena, such as buffet, has recently been demon-
strated (4).

An important consideration in constructing an algorithm for unsteady tramsonic flows is the treatment
of moving shock waves. The experimental observations of Tijdeman (5-7) indicate that even for simple
airfoil motions shock wave motions can be complicated, and that they can strongly affect aerodynamic force
and moment variations. Time-linearized methods, 1.e., methods that assume the unsteady perturbations are
small compared to the basic steady disturbance have not usually considered shock motions (8, 9), although
they can be modified to do so for small shock excursions (10). Time~integration methods (11-18) treat
shock waves by "capturing" them, a procedure that can present a number of difficulties.

Unsteady experiments (5-7), analysis (10) and numerical studies (10) all indicate that the amplitude
of the shock wave motions increases inversely with reduced frequency. Thus some of the most important
effects occur with low-frequency motions. This is not surprising; nonlinear behavior is suppressed at
higher frequencies, with the small perturbation equation becoming linear for frequencies higher than the
two-thirds power of the airfoil's thickness-to-chord ratio. Explicit finite~difference schemes are not
efficient when applied to low-frequency cases because the stability restriction on the time step is sub-
stantially more severe than that required for accuracy. As a result, efficient semi~-implicit methods (13)
and even more efficient fully implicit methods (11, 12, 17, 18) have been developed. Caradonna and Isom
(17) use an iterative implicit procedure, i.e., the nonlinear implicit finite-difference equations must
be solved iteratively at a given time level. 1In an earlier, unpublished, study we also used such a pro~
cedure. Ballhaus and Steger (11) and Beam and Warming (18) constructed more efficient algorithms that
solve the nonlinear equations directly by the solution of simple matrix equations generated by an
alternating-direction implicit (ADI) procedure. This method has proven to be so efficient that it is now
used as an alternative to successive line over-relaxation (SLOR) for steady flow calculations (Reference
19 and Yu and Seebass, unpublished).

As mentioned above, these implicit schemes "capture" shock waves, i.e., shock waves evolve automati-
cally as part of the numerical solution. Shock capturing produces shock profiles that are distorted in a
manner that depends on the truncation errors in the finite-difference scheme. The use of mixed-difference
schemes (11, 18) can improve the situation for cases in which the flow changes from supersonic to subsonic -
across the shock. However, when this condition is not satisfied the differencing cannot be switched
across the shock and shock resolution is poor. In any case, shock capturing requires spatial grid
spacings, in regions where shock waves are anticipated, that are sufficiently small to resolve the shock
waves. The grid spacing required to do this is usually much smaller than that required to resolve flow !
variable gradients in most of the rest of the flow field. Shock fitting removes the large gradients from
the finite difference solution and permits equivalent flow field resolution with fewer grid points, both
in space and time (20, 21). If shock waves are not treated as discontinuities, but are to be captured
correctly, the difference equations must be solved in conservation form. This imposes an additional con-
straint on the construction of finite-difference schemes that can be difficult to satisfy.

A need for shock fitting also arises in computing time-linearized solutions for very small unsteady
perturbations. Time-linearized solutions for indicial motions can be used to determine force and moment *
coefficient variations at various reduced frequencies, obviating the need for a numerical solution at each
teduced frequency (see, e.g., Reference 22). /73
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Traci, et al., (8, 23, 24) have developed relaxation methods for solving the resulting time-linearized
equations of motion for harmonic disturbances. Less complete, but comparable, studies have been made by
Weatherill et al. (25); these derive from an earlier study by Ehlers (26). In both of these studies shock
motions, which contribute substantially to the time-varying loads and moments, are neglected. Difficul-
ties also arise in the convergence of the iterative numerical scheme. Unsteady small amplitude motlons
have shock wave excursions that are the order of the amplitude of the motion divided by the reduced fre-
quency of the motion. Consequently, these shock motions dominate other low frequency contributions to the
1ift and moment coefficients. Such time-linearized shock motions can be computed in a rational way, but
the accuracy of the results depends critically on an accurate resolution of the steady flow field in the
vicinity of the shock wave (10); this is best accomplished by shock fitting.

This paper briefly reviews the numerical procedures we have developed for computing nonlinear and
time-linearized small perturbation unsteady transonic flows. We use an ADI scheme and treat shock waves
as discontinuities in the flow. Calculations of the transonic flow past an NACA 64A006 airfoil experi-
encing harmonic or indicial pitching and flap oscillations are discussed.

2. FORMULATION

We write the unsteady small disturbance equation for low frequency transonic flows in the commonly
used form

2 2 2 -
2RM0 F (1 - M- (r Mg Je to = 0. ¢5)

The spatial coordinates, the time, and the velocity potential in (1) have been non-dimensionalized by the
chord, the reciprocal of the angular frequency, and the free stream velocity times the chord, respectively.
Other, perhaps more useful and suitable, forms are given in References 21 and 27. This equation results
from a systematic expansion of the velocity potential in the thickness ratio T and applies for reduced
frequencies K = 0(12”3) where K = wc/U, 1.e., the angular frequency multiplied by the time it takes

the flow to traverse the airfoil chord. Lin, Reisner and Tsien (28) showed that, with restriction to
small perturbations throughout the flow, this is the only nonlinear equation that arises. For moderate
frequencies the equation

x%s - - M - 2 y-1 e
K ¢:c 2x¢xt +{1-M - (v+ l)Mm[¢x + Y F1 K¢t]}¢xx + ¢yy 0

is frequently used, with or without the ¢t term, and may provide results that apply at higher frequen-
cies than those obtained from (1).

The boundary condition on the body takes the simple form

° _5_ u u
¢y(x.0,t) =Y, + o (W 4 KYt)]. -

N [r=
N

< x <

, (2)

where Y(x,t), the instantaneous body shape, has been decomposed into a steady part, Y°, and an unsteady
part, YY, Here § 1is the amplitude of the unsteady oscillation. Because K = 0(12/3), the last term

in (2) 1s dropped unless Y¥ = 0 or is small. For this reason, the time-linearized perturbation velocity
potential for plunging motidns (Y. = 0) 1is just K times that for the analogous pitching motion, where

Y (x,t) = (x - xo)sin t. x

Numerical studies conducted by Magnus (15) show that erroneous boundary data on a finite domain can
lead to significant errors. The low frequency approximation implies that any changes in the circulation
are communicated instantly downstream to infinity. Consequently, the simplest boundary conditions are
¢ =0 on the downstream boundary and ¢ = 0 on the other boundaries. Ballhaus and Goorjian (12) used
these boundary conditions in their study and obtained satisfactory results. The validity of such far-
field boundary conditions can only be justified by numerical experiments; i.e., near the boundary the
disturbance quantities ¢_, and ¢ _, must be much smaller than the values at the airfoil surfaces. Tor
the lifting case, ¢ depends on thé instantaneous circulation, T. This dependence can be derived
theoretically by assuming that in the far field all the perturbations are small compared to the basic
steady state (see, e.g., Reference 27). Here we use a stretched coordinate system that maps the doubly
infinite domain into |g| < 1, |[n] <1, and set ¢_ = 0 on the downstream boundary £ =1 and ¢ =0
elsewhere on the boundary of this domain. As a numeTical test for this procedure we have computed the
steady state circulation about an NACA 64A006 airfoil for various flap deflection angles, using the ADI
method with appropriate far-field values of ¢, corrected for the usual steady state circulation con-
tribution. These results have been compared with the results obtained by the ADI calculations with the
boundary conditions employed here for an unsteady flap deflection to the correct angle. These results
are identical within the accuracy with which we have computed the solutions.

Any shock wave that exists in the flow field must satisfy the jump relation derived from the conser-
vative form of the governing equation (1), namely

“lpe P& - -l - ) b 4 1) - 0 @
8

together with the condition derived from the assumption of irrotationality,
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Here ¢_ refers to the mean value of ¢_ evaluated on each side of the discontinuity, and [¢_§ dindi-

cates the jump in ¢ across the diécontinuity; the subscript s denotes the quantity
evaluated at the shock surface.

The pressure coefficient, defined so that it vanishes at sonic conditions, takes the form

M -1
C = -2

—_—+ . (5)
p (y + 1)"3,

X

In the small disturbance approximation, the Kutta condition is imposed by requiring that C be contin-
uous at 'y = 0 for x > 1/2. P

2,1 Time-Linearized Equations

We now assume that the unsteady disturbances, characterized by 6, are small enough that we may write
d{x,y,8) = ¢°(x,y) + &p(x,y,t) + o(8) (6)

and neglect higher-order terms in §. The restriction imposed on & for this to be true will depend on
the other parameters of the problem, viz., x = (1 - Hg)/[(y + 1)Mir]2/3 and K. This gives

2 2 1 1
- - ° ° ° = ° = ot - - - . 7
(1 -M - (v + 1)Mm¢ax}¢xx + ¢yy 0, ¢y(x,0) Y (x), X<y €2
2 2 2., - - U u _1 1
“2RMy H {1 - M- (v DM elly )+ Yoy = 0 wy(x,o,:) Y o+ Ky, X<y (8)

The solution to (7) must satisfy the steady version of the shock relations (4) and (5). The shock rela-
tions for (8) are discussed in Section 2.2.

We avoid writing
VoY) = Re(¥(x,y)el®t} (9)

as this restricts the study to harmonic motions. Because indicial motiopns can be superimposed to obtain

the results for any frequency, they seem more important. Equation (9) results in an equation for a com-

plex-valued ¥ which may be solved by line relaxation. Our experience with unsteady ADI techniques has

been rhat they are at least as effective as line relaxation for problems of this type, and hence there is
no advantage to the decomposition (9).

The numerical algorithm developed in Reference 21 and described briefly in Section 3 can be used to
solve the basic equation (1) subject to the boundary conditions (2), the shock conditions, (3) and (4),
the far-field boundary conditions.and the Kutta condition. Steady state solutions, $°(x,y), may be
obtained rapidly by subjecting a basic steady state, such as undisturbed flow, to rapidly changing
boundary data until a new steady configuration is prescribed. This, then, determines the steady state
result for (7) neceded to solve (8).

2.2 Shock Fitting

The basic algorithm for shock fitting in mixed flows was developed in a previous study of steady
transonic flows (20). A different approach to shock fitting has also been used by Hafez and Cheng (29) in
their study of steady transonic flow problems. Their procedure essentially replaced the shock-point
operator of Murman (30) by an analogous difference statement derived from the shock jump conditions. Sub-
sequently, the velocity potential on each side of the shock wave is extrapolated to locate the shock wave.

To understand the shock-fitting procedure for unsteady transonic flow calculations it is necessary to
recall how shock waves form in an unsteady field. Shock waves are generated when the local flow becomes
supersonic and compressive. While the initial shock formation may not be predicted exactly by the numer-
ical solution when shock fitting is used in the early stages of shock wave formation, it eliminates
spurious oscillations in the numerical solution and does provide the correct development of the shock wave
in later stages of the calculations (31). The criteria that we set for the initial shock formation is
that the local flow become sonic (relative to the airfoil) and compressive. In the body-fixed coordinate
system, a shock wave can exist both in the usual supersonic-supersonic and supersonic-subsonic transitions,
but also in a purely subsonic flow field, sometimes referred to as a "subsonic-subsonic" shock. In any
case, the flow ahead of the shock relative to a coordinate system fixed on the shock must be always super-
sonic. Consequently, the correct judgment for the existence of a shock wave in the unsteady fileld is to
evaluate the local flow velocity ahead of a prospective shock with respect to the coordinate system fixed
on it; i.e., if the local flow is supersonic a shock may exist, if the local flow becomes sonic the shock
strength diminishes, and if it is subsonic a shock cannot exist.

Any shock wave that exists in the flow field must satisfy the jump relations (3) and (4). In two-
dimensional small perturbation transonic flows the shock waves that usually occur are nearly normal to the
flow direction. While it is not necessary to do so, in the numerical calculations reported here we have
assumed that if the basic steady flow has a shock wave, then this shock may be approximated by a shock
wave normal to the free stream flow. To be consistent with this approximation we must also assume that
the motion of any shock wave that arises from unsteady changes in the flow, as well as the motion of

existing shock waves, is also calculated by this normal shock approximation. For this simplified model,
(3) and (4) reduce to /7f
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which gives the speed of the normal shock in the flow field. For steady flows ¢ is a function of x
alone; this, of course, still permits ﬂ¢ [ to vary with y. For unsteady flows, while x is a
function of t alone, the strength of thé shock will still vary with y. s

For time-linearized flows the steady state result for ¢° with normal shock fitting will give a
steady state shock position x°, O < |y| < y* . We now detérmine the shock wave's motion by writing the
perturbed sheck position as xg = Xg T+ Gx(t) “and using the time-linearized version of (10); we note that
an expression of the form x° 4+ 6x(t)/K would probably be more appropriate. From (10), we conclude that
the shock motion is governed by

Bt L 00,0 with ol = 16°8 + 60l = 0 an

on the shock. Linearizing the expression in (11) for the velocity potential about the steady shock posi-
tion we find

¢(XS’Ynt) = ¢(x;‘)"-t) + ¢x(x;))'»t)dd)(
='¢°(x;,y) + ¢;(x;,y)6dx + 6w(x;,y,t) + 0(62).

Because we have treated the shock as a normal one, y appears -here simply as a parameter. Now
ﬂ@(xs,y,t)ﬂ and ﬂ¢°(x;,y)ﬂ are both zero; consequently we have

t
o __ &+ pe0 e eNan
Wy, )] = - 5= ﬂ¢x(xs,y)ﬂij(xs.0,t)dt (12)
)

which must be integrated in time in conjunction with the solution to (8).

3. NUMERICAL PROCEDURES

In a preliminary study of the unsteady transonic flows a normal shock-fitting procedure was imple-
mented in an implicit-iterative scheme. Satisfactory results were obtained, but the procedure was time-
consuming because of the iterative process required at each time step. The recent studies of Ballhaus
and Steger (11) and Ballhaus and Goorjian (22) show that an ADI scheme is more efficient that the
implicit-iterative scheme in treating the low frequency transonic flows. The shock-fitting algorithm was
modified and implemented with an ADI scheme. In this section the ADI procédure and the method used for
unsteady shock fitting are briefly reviewed.

3.1 Coordinate Stretching

To minimize the far-field boundary effects on the numerical results a relatively large computational
region is usually required. For some of the cases studied in this paper the shock excursions are large
and the unsteady disturbances carried several chord lengths away from the airfoil; thus, the use of a
relatively large computational domain seems desirable. A simple and straightforward way of computing the
solution in a large computational domain is to use nonuniform mesh distributions with most of the mesh
points concentrated in the region of interest. An alternative 1s to introduce analytical coordinate
stretchings. In the present study, we use the following coordinate stretchings:

£ =1{1- exp(lalx)} for x 20 and n=2z {1- exp(lazy)} for y 2 0, DR Dy
IS

where a, and are constants that control the mesh distributions. The infinite physical domain is
transformed into Ehe finite computational domain bounded by |£] <1, and |n| < 1. The transformation
provides a concentrated mesh distribution near the airfoil which is suitable for the present study. While
this scaling is not consistent with the known algebraic decay of the perturbations, calculations made with

an algebraic scaling, viz., £ = x/(|x| + a etc., pave essentially identical results. The exponential
variation used here seems more desirable n%ar the airfoil,

The governing equation (1), written in the stretched coordinate system, is

—ox? T e

{ ———— .} - { == +a (- [eDhs,] } +{ ——————LrLT— ¢ } = 0. (13)
ai(l - Ce 2a§(1 - o+ a - 1eh

Because (13) is in divergence-free form, a conservative difference approximation can be constructed if the
shock wave is to be "captured" rather than "fitted."

The normal shock jump relation follows directly from (13); this relation and the boundary condition on
the airfoil surface are now /7
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Equations analogous to (13) and (14) for the time-linearized results are given in Reference 10.

3.2 Alternating-Direction Implicit (ADI) Method

The low frequency equation in the stretched coordinate system is solved by the alternating-direction
implicit scheme developed by Ballhaus and Steger (11). To simplify this discussion, equation (13) is
rewritten in the form

«r“ + rc +G =0, (15)

vhere the function ¥, F and G wmay be determined by comparing equations (13) and (15). The solution
is advanced from time level “n" to level "n+#l" by the following two-step procedure:

1 + n + n . 1 _ L1 n+l o,
- enF ed a0 (72* P +38 ") = 0. 16

Here “+" refers to an intermediate value of ¥, D, is the type-dependent difference operator for
£-derivatives and 6 the central-difference approxi{mation for n-derivative. The backward difference
approximation for ¥, can be eifther a first-order or a second-order difference approximation, with the
latter giving improvéd results. The nonlinear term F 1s evaluated, using a linearization somewhat
differert from the two-time level averaging procedure of Ballhaus and Steger. The difference approxima-
tions described above provide first- or second-order accuracy for ¥__, second-order accuracy for F
and G, in subsonic regloms, and first-order accuracy for I-'€ in sssersonic regions. A local analyiis
shows that the procedure is unconditionally stable.

In the first step a quadradiagonal system is generated and can be easily solved by direct elimination.
For lifting calculations two grid lines are uged to yepresent the lower and upper surfaces of the airfoil.
The circulation, T, 1s calculated by T = ¢I1g - ¢7yp through each sweep. Here "ITE" denotes the
upper ad lower values at the first grid point behind the trailing edge. This circulation is incorporated
into th= construction of the n-derivatives behind the airfoil for n = Q.

In the second step a tridiagonal system is generated by the body. Ahead of the leading edge and
behind the trailing cdge the double grid notation for n = 0 destroys the tridiagonal system. However,
ahead of the leading edge, ¢U = ¢, and behind the trailing edge, oU = ol & I'; thus the difference
equations can be reordered to give a tridiagonal system. On the airfoil surface, the matrix equations
above .nd below the airfoil are decoupled; they can either be solved separately or simultaneously by paok-
ing th: matrix equationgwsogether. . :

Agaia, analogous but somewhat simpler equations and procedures are used for the time-linearized cal:zu-
lations. In these calculations the type dependent operator, D,, changes at the steady state sonic line
and shock wave. The coefficilent, f(E,n), that appears in (8) in the form {f(£,n)¥,.}f depends on the
steady state results ¢°(£,n) and must be stored. On the other hand, the matrices uSe do not depend on

the solution ¢ and, consequently, need only be inverced once. In its present form our algorithm does
noc tak-: advantage of this feature.

3.3 Stock Fitting

W: start the unsteady nonlinear flow calculations by using an ADI scheme. When the local flow be-
comes ronic and compressive, we introduce the shock-fitting algorithm described in detail in Reference 21.
Sonic, ,compressive points are treated as shock points where differentiation in ¢t and £ across dis-
contin-ities is avoided. Initially, the shock has zero strength and {s stationary. The flow propert.:s
ahead of and behind the shock can be easily extrapolated from necighboring points. The shock wave can
eithor increase or decrease in strength during the unsteady process. This resulcs in three possibilit’es
for snrck motion that have to be considered separately in the fitting procedure: The shock moves upstream
and crosses grid points; the shock remains stationary or moves within a grid spacing; the shock woves
downst-eam and crosses grid points. At each new time level the shock position is determined by applying
(10). The formulations of the difference approximations for each case are quite similar.

Frc time-linearized calculations the solution is advanced in time using the time-linearized analogues
of (16) coupled with (12) in the form

wit- -c(q)mg + 0% ™. -c(n)u;'c'“ + it

Here

c(n) = lzi—l li(l - l{;l)zloz(C;.n)l. and E; denotes the steady state position of the shock wave.

This procedure corrects the % values for shock motions as the solution progresses. The shock amotion is /717
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easily detersined simultaneously by using (11) and (12) in the form

n+l

x*0,e) = -y, 0, ™t 2,000

Further details are given in Reference 10.
4. RESULTS AND DISCUSSION

Both the nonlinear and time-linearized algorithms have been used to compute the flow past an NACA
64A006 airfoll subjected to indiciasl, i.e., step, changes and harmonic motions in pitch and flap oscilla-
tion. The latter calculatfons have included a range of Mach numbers, ampiitudes for the nonlinear
slgorithm, and reduced frequencies for the harmonic changes. The nonlinear algorithm has also been used
to compute the flow past a pulsating parabolic arc airfoil. In this latter flow, at M, = 0,85, as the
airfoil thickens a shock wave forms and moves downstream until shortly after mid-cycle. As the airfoil
thins, the shock wave moves upstream with increasing speed, eventually leaving the airfoil. A comparison
of the results, with and without shock fitting (21), indicates that shock fitting predicts the formation
of the shock wave more accurately. It also properly defines the shock wave wvhen it becomes "subsonic-
subsonic” fn the fixed grid system. The shock wave decays slowly as it propagates into the free stream
after passing the location of the leading edge when the airfoil's thickness has just become zero.

4.1 NACA 64A006 Airfoil, Nonlinear Calculations

Steady state solutions were computed as discussed {r Section 2.1 for an NACA 64A006 airfoil for
various values of the freestream Mach number by using the ADI scheme with shock fitting outlined in
Seccion 3. The free stream Mach number was varied betwe:n 0.8 and 0.9. The mesh system had 101 by 82
grid points in the x- and y-directions respectively. About 250 to 450 time steps were required for the
solution to converge |8¢|n., < 10™. These steady state solutions are used as initial data for the
nonlinear and time-linearized unsteady flow calculations

t

Result. were computed for the airfoil with quarter-ciord flap for varfous values of the reduced
frequency, the free stream Mach number, and the oscillat on amplitude, in order to simulate the shock
sotions observed by Tijdeman (5, 6). These motions were classified by him as: type A - small shock
oscillation; type B - the shock becomes very weak or disippears during part of a cycle; type C ~ the
shock leaves the airfoil. Results for type A motions are not given, as they are easy to treat computa-
tionally. For all cases studied it took three to six cycles for the flow field to become periodic.
Stability seems to require that the time step be small enough that At(in degrees)/K < 10.

Figure 1 illustrates the pressure coefficients on the airfoil surface at various times for M_ = 0.854,
K = 0.358 and & = 1°. For these conditions Ballhaus and Goorjian (12) were able to simulate type B
motion where the shock disappears during some part of the cycle. Here the shock does not disappear during
the cycle; rather, it becomes quite weak during a small jortion of the cvcle. This difference is probably
due in part to the assumption of a normal shock, which ' esults in a stronger shock than would normally
occur, and to the use of shock fitting, which is able t. resoive very weak shock waves.

Figure 2 depicts the pressure coefficient on the a8i-foil surfaces for M_ = 0.822, K = 0.496 and .
§ = 2°, wimulating type C shock motion. Because we ha'e used less spatial resolution and have not scaled
the equation and boundary conditions with various power; of the Mach number, a slightly larger deflection
angle seems to be needed in order to generate the type C shock motion; that is, we need a 2° deflection
angle rath:r than the 1.5° of Reference 12 to obtain a:alogous behavior. In this case the flow field is
subcritical during most of the cycle, where the shock vare is barely “captured” in the non-shock-fitting
procedure. During the unsteady process the shock moves roward the leading edge. However, the strong
singular behavior in pressure at the leading edge prevenis the shock from propagating off the airfoil.
The percturbation velocity becomes large and is negative;. thus, the flow used to calculate the relative
velocity ahead of the shock can no longer support a shock wave. Normal shock-fitting calculations deter-
mine the shock speed from the pressure Jump across the shock at the airfoil surface. This eliminates the
possibil 'ty that a portion of the shock may propagate o’'f the leading edge in the computations. But this
does not imply it cannot occur; rather this is a limitation of the normal shock ficting.

Magau; and Yoshihara (15) have soived the Euler equations using an explicit procedure for the condi-
tions cf Yigure 1. Their results are compared with our :alculation in Figure 3 for two angular times
chosen to represent the least and the largest discrepanc.es. Thesc discrepancies are thought to be mainly
due to the fnaccuracy of the small perturbation solutio near the leading edge. Small errors there change
the size aud shape of the sonic line and influence the s1ock's position. For the conditions considered,

the shock 1s nearly normal and the normal shock approximation should be a good one. Rather good agreement
is obtained.

Additional nonlinear calculations have been carried vut for M_ = 0.880 and K = 0.48. Both pitching
and flap motions have been calculated for indicial and Farmonic ch;nges. For these conditions very small
unsteady changes lead to very small shock motions and t.ie shock wave remains between grid points. Because
of the extrapolation procedure used in the shock-fittiry, the § mesh distribution used here can intro-
duce errors, albeit small ones, in the shock's position when a grid.line i3 crossed. We wished to eltmi-
nate these errors in order to use the nonlinear calcula:fons to judge the accuracy of time-linearized
calculations. These results indfcate that for pitching sbout mid-chord, nonlinear, amplitude dependent,
behavior occurs for &/t 2 0.1 for K = 0,48, Because the amplitude of the shock motions increases with
decreasing K, nonlinear effects occur at smaller value: of &/1 at lower reduced frequencies.

Indictal motions require about eight hundred time s':ps of varying size to resolve the response. For
harmonic motions, i{nitfated from rest, three to ten cycles are required for the solution to become har-
monic, with large values of K and M_ requiring wore .ycles. The pitching mode requires more cycles
than the flap mode. The amplitude of the positive and negative phases of the motion could be varied from
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pute, with more steps required for smaller values of K. Each time step takes about 5 seconds of CPU

cycle to cycle to reduce the nuaber of cycles required. Each cycle requires 60 to 180 time steps to com-
P
- time on a CDC 6400, or about 0.25 seconds of CPU time on a CDC 7600.

4.2 NACA 64A006 Afrfoil, Time-L{nearized Calculations s

Time-linearized results have been computed for an NACA 64A006 airfoil experiencing harmonic and
indicial pitching and flap motions. As noted earlier, in the low frequency approximation made here
pitching end plunging wmotions lead to the same regult except that the time~linearized perturbations are
proportional to the maxioum pitch angle for the former, and K times -the maximum amplitude for the lat-
ter. Harmonic motions initiated from a steady state become nearly periodic in three to ten cycles, with
the changes induced by flap oscillations becoming periodic more rapidly than those resulting from pitch-
ing oscillations. More cycles were required for larger reduced frequencies and, to a lesser degree,
higher Mach numbers. \

1a order to confirm the validity of the time-linearized calculations, both the time-linearized and
nonlinear algorithas were used ‘to compute the response to a step change in angle of attack and the har-
wonic response to pitching motions. Figure 4 compares the nonlinear and time-linearized results for the
normalized circulation and shock position for harmonic pitching motions at M_ = 0.88 and K = 0.48.
Results are given for the fifth cycle; note that the nonlinear results are not yet periodic. Figure 5
compares the nonlinear and time-1inearized pressure deviation from steady state at gix angular times for
the same conditions. Good agreement between the results is obtained for &/t less than O.1.

-

Time-linearized pressure distributions at six angular positions for an oscillating quarter-chord
flap with X = 0.06 and M_ = 0.875 are ghown 'in Figure 6. The flap deflection is downward during the
first half of the cycle. The results for the second half of the period, for the symmetrical problem
shown here, are just the results shown with the lower and upper surface pressures interchanged. Thus.
the results for 0° are not given as they are just those for 180° with the lower and upper surface pres- i
gures reversed. Because the flap hinge occurs very cloge to the steady state shock location, the -
pressure singularity due to the change in flow direction at the hinge is missed. The circulation and !
shock excursion obey the following relations:

r(t)/8 = 9.26 sin (t - 59°),

x(t) = 12 sin (£ - 51%). ‘ —

Note the substantial phase lag in the circulation and the shock's position.

r
K= 0,12 and M_ = 0.875 are depicted in Figure 7. If these results are multiplied by K, then thuy
represent the pressure perturbacions for a plunging airfeil. As in the previous case of an oscillatiig
flap, changes in forces and moments of 0(8/K) occur due to shock wave motion. In this case
T(t)/8 = 5.48 sin (¢t - 70°),
' [

x(t) = 5.62 sin (¢ - 87°). .

Analogous computations have been carried out for .= 0.12, 0.24, 0.36, and O0.48. Figure 8 cepicts r
the shock wave's excursion and maximum circulation as a function of K~!. The nearly linear variation of
the shock excursion substantiates an observation made in a one-dimensional model where the shock wave
excursion is directly proportional to 1/K (see Reference 10).

11 these calculations the circulation gives an immediate evaluation of the 1lift coefficient as
functicn of time; the moment coefficient must be evaluated by integrating the moment of the pressure
coefficient. This is done by integrating the moment .+f pressure perturbations with the shock wave i. its
steady-state position and then correcting these results for the moment due to the shock wave motion,
assuming that the shock's strength is defined by the s-eady-state pressure field. This makes an error in
the shock strength of 0(3), but the effect on the mrauent is 0(62/K); because we have neglected oher
higher-order terms it is consistent to neglect this chinge in the strength of the shock wave.

Figure 9 depicts the absolute value and phase angle of the normalized 1ift and wmoment coefficieuts,
as a function of the inverse reduced frequency K'l, for harmonic flap and pitching wotions at M_ = 0.875.

The time-linearized algorithm used here is a derivative of that used for the nonlinear calculations.
Consequently, computational times are mnot greatly reduced from those required for the nonlinear calcuila-
tions. The linearity of these computations may make it possible to greatly reduce the coaputational
effort required. A local stability analysis shows thal the computations should be unconditionally stable,
but numerical experience has shown some difficulties for At(in degrees) /K > 50. Each time step rcjuires . 4
about two seconds of CPU time on a CDC 6400, or about 0.1 seconds on a CDC 7600. The number of time steps
required for a given computation is somewhat less than those required for the nonlinear computation: at
small values of K, and comparable at larger values of K,

l Time-linearized pressure distributions at six angular positions for an oscillating airfoll with

S. CONC “ISION

Efficient and accurate methods for computing lov frequemcy, unsteady behavior in transonic flows have L
been developed. They utilize the ADI procedure developed at NASA Ames for the small perturbation e/ua-
tion, but treat shock waves as discontinuities. The time-linearized calculations allow shock wave mutions,
which are shown to be 0(5/K) and often dominate changes in the force and moment coefficients. Com-arison /7"?




of the tilme-linearized results with fully nonlinear calculations delineates their range of applicability.
The unsteady behavior due to harmonic pitching and flap oscillactions of an NACA 64A006 sirfoll is
discussed.
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Small Unsteady Perturbations in Transonic Flows

K-Y. Fung,* N. J. Yu,* and R. Seebass?
University of Arizona, Tucson, Ariz.

The effects of very small, low-frequency perturbations on steady transonic flows, in the context of two-
dimensional flows described by the small perturbation equation, are investigated. Previous time-linearized
studies failed (o account for the shock wave motions that are known to occur. A method is provided that allows
one to correctly account for shock wave motions due to arbitrary but small unsteady changes in the boundary
conditions. Consequently, both harmonic and indicial responses may be determined. Time-linearized results for
the transonic flow past an NACA 64A006 airfoil experiencing harmonic motions in one of several modes are
presented. Selected results are compared with those obtained from nonlinear calculations using a shock-fitting

algorithm.

Introduction

N unsteady transonic flow, relatively small periodic

changes in the boundary conditions can lead to substantial
changes in the magnitude and phase lag of loads and
moments. These are of major concern in the aerodynamic
design of aircraft that operate in the transonic regime.
Reference 1 contains a short but timely review of various
aspects of unsteady transonic flow. Of particular concern are
aeroelastic behavior and flutter boundaries. Here the un-
steady perturbations may be considered small, and
linearization about a nonlinear steady flow, as suggested by
Landahl? long ago, would seem to be appropriate. Indeed, it
has been suggested® more recently that the steady flow be
determined experimentally. Difficulties arise, however, which
detract from this procedure. Although the equation is linear,
its coefficients are variable and must be determined by
numerical solution of a nonlinear problem that, in the cases of
prime interest, has a discontinuous solution; that is, there are
embedded shock waves. Also, although a change of variables
in the linear equation provides a scaling of parameters which
is indicative of the tradeoffs between, e.g., Mach number and
reduced frequency, the only similitude is the one basic to the
nonlinear formulation.

Traci et al. * have developed relaxation methods for solving
the resulting time-linearized equations of motion. Less
complete but comparable studies have been made by
Weatherill et al.’; these derive from an earlier study by
Ehlers.® In both of these studies shock motions, which
contribute substantially to the time-varying loads and
moments, ' are neglected. Also, difficulties arise in the
convergence of the iterative numerical scheme.

Here we pursue a different numerical course. Yu et al.’
have developed a numerical procedure for computing
solutions to the unsteady small perturbation equation for
transonic flows which treats embedded shock waves as
discontinuities. This procedure can be used to calculate the
basic steady flow that we wish to subject to small unsteady
perturbations. A simplified version of this algorithm then can
be used to calculate the linearized unsteady perturbations to
the flow. These calculations can be carried out in conjunction
with an algorithm that determines the shock wave motion.
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The procedure that we have used to calculate the shock wave
motion is a rather obvious one; it is not surprising, then, that
it, too, was given in the monograph by Landahl? (Sec. 10.2).
An alternative procedure, related in some ways to that used
here, is implied by Nixon’s'® study of perturbations to steady
discontinuous transonic flows.

Formulation

We write the unsteady small-disturbance equation for low-
frequency transonic flows in the commonly used form

_ZKMin¢_tl+{1—Mi— (7+1)M€m¢\' ’¢_r_\'+¢y_v=o (l)

The spatial coordinates, the time, and the velocity potential in
Eq. (1) have been nondimensionalized by the chord, the
reciprocal of the angular frequency, and the freestream
velocity times the chord, respectively. Other, perhaps more
suitable, forms are given in Ref. 9. This equation results from
a systematic expansion of the velocity potential in the
thickness ratio 7 and applies for reduced frequencies
K=0(r?"), where K=wc/U, i.e., the angular frequency
multiplied by the time it takes the flow to traverse the airfoil
chord. Lin et al.!" showed that, with restriction to small
perturbations throughout the flow, Eq. (I) is the only
nonlinear equation that arises. For moderate frequencies, the
equation

KMo, ~2KM26,,+ {1-ML— (y+ Y M3
x[¢ +7_1K¢]}¢ +6,,=0
X 'Y + 1 { AR e

frequently is used, with or without the ¢, term, and may
provide results that apply at higher frequencies than those
obtained from Eq. (1) or the linear form of the preceding
equation.

Because K=0(7°"?), the boundary condition on the body
takes the simple form

¢, (x,0,t) =7[3Y (x,1) /3x+ K3Y (x,1) /0t]
=7[Y2+ (8/7)(YU+KY])], ~Vesx< Vs (2)

where Y(x,7), the instantaneous body shape, has been
decomposed into a steady part Y° and an unsteady part Y.
The last term, KY%, is dropped except when YY is small or
zero because K=0(7?7). Here 8 is the amplitude of the
unsteady pscillation. Far from the body we require that the
derivatives of ¢ vanish. In this approximation the pressure
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coefficient, defined so that it vanishes at sonic conditions,
takes the form

ML -1
C,=-2—=—— ,

In the smali-disturbance approximation, the Kutta condition
is imposed by requiring that C, be continuous at y=0 for
x> V2.

Any shock wave that exists in the flowfield must satisfy the
jump relation derived from the conservative form of the
governing equation, Eq. (1), namely,

bl dx 2 - 3
~2kM3 [0,12(5 ) —1-ML=(y+ DMLE,) [6,]°

+[e,]°=0 4)

together with the condition derived from the assumption of
irrotationality,

(g)f —[E,‘fi]] 2

Here ¢, refers to the mean value of ¢, evaluated on each side
of the discontinuity, and [ ¢,] indicates the jump in ¢,
across the discontinuity; the subscript s denotes the quantity
evaluated at the shock surface.

Time-Linearized Equations
We now assume that the unsteady disturbances, charac-
terized by 8, are small enough so that we may write

(1,1 =0°(X,y) +8) (X, 0,1) +0(8) 6)

and neglect higher-order terms in 6. The restriction imposed
on & for this to be true will depend on the other parameters of
the problem, viz., k=(1 -~ M2)/[(y+ )M 7}?" and K. This
gives

{1=ML—(y+1)ML¢} )¢} +¢;, =0 (7a)

G (x0)=7Y""(x), -lVisx< (7b)

and
_ZKM.;‘[/\'I + ' [I_Mio - ('Y+ I)M:’x:d’;]’l/r l,r +¢_vy =0 (83)

Vo (x,0,1) =Y x,1), —Visxslh (8b)
The solution to Egs. (7) must satisfy the steady version of the
shock relations, Eqs. (4) and (5). The shock relations for Eqs.
(8) are discussed later.

As mentioned previously, a shock-fitting scheme that
approximates the shock waves as discontinuities normal to the
freestream has been developed® with an alternating-direction
implicit scheme (i.e., ADI) to compute the solution to Eq. (7).
Comparison of these results with the results obtained'* using
an exact shock-fitting algorithm and line relaxation indicates
that they should suffice for most studies. At the very least,
they should prove adequate for the time-linearized studies of
interest here, as only small shock excursions can be allowed.

We assume, then, that we have the numerical values for ¢°
required in Egs. (8). These data will be discontinuous across
some vertical line, the shock wave, A = x*, 0< Iyl <p*. We
then ask, under what conditions are Eqs. (8) valid? And how
do we account for shock wave motions in the linearized

analysis? The answers to these questions are inferred from a
<imnle ane-dimencianal mndel dicriiccad in tha nave cantinn

o7 o -
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Anticipating that we will wish to solve Eqs. (8) with the
same technique that proved successful for Eq. (1), we avoid
writing

V(1) =Ref§ (x,y) e ) M

Assumption (9) restricts the study to harmonic linear motions.
Because indicial motions can be superimposed to obtain the
results for any frequency, they too are important. Assump-
tion (9) suppresses the time dimension of the calculation, but
it results in two coupled equations, or one equation for a
complex-valued y, which may be solved by line relaxation.
Our experience with unsteady ADI techniques has been that
they are at least as effective as line relaxation for problems of
this type, and hence there is no numerical advantage to the
decomposition, Eq. (9). This conclusion also was arrived at by
Ballhaus et al.'? in a related study.

An appropriate scaling of the dependent and independent
variables in Eqs. (7) and (8) allows either the thickness or the
frequency to be normalized to the value 1, as expected. This
scaling, in terms of the transonic similarity parameter «, the
amplitude of the unsteady motion 6, its frequency w, and the
body’s basic thickness 7, leads to

- y 1
VORI =w (%, 2 =)
o

,”;
w W

where X and y are suitably scaled replacements for the x and y
coordinates. This result can be used to check trends noted in
the numerical results.

One-Dimensional Model
To answer the questions just raised, we study a simple
unsteady one-dimensional analog of Eq. (2). We consider a
one-dimensional unsteady equation that models the important
features of Eq. (2), and ascertain how a simple steady solution
is modified by small unsteady perturbations. We consider,
then,

2¢\1+ (1_¢r)¢.t‘x=2¢.\'l - 1/2‘ (1—¢r)2’r=0 (]0)

subject to ¢(0,1) =1, (1), ¢, (0,t) =f,(t), and either ¢(1,) or
¢, (1,0) =f(r). There are restrictions on f which, for brevity,
we do not list. Our study could be generalized by replacing
1-¢,in Eq. (10) by {4 (x) —¢,], where A (x) is a continuous
function of x, but little added insight is gained.

To simplify matters further, consider the especially simple
subcase f; =0, f,=—1, f=3+6p(r). When 6=0, we have the
steady solution

¢°={ :?(1—)(),

O<sx<
Yisxs<|

L]
This satisfies Eq. (10) and the jump condition that one derives
from it, viz.,

dx -
= L =] 1
[e] OonZd’ -6, (]).

Now a general solution of Eq. (10), in terms of ¢, is

. . 2(1-x)
¢, =arbitrary function of (l + —— )

This can be verified by substitution. With, say v ,(1,r)
=3+4p(t), wehave, for x>x,,

2(1-x)

Toa e J4EAO (D)

¢(x,1)=3(x—x¢)+5& p(!+
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where the choice h(7) =x, (1) insures that [ ¢] =0 at x=x,
because ¢ =¢° for x <x,.

The shock motion must be determined by the direct in-
tegration of Eq. (11):

dx,
ds

2

- [
=1=d,= = plx (0.1 (13)

Now, for comparison, we determine the results that are
obtained by time linearization; i.e., we write

b (x,1,6) =8 (x) +8¥(x,1) +0(8) (i4)

and solve the linear equation for y which results by dropping
higher-order terms in 8. That is, we solve

2¢x1+ (7—¢:)¢.\-x—¢;v\1/x=0 “5)

subject to ¥ (1,1) =p(1).
We now linearize the first of Egs. (11) as follows:

[oa,n)] =0= [ (x.1) +,(x5,0) [x, (1) =x7) +...]
= [ &°(x7) +6¢ (x5,1) + b3[x, (1) —x]1]
Thus we conclude that
SEv(x0 ] == [o2(x)] (x,—x7) (16)

From the second of Egs. (11), with x, (1) =x; +éx(7), we find

where (), refers to the value behind the shock. Thus we may
replace Eq. (11) by

[vOin]=—[o(x)]x

or
Vo (x5,1) = —dx (1) (17a)
and
dx 1
ar ——2\/«,, (17b)
Example

Consider now, for example, p(¢) =sinwt; it is easy to show
that a general solution to Eq. (15) is

Y(x,1)=— (1/w)[cosw(I—x—t) —h(1)]

The function A(¢) follows from Egs. (17a) and (17b) and
assuming, e.g., that ¥ (¥,0)=0. Thus,

Vix,t)=— (l/w)[cosw(/ —x—1) —cos(w/4)] (18)
and
x (1) = (1/4w)[cosw (¥ —1t) —cos(w/4)] (19)
Had we solved Eq. (15) with y=0 for x<x,(r) and
determined the exact shock motion from Eq. (11) with |-
¢.= —2+0(8) used in Eq. (12), we would find that behind
the shock
O(x,1) =¢°+3—4dx, — (6/w)[cosw (! —x—1)

—cosw{l—x,—1)] (20)
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where the shock motion is given explicitly by

tan’ (t+c) [tane(t—l)—é]
2 2 4
x,= ~tan ' 21)

w w
1+tan3 (t—-1) [tan; (c+t)+;:|

with ¢= —2(tan ~/[tan(w/8) + 6/4])/w. For w6, which is
required for small shock motions, Eq. (21) simplifies to

X, =% + (8/4w)[cosw (¥ —t) —cos(w/4)]

Thus these results are in agreement with Egs. (18) and (19) to
lowest order in 6.

The time-linearized results, Eqs. (18) and (19), now are
compared with the exact results. The nonlinear result for
x>x,, given by Eqgs. (12) and (13), is

X 2(1-x) ) .
=¢° -4 —_— 22
b=0°+3 xs(t)+6gxxsmw(t+I_d)x(i’t) i (22
where
dr, . 8 Al—xs)
S =5 4smw(1+ = 23

The results, Eqs. (22) and (23), are consistent with the time-
linearized results, Egs. (18) and (19), to O($), except for a
slow secular drift in the shock position of O(8?r) that occurs
in Eq. (23) but not in Eq. (19). This is an artifact of our one-
dimensional model; even if it were not, it would not invalidate
the use of the linear results for flutter studies where & is small
and structural damping determines the time scale of interest.

The main conclusions that we derive from this study are
that it is essential to consider shock motion in computing
time-linearized solutions if we are to determine the effects of
small unsteady perturbations correctly to lowest order, and
that shock excursions increase as the frequency is decreased.
Additionally, this motion can be computed in a straight-
forward manner.

Two-Dimensional Time-Linearized Analysis
The results from our simple model show that the time-
linearized results must be corrected for shock motion if they
are to be consistently correct to lowest order. This can be
accomplished by calculating the shock motion in conjunction
with the time-linearized solution. Here we follow an
analogous procedure and calculate the change with time of the
values of the perturbed potential behind the shock required by
the linearized shock jump relations. Thus, we wish to solve
Eq. (8a) with Eq. (8b) subject to the far-field boundary and
Kutta conditions. As we noted, the steady result for ¢ can be
calculated adequately for most small-disturbance flows using
normal shock fitting, as described in Ref. 9. Under the
assumption that the shock wave is normal, the shock jump

conditions, Eqs. (4) and (5), can be replaced by requiring

dx, ~,+/{ ML -1

Lol =0on g =3k Uiyw nmz

ar - 2K “"‘} 24

For steady flow, x, =0 and in Eq. (24) { - - -} =0. We express
the shock positon as

X =X:+ 6)( (1)
and conclude that the shock motion is governed by

d_)g_7+1-

/72 TR T A
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As discussed in Ref. 9, ¥, is evaluated at y =0. On the shock

(el =Te°1+6[¥] (25)

Linearizing Eq. (25) for the velocity potential about the steady
shock position, we find

S (X2 1) =D (X1} + b, (X, ,1) O
=0 (x5, y) + 67 (X7, ) dx + 0% (X7, p,1) + O(87)
Because we have treated the shock as a normal one, y appears
here simply as a parameter. Now [o(x,»f)] and

[ #°(x{,»)] are both zero; consequently, we have

(v+
2K

] ' ..
[¥xomn)] =- ) [oi(xi0)] S( Y. (x5,0,0)dr (26)

which must be integrated in time in conjunction with the
solution to Eq. (8).

Equation (8) now is solved numerically in time and space in
conjunction with Eq. (26), which is used to update the values
of Y behind the shock. We start with a steady solution and
initiate a body motion, such as the harmonic oscillation of a
flap. The calculations proceed in time until they are judged to
be periodic. Note that indicial as well as harmonic motions
may be considered because we have not utilized the usual
harmonic decomposition, Eq. (9).

Numerical Procedure

The numerical procedure used here derives from that
developed for the nonlinear equation, Eq. (1). The main
simplification occurs in the shock jump conditions. In order
to minimize the far-field boundary effects on the results
which, as Magnus'* has noted, can be significant, we again
use coordinate stretching” in the form

E=+[/—exp(—a, Ix!)] for x=0
n=<«[l—exp(—a,ly!)] for y=0
where a; and a. are constants that determine the mesh
distribution. This stretching transforms the infinite physical
domain into a computational domain bounded by |£1 <1 and

Ipl < 1. The mesh distribution is concentrated on the airfoil.
In these coordinates, Eq. (8) becomes

A ) A G U= 18D Y ) +A LU = DY, ), =0
@n

where

—2KM2a ai a
== 4,= ! 4,= &
a (=g 2 1— Igl

' a(I=Inl)’

and
SEN=1-M2L —a,(y+ DML (1- 1El)¢¢

is known in discrete form from the steady numerical solution.
This function is discontinuous at § =¢; for 0< Iyl <n*. First-
order backward time and spatial differences are used for the
first term. Centered or first-order backward differences are
used for the second term if fis less than or greater than zero,
respectively; f(£,7) is known in advance, with the derivative
®; automatically evaluated correctly. Centered differences are
used for the third term and denoted by §,,.

The solution is computed using an alternating-direction
implicit procedure first applied to transonic flow problems by
Ballhaus and Steger'® and by Beam and Warming,'® and
subsequently refined further by Ballhaus and Goorjian.'” The

AIAA JOURNAL

solution is advanced in time from its initial steady state to
subsequent time levels with the following two-step procedure.
New values of ¢, denoted by ¢ *, are calculated along
n =const lines using
Yy
Y-

A,T‘“ AU B U= EDY

+ A8, (I~ Inl)y }=0

This is coupled with the computation of new values of ¢ *
behind the shock obtained by using Eq. (26). With the shock
located at £; such that £, <£7<&,,,, wecan express the values
of Y ahead of and behind the shock in a Taylor series, finally
arriving at the result

[v] *=-Cmangy+ [¥]" (28)
where
C)=[(y+1)/4Klai (1 - 1E) 2 [ o7 (Em) ]

and ! is evaluated, following Eq. (26), at 7 =0. One-half the
change in y across the shock is accounted for in this step,
effectively using the trapezoidal rule in the time integration,
Eq. (26); hence Cis half the value implied by Eq. (26).

With the values of Y * determined, the new values of ¥ at
the subsequent time level, y"*/, are calculated using

¢n+1_¢+ A
A S S8, LU= Iy =y =0

in conjunction with the completion of the time integration,
Eq. (26):

I[¢]]"*'=~—C(77)Ah7/2'“+ [[\L]] + (29)

Again, y¢*/ is evaluated at =0.1
The full procedure is, effectively,

A =D a0+ A () (T = 1EDY ),

+ A, ((I=lgl) (P +y7) =0

with Eq. (26) implemented in the form of Egs. (28) and (29).
The procedure outlined here effectively corrects the ¢ values
for shock motions as the solution progresses. The shock
motion is easily determined simultaneously by using Eq. (26)
and the expression for dx/dr to find

X" 0,0 =~ [¥(x,00] "/ [ (x0)]  (30)

The computations then provide results for ¢, like those
sketched in Fig. 1. This figure depicts the steady-state result
and the unsteady changes, as well as the shock positions at
two different time levels where the shock is behind the steady- |
state position. When the shocks have been inserted in their
known positions, we see that we need to continue data
analytically ahead of and behind the shock in order to
complete the solution. For shock excursions that are o (1), we
simply can extrapolate the steady-state data, both ahcad of
and behind the shock, to determine the pressure distribution
on the body correctly to lowest order. Larger shock motions
are, of course, not admissable in this theory.

1The results given by the authors in Ref. 18 were in error because ;7/5
was allowed to vary with 75; this is not consistent with the normal
shock approximation that gives Eq. (24).

7YS R - - —
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Steady State

¢ (0,x,t ) — == With Unsteady Perturbation
* ° * 8 Extrapolated Shock Position
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Fig. 1 Sketch of steady state ¢,, effect of perturbation 8y, and

resulting shock excursion.
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Fig. 2 Nonlinear (***) and time-linearized (———) circulation and
shock position for the pitching motion of an NACA 64A006 airfoil.
Results shown are for the fifth cycle. The nonlinear results are for
6 =0.1 deg and are not yet periodic (M, =0.880, K =0.48).

Results and Discussion

Time-linearized results have been computed for an NACA
64A006 airfoil experiencing harmonic pitching and flap
motions. As noted earlier, in the low-frequency ap-
proximation made here, pitching and plunging motions lead
to the same result except that the time-linearized per-
turbations are proportional to the maximum pitch angle for
the former, and K times the maximum amplitude for the
latter. Harmonic motions initiated from a steady state become
nearly periodic in three to ten cycles, with the changes induced
by flap oscillations becoming periodic more rapidly than
those resulting from pitching oscillations. More cycles were
required for larger frequencies and, to a lesser degree, higher
Mach numbers.

In order to confirm the validity of the time-linearized
calculations, both the time-linearized and nonlinear
algorithms were used to compute the response to a step change
in angle of attack and the harmonic response to pitching
motions. Figure 2 compares the nonlinear and time-linearized
results for the normalized circulation and shock position for
harmonic pitching motions at M, =0.88 and K=0.48. For
these conditions, very small unsteady changes lead to very
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Fig. 3 Normalized noniinear (***) and time-linearized (———)

pressure perturbations on the upper surface of an NACA 64A006 at
three times. Pitching motion with M =0.880, K=0.48. For the
nonlinear calculations, § = 0.1 deg.

small shock motions, and in both calculations the shock wave
remains between grid points. Because of the extrapolation
procedure used in the nonlinear shock-fitting, the finite mesh
size used can introduce errors, albeit small ones, in the
shock’s position when a grid line is crossed. We wished to
eliminate these errors in order to use the nonlinear

PR 4
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Fig. 4 Time-linearized pressure coefficients on the upper (+) and lower (*) surfaces on an NACA 64A006 airfoil with oscillating quarter-chord

flap (M, =0.875, K =0.06, 6 =0.25 deg).

calculations to judge the accuracy of time-linearized
calculations. These results indicate that for pitching about
midchord, nonlinear, amplitude-dependent behavior occurs
for §/7=0.1 for K =0.48. Because the amplitude of the shock
motion increases with decreasing K, nonlinear effects occur at
smaller values of 8/7 at lower reduced frequencies. Results are
given for the fifth cycle; note that the nonlinear results are not

_ S /95

yet periodic. Figure 3 compares the nonlinear and time-
linearized pressure deviation from steady state at three
angular times for the same conditions. Good agreement
between the results is obtained for 6/7 less than 0.1.
Time-linearized pressure distributions at six angular
positions for an oscillating quarter-chord flap with K'=0.06
and M, =0.875 are shown in Fig. 4. The flap deflection is
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Fig. 5 Normalized maximum shock excursion and circulations as a
function of inverse reduced frequency for an NACA 64A006 airfoil
with oscillating quarter-chord flap (M, =0.875).

downward during the first half of the cycle. The results for the
second half of the period, for the symmetrical problem shown
here, are just the results shown with the lower and upper
surface pressures interchanged. Thus the results for 0 deg are
not given, as they are just those for 180 deg with the lower and
upper surface pressures reversed. Because the flap hinge
occurs very close to the steady-state shock location, the
pressure singularity due to the change in flow direction at the
hinge is missed. The circulation and shock excursion obey the
following relations:

I'(1)/76=9.26 sin(1—59 deg)
x (1) =12 sin(t— 51 deg)

Note the substantial phase lag in the circulation and the
shock’s position.

Time-linearized pressure distributions for an oscillating
airfoil with K =0.12 and M, = 0.875 also were computed. The
results, if multiplied by K, represent the pressure per-
turbations for a plunging airfoil. As in the previous case of an
oscillating flap, changes in forces and moments of O(8/K)
occur due to shock wave motion. In this case,

' (1) /76 =15.48 sin(r— 70 deg)
x (¢) =5.62 sin(t~ 87 deg)

Analogous computations have been carried out for
K=0.06, 0.12, 0.24, and 0.48. Figure 5 depicts the shock
wave’s excursion and maximum circulation as a function of
K ~'. The nearly linear variation of the shock excursion
substantiates an observation made in a one-dimensional
model where the shock wave excursion is directly propor-
tional to 1/K.

In these calculations the circulation gives an immediate
evaluation of the lift coefficient as a function of time; the
moment coefficient must be evaluated by integrating the

mament af the nreccure cnefficient  Thic ic dAane hu in.
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tegrating the moment of pressure perturbations with the
shock wave in its steady-state position and then correcting
these results for the moment due to the shock wave motion,
assuming that the shock’s strength is defined by the steady-
state pressure field. This makes an error in the shock strength
of O(8), but the effect on the moment is O(82/K); because
we have neglected other higher-order terms, it is consistent to
neglect this change in the strength of the shock wave.

For the time-linearized results to be valid, we must really
require 6/7K<1. Our numerical results indicate that, for
8/7K =0.2, the unsteady perturbations are essentially linear.

The time-linearized algorithm used here is a derivative of
that used for the nonlinear calculations. Consequently,
computational times are not greatly reduced from those
required for the nonlinear calculations. The linearity of these
computations may make it possible to greatly reduce the
computational effort required. Numerical experience has
shown some difficulties for Ar (deg)/K=50. This is in
agreement with the consistency requirement for thg ADI
algorithm used here. Both the domain-of-dependence con-
dition and a local linearized stability analysis show the
procedure to be unconditionally stable. Each time step
requires about 2 s of CPU time on a CDC 6400, or about 0.1 s
on a CDC 7600. The number of time steps required for a given
computation is somewhat less than that required for the
nonlinear computations at small values of K, and comparable
at larger values of K.

Conclusion

An accurate and efficient procedure for computing time-
linearized, small-perturbation, low-frequency transonic
flows, including shock wave motions, has been developed.
Shock motions must be included, as their amplitude is
proportional to that of the motion divided by the reduced
frequency. Both indicial and harmonic responses for various
modes of motion may be computed in seconds on a CDC
7600.
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The focusing of very weak and slightly concave symmetrical shock waves is examined.
The equation that describes this focusing is derived and the resulting similitude
discussed. The initial conditions come from a formal matching of this nonlinear
description with the linear solution. The maximum value of the pressure coefficient is
shown to be proportional to the two-thirds power of both the initial strength of the
wave front and a parameter characterizing its rate of convergence.

1. Introduction

There are many sources of weak shock waves; they arise naturally and through the
activities of man. Examples include the commonly experienced phenomena of thunder
and the sonic bang generated by supersonic aircraft. In this paper we use the terms
shock wave and wave front interchangeably to refer to a surface of discontinuity in the
pressure and velocity fields in the fluid. It frequently happens that such wave fronts
become curved. This curvature may be the result of inhomogeneities in the medium,
reflexion from curved surfaces or unsteady boundary conditions. Wave fronts which
are concave in the direction of propagation exhibit different kinds of behaviour
depending upon the strength of the wave front and the rate of focusing. When the
focusing is weak relative to the magnitude of the pressure rise across the wave front,
the wave front will straighten and no focusing will occur. When the strength of the
wave front is sufficiently small, the wave front will focus along a caustic surface and at
a cusp in this surface, called an aréte, if it occurs. A perfect focus occurs when a finite
portion of the wave front converges to a single point.

The focusing process is characterized by large pressure amplification and a nonlinear
interaction between the shock and the flow behind it. Despite considerable analytical,
numerical and experimental work, many important questions remain unanswered.
Analytical studies are hampered by the fact that available theories, such as the shock
dynamic theory of Whitham (1957) and the theory of geometrical acoustics, are
inapplicable at a focus. The first fails because it does not account for the interaction
between the shock and the flow behind it; the second fails because it is a linear theory
and predicts infinite pressures at focal points. Important theoretical studies of the

t Present address: Department of Aerospace and Mechanical Engineering, University of
Arizona, Tucson, Arizona 85721.
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210 M.S. Cramer and A. R. Seebass

behaviour of weak shock waves at a caustic include those of Guiraud (1965) and Hayes
(1968). For the case of a smooth caustic they gave the similitude that relates the
amplification of the wave front to its initial strength and geometry. An important
contribution to our understanding of the behaviour of focusing wave fronts comes
from the experimental investigations of Sturtevant & Kulkarny (1974, 1976). Using
shadowgraph techniques and pressure measurements they studied the focusing of
curved shocks for a wide range of geometries and strengths and delineated the compli-
cated wave patterns and pressure histories which occur.

Because the caustics associated with smooth wave fronts are generally cusped, the
aréte is one of the more frequently observed foci. In this paper the focusing of very
weak shocks at an aréte is examined. We consider nearly straight symmetrical wave
fronts and use the method of matched asymptotic expansions to determine the initial-
value problem and related similitude that govern the flow in the vicinity of the aréte.
The dependence of the maximum pressure coefficient on the initial strength and shape
of the wave front is discussed; the main result is that the pressure levels at the aréte
are proportional to the two-thirds power of both the initial strength cf the wave front
and a parameter characterizing the rate at which the wave-front converges.

2. Physical problem

In this section we give a qualitative account of the physical effects that govern the
propagation of curved wave fronts. One effect is that a wave front always propagates
normal to itself and therefore has a tendency to converge. Another is that the speed of
propagation of the wave front increases monotonically with its strength. The latter
effect will tend to straighten converging shocks. The behaviour that results depends
on which effect dominates.

The behaviour of shock waves which are relatively strong was discussed by Whitham
(1957, 1959, 1974) using his theory of shock dynamics. To understand the behaviour
of such shock waves, consider the propagation of a concave symmetrical shock into a
homogeneous medium as sketched in figure 1 (a). The shock’s strength is taken to be
a maximum in the plane of symmetry and, because the amplification is greatest in this
plane, the maximum strength will remain there. However, the shock speed will also
haveits maximum in the plane of symmetry and the resultant variation in propagation
speed will straighten the shock. This behaviour is expected even for shocks with
pressure coefficients much less than one, provided that the focusing is sufficiently slow.

When the strength of the shock is sufficiently small its speed of propagation is
approximately the sound speed of the undisturbed medium. In many respects the
flow will resemble that predicted by geometrical acoustics, and we first discuss the
behaviour of such weak shocks from this viewpoint. In this approximation the propa-
gation speed is taken to be the sound speed of the undisturbed medium and, if we take
this to be homogeneous, the trajectories of points on the shock, called rays, will be
straight. Adjacent rays originating on concave portions of the wave front will intersect,
and the locus of these intersections will form a surface in space, called a caustic. When
the wave front has a minimum radius of curvature the caustic will be cusped and the
wave front will emerge from the cusp in a crossed configuration, as sketched
in figure 1(b). Experimental evidence of weak shocks which focus and cross is found in
the sonic-bang measurements made by Wanner et al. (1972) and in the laboratory

20¢
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\ Xﬁ
(a)

A

Initial

front
xi=f)
F1Gure 1. Focusing of (a) a8 moderate strength shock and (b) an acoustic
discontinuity ; f*(L) = 0, R, = 1/f"(0).

7— Caustics

(b)

investigations by Beasley, Brooks & Barger (1969), Cornet (1972) and Sturtevant &
Kulkarny (1974, 1976).

Geometrical acoustics predicts that when the wave front reaches the caustic surface
its pressure jump becomes infinite. At the cusp in the caustic this singularity is even
stronger because portions from either side of the plane of symmetry focus there
simultaneously. Of course, these singularities are never observed, and they merely
indicate a local failure of the geometrical-acoustics approximation. Sturtevant &
Kulkarny have discussed the nonlinear effects which limit the shock strength to finite
values in the focal region. They showed that as the shock approaches a cusp in the
caustic it isimmediately followed by a sharp expansion. Thisis due to the amplification
of the shock relative to the rest of the flow. When the pressure gradient behind the
shock becomes sufficiently great the weakening effect of the expansion as it overtakes
the shock becomes noticeable, even if the shock is still weak. Because of the shock’s
interaction with the expansion wave, the strength of the shock islimited to finite values.

8-2
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3. Mathematical formulation

We consider the wave front shown in figure 1 (b) and take the co-ordinate system to
have its origin at the point of minimum radius of curvature of the initial wave front.
The + 2 axis is in the direction of propagation and the y axis is tangential to the initial
wave front at y = 0. The equation of the initial wave front is taken to be 2; = f )
where z; and y; are the co-ordinates of the initial shock and f is symmetrical about
y = 0. We are considering the propagation of very weak shocks in an inviscid perfect
gas with no heat conduction. In the case considered here the shock strength is always
small. The results of Hayes (1957) may be used to argue that for the spatial and
temporal gradients expected here the flow may be assumed irrotational. If we assume
that a velocity potential ¢ exists, the inviscid equations of motion reduce to

¢tt + 2¢z ¢zt + 2¢u ¢yt + 2¢z ¢y¢z‘u = (az - ¢g) ¢zx + (az - ¢121) ¢W’ (l)

where a is the local speed of sound, which for a perfect gas it is given by the isentropie
Bernoulli integral for unsteady flow:

a? = ad—(y—1)[¢. + 3P2+ D)), (2)

where a, is the constant speed of sound in the undisturbed medium and y is the ratio of
specific heats. The velocity potential must satisfy the initial conditions

¢(.’L‘, y’O) = ¢0(£L', Z/), ¢t(z,.% 0) = ¢1(-’r,?/), (3)

where the functions ¢, and ¢, are taken to be zero ahead of the wave front, i.e. for
x > f(y); immediately following the shock, their values must be consistent with the
appropriate shock jump relations.

As mentioned in previous sections, we consider the shocks to be not only initially
weak but also nearly straight. We take the maximum strength of the wave front to be
at y = 0 and the pressure coefficient, C,(z, y,t) = — 2¢,/aj to lowest order, to be small
for all z and y at ¢t = 0. We define

€=C,(0-,0,0) <1

as the small parameter associated with the shock strength. For the shock to be
practically straight we require that f be such that the maximum slope f' is small. If we
define L to be the point of maximum slope, i.e. f"(L) = 0, then the requirement
8 =L/R, < 1,where R,is the minimum radius of curvature of the shock, ensures that
the slope is small everywhere. Another restriction we shall need to place on the shape
of the wave front concerns the rate of change of the radius of curvature of the wave
front at ¢ = 0. Denoting the radius of curvature by R(y;), we have

R(y,)=[1 +fl(yi)2]%llf”(y1’)' (4)
In §4 we shall need to require that Ry R,4% = (3 —/1V(0) R}) 82 be of order one in the

limit of vanishing 8. Here Ry denotes the second derivative of R(y;) at y; =0 and
f1¥(0) is the fourth derivative of fat y; = 0. Examples of possible wave-front shapes are

fily; A1) = A[1 —exp (—y2/B)), [fo(y; €1, C2) = $6,9% — FoCay®

Both shapes are smooth and possess inflexion points. The parameter ¢ is found to be
244/l in the first case and ckc; ¥ in the second, and it is clear that the limit & - 0 may
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always be taken. The above formulae may be used to calculate Ry R, 82 In the first case
this equals 3(1+02) exactly and the requirement that RgR, 62 = O(1) as 8 > 0 is
satisfied; thus the results derived in this paper may be applied to the first example.
The second case is given because it is a wave-front shape which does not satisfy this
condition; essentially, this is because fi'(0) = 0 and, consequently, Ry R,d% — 0 as
0 — 0. In the following sections we shall always assume

k= —f1v(0)R3 &%~ Ry Ry0% = O(1).

Our main objective is the determination of solutions to (1) and (3) which are valid
for small ¢ and & and, for consistency, whose pressure and velocity perturbations are
always small. In particular we wish to study the case where wave-front crossing occurs.
In this paper we give approximations to (1)in two distinct regions. The first is just the
linear wave equation and is valid for times of order L /a,. The solution, subject to the
initial conditions (3), is easily found; this is the outer solution. An approximation to (1)
which is valid as the wave front approaches the aréte, i.e. the cusp in the caustic, is
derived in §5. The initial condition for this equation is obtained by the method of
matched asymptotic expansions, thus establishing the initial-value problem governing
the flow in the vicinity of the aréte.

In the next section the outer solution and the expression for the caustic shape near
the cusp are derived. In § 5 the inner region in which the nonlinear effects predominate
is discussed and the inner equation deduced. In § 6 the appropriate initial condition for
this equation is obtained through the method of matched asymptotic expansions.
These results provide a similitude which shows that the solution to the inner problem
involves only a single parameter.

4. Outer region

To determine the outer equation it is convenient to work in a co-ordinate system
that moves with the wave front. Accordingly, we write the full potential equation (1)
in terms of the co-ordinates X = x—a,t, y and ¢:

Pee— 2003 +20xPxe+ (¥ — 1) Pexx— (¥ +1)0Pxbxx
= a’(2)¢w/_ [2¢y¢tu+ (7— 1)¢t¢w]+a0[2¢y¢x1/+ (7— 1)¢X¢uu] +.. (5)

where (2) has been used and the terms omitted are cubic in ¢.
In the outer region it is natural to take

agt = O(L), y=O(L), X=0(A%), ¢=0(ak*),

where the length scales A* and k* are yet to be determined. According to the theory of
geometrical acoustics the square of the pressure coefficient immediately following the
shock varies inversely with the ray-tube area. For our problem all the rays are straight
lines and, consequently, the pressure coefficient behind the shock obeys (see, for
example, Friedlander 1958, pp. 51-56)

Ry 3
Cos(t; y1) = Cpel0; 43) (R(y.gy—l)aot) )

Here R(y;) is the radius of curvature of the initial wave front at the point y = y;;
y; effectively labels the ray of interest. Thus, for times of order L /a,, we see that the
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time rate of change of the shock’s strength is of order a,/R(y,). This suggests that the
appropriate outer scaling for the derivative (8/9t) x is ao/ Bo. Accordingly, we adopt the
following outer sealing for the derivatives in (5):

9 _ad o _ 12 2 130
@~ R, oy Loy oX A*p%

and ¢ = a,k*¢. For t = O(L/a,), there is no amplification to lowest order in §; we
therefore assume that k*/A* and k*/L are small. When the above expressions are
substituted in (5) we find that it may be written in the following form:
R k* R, k* R}
-2 53 $xi+ 1 e (26xBxe+ (V= D dedzx] - (v + 1) 15 s PxPxX

k* k* 1 A*
= 31'2{51717'{'7\';812[245#15&'7*‘(7—l)é:?éﬁ?]—ﬁﬁﬁ;méﬁéﬁ*'('}"1)15??;75]"'--'-

We now assume that k*/A* and k*/L are small; it may be shown that this implies that
the omitted cubic terms are negligible compared with the largest of the first- and
second-order terms. Furthermore, when k*/A* is small, the third term on the left-
hand side and the second term on the right-hand side are seen to be negligible com-
pared with the ¢ 3;term and the @5 term, respectively. When these terms are dropped,
the terms remaining are

R k* R2 1 k* 1 A*
¢E—2A—3‘¢§s—(y+ I)K;‘f\_"%é;‘é?‘i =% ﬁi—Fﬁfo[?’éﬁéﬁ?*'(?_‘l)dtéW .

This expression is reduced further by assuming that ¢ is small. An immediate conse-
quence of this assumption is that the ¢z term is negligible compared with the By term.
Inspection of the remaining terms shows that the only choice of A* which yields a
non-trivial balance of terms, i.e. one which contains derivatives with respect to X9
and f, is A*/R, = 62, or A* = Ld. Here, for convenience, we have dropped the order
symbols. The resulting balance of terms may be written as

2Bxr+(r+1) 5 bz b5x+ b = 0.

The coefficient of the nonlinear term is obtained by noting that A* = §L implies that
(8/dt), = —a,(8/8X), in the outer region and therefore that

1 1 k*
6= 06) =~ #e% 2:9x = 0(55).

or simply k* = A*e. Thus, provided that /82 = o(1), nonlinear effects are negligible.
We now assume that this is the case, so that the outer equation becomes

205+ = 0.

Transforming back to the physical variables and back to the.z,y,t co-ordinates, we
see that our outer equation is just the wave equation

tt = 03(Pex + Pry)s (6)
where we have used the fact that (9/0t), ~ —ay(9/8X), in the outer region.
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The explicit form of the outer solution is obtained by solving the linear wave
equation (6) with the initial conditions (3). The solution to (6) which satisfies (3) is
given by the well-known Poisson integral formula

1 af1
47T¢ = Eg—tll-{—éz [a—(z)_tIo]
The quantities I, and I, are the integrals of ¢, and ¢, over a sphere of radius a,t centred
at the point (z, y, 0). This sphere has the equation
(@ =2+ (y;—~y)* +2 = af?, (7

where the subscript s refers to points on the sphere of integration.
We now consider the distance s measured along a ray from the initial wave front to

any point (z,y, 0); then
L+ (y,) ]
o= [+ IR - ) = - LWy @
S ()
Here we have defined s to be positive ahead of the initial wave front and negative
behind it. In the following sections it will be useful to have the functions ¢, and ¢, in
terms of s instead of  and y. Using the fact that f/L and f' are small, we may replace
8)b

( ) Y Ys = yi+0(ss)1 Sy = —f(ys) +O(Ss)- (9)

Using (9) to replace z, in the integrands of I, and I,, we may write these integrals to

lowest order as
b= [[eevida, 1= [[oo,m)da

the area element dA of the sphere (7) may be written as
aztdz, dy,
[a§e2— (y,—y)2 — 251
Using (7) and (9), we now write s; explicitly in terms of y, and z,:
S = X +aot + [a’%tz— (:’/s— y)z _""s]i f(ys) +0(8,),

where the + sign refers to points on the sphere of integration with z, 2 z, respectively.
The above results have been derived in terms of the physical variables X, y, ¢, etc.
We formally define the outer variables

dA =

The outer solution may now be written as

4n¢=;11_%%10, (10)
where I = f f ¢ 7)dd, I, = f f $:3, 7,)d4,
in which BolBy 7) = ¢.,(ss, Y)/easdL, 8,3, 9,) = $:(s, 9,) /aFe
and 5007 X9, = o = X+ 14e 3 [0~ @~ 92— 05 - fF), (11)
dd = dA /8L

<
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In determining the scaling for s,, we have used the fact that the functions ¢, and ¢, are
identically zero for s, > 0; therefore it is necessary to consider only non-positive values
of s,in the above integrations. As aresult of this, s, is of order L in the outer region and,
although 7, and § are each of order one in the outer region, their difference y,—y will
always be of order 8tL there. Because z, is also found to be of order 8L, the last two
terms under the square root are of the same order. In the outer region  can vanish;
(11)is therefore the lowest-order expression for 3, which is uniformly valid in the outer
region.

Strictly speaking, the outer solution is valid only for times of order L /@,. The result
(10), of course, predicts infinite pressures when the wave front reaches the caustic
surface. This surface is defined by the intersection of adjacent rays, i.e. of adjacent
normals to the initial wave front. These considerations imply that the distance,
measured along a ray, from a point on the initial wave front to the caustic is just R(y,),
the local radius of curvature of the wave front. In terms of the Cartesian co-ordinates
and y the equation of the caustic surfaces is found by substituting s = R(y,) in (8).
Doing so and expanding for small 8, we find that the caustic is cusped and that near
this cusp it has the shape

- \2 \3
e By _ \Ry Ry o (-”f) L Y= —yRIR (%)

0

to lowest order. Or, if we eliminate ¥,,

3
() -wm(2):
where the subscript ¢ refers to the caustic. As discussed in §3, we require that
k ~ RyR,8? be of order onc. Initial shock shapes which have «x = o(1), such as the
second example discussed in §3, require the inclusion of higher-order terms in the
above expansions. This will change the relative sizes of the z and y in the inner scaling,
thereby increasing the strength of the singularity at the focal point. For wave fronts
with k = o(1) but such that a § may be found and made small, the procedure of this
paper may be used to obtain analogous results.

The singular behaviour of the solution at the caustic suggests that nonlinear effects
are important there. In the next section we assume that the initial strength of the
wave front is so small that these nonlinear effects are important only in the vicinity of
the caustic. We then find the appropriate nonlinear equation governing the flow near
the cusp in the caustic.

5. Inner region
We now seek an inner expansion valid in the vicinity of the aréte. We introduce the
inner variables 2,7, %, ¥ and ¢ and corresponding inner scales A, A, A and k, viz.
x— R, {= aot — R,
AR, = AR,

2 , g;%, X 5.9 (12)

X::K, ok.

We assume that the nonlinear effects are important in only a small neighbourhood of
the cusp, and we shall therefore take A = o(1) and A/L = o(1). The amplification is
greatest in the region immediately following the shock and we expect nonlinear effects

e
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to be most important there; consequently, we use the same scaling for x and ¢. Further-
more, we assume that, although the strength of the shock is considerably amplified in
the focal region, it remains small. Thus we shall take ¢y/a, = O(k/A) = o(1) and
¢,/ay = O(k/A) = o(1). When the scaling (12) is substituted into (5) the full potential
equation may be written as

AR, k AR, k A2R2
955?_ 2 'To A [2¢ éxt + l)¢f¢xx] (7 +1 A A2 - $ éxx
AZR k A R
k AR}
A /‘2 - R [2¢ﬂ$¢+ é? ih'f] +

As in our analysis of the outer region, the assumptions that /A and k/A are o(1) imply
that we may drop not only the cubic terms, but also the third term on the left-hand
side and the second term on the right-hand side. The resulting equation reads

AR,
¢?{ 2 AO Xt ( I)A A20¢ &xx

AR2 k A2R: A
= ,\20 WA AZ AR [2$A‘ﬁm+ 1)¢f¢$§]-

On physical grounds it is clear that we must require that the inner equation contains
X, § and [ derivatives and at least one nonlinear term; the only choice of A which
results in such an equation satisfies A/AR, = o(1). For small A/AR,, the nonlinear
term on the right-hand side and the ¢ term may be dropped. In order to balance the
remaining terms we need

AR, AR} kAR}
* - wm-ia >l (13)

Thus, to lowest order, the inner equation is

2$xf+(7+1)$x ot P =0 (14)

We remark here that (14) also describes low frequency, unsteady, transonic flows, as
one might have anticipated.

We now assume that in the inner region the relative size of the x and y length
scales is given by the caustic surface calculated in §4. This requires that we take
A3 = O(A?/L2). Dropping the order symbol and simply substituting A% = A3L%in (13),
we may express A, A and k in terms of A and §:

AL =AY, AJL =A%, k/A =A% (15)

Thus A, A and k are known in terms of the physical parameters € and & once A has been
determined.

The flow in the focal region is found by solving the inner equation (14) subject to an
appropriate initial condition. In the next section we determine this initial condition
through matching with the outer solution.
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6. The matching and the similitude

In this section the initial data for the inner problem are obtained through the
method of matched asymptotic expansions. It is further shown that, apart from a
simple scaling of the independent and dependent variables, the solution to the resultant
initial-value problem depends on only a single combination of the physical parameters:
the similarity parameter.

We first consider the outer expansion, which we shall write in the inner variables
(12) and then expand for small A and § with the inner variables fixed. We begin by
expressing (11) in terms of the inner variables (12) and expanding for small A and 4.
As a result of this expansion we find that the inner scaling for the integration variables

¥y, and z, is given by 9, = A1, = ALy,
2, = 0A1Z, = ALz,
and that, to lowest order, the inner expansion of §; is
5(A4,, AS-12,; A2y, AYY,, (1 + AD)/8) = A2[42 - B(G,)], (16)
where 8(f,) is defined by

BB, = By x.9.1) = —Fgx0i+ 392+ 9,9 — x.

In the derivation of (16) we have chosen the lower sign in (11). Any other choice
corresponds to portions of the integration sphere with x, > f(y,) and contributes
nothing to the integrals I, and I,.

The integrals I, and I, are to be evaluated over the surface of a sphere. However,
when the inner expansion of the outer area element d4 is taken, we see that it may be
replaced by A¥§-1d2,d§,. Thus, in the inner expansions of I, and I,, we may transfer the
integration from the sphere to the %,, , plane.

We need the expansion of ¢ near the cusp only for times less than Ry/a,, i.e. { < 0.
The area of integration will therefore be bounded by the single closed curve §, = 0, or
3, = +[28(9,)1}, as sketched in figure 2. The 2, = 0 intercepts §, and §, are just the two
real roots of # = 0.

When the inner expansions of the integrals I, and I, are taken it will be useful to have
the Taylor series expansions of ¢, and &, for small 3, and 7

B0 = 15[1+ 06 5D). 1 = —3[1+0G, 7))

These are, of course, consistent with the weak-shock jump conditions.
The above results may now be used to show that the inner expansions of I, and

I, are
I, = 3ais= f f (52— 28(9,)] 42,8,
i (st ol
= — '!' 2 = - A" uind
and 1, = —Ats L«, L 5,4, = - A58

to lowest order. When the 2, integration is performed and the result substituted in (10),

we find o
1+Af 1 Uu
$ (A Ak, ) - AiJ;?‘ BY0) 9,

2
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4 .
Vs

Fi1GURE 2. Area of integration for I, and I,.

Thus, when written in inner variables, the inner expa.nsion of the outer solution is
given by
1+Af 1
== 2y Ad =
é é(A X!Ag ) ﬂX2éA§82 ﬂ dgs (17)

This result is essentially the expansion of the linear solutlon (10) as the wave front
approaches the cusp in the caustic. As mentioned in previous sections, the pressure
distribution associated with this pressure field can be singular. The pressure coefficient
based on (17) is q

Cp 7% 2}A} y, ﬂ dgs

At ¢t = R,/a, or, in terms of the inner variables, { = 0, the pressure coefficient is
proportional to (B, —x)~* along the x axis and to |y|~% along the y axis. This is more
singular than the analogous result for a smooth caustic, where the pressure behaves as
the —} power of the distance along the caustic and the —} power of the distance
normal to it (see, for example, Friedlander 1958, pp. 67-70; or Hayes 1968).

Another interesting feature of (17), which turns out to be essential for the matching,
is that it is self-similar in time, i.e. it may be written as

& = (~DRF(x/P%9/(~ D)
To show this, we define similarity variables o and I" by
o=—3/m, T =249/(-61)}

where § = y/x, 9 = §/x and 7 = {/k. Using these definitions and replacing the integra-
tion variable §, in (17) by (— 67)} ¢, we find that (17) may be rewritten as

~

¢ = —%(%K)*-A—g;ﬁ(—f)w(tr, ), (18)

where @G is defined by Q(o,T) = ﬂf BYq)dq,
in which # = —¢*—2¢%+ I'g+ 0 and g, and g, are the two real roots of £ = 0.
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We now consider the inner solution. Although, in general, solutions of the form (18)
do not satisfy (14), the inner solution must have such a form as { - —oo. Thus it is
most convenient to do the matching in the co-ordinates o, I and 7. Accordingly, we
write the solution @(x,%,{) to (14) in terms of o, I' and 7 and then rewrite ¢ in outer

variables: ¢ _ ¢(0_, I 7) = ¢(6, I~", (61— 1)/Ax),
where & = -3X/(8t—1)* and I' = 45/6% (1 — 8f)}. The usual matching principle

states that, in the limit € - 0, A > 0, 8 - 0 with X, 7 and i fixed, $(&, T, (87— 1)/A«)
must approach (18) asymptotically. Thus the function #(o, T, 7) must satisfy

$(o,T,7) ~ — 33k (-7} G(0, T)

as T -» — oo for all values of o and I. In order that the initial condition be non-zero and
finite, we must take Al = ¢/82 = o(1).

This last result determines the scaling (15) completely in terms of the physical para-
meters ¢ and &, viz. A A &k

€
L ¥ Lo A-C0

= A} =

When written in terms of the variables £, 7 and 7 the initial-value problem for the
inner region is 28, +(y +1) k1, B+ B, =0,
where as 7 — —0 ¢(€s1’s7) ~ _%(%K)&(—T)gG(g9/’79T)

for all values of £ and . Here G(£, 9, 7) is just the integral G(o, I') rewritten in terms of
the variables £, 7 and 7.

We have now established the initial-value problem governing the flow in the focal
region. The solution to this problem is seen to possess a similitude, i.e. it depends on
only a single combination of the remaining physical parameters y and . This is readily
seen when the above initial-value problem is recast in terms of the scaled velocity

potential O = 3301 4.

The problem then becomes
20;, + Q0 Op + Py, = 0,
where as 7 > — 0 ® ~ — (-G 7,7)

The similarity parameter @ is defined by

Q= Hy+1)/2c)h.

Except for a scaling of the dependent and independent variables, any two flows with
the same value of Q will be identical. The flow quantity of especial interest here is the
pressure coefficient, which is given by

O = € o . _ ctot ® )
T (ZKA)* §(g» 7,7; Q) = W g(g,?],T, Q).

2/¢
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From this we see that the pressure levels at an aréte are of order ¢#6% and the amplifica-
tion is of order e~#6%. The result that the pressure is proportional to the two-thirds
power of the initial strength of the shock was also deduced by Pierce (1971).

We conclude this section with some remarks regarding the requirement that
€ = 0(6?). An important result, but one which is outside the scope of the present theory,
is the prediction of the transition shock strength; that is, for a given initial shock shape,
the prediction of the initial shock strength above which the straightening of the shock
associated with shock dynamic theory occurs. In §4 we have seen that when

¢ = 0(8%) = o(1)

nonlinear effects are important even for times of orde L/a,. Because the distance to
the caustic is large compared with L, we expect that v shock straightens without
focusing. On the basis of this, we conjecture that the -der of magnitude of the
transition shock strength is given by € = 0(4?). Of course, a. ve precise estimate must

be given either by laboratory or numerical experiments or by a more comprehensive
analysis.

7. Conclusion

The focusing of a very weak and almost straight shock at an aréte has been examined.
The method of matched asymptotic expansions has been used to establish the initial-
value problem and similitude governing the flow in the focal region. The fundamental
parameters in this problem are seen to be ¢, a measure of the initial strength of the
shoek, and 8, which measures the rate at which the wave front converges. The maxi-
mum pressures at the aréte have been shown to be proportional to (¢8)f. The results of
this paper are valid for wave fronts with ¢ = 0(¢?) and & = o(1).

This research was supported by the office of Naval Research through contract

N0014-76-C-0182 and the Air Force Office of Scientific Research through grant
76-2954B.
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Implicit Shock-Fitting Scheme for Unsteady
Transonic Flow Computations

N. J. Yu,* A. R. Seebass,t and W. F. Ballhaust
University of Arizona, Tucson, Ariz.

The alternating-direction implicit scheme developed by NASA Ames for unsteady transonic flows has been
modified to include a shock-fitting algorithm, as well as an analytically stretched coordinate system. The shock-
fitting procedure treats shock waves as discontinuities normal to the freestream. Improvements in shock position
and the unsteady pressure distributions are obtained by this modification. The various types of shock motion
observed experimentally by Tijdeman are well simulated in calculations using the modified computational
scheme. The method for detecting shock-wave formation and the procedure for fitting a moving shock wave are
illustrated. Results for an NACA 64A006 airfoil with oscillating quarter-chord flap are presented and discussed.

Introduction
HERE is a need for the numerical simulation of unsteady

transonic flows about airfoils in order to predict unsteady

aerodynamic loads and to provide an understanding of the
behavior of unsteady transonic flowfields. A number of
methods !"!! have been proposed for computing such flows,
and there is continuing improvement in the results obtained.
This paper describes a shock-fitting procedure,'? coupled
with an implicit finite-difference algorithm,'? which can
accurately and efficiently simulate most unsteady transonic
flows about thin airfoils.

A major consideration in constructing an algorithm for
unsteady transonic flows is the treatment of moving shock
waves. Experimental observations of Tijdeman'*' indicate
that even for simple airfoil motions shock-wave motions can
be complicated, and they can affect aecrodynamic force and
moment variations strongly. Time-linearized methods,?®'°
i.e., methods that assume that the unsteady perturbation is
small compared to the basic steady disturbance, presently do
not consider shock motions although they can be modified to
do so for small shock excursions.'s' Time-integration
methods!® treat shock waves by ‘‘capturing’ them, a

procedure that can present a number of problems that will be

discussed subsequently.

Tijdeman’s experiments also indicate that shock motion
amplitudes increase with decreasing frequency. This is
supported by a simplified analysis of the time-linearized
equations. ' Thus, some of the most interesting transonic
flowfields result from low-frequency motion. Explicit finite-
difference schemes are not efficient when applied to low-
frequency cases because the stability restriction on the time
step is substantially more severe than that required for ac-
curacy. As a result, efficient semi-implicit methods? and even
more efficient fully implicit methods'>’#® have been
developed. Caradonna and Isom’ use an iterative implicit
procedure; 1i.e., the nonlinear implicit finite-difference
equations must be solved at a given time iteratively. In an
earlier unpublished study we also used such a procedure.
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Ballhaus and Steger' and Beam and Warming® constructed
more efficient algorithms that solve the nonlinear equations
directly by the solution of simple matrix equations generated
by an alternating-direction implicit (ADI) procedure. This
method has proven to be so efficient, especially for the
calculations with nonuniform mesh distributions, that we now
often use it as an alternative to successive line overrelaxation
(SLOR) for steady flow calculations. -8

All of these implicit schemes ‘‘capture’’ shock waves; i.e.,
shock waves evolve automatically as part of the numerical
solution. This procedure has several deficiencies associated
with it. They can be eliminated, at the expense of coding
complexity, by ‘*fitting”’ shock waves as discontinuities in the
flow. Shock capturing produces shock profiles that are
distorted in a manner that depends on the truncation errors in
the finite-difference scheme. The use of mixed-difference
schemes'$® can improve the situation for cases in which the
flow changes from supersonic to subsonic across the shock.
However, when this condition is not satisfied, as in the later
stages of pulsating motion of a parabolic-arc airfoil, the
differencing cannot be switched across the shock and shock
resolution is poor. In any case, shock capturing requires
spatial grid spacings, in regions where shock waves are an-
ticipated, which are sufficiently small to resolve the shock
waves in a reasonable distance. The grid spacing required to
do this is frequently much smaller than that required to
resolve flow variable gradients in most of the rest of the
flowfield. This also results in an unnecessarily severe time-
step restriction because time steps for implicit schemes are
chosen such that shocks move less than one spatial grid point
per time step.'® This is necessary 10 preserve both accuracy
and stability. Shock fitting removes the large gradients from
the finite-difference solution and generally permits equivalent
flowfield resolution with fewer grid points, both in space and
time. Finally, if shock waves are not treated as discontinuities
but are to be captured correctly, the difference equations must
be solved in conservation form. This imposes an additional
constraint on the construction of finite-difference schemes
which can be difficult to satisfy. For example, no fully
conservative difference scheme for the full potential equations
have been developed yet that can match the convergence
reliability and computational efficiency of Jameson’s non-
conservative “‘rotated’’ difference procedure. '*

In principle, the shock-fitting procedure discussed in this
paper could be applied to the full potential equation. For
steady flows it may substantially reduce the time required to
obtain a converged solution. Here. as a first step, it is applied
to a simpler formulation that contains the essential nonlinear
unsteady behavior associated with low-frequency transonic
flawe Furthermare the alearithim ic <imnlified bv treating
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the shocks as discontinuities normal to the freestream. The
procedures could be generalized to a curved shock with ad-
ditional programming complexity. Methods of detecting
shock formation and of judging the existence of a shock wave
in the unsteady flowfield are described.

A production code, LTRAN2, has been developed for the
efficient solution of low-frequency transonic flows about
airfoils in motion.? LTRAN?2 is based on the ADI method of
Ballhaus and Steger,! and is being released on request to
industry and government agencies. The modification of the
ADI procedure to include shock fitting, which is the main
subject of this paper, will improve LTRAN2 significantly.
Substantially fewer grid points will be required to achieve
equivalent flowfield resolution, and the time-step restriction
due to shock motion can be relaxed considerably.

Numerical simulations of various types of shock motions
for an NACA 64A006 airfoil with oscillating quarter-chord
flap are described. Significant improvements in shock
resolution and, consequently, in unsteady pressure
distributions are obtained using the shock-fitting procedure.
The results show the marked effect of shock-wave motion.

Formulation of Governing Equations

Low-Frequency Approximation

The unsteady, small-disturbance, transonic equation for
low frequency commonly is written as

—2KM2% o+ (1 =M% — (y+ DMLo 1b+6,,=0 (1)

which may be derived?® from a systematic expansion of the
velocity potential with respect to the thickness ratio 7 and the
reduced frequency K, where K=wc/U, i.e., the angular
frequency multiplied by the time that it takes the flow to
traverse the airfoil chord. The spatial coordinates, the time,
and the velocity potential in Eq. (1) have been non-
dimensionalized by the chord ¢, the inverse of the angular
frequency w ~/, and Uk, respectively.

The tangency condition and the unsteady pressure coef-
ficient that are consistent with the low-frequency ap-
proximation are

70Y(x, 1)

b=

[y +=(7, +Yu,)] @

and

M2 -1
&= -2{ Gy nmT )
where Y(x,t), the instantaneous body shape, has been
decomposed into a steady part Y, and an unsteady part Y,.§
Here & is the amplitude of the unsteady oscillation. Note that
C, is defined such that, at sonic conditions, C,=C;=0.
Any shock wave that exists in the flowfield must satisfy the

jump relation derived from the conservative form of the
governing equation (1), viz.,

dx -
~2kML[0,°(5) - 11-Me -+ DIMLE,I [6,]°

+[e,]?=0 3)

together with the condition derived from the assumption of
irrotationality,

() -- [,]

ax/, 4)

§In the cases studied numerically, Y, =O(Y,, ); consequently, the
lact term in Fa (N icafhicher arder Anr" wag neo‘m"ed
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Here §, refers to the mean value of ¢, evaluated on each
side of the discontinuity, [¢.] indicates the jump in ¢,
across the discontinuity, and the subscript s denotes the
quantity evaluated at the shock surface.

In two-dimensional small-perturbation transonic flows, the
shock waves that usually occur are nearly normal to the flow
direction. We assume here that if the basic steady flow has a
shock wave then this shock may be approximated by a shock
wave normal to the freestream flow. Furthermore, we assume
that the motion of any shock wave that arises from unsteady
changes in the flow, as well as the motion of existing shock
waves, also may be calculated by this normal shock ap-
proximation. For this simplified model, Eqgs. (3) and (4)
reduce to the single equation

dx 2 - -
) =7_+_’{ ML -1 +é.) )
ds 2K C(y+ )M,

which gives the speed of the normal shock in the flowfield.
For steady flows, ¢, is a function of x alone; this, of course,
still permits [¢,] to vary with y. For unsteady flows,
although X, is a function of ¢ alone, the strength of the shock
will still vary with y.

Coordinate Stretching

To minimize the far-field boundary effects on the
numerical results, a relatively large computational region is
usually required. For the cases studied in this paper, the shock
excursion may be large and the unsteady disturbances carried
several chord lengths away from the airfoil; thus, the use of a
relatively large computational domain seems inevitable. A
simple and straightforward way of computing the solution in
a large computational domain is to use nonuniform mesh
distributions, with most of the mesh points concentrated in
the region of interest.2 An alternative is to introduce
analytical coordinate stretchings. In the present study, we use
the following coordinate stretchings:

E==x|l—exp(Fa,;x)) for x=0 (6a)
n==x{l—exp(Fa,y)} for y=0 (6b)

where a;, and a, are constants that control the mesh
distributions.§ Equations (6) transform the infinite physical
domain to the finite computational domain bounded by
t1<1 and Iyl =<1. The transformation provides a con-
centrated mesh distribution near the airfoil which is suitable
for the present study. The governing Eq. (1), written in the
stretched coordinate system, is

[ —-2KM?, }_{ (y+1)YMZ [ MZ -1
ad(l-Inl) . 2a3(1- 1) L(y+ ML

+a,(l-l£l)¢£]} {—:1;_";—5'—5” =0 %

Because Eq. (7) is in divergence-free form, a conservative
difference approximation to Eq. (7) can be constructed if the
shock wave is to be ‘‘captured’’ rather than ‘“fitted.”’

The normal shock jump relation follows directly from Eq.
(7); this relation and the boundary condition on the airfoil
surface are now

va, (- 1§13
(8)

(Eﬁ) _a, =D (y+D) { M% -1
de/, 2K (y+ ML

{Calculations made with an algebraic scaling, viz., &=x/
( Iyl +a.). etc.. pave essentiallv identical resnlts
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and

" =ﬂ(1_|£|)3_}:(_f»_’) at 7=0 ®
i a, aE

Scaling of the Perturbation Equation

In his study of steady, small-disturbance transonic flow,
Krupp?! introduced a scaling of the governing equation and
the body shape to provide better agreement between the
results of the perturbation calculations and those from the
Euler equations. The reasoning that leads to various scalings
is discussed in the review by Ballhaus.?? One also may use
such a scaling in the low-frequency approximation by
rewriting the governing equation and the boundary condition
as

—2KM?%.¢,, + {I"Mi —(y+ )Mo, }¢.\Z\’+¢}'}'=o (10)
and

1
¢,V:M°°T{Y-‘x+ E’Y""} A (h

where p, m, and n are scaling constants to be chosen to
enhance agreement with more sophisticated calculations. If
one introduces the nondimensional quantities

¢= A—l%d) (12a)
y={y+HMZ* "1} !Py (12b)
I={(y+1)2MZr+2n=3ps2 | 131/2K (12¢)
1-M2

T+ DMy (12d)
B=6/M771 (12¢)

then Egs. (10) and (11) reduce to the canonical form
~ut(a=0 )by +y;=0 (13)

and i

by =Y, +BY, (14)

Because there is a one-to-one correspondence between Eqgs. (1)
and (2) and Eqs. (13) and (14), results obtained without
scaling are equivalent to scaled calculations for a slightly
different flow. Thus, although we restrict our calculations to
the unscaled equation, the Mach number and the body shape
can be modified to obtain results equivalent to those for the
scaled equation by noting the equivalencies [Eqs. (12)].

Boundary Conditions

The boundary condition on the airfoil is the usual tangency
condition evaluated at y=0. For an NACA 64A006 airfoil
with an oscillating quarter-chord flap, the boundary con-
ditions are

Y, for 0=<x<0.75

b, = &
(¥, +sint) for 0.75<xs1
T

With the proper combinations of the reduced frequency K, the
free Mach number M, and the oscillating amplitude 4, we
can simulate the three types of shock motions observed ex-
perimentally by Tijdeman'>'4: the shock oscillates on the
airfoil (type A); the shock disappears during part of the

narind (tuna RV and the chark nranacatec nnctream and

KL

leaves the airfoil (type C). The thickness distribution for an
NACA 64A006 airfoil may be obtained from Ref. 23 and the
desired airfoil slope at the grid locations approximated by
fitting a polynomial to the data.

The far-field boundary condition for the nonlifting case is
simply ¢ =0 on £l =1 and Iyl =1. For the lifting case, ¢
depends on the instantaneous circulation I'. This dependence
can be derived theoretically by assuming that in the far field
all of the perturbations are small compared to the basic steady
state.** An advantage of our stretched coordinate system is
that the last grid lines are at infinity. Numerical studies
conducted by Magnus® show that erroneous boundary data
on a finite domain can lead to significant errors. The low-
frequency approximation implies that any changes in the
circulation are communicated instantly downstream to in-
finity (¢ = 1). Consequently, the simplest boundary conditions
are ¢, =0 on the downstream boundary and ¢ =0 on the other
boundaries. Ballhaus and Goorjian? used similar boundary
conditions in their study and obtained satisfactory results.
The validity of such far-field boundary conditions can be
justified only by numerical experiments; i.e., near the
boundary the disturbance quantities ¢, and ¢, must be much
smaller than the values at the airfoil surfaces. In all of the
results reported here, this requirement is met. As a numerical
test of this procedure, we have computed the steady-state
circulation about an NACA 64A006 airfoil for various flap
deflection angles, using the ADI method with appropriate far-
field values of ¢ corrected for the usual steady-state cir-
culation contribution. These results have been compared with
the results obtained by the ADI calculations with the boun-
dary conditions employed here for an unsteady flap deflection
to the correct angle. These results agree to one part in 10 ~4,
verifying that the far-field conditions used here are more than
satisfactory.

Finite-Difference Approximations
In a preliminary study of the unsteady transonic flows, we
implemented a normal shock-fitting procedure in the implicit-
iterative scheme of Caradonna and Isom.’ Satisfactory
results were obtained, except that the procedure was time-
consuming because of the iterative process required at each
time step. The recent studies of Ballhaus and Steger' and
Ballhaus and Goorjian2 show that an ADI scheme is more
efficient than the implicit-iterative scheme in treating the low-
frequency transonic flow equation. The shock-fitting
algorithm was modified and implemented with an ADI
scheme. In this section, the ADI procedure is reviewed briefly

and the method for unsteady shock fitting detailed.

Alternating-Direction Implicit (AD1) Method

The low-frequency equation in the stretched coordinate
system, i.e., Eq. (7), is solved by the alternating-direction
implicit scheme developed by Ballhaus and Steger.! To
simplify this discussion, Eq. (7) is rewritten in the form

Yoy +F +G, =0 (15)
where the functions ¢, F, and G may be determined by
comparing Eqgs. (7) and (15). The solution is advanced from
time level n to level n + 1 by the following two-step procedure:

& Sweep
(1780 (Y¢—¥}) +D,F* +8,G"=0 (16a)

n Sweep
(17A0) (YIH =y ) + 138, (G"+ —G") =0 (16b)
Here a plus sign refers to an intermediate value of ¥, D; is the

type-dependent difference operator for £ derivatives, and §, is

the rantral.difference annravimatinn far the » derivative The
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backward difference approximation for ¥, can be either the
first-order difference approximation

¢/5=(1/A£)(‘//i_\l/i-l) a7

or the second-order difference approximation
V= (11288) GY; =4y, +¥,-»)

For simplicity the first-order scheme, Eq. (17), has been used
for all of the results reported here. The nonlinear term F is
evaluated, using a two-time-level averaging procedure
analogous to that of Ballhaus and Steger' but modified by the
coordinate stretching used here. The difference ap-
proximations described previously provide first-order ac-
curacy for ¢, second-order accuracy for F; and G, in
subsonic regions, and first-order accuracy for F, in super-
sonic regions.

On the ¢ sweep, Eq. (16a), a quadradiagonal system is
generated and can be solved easily by direct elimination. For
lifting calculations, two grid lines are used to represent the
lower and upper surfaces of the airfoil. The circulation T is
calculated by I'=¢ ¥ — ¢ frx through each sweep. Here ITE
denotes the upper and lower values at the first grid point
behind the trailing edge. This circulation is incorporated into
the construction of the 5 derivatives behind the airfoil for
n=0.

On the n sweep, Eq. (16b), a tridiagonal system is generated
on the body. Ahead of the leading edge and behind the trailing
edge, the double grid notation for n=0 destroys the
tridiagonal system. However, ahead of the leading edge,
¢V =¢"t, and behind the trailing edge, ¢V =@t +T'; thus the
difference equations can be reordered to give a tridiagonal
system. On the airfoil surface the matrix equations above and
below the airfoil are decoupled; they can be solved either
separately or simultaneously by packing the matrix equations
together.

Shock-Fitting Procedure

The basic algorithm for shock fitting was developed in a
previous study of steady transonic flows.'? A different ap-
proach to shock fitting also has been developed by Hafez and
Cheng® in their study of steady transonic flow problems.
Their procedure essentially replaces the shock-point operator
by an analogous difference statement derived from the shock
jump conditions. Subsequently, the velocity potential on each
side of the shock wave is extrapolated to locate the shock
wave.

To understand the shock-fitting procedure for unsteady
transonic flow calculations it is necessary to recall how shock
waves form in an unsteady field. Shock waves are generated
when the local flow becomes supersonic and compressive.
Although the initial shock formation may not be predicted
accurately by the numerical solution when shock fitting is
used in the early stages of shock-wave formation, it eliminates
spurious oscillations in the numerical solution and does
provide the correct development of the shock wave in later
stages of the calculations.? The criterion that we set for the
initial shock formation is that the local flow become sonic
(relative to the airfoil) and compressive. In the body-fixed
coordinate system, a shock wave can exist both in the usual
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supersonic-supersonic and supersonic-subsonic transition and
also in a purely subsonic flowfield, sometimes referred to as a
“‘subsonic-subsonic” shock. In any case, the flow ahead of
the shock relative to a coordinate system fixed on the shock
must be always supersonic. Consequently, the correct
judgment for the existence of a shock wave in the unsteady
field is to evaluate the local flow velocity ahead of a
prospective shock with respect to the coordinate system fixed
onit, i.e., we evaluate V,, where

% ~M°°_1+[1
r= MQ,

'a,uli 151)(%)Y

If ¥V, >0, the local flow is supersonic and a shock may exist; if
V,-0", the local flow becomes sonic and the shock strength
diminishes. For V, <0, a shock cannot exist.

We start the unsteady flow calculations by using an ADI
scheme. When the local flow becomes sonic and compressive,
we introduce the shock-fitting algorithm. Sonic, compressive
points are treated as shock points where cross differentiations
in r and ¢ derivatives are avoided. Initially, the shock has zero
strength and is stationary. The flow properties ahead of and
behind the shock can be extrapolated easily from neighboring
points. The shock wave can either increase or decrease in
strength during the unsteady process. This results in three
possibilities for shock motion that have to be considered
separately in the fitting procedure: the shock moves upstream
and crosses grid points; the shock remains stationary or
moves within a grid spacing; and the shock moves down-
stream and crosses grid points. At each new time level the
shock position is determined by applying Eq. (8). The for-
mulations of the difference approximations for each case are
quite similar; the specific formulas used may be found in Ref.
27.

+(7—1)Mm

3 }a,(l—lfl)(pé

Results and Discussion
To illustrate the advantages of shock fitting over shock
capturing, we compare the flow past a pulsating parabolic arc
whose time history is shown in Fig. 1, as computed by the two
methods. Major differences occur when the shock wave
propagates ahead of the airfoil as its thickness returns to zero.
Figure 2 compares the pressure coefficient for these later
stages when =25 (chord/U) in units of Ar=2 computed by
the ADI method, with and without shock fitting. The full time
history of this motion, as computed by the two methods, is
compared in Ref. 27. Later studies have shown, as suggested
by a reviewer, that the compression preceding the fitted shock
wave is a result of the first-order approximation made here. In
subsequent calculations with a second-order procedure, which
is possible with shock fitting, this behavior does not occur.
Results were computed for an NACA 64A006 airfoil with
quarter-chord oscillating flap for various values of the
reduced frequency K, the freestream Mach number M., and
the oscillation amplitude 8, in order to simulate the shock
motions observed by Tijdeman.'"* The steady-state
solutions at the mean flap deflection angle for each M., are
computed first, using the ADI method of shock fitting. We
have found that the ADI scheme is more efficient than suc-
cessive over-relaxation in computing steady flows. The resuits
of the ADI calculations are identical with those obtained by
line relaxation and converge more rapidly when performed
with the stretched coordinates. For the problems studied here,
i.e., the NACA 64A006 airfoil, the freestream Mach number
was varied between 0.8 and 0.9. The mesh system had 101 by
82 grid points in the x and y directions, respectively. About
250 10 450 time steps were required for the solution to con-
verge. 1Aot, < 10*. Thee steads-siate solutions are used as
Far alt
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Fig. 2 Pressure coefficient in the later stages of the motion of Fig. 1
computed with (—) and without (---) shock-fitting.
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Fig. 3 C, on an NACA 64A006 airfoil at M, =0.854, K=0.358,
with 6 = 1-deg sint.

studied it took three to six cycles for the flowfield to become
periodic. Stability seems to require that the time step Ar be
small enough that Ar (deg)/K <10. Figure 3 illustrates the
pressure coefficients on the airfoil surface for M, =0.854,
K=0.358, and &Y, =Il-deg sint. For these conditions,
Ballhaus and Goorjian? were able to simulate type B motion
where the shock disappears during some part of the cycle.
Here the shock does not disappear during the cycle; instead, it
becomes cuite weak during a small portion of the cycle. This
difference is due to the assumption of a normal shock, which
resuits in a stronger shock than would normally occur, and to
the use of shock fitting. Magnus and Yoshihara’s explicit
results for the full Euler equations are compared with these
results for two time levels in Fig. 4. The discrepancy between
the two results is due mainly to the small-disturbance ap-

proximation and the lack of resolution at the leading edge of
tha mracont ctndy Eianrs & chawe the time hictary during the
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Fig. 4 Comparisons of the resuits for C,, on an NACA 64A006
airfoil at M_ =0.854, K=0.358, with &= 1-deg sins, with those of
Magnus and Yoshihara, 45
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Fig. 5 History of the circulation and shock position for the first
three cycles for the flow conditions of Fig. 3.

first three cycles, of the circulation and the shock position.
After three cycles of oscillation, the pressure field is essen-
tially periodic; the circulation requires four cycles to become
periodic. The circulation reaches its maximum value, and the
shock wave its most downstream location, 57 and 83 deg after
full flap deflection. Results for type C motion are given in
Ref. 27 and hence not repeated here.

The results for M, =0.822, K=0.496,and 8 ¥, =2 deg sin/
simulate type C shock motion. Because we have used less
spatial resolution and the unscaled equation, a deflection
angle slightly larger than that of Ref. 2 is needed in order to
generate the type C shock motion; that is, we need a 2-deg
deflection angle rather than the 1.5 deg used in Ref. 2 to get
analogous behavior. The results are given in Ref. 27. In this
case, the flowfield is subcritical during most of the cycle, and
the shock wave is barely ‘‘captured’’ in the non-shock-fitting
procedure. During the unsteady process, the shock wave
moves toward the leading edge. The strong singular behavior
in pressure at the leading edge prevents the shock from
propagating off the airfoil. The perturbation velocity
becomes large and is negative; thus, the flow used to calculate
the relative velocity ahead of the shock can no longer support
a shock wave. Normal shock-fitting calculations determine
the shock speed from the pressure jump across the shock at
the airfoil surface. This eliminates the possibility that a
portion of the shock may propagate off the leading edge in the
computations. But this does not imply that it cannot occur;
instead this limitation is a consequence of the normal shock
fitting.

The addition of the shock-fitting algorithm to the basic
ADI scheme increased the computational time, for fixed grid
spacing, by less than 7% for all cases studied here. It is dif-
ficult to compare the time required by the two schemes to
achieve the same accuracy. Without shock fitting, when the
shock is not of the supersonic-subsonic type, a very fine grid is
required for a reasonable resolution at the shock. The need
for such a grid is obviated by shock fitting, and improved
accuracy in the shock region can be obtained simultaneously
with reduced computational time. Because it is difficult to
determine when the two procedures give comparable ac-
curacy, a definitive evaluation of the computing time saved by
shock fitting has not been attempted.

Typical computation times for the NACA 64A006 airfoil
calculations reported here are about 5 to 10 min/cycle on a
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CDC 6400 computer. A mesh of 101 by 82 grid lines in xand y
directions, respectively, was used in these calculations, and
the number of time steps per cycle ranged from 90 to 180. No
effort was made to optimize the program. The additional
central memory required for the shock-fitting algorithm is
about 10 to 20% of that for the basic ADI scheme.

Conclusion
The unsteady behavior of a large number of inviscid low-
frequency transonic flows can be studied accurately and
efficiently using the present shock-fitting procedure coupled
with the alternating-direction implicit method. The ADI
method relaxes the stability restriction on the time step,
greatly improving the computational efficiency; the shock-
fitting procedure treats shock waves as discontinuities, which
resolves the computational difficulties that can arise in the
usual shock ‘“‘capturing” procedure. Computed results using
the present procedure compare favorably with the explicit
time integrations carried out by Magnus and Yoshihara. They
should be sufficiently accurate for engineering studies of
airfoil motions for which the normal shock approximhtion
made here is a reasonable one. They also reproduce well the
types of shock motions observed experimentally by
Tijdeman, '*'* as well as the propagation of the shock wave

ahead of the pulsating parabolic arc.
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