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Abstract

A 17-cm diameter line-cusp ion taruster was
evaluated with inert gases which are candidate pro-
pellants for on-orbit and orbit transfer propulsion
functions for Large Space Systems. A semi-empirical
relationshio was generated to predict thruster beam
current in terms of plasma parameters which would
allow initial thruster optimization without ion ex-
traction and the associated large vacuum facili-
ties. The sensitivity of performance to changes in
discharge electrode configurations and magnetic cir-
cuit was evaluated and is presented. After final
optimization a propellant utilization efficiency of
0.9 at a discharge chamber power expenditure of
about 260 W per beam ampere was obtiined. These
performance parameters are the highest yet achieved
with argon propellant,

Introduction

Inert gas ion thrusters are being considered
for orbit transfer and on-orbit propulsion functions
for Large Space Systems. [Inert gases are attractive
propellants because they are plentif.' and should
minimize the ecological impact of the propulsion
systems. The inert gas systems should also allow
for easy integration with the Space Transportation
System and spacecraft.

System analyses have been performed for inert
gas systems and have shown that thruster performance
strongly impacts such key miffion parameters as trip
time and power requirements. ) A number of per-
formance-related investigations have dealt with com-
ponent and dischargf optimization ?5 xhrugters em-
ploying d!vergent( and multipole!d» +9,0) magne-
tic field discharge chambers. Tne multipole magne-
tic confinement schemes generally tend to improve
primary electron confinenent, increase plasma den-
sity and uniformity, and increase inert gas propel-
lant utilization efficiency when compared with di-
vergent field thrusters. Discharge losses, with
argon Rsopellanl. of g?out 300 w per beam ampere
(w/A)(8) and 400 w/A(3) at a propellant utilization
efficiency of 0.75 nave been reported for such mul-
tipole discharge chambers.

This paper describes the characteristics of a
magnetic multipole line-cusp discharge chamber. The
line-cusp differs from other magnetic circuits in
the arrangement of the magnets which provide the
electron confinement, The line-cusp magnetic cir-
cuit has been ?revious!y employed n nonthruster
applications. | ) These ion sources have produced
uniform argon, hydrogen, and deutfgvgm plasmas at
relatively high plasma densities.(8,9)

Basic optimization of the thruster discharge
chamber was performed without ion extraction by the
use of plasma probes to mcasure ion density. This
procedure permitted the use of smaller vacuum facil-
ities and power supplies. Optimization procedures
inc luded variation of the line-cusp magnetic cir-
cuit, anode position, and cathode position to yield
the highest ion density. Finally, the thruster per-

formance was further documented with ion extraction
using a high-performance, dished ion optics assembly.

Apparatus and Procedure

A section view of the reference thruster, which
resulted from optimization without ion extraction,
is shown in Fig. 1. The chamber irside diameter,
determined by the magnets, was 20 cn. The magnetic
circuit was composed of 20 magnet rows which alter-
nated in polarity and produced 20 line-cusps spaced
about 3.2 cm apart. Samarium-cobalt magnets whose
dimensions were 2.5x2.5 by 1.1 cm long were used.
When placed in the magnetic circuit, the magnet
field strength at the surface was 0.3 T. Themild
steel shell was water cooled to maintain the magnet
temperature less than 200" C. The samarium-cobalt
magnets showed irreversible field strength losses of
a few percent at 220" C and had up to 50 percent
losses at 320 C.

The reference thruster cati.ode was placed about
23 cm from the downstream end of the shell. As
shown in Fig. 1 there were no pole pieces in the
cathode region in oirder to reduce potential ion loss
areas. The optimum axial magnetic field strength at
the cathode was founa to be about 18 mT (Fig.
2(a)). In order :o produce an 18-mT field at the
cathode as well as low axial field at the ion op-
tics, the magnets were specially arranged in the
cone, For example, a “"North" magnet row had three
magnets extended into the cone while a “"South" mag-
net row had only one magnet extended into the cone
(Fig. 1). The magnetic field had rather steep spa-
tia? gradients such that the volume within about
8 cm of the ion optics had radial and axial field
strengths of less than 2 mT except near the boundary
anodes (Fig. 2).

The cathode piimary electrons travel through
the weakly diverging field region into a relatively
field free volume where strong fields exist only at
the boundary anodes. The reference thruster had
10 tubular anodes 1.2 cm diameter by 20 cm long
which were placed between alternating rows of mag-
nets. Figure 3 shows the end view of the line-cusp
thruster without a screen grid mask. Most of the
optical excitation was contained within a ld4-cm di-
ameter which was the gistance between opposite
anodes (Fig. 1). After a series of optimization
procedures, the anodes were positioned radially such
that the azimuthal magnetic field at the anode in-
ternal extremity (14 cm diam) would be 14.5 and
12.5 mT, respectively, at locations 19 and 3.5 cm
from the downstream end of the shell.

Argon flow was ggmitted through a 6.4-mm diam-
eter hollow cathodel¢) and through a perforated
tube located at the upstream end of the discharge
chamber., The hollow cathede orifice (0.76 mm diam-
eter) was champhered and had a 0.5-mm long throat.
The downstream end of the cathode was fitted with a
17-mm diameter by O.8-mm thick tantalum radiation
fin. Other parts of the assembly are a barium im-
pregnated porous tungsten cathode insert and a
swaged tantalum heater. Discharge ignition was ac-




complished by applying a 3-kV, 3 usec puise between
a wire electrode and the cathode. After the gas
breakdown the discharge coupled between the cathode
and tubular anodes.

when ions were extracted, a dished ion optical
system with screen and accelerator grid open area
frcctifgi of 0.75 and 0.27, respectively, wa:
vsed.( The grid-to-grid spacing was set to
about 0.7 mm. The 30-cm diameter ion optics were
mounted to a 3l-cm diameter stainless-steel shell.
The screen grid was masked using tantalum foil to
diameters ranging from 14 to 17 cm diameter. For
all tests the grids were operated at +1000 and
-500 V.

A 6.4-mm diameter hollow cathode neutralizer
was used along with an enclosed 5seper electrode
spaced 1.2 cm from the cathoae.(¢) The neutrali-
zer tip was located 10 cm axially and 17 cm radially
from the last row of accelerator grid holes. The
neutralizer flow rate was about 0.4 equivalent am-
peres of cr?on. Because the neutralizer did not
perform efficiently at beam currents exceeding 1 A,
neutralization was by both the active hollow cathode
and secondary electrons emitted from vacuum facility
surfaces whicn were impinged upon by ions.

Initial discharge chamber untimization and ion
density measurements were performed without ion ex-
traction. This procedure was employed because a
vacuum facility with modest pumping capability could
be used: only two thruster power supplies were re-
quired, and test turn-around time was rapid. During
this activity effects of anode radial position and
cathode position were examined and the magnetic cir-
cuit in the truncatec cone region was defined. Held
fixed were the number of rows of magnets (20) and
the number of anodes (10). The thruster configura-
tion resulting from these optimization procedures
was referred to as the reference thruster. Ouring
the initial optimization without ion extraction,
plasma parameters were measured with a Langmuir probe
which consisted of a 0.5-mm diameter tungsten wire
with a 5.1-mm length exposed to the plasma. The
wire was supported by two concentric alumina tubes.
The probe was located on the thruster centerline
about 1 centimeter from a perforated plate which was
used to simulate tie ion optics' gas impedance.

Next, the thruster was operated in a 4.6-m di-
ameter by 19.2-m long vacuum facility with ion ex-
traction. These tests were undertaken to determine
the performance sensitivity of parameters which in-
cluded screen mask diameter, anode radial position,
number of anodes, number of magnet rows, anode
length, and thruster length, The vacuum facility
was capable of operating at 7xi0-® torr while
handling 3 A of argon flow. Gas flow rates were
measured with mass flow rate transducers which were
calibrated using volume displacement methods. The
cathode flow rate, usually about 0.5 A, was selec-
ted to yield a discharge voltage of 45 to 50 v at a
discharge current of 22 A,

Results and Discussion

The results of procedures and tests to improve
the ionization and gas efficiency of an inert gas
thruster are presented herein. A thruster length-
to-diameter ratio in excess of one was chosen in
order to increase the propellant utilization effi-
ciency which was generallg limited to less than 0.80
in previous efforts.(¢+4.5) The line-cusp magne-

Cls i A~ TR

tic circuit with multiple anodes was selected with
the intention of improving primary electro? cgn&in&-
ment, plasma density, and beam uniformity. 7.8,9)
The effects of varying magnetic circuit and chamber
geometry was documented with ion extraction after
first-order optimization efforts were made using
plasma probe diagnostics without ion extraction.

Discharge Chamber Performance
without lon Extraction

In order to obtain the largest beam diameter
with a 22.5-cm diameter iron shell, 20 rows of mag-
nets with 3,2 cm cusp spacings were selected for the
initial experiment. The 20 magnet row conf iguraticn
reduced field penetration into the center of the
chamber (Fig. 2(b)). Given a 22.5-cm diameter shell
and a magnet width of 2.5 cm the maximum number of
magnet rows, allowing some space for anode mounts,
was 20. Ten rather than 20 anodes were used due to
space limitations for the anode mounti insula-
tors. Initial tests dealt with the variation of the
anode radial position to establish discharge impe-
dance and ion current density sensitivities. It was
found that when the magnetic field at the anode in-
ternal extremity was increased, both the discharge
impedance and the probe ion current increased if the
flow rates and discharge power were neld constant.

wWhen the magnetic field over the anodes was
increased to 15 mT the discharge was difficult to
start ang undesirably high impedance modes were en-
countered for most combinations of cathode and main
discharge argon flow rates. When the magnetic field
over the anode internal extremity was reduced to
12.6 mT, there was no difficulty starting the dis-
charge, the discharge impedance was lower, anc¢ the
plasma probe ion current increased slightly at a
given discharge power. However, voltage excursions
in the V-1 characteristic still existed (Fig. 4(a)).

Discharge chambers without magnets in the cone
region exhibited undesirable peaks in the discharge
V-1 characteristic that were sometimes in excess of
80 V and could limit the discharge current depending
upon the power supply voltage capability. The data
in Fig. 4 show the effect of extending magnets into
the truncated cone region of the thruster and alter-
nating the number of magnets per row. This change
produced a monotonically increasing V-1 discharge
characteristic. Furthermore, by placing magnets in
the cone the probe ion current incresed by 20 to 80
percent depending upon the value of discharge power
selected for comparison purposes. There was a
slight increase in the azimutnal magnetic field over
the anodes at the upstream end of the shell. More
importantly, the axial magnetic field strength at
the cathode tip changed from about 0.2 to 18 mT.

The effect of axial magnetic field strength in the
region of the cathode was examined more carefully
during tests with fon extraction.

The effect of varying cathode position on the
discharge chamber ion density was also investiga-
ted. The cathode was placed at five different posi-
tions which were 20 to 27 cm from the downstream end
of the shell (Fig. 1). The discharge voltage was
between 4o and 49 V, at a 20-A cathode discharge
current, for all cathode positions except tne 20-cm
position where the discharge voltage was about
42 V., The highest probe ion current was obtained at
a cathode position between 22 and ¢3 cm upstream of
the end of tne shell. Retracting the cathode from
the 20- to the 23-cm position resulted in about a




20-percent increase in probe fon current. As seen
from Fig. 2(a), thc 23-cm position was sl!?htiy
upstream of the maximum axial magnetic field
strength. This type of position was found to be
preferred ”\ the optimization of a cesium
thruster.(3) The cathode was fmn{ positioned
23 cm upstream of the end of the shell prior to
final documentation with a ".angmuir probe.

Measurements from a negatively biased cylindri-
cal probe provided guidance in the optimization pro-
cedures concerning magnetic circuit, anode position,
and cathode position. Prior to perfurming tests
with fon extraction, measurements of electron tem-
perature, plasma potential, and plasma density were
made using the reference thruster whose prominent
charncteristic? ’re shown in table I. Based on pre-
vious results, it was felt that the t [uste H
yielding ion densities ‘n excess of 2x10
would also provide nigh performance with ion extrac-
tion. The data of Fig, 5 indicate that the jon den-
sities range from 2x1311 cm3 to about 5x10}
as the discharge power varied from 200 to 900 W. In
this case the total and cathode argon neutral flow
rates were about 2 and 0.5 A, respectively. The
Langmuir probe characteristics were linear on the
usual semi-logarithmic plot indicating a Maxwellian
distribution of electrons in the vicinity of the
screen grid, Electron temperatures were in the
range 6 to 8 eV. 1In all cases plasma potential was
1 to 3 V positive with respect to anode potential.
The thruster conf iguration resulting from this ser-
ies of tests is documented in table I.

Performance with lon Extru-tion

Tests with ion extraction were carried out in
the 4.6-m diameter vacuum facility. Gas flow cor-
rections for facility gas ingestion into the thrus-
ter were less than 1 percent for argon flow rates
used. Argon flow rates were generally less than
3 A. No attempt was made to correct the discharge
propellant utilization efficiency or discharge cham-
ber losses for multiple ionized species. The degree
of multiple ionization was limited by adjusting the
cathode to main discharge argon flow rate ratio such
that the discharge voltage for the data reported
herein was generally less than 50 V.

The performance of the reference thruster was
evaluated with an ion optical system having screen
and accelerator grid open area fractions of 0.75 and
0.24, respectively. The data of Fig. 5(b) indicate
that the ion density obtained without extraction and
the ion beam current have nearly identical shape
functions when plotted againsu discharge power. In
bothmsases the downstream grid open area was about
60 ¢ At 670 w discharge powei, the fon number
densiti oblalned without 1on extraction was about
4,3x101! When the thruster was operated
with ion extraction. at sligntly higher flow rates,
the resulting beam current was 2.15 A or an average
beam current density of 9.5 mA/c Typical per-
formance parameters for argon : ing the reference
thruster were 275 W of discharge power per beam am-
pere at a propellant utilization efficiency of 0.9
and a discharge voltage of about 40 V. Beam cur-
rents of 2.9 A and average ion current densities of
13 m/cm? have been obtained with the 17-cm aiam-
eter thruster. The data also indicate that rela-
tively high-performance line-cusr thrusters may be
obtained by optimization procecures without ion ex-
traction, using plasma probes.
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From Fig. 5(b) a semi-empirical relationship
can be generated to predict the maximum beam current
of ungnetic multipole thrusters using ion density

ectron temperature values measured without ion
cutuct\on. The plasma parameters were jieasured on
the thruster centerline about 1 cm from the screen
grid. Using ths usual ion flux parameters, the Bohm
fon velocity,(®) and tune experimentally determined
factor of 0.46, the maximum beam current becomes:

T 12

Jp = oA nie (n“) (1)
where
Jg ion beam current, A
a 0.46, proportionality constant
Ag Screen grid open area, mé
n; ion density, m-3
e \ectronic charge, 1.6x10-19 ¢
k 1.38x10-23 x-1
Te electron temperature, K
mj ion mass, kg

lon beam currents hgve previously been estimated by
using 1.0 for a.(0) Jlicr authors have used

0.5 < a < 0.6 for analogous ff ations dealing with
plasma probe ion collection.( ) Equation (1),

with a = 0.46, matches the experimental data of
Fig. 5(b) to within #7 percent (Fig. 6). Because
the ion density and electron temperatures were meas-
ured on the thruster centerline near the screen
grid, the a value accounts for variations in the
radial ion density. In the reference thruster, for
example, the probe ion currents were 94 percent and
about 66 percent of the centerline value at one-half
and full ion extraction radius, respectivel’y. The
discharge V-1 characteristics of Fig. 5(a), with and
without ion extraction, are not identical and the
plasma properties probably differ to some exteni so
it 1s not clear at the time how accurately Eq. (1)
could be extended to other magnetic multipole ion
sources.

“igure 7 shows the discharge chamber perform-
ance o' the reference thruster with both argon and
xenon. The minimum energy expenditure for both
gases was about 200 W/A. The effective discharge
chamber length-to-diameter ratio was greater than
1.3. This parameter was tailored to increase argon
perfcrmance. Thus the reported xenon discharge
chamoer losses are higher than would exist for a
chanber specifically designed for xenon.

The maximum argon propellant utilization ef-
ficiency, ucorrected for multiply-charged iong,
shown in Fig. 7 was about 0.98 at 340 W/A and a dis-
charge voltage of 46.3 V. The maximum apparent pro-
pellant utilization efficiency for xenon was greater
than one. If it is assumed that Xe* and xe**
are the only ions that comprise the beam current,
then at least 23 percent of the total beam current
was Xe** at a discharge voltage of 38.5 V apd an
average ion beam current density of 1l nﬂ/cmg
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In order to limit multiply-charged ion produc-
tion, discharge voltages for argon and xenon were
kept below 50 and 40 V, respectively. With this
guideline in mind, the hollow cathode flow rates
required to produce the lowest discharge chamber
losses were about 0.65 and 0.13 A for argon and
xennn, respectively.,

In an attempt to lower the discharge chamber
power losses, the cylindrical chamber length was
reduced by approximately 7.5 cm. The short thruster
conf iguration had three less magnets per row than
the reference thruster (table I). Curve 1 of
Fig. 8(a) shows the resulting axial magnetic fiela
strength. The uischarge chamber performance was
rather poor and resulted in a high discharge volt-
age, low ion production situation (Fig. 8(c)).
Thus, decreasing the length of the line-cusp thrus-
ter required recont iguration of the axial magnetic
field gradient. These data, as well as the data
taken without ion extraction, indicate that the ax-
ial magnetic field and field gradient in the region
of the hollow cathode play an important role in the
fon production rate.

The magnets in the cone region of the thruster
were reconfigured t¢ produce a tota! of six differ-
ent axial magnetic field profiles which are shown in
Figs. 8(a) and (b). Figures 8(a) and (c) show that
if the magnetic field strength in the region of the
cathode was less than 4 mT or if Lhe magnetic field
axial gradient was not proper, a high discharge
voltage mode results or was accompanied by poor per-
formance. The best performance was obtained (Figs.
8(b) and (c)) when the field strength at the cathode
tip was between 17 and 37 mT and a rather steep
field gradient existed near the cathode.

The discharge losses of the chamber shortened
by 7.5 cm with a length-to-diameter ratio of 0.9,
were 380 W/A at a propellant utilization efficiency
of 0.9. These losses were about 100 W/A higher than
obtained with the longer reference thruster whose
effective length-to diameter ratio was about 1.3.
Performance comparison of the thruster lengths may
have been compromised since the magnetic field at
the extremity of the anodes was about 10 mT in the
case of the short thruster versus 12.5 mT for the
reference thruster. The data of Fig. 8 do, however,
display the importance of selecting the appropriate
magnetic field and field gradient in the region of
the cathode.

A series of tests were undertaken to lower ais-
charge losses and determine the sensitivity of per-
formance to changes in discharge chamber parameters
(table I1). For ease of presentation all perform-
ance comparisons were made at a propellant utiliza-
tion efficiency of 0.9. By increasing the screen
grid mask diameter from about the internal anode
extremity (15 cm diam) to 17 cm diameter, the dis-
chcrge losses were decreased by about 60 W/A. Fig-
ure 3 shows significant optical excitation between
anodes and thus it might be expected that this re-
gfon T?uld also have relatively high ion production
as well,

The anode placement in the magnetic field was
also varied in three different situations. The mag-
netic field at the anode internal extremity, at lo-
cations 19 and 3.5 cm from the downstream end of the
iron shell, were set to 10/10, 14.5/12.5, and
20/12.5 mT, The reference thruster, which had the
intermediate magnetic field values, exhibitea dis-

charge losses that were 9 and 27 percent lower than
the respective thruster configurations with the high
and low magnetic fields. The magnetic field over
the anodes of the reference thrusttg prgduced a pri-
mary electron diffusion parameter, 'S8 dx, of
about 100x10"® T-m which is the flux integral over
the anode toward the thruster axis. The diffusion
parameter is related io the electron current permit-
ted to diffuse to anodes without the anodes becom-
ing more Hositive than the plasma.

The flux integral of 100x10-® T-m was glso
close to a semi-empirical guideline where /B dx in
tesla meters should be approximately equal to
13.5x10~% multiplied by the square root of the i
age primary electron energy in electron volts.(

This relationship was arrived at by simply consid-
erino primary electron deflection in a uniform
stre.yth magnetic field.

Attempts to reduce the number of anodes in the
reference thruster from 10 to 6 or to decrease the
length of the anode tubes by 38 percent resulted in
increases in discharge losses of about 80 and 20
percent, respectively (table II). Discharge losses
were reduced by 5 percent when 0.6x0.6x20 cm iron
strips were placed in the center of each row of mag-
nets, ]ne strips provided a more uniform magnetic
field!7) in the cusp region at the expense of an
8-percent lower .agnetic field strength,

The sensitivity of discharge chamter perform-
ance to variation in the number of rows of magnets
was examined using a fixed shell diameter of 22 cm
(table II). The configurations investigated has 20,
16, and 12 rows of magnets with 10, 16, and 12
anodes, respectively, Relative cusp spacings for
the three configurations were 3.2, 3.9, and 5.3 cm.
Setting the magnetic field over the anodes at about
12.5 mT resulted in spacings between opposite anoces
of 14, 12.7, and 11.8 cm for the chambers with 20,
16, and 12 rows of magnets, respectively. Tne
12-row magnetic conf iguration had a 15-cm diameter
screen grid mask while tne others had a 27-cm diam-
eter mask. Results indicated that the reference
thruster exhibited discharge losses at least
20 percent lower than the thrusters with 12 and 16
rows of magnets. Thus, the lowest discharge losses
were obtained with the lowest cusp spacing, about
3 cm, The screen mask diameter for the lo-row mag-
netic conf iguration should probably have been re-
duced for a more accurate comparison, however.

Most 1 ns-Cu<p ion sources used by other inves-
tigators(7.8.9) gperate the shell as well as the
magnets at anode potential. The discharge chamber
performance of the reference thruster, modified to
perform with 16 rows of magnets and 16 anodes, was
compared to a chamber whose only difference was the
elimination of the tube anodes and subsequent opera-
tion of the shell at anode potential. The discharge
chamber losses of the thruster with the shell anode,
300 w/A at a propellant utilization efficiency (nyp)
of 0.9, were 26 percent lower than the configurat?on
with 16 anode tubes, but 9 percent higher than the
reference thruster (table I1). However, the refer-
ence thruster configured to operate with a shell
anode had discharge chamber losses 16 percent higher
than the basic reference thruster at nyp = 0.9.
Further efforts to reduce discharge chamger losses
should include multiple anode conf igurations as well
as the simple geometry of the shell anoce thruster,

Some of the argon thruster conf igurations were
constructed such that the screen grid and iron shell
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TABLE II. - SENSITIVITY OF PERFORMANCE TO CHANGES IN DISCHARGE CHAMBER GEOMETRY

Type of change | Parameters dissimilar from those Performance
of the reference thruster
Discharge | ¢ at R = 0.9 | ac/epef, nyp = 0.9
voltage, L}
v
No change Reference thruster 40 275 0
Screen grid G=15cm 40.6 340 +0.24
diameter
Magnetic field | M = 10/10 mT 43 350 +0.27
at anode
Magnetic field | M = 20/12.5 mT 40 300 +0.09
at anode
Number of A=b6, ma 10/10 mT >50 >500 >+0.82
anodes
Anode length L=12.5cm M= 13,5/12.5mT 47 330 +0.20
Magnet ic 0.6x0.6x20 cm Iron strips placed 38.6 260 -0.0%
circuit on top of magnets in the cylinder
Rows of Rael2, Awl2, D= 11.8 cm, 42.5 370 +0.35
magnets B = 1l mr
Rows of Rel6, Aw 16, D= 12.7 cm, 42 330 +0.20
magnets B w21 mT
Length of CmelScm N=7,5 =6, a2 380 +0.38
thruster B =17 mT, M= 9/9,5 mT
Shell anode A=0,R«16, B; =« 17 mT 42 300 +0.09
Shell anode A=0, B = ldmm 42 320 +0.16

*nyp:
charged ions
L

*ac = ¢ - Cpef

Discharge power per beam ampere, W/A

Discharge propellant utilization efficiency uncorrected for multiply-
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Figure 2. - Typical discharge chamber magnetic fisld profiles,

Figure 3, - Photograph of thruster operating without
screen gi'id mask.
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) Figure 7. - Discharge chamber performance
Figure 6. - Comparison of measured beam of the reference thruster. Cathode and
current versus the beam current calcu- total flowrates for argon and xenon were
lated from plasma parameters without ion 0.65A, 2.55Aand0.13A, 2.17A
extrefﬂon. Screen grid open area = 170 cmz. respectively,
6 <5< 8 eV for the data of figure 5(b).
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Figure 8 - Effect of axial magnetic field strength on discharge chamber
performance, Argon flow rate Z01to 2.7 A. Shell cylinder length, 15
cm, Magnetic field over anodes, = 10mT,
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