@ https://ntrs.nasa.gov/search.jsp?R=19810010177 2020-03-21T15:08:57+00:00Z

View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE

provided by NASA Technical Reports Server

. 31176 00169 1147

NASA Technical Memqrandum 81924

NASA-TM-81924 19810010177

AN EVALUATION OF THE INTERACTIVE SOFTWARE
INVOCATION SYSTEM (ISIS) FOR SOFTWARE
DEVELOPMENT APPLICATIONS

MARIE S. NOLAND

poa REPEBENG%‘.

A AR T AR

| g Ty me SARS SO T BOOAE

JANUARY 1981

F pmrmnw pm V«{

i

3 - FEB 41961
o NMA FARNGLE SEARCH CENTER
National Aeronautics and . ,' ABRAR ‘/ NASA
Space Administration PR vy
Langley Research Center

Hampton, Virginia 23665

https://core.ac.uk/display/42861632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SUMMARY

The Langley Research Center (LaRC) project called Multipurpose
User-Oriented Software Technology (MUST) is intended to reduce the cost of
producing flight software and to provide an integrated system ‘of support -
software tools for flight projects. One of the tools developed under this
project was the Interactive Software Invocation System (ISIS) which allows a
user to build, to modify, to control, and to process a total flight software
system without direct communications with the host computer. ISIS was
developed primarly for the handling of large amounts of information that are
typically required to support flight projects. In order to evaluate the
effectiveness of the system as applied to a flight project, the collection of
software components required to support the LaRC Annular Suspension and
Pointing System (ASPS) flight project were integrated using ISIS. The ASPS
project information was organized under ISIS according to the software
development life cycle concept. This resulted in an integrated system adequate
to perform the verification and validation requirements for the ASPS flight
software code. This system contains an ordered collection of information
consisting of language processors, automated documentation and design tools,
flight software utility routines, simulation subsystems, and testing procedures
which are controlled through the interactive user interface capability provided
by ISIS.

This report discusses the ASPS software system, the ISIS features, the
organization of an ISIS library, and the integration of ASPS into ISIS. The
5-level hierarchical file structure of ISIS proved to be very useful in
‘organizing the ASPS flight software information in a more meaningful manner
than allowed with the Network Operating System (NOS), but ISIS proved to be
less efficient than NOS in the storing and retrieving of files.. The
Interactive Programming Language (IPL) capability is one of the strongest
features of ISIS but one that requires a great deal of effort by a user to
exercise it to the fullest extent possible. ISIS is still in the development
phase with several improvements planned to enhance its value and usability.

INTRODUCTION

The Langley Research Center Multipurpose User-Oriented Software Technology
(MUST) project was designed to reduce the cost of producing software for
digital systems used in flight research by providing an integrated system of.
software tools for use throughout the flight software development process. The
Integrated Software Invocation System (ISIS), one of the MUST . tools, is an

N§|-18703%

interactive data management system providing the user with a file manager, text
editor, a tool invoker, and an Interactive Programming Language (IPL). The
basic file design of ISIS is a b5-level hierarchical structure. The file
manager controls this hierarchical file structure and permits the user to
create, to save, to access, and to purge pages of information. The text editor
is used to manipulate pages of text to be modified and the tool invoker allows
the user to communicate with the host camputer through a RUN file created by
the user. The IPL is based on PASCAL and contains most of the statements found
in. a Hhigh~level programming language. The IPL program is used to provide an
interactive interface between ISIS and the user, permitting a user to interact
with ISIS through a prompting process provided by the IPL.

The Annular Suspension and Pointing System (ASPS) is under development to
provide the improved pointing capability required for the Shuttle sortie
missions. To support the software development of ASPS requires large
quantities. of information consisting of documentation, design and
implementation. tools, and testing procedures. Determining how best to use and
control this vast amount of information led to evaluating the utility of ISIS
and other software support tools developed under MUST as applied to flight
projects.

DISCUSSION OF THE ASPS. SOFTWARE DEVELOPMENT

The software development life cycle concept was followed in the
organization of files for this flight project. The logical groupings for the
various pieces of information in the ASPS flight system are as follows:
documentation, design tools, implementation tools, and testing tools.

The ASPS flight software documentation requirements consist of a Software
Design Document (SDD), Software Standards. Document (SSD), Software Requirements
Document (SRD), General Software Development Test Plan (SDTP), and Program
Specifications Document (PSD).

Two design tools used in the development and: debugging phases of the ASPS
are a text processor and a structured flowcharter. The RNF text processor is a
text formatting system used to create machine acceptable text and to produce a
readable version of documentation in upper and lower case. It accepts
free-format text files and produces output suitable for a terminal, a 1line
printer, or a typewriter. The structured flowcharter is a flow diagramming
tool for documenting and understanding programs. It produces flowcharts for
programs written in the high-level language HAL/S. The flowcharts are
presented in a top-down flow that can be used in the design, implementation,
and debug phases of flight software. This system can be used to produce
flowcharts on either a printer or a plotter.

The implementation tools consist of assemblers, loaders, compilers, and
cross-compilers. A META ASSEMBLER was used in the testing and the application
of the ASPS simulators and in the assembly of the actual ASPS flight code to
produce an object module for processing. The object module is generated
according to the machine definition for the ASPS flight computer which is input
to the META ASSEMBLER. This code is input to-a Linkage Editor creating a load
module which may be executed on the target camputer or by a simulator. The
HAL/S cross-compiler and the ASPS simulators are written in PASCAL.

The testing tools used for ASPS include simulators, a utility library, and
test routines. The flight computer supporting the ASPS was developed by IBM
essentially as a flight qualified version of IBM System 360 and is called the
NASA Standard Spacecraft Computer-II (NSSC-II). Since the NSSC-II camputer was
not available for the software development at I1aRC, a NSSC-II Interpretive
Computer Simulator (ICS) was developed to perform the verification and
validation of the actual ASPS flight software. Currently, the ASPS flight code
consists of a Real-Time Executive Module (RTEM) written in assembly language
and an Attitude Control Module (ACM) and an Attitude Determination Module (ADM)
written in HAL/S. Another of the testing tools is a closed-loop system
simulation consisting of the NSSC-II ICS and an ASPS Gimbal System (AGS)
simulation. The simulation system also includes a utility support library,
test routines, and test procedures necessary to assemble, compile, 1link and
load, and execute the ASPS flight software code.

DISCUSSION OF ISIS

ISIS is an interactive data management system which provides such
capabilities as a file manager, text editor, and a tool invoker, each of which
may be controlled by a PASCAL-based Interactive Programming language (IPL).
The file manager allows the user to access pages within a 5-level hierarchical
structured file system. The text editor manipulates pages of text contained in
the file system and the tool invoker allows communications with the resident
operating system. An IPL program includes statements for text editing, file
management, and tools invocation. , '

ISIS was developed for the MUST project by Dr. W. Joseph Berman of the
University of Virginia. This system was designed for machine independence and
currently resides on the Langley Research Center CYBER series computers running
under the Network Operating System (NOS). For an in-depth discussion of ISIS
refer to the ISIS USERS MANUAL (ref. 1).

File Manager

The ISIS file manager controls access to a 5-level hierarchical file
structure as shown in figure 1. The highest level of this structure is the
library. The library contains shelves, a shelf contains books, a book contains
chapters, and a chapter contains pages. A NOS file is stored at the page
level, the other four levels are used for naming convention only, allowing the
user to identify each page of information. Pages may contain various types of
information such as documentation, source code, binary code, data, or control
cards. All 5 levels of the file structure must be specified when first
entering the library. The file structure is written in the form:

library.shelf.book.chapter.page

The user can access, save, and purge pages of information in the library
through ISIS control statements. The USE statement reads the contents of a
specified page from the library into a specified work space called a frame for
additional processing. The name of this page may be changed with the SET NAME
statement. The new page name can be saved or replaced with the SAVE or SAVE*
statement.’ The PURGE statement eliminates the specified page from the library.
If the specified page is the only page in the chapter, the chapter will be
eliminated. This process continues through the book and shelf level and an
empty library will remain. The library is never eliminated in this process, it
must be purged from the system by the user.

Text Editor

The ISIS editor is line oriented and not pointer oriented as are many text
editors, therefore each line of text must be uniquely identified. The ISIS
editor does this by assigning line numbers to each line of text. These numbers
represent reference points for the specification of text by the editor. The
text is referenced by designating the line of text to be modified within each
cammand. The lines affected by the edit command are referred to as the RANGE
of the cammand which can be explicit or implicit. The explicit range permits
the user to operate on everything within a certain area of the page. The
implicit range specifies a search of all lines in the text having a particular
characteristic. The implicit and explicit ranges can be combined, such as a
particular characteristic between certain line numbers in the page.

During editing a working frame is used as temporary storage. The frame
can be a copy of an existing library page to be modified or it can be a new
page entered by the user. There are 12 working frames available; the -two
frames WORK and SHOWN are provided and named by the system, the other 10 frames
must be named by the user. The ISIS editor permits the user to edit multiple

‘frames simultaneously. The user can declare a working frame with the FRAME
statement. This frame can then be declared ACTIVE and be viewed in all or part
with the LIST command. Text to be stored in this frame can be entered from the
terminal with the INSERT command. The CHANGE camand will modify existing
lines of text in the frame. The range of the CHANGE command may consist of an
implicit or explicit range and specify the change be made in a certain column.
The EXEC command permits the user to execute the contents of the ACTIVE frame.
Portions of this frame can be executed by using the range option. Since frames
are temporary storage, it is necessary to SAVE the frame as a page in an ISIS
library using the ISIS file manager.

The interrogation statements give the user access to system and
programming information during an interactive session. For example, SHOW
RESFRVED will display the ISIS reserved words and SHOW ABBREVS will display the
current user declared abbreviations.

Tool Invocation Statements

The tool invoker is made up of three statements. The RUN statement causes
information to be concatenated in a special sequence to form an acceptable
INPUT file that can be - submitted to the host computer. This INPUT file
contains control cards, source programs, and/or data with a right parenthesis
[)] used to separate each record. The file is referred to as a RUN file in
ISIS and RFILE in NOS. The SEND statement allows the user to submit the RUN
_ file to the NOS batch system. The STOP:SEND statement is used for an
interactive session. The STOP statement terminates an ISIS session and the
SEND statement submits the RUN file to the host operating system interactively.

Interactive'Progrannﬁng Language

The Interactive Programming Language (IPL) is based on the high-level
language PASCAL. The user comunicates with ISIS through "cammands", these
camnmands can be user activated or activated through an IPL program. A command
is defined as a sequence of one or more statements with the number of cammands
in an IPL program depending on the user's needs. The statements can be entered
at the terminal and executed as a one time only interactive session or stored
as a page in ISIS for repeated executions. The user can write an IPL program
to build a set of control cards, another 1PL program to submit the control
cards to NCS with specified inputs, and still - another program to edit the
control cards. Without the IPL programs the user would build the control cards
with the INSERT statement, edit them with the editing statements (CHANGE,
DELETE, MODIFY, ADD), and send them to NOS with the RUN and SEND statements.

‘The IPL differs from PASCAL in that it does not require a BEGIN and END to
surround compound statements (all that is required is an END statement for
termmination of compound statements) nor does it allow array packing, CASE
statements, or subrange types. The IPL allows some PASCAL data types in an
abbreviated form such as INT and BOOL. ISIS includes two data types not in
PASCAL: STRING .and KEY. The STRING contains alphanumeric information enclosed
in quotation marks. KEY is defined as a line number assigned to each 1line of
text. The 1line number can be any type of KEY operand, a KEY variable or
expression, or a simple number. The KEY type permits the user to define
variables to be used in the range of the edit commands.

The two groups of programming statements are the Declarative statements
‘describing the program variables, and the Action statements which are the
executable statements., The Declaratlve statements are ABBREV, TYPE, VAR and
FRASE. The ABBREV statement permits the user to abbreviate the ISIS statement
verbs. The TYPE and VAR statements are similiar to the TYPE and VAR statements
of PASCAL. which declare various data structures and variables, respectively.
If the user fails to declare all variables being used, instead of aborting the
comand, the ISIS system will interrogate the user. The ERASE statement
eliminates the specified types and variables from the identifier table. The
Action statements include an assignment statement and control statements such
as 1O0OP, REPEAT UNTIL, WHILE, FOR, and IF-THEN-EILSE. The compile and execute
statements include XEQ and EXEC. XEQ takes the contents of a string expression
and interprets it as a cammand to the system, the EXEC -statement allows the
user to execute an ACTIVE or specified frame. The ASK, PRINT and PRINTLN
statements are interactive terminal input/output statements. The ASK statement
will interrupt program processing and prompt for terminal input. The PRINT and
PRINTIN statements print terminal output.

APPLYING ISIS TO ASPS

The purpose of this ‘case study was to assemble an integrated system of
existing software ‘tools using the Interactive Software Invocation System (ISIS)
for the support of the Anmilar Suspension and Pointing System (ASPS) software
development. The number of files (documentation, source, binary, data, and
test case) required to support the ASPS flight project is large. These files
are stored in NOS as shown in figure 2 with no special organization. ISIS
gives the user the capability of organizing these files in a library. The
organization of a library is a task reguiring a great deal of thought. For
example, it was decided to organize the ASPS files according to the software
development life cycle concept. One alternative to this would be to group
files along functional lines. Files should be grouped into proper -categories
and each category should have a meaningful name. In the 5-level hierarchical
file structure all information is stored at the page level and the remaining
four levels are used for naming convention only. Each level name has a maximum
of seven characters.

Library For ASPS Tools

The ASPS library organization is based on four software development 1life
cycle categories: documentation, design tools, implementation or coding, and
testing. These four categories became the shelf labels for the ASPS library
ASPSLIB as shown in.figure 3. The documentation (DOCMNT) shelf contains books
labelled Software Design Document (SDD), Software Standards Document (SSD),
Software Development Test Plan Document (SDIP), and Software Requirements
Document (SRD). The SRD book contains chapters of actual flight software
modules labeled Real-Time Executive Module (RTEM), Attitude Control Module
(ACM), and Attitude Determination Module (ADM). . The RTEM chapter contains
pages labeled Table of Contents (TC), section I (I), and so forth. These pages
contain the actual information stored into this library. The tools (TOOLS)
shelf contains a similar type organization for the design tools with books
labeled Flowcharter (FLOWCHT) and Wordprocessor (WRDPROC) . The FLOWCHT book
contains chapters labeled HALS programs (HALS), control cards (CONTROL), input
(INPT), and information (INFO). The CQONTROL. chapter contains pages labeled
HALCAL,, HALPRTR, and HOS. The HALCAL page contains the control cards necessary
to produce a CALCOMP flowchart, the HALPRTR page contains the control cards
necessary to produce a printed flowchart, and the HOS page contains the
necessary control cards to compile the flowcharter source program. This type
of organization can be applied to any project and can consist of a larger or
smaller number of shelves, books, chapters, and pages. Figure 4 shows an
example of a library layout for the Terminal Configured Vehicle (TCV) flight
project based on a functional organization. The flight project was organized
into the three functional processes: flight controls, navigation and guidance,
and displays labelled FLIGHTCIL, NAVGUID, and DISPLAYS, respectively. These
three functional processes form the shelf level. The book level requires the
same type, but distinct, books for each shelf. That is, each shelf requires
its own REQUIREMENTS book, its own TEST PLANS book, and so forth. The
REQUIREMENTS book contains the AUTOLAND chapter. The AUTOLAND chapter contains
the LATERAL, LONG, FLARE, and ROLLOUT pages. :

Figures 5 through 7 show the layout of the library ASPSLIB. The design
tools were organized into a TOOLS shelf as shown in figure 6. This shelf
(TOOLS) will be used to show the process required for a library organization.
The TOOLS shelf contains three books, the first book contains-all pages
associated with the flowcharter, the second book contains all pages associated
with the RNF text processor, and the third book contains general information
about the TOOLS shelf. The flowcharter book contains four chapters. The first
chapter contains pages of flowcharter .source, binary, ‘and HAL/S grammar to
flowchart a HAL/S program. The second chapter contains pages of control cards
required to execute the flowcharter and produce plots in printed or plotted
form. The third chapter contains pages of input (HAL/S programs), and the
fourth chapter contains descriptive information about the contents of the
FLOWCHT book on this shelf. The page level contains the actual files as they
were originally stored on NOS. These files include source programs for the
flowcharter, binary files for the flowcharter and RNF, a HAL/S grammar for the
- flowcharter, input files for the flowcharter and RNF, output files for RNF, and
control cards required to execute the flowcharter and RNF. : ‘

Library Directory Utility

In addition to the four shelves described above, ASPSLIB contains an
additional . shelf called GENERAL containing information about the contents of
ASPSLIB. This library directory was built for the purpose of guiding a user
through the ASPSLIB 1library and it is stored as pages in ASPSLIB. Figure 8
shows the ISIS data base for ASPSLIB and the arrows indicate the direction of a
particular library walkthrough. Figures 9 through 13 show the information
contained in the directory at each level of the library for this example and
the steps necessary to move through each level. Within the library ASBESLIB,
the DOCMNT shelf was selected for this example walkthrough, from this shelf the
SRD book was selected, from this book the RTEM chapter was selected, and from
this chapter the II page was selected. The actual library walkthrough begins
with an information file at the library level as shown in figure 9. This
information file can guide a user to any part of the library without having to
know all the ISIS commands. The first entry into the library requires that all
5-levels be specified. The ISIS command USE reads the contents of the "file"
page into an active frame. The LIST:NK lists the contents of the active frame
without line numbers (KEYS) to the left of the text. The contents of this
frame gives the user a brief description of the library, shows the shelf levels
available and tells how to access the shelf of interest. The DOCMNT shelf was
chosen as the next area of interest in this walkthrough. The next step is the
shelf level as shown in figure 10. To access this level the user only needs to
specify 4 levels. The contents of this frame descéribes the books availablé on
this shelf. The SRD book was chosen as the next aréa of interest. To access
the book level the user only needs to specify 3 levels as shown in figure 11.
The contents of this frame describes the chapters available in this book. The
RTEM chapter was chosen as the next area of interest. To access the chapter
level the user only needs to specify 2 levels as shown in figure 12. The
contents of this frame describes the pages available in this chapter. The II
page was chosen as the next area of interest and is shown in figure 13. The
page level contains the actual page (file) of information stored in the
library.

Submit File Utilities

Figure 14 shows a specific ISIS submit file contained in ASPSLIB which
differs fram a NOS submit file in the following ways. For ISIS the /[JOB has
been deleted and the EOF has been replaced by a right parenthesis [)]. The
IFETCH and ISISGET are required by ISIS to retrieve binary files and source
files, respectively. Each file retrieved fram ISIS must be specified in this
manner. Even if two pages are in the ‘saé chapter all 5 levels must be
specified. This submit file will compile and exectite the specific input file
(ASPS1) specified in lines 9.1 and 13. The ISTORE and ISISPUT stores or
replaces binary files and source files, reéspectively. The RUN command creates
an input file (control cards and source program) to submit to NOS. The KEYS or
line numbers are removed for NOS submittal using the no key (NK) parameter with
the RUN command. The SEND command submits this RUN file to NOS.

An ISIS IPL program can be very useful in accessing pages from the file
manager, with the capability of editing and replacing these pages, then writing
the control cards necessary to submit this information to the host computer for
execution. Figures 15 through 17 show an IPL program built to execute a
general purpose submit file, the general purpose submit file to be executed,
and the prompting process for executing this IPL program. Figure 15 shows an
IPL program that erases and assigns frames and variables, prompts the user for
another job, and clears the RUN file. The user must specify the submit file
needed for a general purpose submit. The program will prompt the user for the
source page (input) name. When the source page has been assigned the program
will ASK if you are ready to SEND. The IPL program will then loop and prompt
for another submission. The general purpose submit file as shown in figure 16
is the submit file from ISIS shown in figure 14.edited for a variable input
file. The ASPS1 page was not retrieved nor was it specified as input on the
PASCAL line. This submit file was built for variable inputs but only one input
file is permitted for each submission. Execution of an IPL program showing the
actual prompting process of an IPL program is shown in figure 17. The lower
case type in figure 17 are the user's response to the IPL prompts. The program
prompts the user for a job, clears the RUN file, inserts the submit file
requested (as shown in figure 16), requests the source page name, shows the
number of lines inserted, and ASKs if the user is ready to SEND the file to
NOCs. :

NOS files must be edited and submitted manually. Retrieving and storing
files in the NOS system requires less effort on the part of the user and
currently is much more efficient than ISIS. Some differences in the ISIS text
editor and the NOS text editor are noteworthy. The ISIS text editor is line
oriented and the NOS editor is pointer oriented. The cammands in both editors
can be abbreviated requiring fewer key strokes for the user. The abbreviations
are the default in NOS, in ISIS the user must define the abbreviations and
these abbreviations can be geared to each user's wishes. The NOS editor can
create or process an ASCII (upper and lower case) file. The ISIS editor has
limited capability 'in this area. The NOS editor automatically changes all -
occurrences on the line of text, ISIS changes only the first occurrence unless
the multiple occurrence option is selected. In ISIS, KEYS are required for
editing and are shown in figure 18 with the smallest possible increment.

CONCLUDING REMARKS

This case study resulted in an organized file system containing existing'
flight software development and support tools. This system is an integrated
- file system capable of supporting the verification and validation requirements
of the ASPS flight code. The 5-level hierarchical file structure of ISIS is
extremely useful in identifying and ordering pieces of information to be stored
at each level. The capability of organizing files in this manner can be more
valuable to a user than the Network Operating System (NOS) organization for
large amounts of information. Files are stored randomly in a NOS catalog as

Shown in figure 2; whereas, in ISIS the organization is controlled by the user
as shown in figure 3.

This paper reflects the state of ISIS at the time the case study was
conducted in mid 1980. Since ISIS is still in the development and
implementation phase, several desirable features are planned to be installed as
demand requires and time allows. For example, procedures, functions, and a
directory editing capability are presently being implemented. The directory
editing is necessary for the editing of a library layout. Currently, if an
error is made in any of the names while storing pages into the library this:
erroneous hame Wwill remain in the library until the user purges this page and
stores it again. Also, when a new page is stored into the library this 'new
page automatically falls to the bottom of the chapter level. At present there
is no capability for storing a page in a particular location. After the
initial library in ISIS has been built if the user wishes to change the name of
_ a page or store several additional pages, the ISIS library layout begins to
look as though it has the same type of organization as a NOS catalog. With
directory editing this could be avoided and the user would have the capability
of storing a page of information at any level in the library. This editing
capability should enable the user to have a clean and well organized library at
all times.

An IPL program can be built that will control the file manager, text
editor, and tool invoker. This allows the user to access a page of information
from the file manager, edit and replace this page, and then submit it to the
host computer through an IPL program. This is an advantage over the use of a
set of independent tools required to perform the same task. The IPL programs
must be built by someone with considerable knowledge of ISIS, the host
operating system, the use of terminals, and the PASCAL language. If an IPL
program has been built for a user by an ISIS system builder then the user is
only required to know how to use a terminal and have minimum knowledge of the
host operating system to perform the same task.

In conclusion the 5-level hierarchical file structure of ISIS was
extremely useful in organizing the software components required for the ASES
flight project. This type of organization proved to be = more meaningful than
the NOS organization, but in the storing and/or retrieving of files ISIS proved
to be less efficient than NOS. One of the strongest features of ISIS is the
IPL capability, but it is one that requires a great deal of effort and system
knowledge by the user to exercise to the fullest extent. ISIS is still in the
development and implementation phase with several improvements planned to

_enhance its usability. p

Langley Research Center)

National Aeronautics and Space Administration
Hampton, VA 23665 ‘

December, 1980

10

REFERENCES

Grantham, Carolyn: ISIS Users Manual
NASA Technical Memorandum 80144, March 1980.

BIBLIOGRAPHY

Cormack, A., III; Andrews, P. D.:

Flight Experiment Definition of an

Annular Suspension and Pointing System. (ASPS),
Rockwell International,

SD 77-AP-0027, May 1977

Berman, W. Joseph : Functional Description of the ISIS System.
NASA CR-159152, October,1979

Straeter, Terry A.; Foudriat, Edwin C.; Will, Ralph W.:

Research Flight Software Engineering and MUST,

an Integrated System of Support Tools.

Proceedings COMPSAC77 (IEEE 77CH1291-4C), pp.392-396, Nov. 1977

Zelkowitz, Marvin V.:
Perspectives on Software Engineering.
Computing Surveys, Vol. 10, No. 2, June, 1978, pp. 197-216

11

A

LIBRARY

SHELF

BOOK

CHAPTER

PAGES

Figure 7.

- The 5-level: hierarchical file structure

PLTREXT SQRTFL
CONTRLF HGTAB
HOS EXEC
SIMFLTM RNFTLL
SFILE NSSCII1
MODBIN TAPE15
TAPES FLOATPT
47 FILE(S)
Figure 2,

HOSFCPR

DATAF
HALMOD
TESTSIM
ICSLIB
CONIN
SQRTS

TESTJRW
HALCAL
LOADMOD

AGSSRD -

SIMEXEC
LKEDMOD
TEST

PRTRLGO
ASPSCL
ROMAN
SIMLAT
AGSCL
LKEXAB
FLOATPM

ASPS1
HALPRTR
SIMFLT
FINAL
MACLIB
NSCLIB

- Listing of ASPS files as stored under NOS

PLTRLGO
LGO
RNFPRTR
NSSCII

- METAMOD
LIBTP

13

A

LIBRARY

SHELF

BOOK

CHAPTER

PAGES

ASPSLIB

DOCMNT

TOOLS

CODING

 TESTING

SDD

SSD | SDTP

SRD

{ RTEM |

ACM |

ADM | -+

TC| I

II |

I |

- Figure 3.

| FLOWCHT

WRDPROC | --.

HALS

CONTROL

INPT

Iv EN

| HALCAL

HALPRTR

- Example ISIS data base for ASPS flight project

INFO| ...

HOS

Gl

- LIBRARY

SHELF

BOOK

CHAPTER

PAGES

TCV
FLIGHTCTL NAVVGUID pxs PLAYS

REQUIREMENTS | TEST PLANS | DESIGNS | SOURCE | TOOLS
AUTOLAND | MANUAL | Cws RED‘UN'D’ANCY . e
LATERAL. | LONG | FLARE | ROLLOUT . .

Figure U4,

- Example ISIS data base for TCV flight project

show pages.

ASPSLIB,.DOCMNT .SDD +REF .TC

Figure

16

5.

. . .SDD3
. . +PRINT
.S3D - REF .TC
. . i |
. . .II
. . .III
. . LIV
. . .V
. . .TC1
.SDTP -REF .TC
. . .1
. . LII
. . LIII
. . LIV
. . .V
.SRD .REF .AGSSRD
. <RTEM .TC
. . .I
. , IIX
e . LIIX
. IV
» +ACM .TC
. . oI
. . LII
. . LIIX
. . » IV
. . .:v
. » VI
» oADM . TC
. . I
. . I
. . .I2
. . .IX
. - «IT1
. » LIXI2
. ’ .II3
. . .14
. . -111
. B . Iv
. . INFO «TC

- ASPSLIB library layout

ASPSLIB.TOOLS .FLOWCHT.HALS . PLTREXT

. . . .HOSFCPR
. . . .PRTRLGO
. . . .PLTRLGO
. . . .HGTAB

. . . - JPLTRLG3
. . .CONTROL . HALCAL
. . . .HALPRTR
[] . * .EXEC
. . . - LJHOs
. . . - WTC
. . JINPT .HALMOD
. . . .ROMAN
. . .INFO .TC
. WRDPROC.AIDS .EXEC
. . . .RNFHELP
. . . .RNFMAC
. . . .RNFHF

. . .ASCIIPR.RNF
. . . .RNFTL
. . .CONTROL . RNFPRTR
. . . .RNFTLL
. . . .EXEC
. . . .TC
. . JINPT .AGSSRD
. . .OTPUT .FINAL
. . . .SFILE
. . JINFO .TC
. .GENERAL.INFO .TC
.CODING .METAASM.MCDAC .ICSLIB
. . . .SFMETA
. . . .MACLIB
. . . .METAMOD
. . . .MODBIN
. . . .TAPE15
. .LOADER .LINKED .CONIN
. . . .CONINEX
. . . .LKEDMOD
. . . .LKEXAB
. . . .NSCLIB
. . . .LIBTP
. . . .TAPES
. .GENERAL.INFO .TC

.

Figure 6. - ASPSLIB library layout (continued)

ASPSLIB.TESTING.ICS .MODULE
) . .INTEGRT
. .SYSTEM .SOETWR.
. . .HARDWR
. . .CONTROL
) . NSSCIT
) .GENERAL . INFO.

. FLOATPT
«SQRTS
.TEST
+FLOATPM
+.SQRTFL
.TESTJRW
+ASPS1
.CONTRLF
+DATAF
+ASPSCL
.CKPTF
,LGO
.OLLGO
.DATAF3
.LGOO
.LGOG

. LGOAGS.
+DATAF2
.EXEC

. LOADMOD:
+DUMPP
.LOADMDP
+TAPCONV.
FILE2
«RSAGS
«SIMFLT
+SIMFLTM
.TESTSIM
«SIMLAT
.NSSCII
+NSSCIT
.SIMEXEC
+AGSCL
.CKPTDMP
.SPERRY1
+SPERRYZ2
«SPERRYT
.SIMFLTT
«3IMTEST
+N&SCI
«EXEC
.RITSUB
«TC

Figure 7. - ASPSLIB library layout (concluded)

18

61

LIBRARY

SHELF

BOOK

CHAPTER

PAGES

ASPSLIB

.. A

'DOCMNT

TOOLS

CODING

TESTING

~_

SDD

SOTP

SRD

FLOWCHT

WRDPROC | -

L

RTEM | ACM ADM
TCl 1 (11| III |1V

7 Figure 8.

HALS | CONTROL

INPT | INFO

HALCAL

HALPRTR | HOS

- Direction of library walkthrough

use aspslib.general.library.info.file;list:nk

WORK USED FROM ASPSLIB.GENERAL.LIBRARY.INFO.FILE

This library consists of a colléction of files required to
support the ASPS flight project. These files include ASPS
documentation, design tools, coding aids and testing systems. To
access the area of interest enter one of the following commands.

USE DOCMNT.GENERAL.INFO,TC;LIST:NK

USE TOOLS.GENERAL.INFO.TC:LIST:NK

USE CODING.GENERAL.INFO.TC;LIST:NK

USE TESTING.GENERAL.INFO,TC;LIST:NK

NOTE
The above commands must be explicitly designated to move from one
area of the 1library to another. Take note as this will be the
ONLY appearance of these commands.

To exit ISIS enter STOP

Figure 9. -~ Library level

20

- use docmnt.general.info.tc;list:nk

WORK USED FROM ASPSLIB.DOCMNT.GENERAL.INFO.TC

This shelf contains information on ASPS documentation. To access
the area of interest enter one of the following commands.

(for Software Design Document)
USE SDD.REF.TC;LIST:NK

(for Software Standards Document)
USE SSD.REF.TC;LIST:NK

(for General Software Development Test Plan)
USE SDTP,REF.TC;LIST:NK

(for Software Requirements Document)
USE SRD.INFO.TC;LIST:NK

(for Program Specifications Document)
USE PSD.INFO,TC;LIST:NK

(for Module Test Plan'Document)
USE TSTPLAN.INFO.TC:LIST:NK

(for Simulation)
USE SIMULAT.INFO.TC:LIST:NK

To exit ISIS enter STOP

Figure 10. - Shelf level

21

22

use srd.info.te;list:nk

WORK USED FROM ASPSLIB.DOCMNT.SRD.INFO.TC

This book contains a general document on the ASPS Software
Requirements and specifiec documents for the Real-Time Executive
Module, Attitude Control Module, and the Attitude Determination
Module. To access the area of 1interest enter one of the
following commands.

(for ASPS Software Requirements)
USE REF.AGSSRD;LIST:NK

(for Real-~Time Executive Module)
USE RTEM.TC;LIST:NK

(for Attitude Contrel Medule) -
USE ACM.TC;LIST:NK

(for Attitude Determination Module)
USE ADM.TC;LIST:NK

To exit ISIS enter STOP

Figure 11. - Book level

use rtem.tc;list:nk

WORK USED FROM ASPSLIB.DOCMNT.SRD.RTEM.TC

This chapter contains the Table of Contents for the Real-Time

Executive Module document.
6.0 MODULE REQUIREMENTS

6.1 Real-Time Executive Module

The Real-Time Executive Module shall provide the following
operating system functions for the AGS software:

6.1.1 (I). Program Load

6.1.2 (II) Program Initialization

6.1.3 (III) Interrupt Processing (with error
detection)

6.1.4 (IV) Program Task Scheduling

6.1.5 (V) 1/0 Data - Timing and Control

To access enter one of the following commands. .

USE I;LIST:NK
USE II;LIST:NK
USE III:LIST:NK
USE IV;LIST:NK
USE V;LIST:NK

To exit ISIS enter STOP

Figure 12. - Chapter level

23

use ii;list:nk

WORK USED FROM ASPSLIB.DOCMNT.SRD.RTEM.II

6.1.2 Program Initialization

The program initialization section will provide
initialization of the AGS software immediately following program
load. This mode shall 1initialize the Program Status Words
(PSW's), set the storage protect keys, set up Buffered I/0,
initialize the Real-Time Executive variables and zero the Real
Time Clock. In addition, it will perform data and filter
initialization for the designated functions 1listed in Table
6.1.2. When the initialization is complete, the NSSC-II will
interrupt the DEA to inform it of 1its status and enter the
"wait-state". Real-time processing will not begin until the DEA
generates an interrupt to start the first real-time cycle.

‘Figure 13. — Page level

24

Qse aspslib.testing.system.control.nsscii;list

ASPSLIB,TESTING.SYSTEM.CONTROL,NSSCIXI USED AS WORK

1.
-
3.
L
5.
6.
7.
8.
9.
9.1
10.
11.
12.
13.
14,
15.
16.
17.
18.

=NSSCII,T200,CM77000.
:USER " . X
=CHARGE, »LRC.

RM 1115 M.S. NOLAND

=*ICS COMPILE AND EXECUTE RUN

=ATTACH,ISTORE, IFETCH, ISISPUT, ISISGET/UN- .
=ATTACH,PASCAL ,PASCLIB/UN=LIBRARY,

=IFETCH,CKPTF. ASPSLIB.TESTING.ICS, INTEGRT CKPTF
=ISISGET,DATAF3. ASPSLIB.TESTING.ICS,INTEGRT.DATAF3
=ISISGET,CONTRLF. ASPSLIB.TESTING.ICS.INTEGRT.CONTRLF

=ISISGET, ASPS1.

ASPSLIB.TESTING.ICS.INTEGRT.ASPS1

=REWIND,DATAF3, CONTRLF, CKPTF .

=RFL, 77000,
=REDUCE,-.

=PASCAL,ASPS1.
=LGO,, ,DATAF3.
=ISTORE,LGO, ASPSLIB.TESTING.ICS.INTEGRT.LGOO
=ISTORE,CKPTF, ASPSLIB.TESTING.ICS.,INTEGRT.CKPTF
=ISISPUT,CONTRLF. ASPSLIB. TESTING ICS.INTEGRT.CONTRLF

=)

USE ASPSLIB.TESTING.SYSTEM.CONTROL.NSSCII

RUN:NK

SEND

Figure 14,

- Specific submit file

25

use aspslib.testing.system.nsscii.exec;list

WORK USED FROM ASPSLIB,TESTING.SYSTEM.NSSCII.EXEC
1. =ERASE WORK1; FRAME WORK1:STRING; ,
2. =ERASE S1; VAR S1:STRING;

3. =ERASE S; VAR S:STRING;
y, =ERASE SND; VAR SND:STRING;

5. =LOOP .
6. = ASK S1, ' DO YOU WANT TO EXECUTE ANOTHER JOB? {(Y) OR (N> ';
7. = IF (S1='Y') OR (S1='YES') THEN CLEAR RUN;

8. = WORK1/USE ASPSLIB.TESTING.SYSTEM.CONTROL.NSSCII

9. = WORK 1/RUN:NK

10. = ASK S, '"SOURCE PAGE NAME?!

11. = EXITIF S='NONE';

12, = XEQ CAT ('WORK1/USE ',S);

13. = WORK1/RUN: NK

14, = ASK SND, 'READY TO SEND?';

15, = IF (SND ='YES') OR (SND='Y') THEN SEND;

16. = ELSE PRINTLN ' DID NOT SEND ',S;

7. = END

18. = END;

19. = EXITIF S1=z'N';

20. =END;

Figure 15. - An IPL program

26

use aspslib.testing.system.control.nsscii;list

ASPSLIB.TESTING.SYSTEH.CONTROL.NSSCII USED AS WORK

1. =NSSCII,T200,CM77000. RM 1115 M.S. NOLAND
2. =USER, .

3. =CHARGE, ,LRC,

4, =%*ICS COMPILE AND EXECUTE RUN

5. =ATTACH,ISTORE, IFETCH,ISISPUT, ISISGET/UN= .

6. =ATTACH,PASCAL,PASCLIB/UN=LIBRARY.

7. =IFETCH,CKPTF. ASPSLIB,.TESTING.ICS.INTEGRT.CKPTF

8. =ISISGET,DATAF3. ASPSLIB.TESTING.ICS.INTEGRT.DATAF3
9. =ISISGET,CONTRLF. ASPSLIB,TESTING.ICS.INTEGRT.CONTRLF
10. =REWIND,DATAF3,CONTRLF,CKPTF.

1. =RFL, 77000.

12. =REDUCE, -,

13. =PASCAL.

14, =LGO,,,DATAF3,

15. =ISTORE,LGO. ASPSLIB.TESTING.ICS.INTEGRT.LGOO

16. =ISTORE, CKPTF. ASPSLIB.TESTING.ICS.INTEGRT.CKPTF

17. =ISISPUT,CONTRLF. ASPSLIB.TESTING.ICS.INTEGRT.CONTRLF

18. =)

Figure 16. - General submit file

28

use nsscii.exec;exec

ASPSLIB.TESTING.SYSTEM.NSSCII.EXEC USED AS WORK
DO YOU WANT TO EXECUTE ANOTHER JOB? {Y) OR {N? y

'RUN CLEARED.

ASPSLIB.TESTING.SYSTEM.CONTROL.NSSCII USED AS WORK1
25 ITEMS IN SPECIFIED RANGE.
SOURCE PAGE NAME? ics.integrt.asps?

ASPSLIB.TESTING.ICS.INTEGRT.ASPS1 USED AS WORK1
4258 ITEMS IN SPECIFIED RANGE.
READY TO SEND?y

"ATCYNGA" SENT TO BATCH.
DO YOU WANT TO EXECUTE ANOTHER JOB? (Y> OR (N} n

Figure 17. - Execution of an IPL program

WORK

use aspslib.docmnt.ssd.ref.tc;list

0.001=1
0.002=
0.003=
0.004=
0.005=
0.006=
0.007=

USED FROM ASPS

This book con

LIB.DOCMNT.SSD.REF.TC

tains the Table of Contents for

0.008= Standards Document.

0.009=
0.01 =
0.011=
0.012=
0.013=
0.014=
0.015=
0.016=
0.017=
0.018=
0.019=
0.02 =
0.021=
0.022=
0.023=
0.024=

TABLE OF CONTENTS

I Introduction (1)

II Requirements Document {1I1)
111 Program Specification (1I11)
Iv Detail Internal Specification (IV)

N Debug/Test » (v)
Figure 18. - A page of documentation in ASPSLIB

the

Software

29

Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-81924 '

4

An Evaluation of the Interactive Software Invocation System
"(ISIS) for Software Development Applications

Title and Subtitle 5. Report Date

January 1981

6. Performing Organization Code
506-61-43-05

7.

Author(s) . 8. Performing Organization Report No.

Marie S. Noland

10. Work Unit No,
Performing Organization Name and Address .

NASA Langley Research Center _] 11. Contract or Grant No.
Hampton, Virginia 23665

13. Type of Report and Period Covered

12,

Sponsoring Agency Name and Address .
Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20456

15,

Supplementary Notes

16.

Abstract

The Multipurpose User-Oriented Software Technology (MUST) project was
established to reduce the cost of flight software and effectively utilize
digital systems to support flight research. One of the tools designed and
built under this project was the Interactive Software Invocation System (ISIS).
ISIS was developed primarily to handle large amounts of information required
for the support of flight projects. The Annular Suspension and Pointing System
(ASPS) flight project, which contains a vast amount of information, was
integrated into ISIS. This resulted in an integrated system capable.of
performing the verification and validation requirements of the ASPS flight
code. This system consists of language processors, automated documentation
tools, utility routines, a flowcharter, and a test and simulation system. This
ordered collection of informationh is controlled through the interactive user
interface capability provided by ISIS.

V7.

Key Words (Suggested by Author(s}) ‘ 18. Distribution Statement
APSP o - IPL
ISIS Text Editor Unclassified - Unlimited
MUST File Manager
Flight Software Tool Invoker Subject Category 61
Hierarchical Library NOS

19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of Pages 22. Price®

Unclassified Unclassified 29 AO3

§-305 For sale by the National Technical information Service, Springtield, Virginia 22161

E

