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ABSTRACT

Previously established results of Craig (1976, 1979) and Craig and Labovitz (1980) demon-

strated that Landsat data are autocorrelated and can lie described by a univariate linear stochastic

process !mown as an Auto-Regressive-Integrated-Moving-Average model of degree 1, 0, 1 or

ARIMA (1, 0, 1). This model has two coefficients of interest for interpretation - 01 and 9 1 . In

a comparison of Landsat Thematic Mapper Simulator (TMS) data and Landsat MSS data several re-

suits were established:

(1) The form of the relatedness as described by this model is not dependent upon system look

angle or pixel size.

(2) The 01 coefficient increases with decreasing pixel size and increasing topographic

complexity.

(3) Changes in topography have a greater influence upon 0 1 than changes in land cover class.

(4) The 81 seems to vary with the amount of atmospheric haze.

These patterns of variation in 01 and 61 are potentially exploitable by the remote sensing

community to yield stochastically independent sets of observations, characterize topography, and

reduce the number of bytes needed to store remotely sensed data.
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PRELIMINARY EVIDENCE FOR THE INFLUENCE OF PHYSIOGRAPHY

AND SCALE UPON THE AUTOCORRELATION FUNCTION OF

REMOTELY SENSED DAT A

INTRODUCTION

Remotely sensed data possesses an exploitable source of information in the form of the re-

la ►ionship between the digital count o f a given pixel and those of its neighbors. The intensity

and natum, of this spatial relationship can be measured by examining the covariance between

pixels, To introduce this concept into a remote sensing context, we will first define the covariance

of any two random variable X and Y. This is given by,

EI(X — AX) (Y µy)).	 (1)

where:

E,C . ] is the expected value operator;

µX is the expected value of X;

1Ay is the expected value of Y.

This quantity is estimated by,

L (Xi T(' (Yi 
a ^n - 1

where:

n is the number of observations;

X And Y are the arithmetic means of X and Y respectively;

Xi and Yi are measurements of the X property and Y property on the i th object.

There are several points to note,.

1. The quantity (2) will be positive if the paired deviations (Ri, 71) (R1 = Xi R; 71 = Yi

71 have the satne sign and (2) will be negative if the paired deviations have opposite signs,

Y, A

(2)



t

t

f

k

2. if Y1 and Y are replaced by Xi and X, (2) becomes the simple variance of X, SX, Sim-

ilarly, SY is detained by replacing Xi and R by 41 and T.

3. The covariance between a given X and Y are dependent on the measurement scale of ' -

variables,

In order to be able to compare pairs of variables measured on different scales, the covari-

ance may be adjusted by dividing by the product of the square roots of the two variances,

This new quantity is the fami?=-ar correlation coefficient, p. The estimate of p is r which is

given by

(X1 ., x) (Yi	 T)	 (3)
Sz( '/'7SY ) (n - I)

The range on this quantity is - 1 < r G 1, If we once again replace Yi , Y and S2 by Xi, X and

SX (or vice versa), we have the ratio of the sample variance to itself, i.e. r = 1,

To put the above measures into a remote sensing context, let us define any given scan lime

of digital counts as a sequence ( Xi) with i being an index such that the first pixel it the scan line

is i = t and neighboring pixels are consecutively indexed to the end of the scan line. Let us sup-

pose that there are n + 1 pixels and replace the quantities Y i , Y and S2 in (3) by Xi+1 , Xi+1

and SX i , then we have

n [(Xi - 3Zi) (Xi+1 	 3Zi+1)]
(4)

S 2 S= to

If the sequence (Xi) satisfies certain conditior,^s, then E[ X; l = £[Xi+ t l and Var (Xi) = Var (Xi+,)

[where Var (-) is the varian.;e operator] and (4) becomes

n [(Xi - X) (Xi+1 -))
(S)

1=1	 S2 (n - l)

This expression is known as the estimate of the autocorrelation at lag 1. Note that with the

exception of X1 and Xri+1 every element of the sequence is X i and Xt+1 at some point in the
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summation. This expression is jherefore the correlation of the sequence {Xjp., with itself in-

cremenrW by one pixel or {Xi}i 2. In general, we can estimate the autocorrelation at a lag;;

(k = 0,:'.'t	 n)by

rk
	 n +l.k [(Xi _ 3'C) (Xi+k -)1

SX to - k)
	 (6)

The sequence {rkRuo is known as the estimated iautocorrelation function (acf) and a plot of k

versus rk is known as the correlogram.

Clearly, if X1 and Xi+i are correlated, then X i and Xi+2 are going to have a portion of their

correlation induced by their relationships to Xi+ l . Therefore we need to define a quantity anal-

ogous to the partial correlation of conventional statistics. The quantity is called the partial

autocorrelation function (pacf) and is given by the collection Okk 's defined as

Okk " Px iX+k 1 (XI) +W K:Il

E[(Xi - E[Xi I Xi+L " Xi+L ,t L - 1, 2, , , • k	 11)	 (7)

(Xi+k - E[Xi+k I Xi+L Or X i+L; L = 1, 2,	 , k	 11)1

where;

E[ . I • 1 is the conditional expectation of the random variable on the left of the " I"

conditioned upon setting the random variables on the right of the " I " at some arbi-

trary but fixed values.1

Box and Jenkins (1970) developed a family of linear stochastic models known as the

Autoregressive-Integrated-Moving -Average or ARIMA models which make use of these two func-

tions. It can be shown (with considerable algebra which will not be done here) that member

irodels of the ARIMA family generate specific patterns in the acf and pkcf. Thus given a sampla

from an unknown process, the acf and pacf can be estimated and an ARIMA model fitted,

1 E(Xi 1)4+11 for example may be thought of as the linear regression estimate of xi bawl! upon ?-.f i.
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The degree of complexity of n.:i ARIMA process is expressed as the value of three parameters

known as p, d, q, where p is the order of the auto-rogres,sve process, d is the complexity of a trend
a

parameter, and q is the order of the moving average (p, d, q are non-negative integers). For example,

if d 19 q = 0, than we have an Auto-Re fressive process of order p, or rotationally AR(p), given by,

l

	

	 Xt = 0144 + OIA -2 +	 + Op Xt-p + S + at

where,

dl are a set of coefficients (i = I t 20 ..., P)

Ax
4

s	 07 - 1 . t Op)"

at is a normally and independently distributed random variablewith mean 0 and vari-

ance as [NID(0, 02)]

In other words Xt is dependent upon the p previous values of X (Xt.l Xt-21 , , , Xt-p) plus a

random perturbation generated at the present time or location, Letting p d = 0, then we have

a Moving Averapc process of order q, notationally MA(q) which is:

,.	 Xt m KX — at	 @tat-1	 d 2 at a	 3 x	 q at-q

where;

ta t ) is a q length sequence of NID (0, aa) random variables. In this model Xt is de-

pendent upon the present and q previous random perturbations.

It has been demonstrated (Craig, 1976, 1979; Craig and Labovitz, 1980) that Landsat data

are autocorrelated and that the autocorrelation function (acf) can be well approximated by the

ARIMA (1, 0, 1) model of Bcx. and Jenkins (1970), Th-. ARIMA (1, 0, 1) model is given by,

Rt , 01 3Zt-1 + at - p t at-t	 (8)

where:

ft} is a Sequence of observations indexed in time or space with each element of the se-

quence Rt = Xt - µ:

{at}is defined as before as a series of NID (0, a2) random variables;

0 1 and d t are coefficients,
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Within a remote sensing context the model means that the gray scale value of a given pixel (90

Is dependent upon the gray scale value of an adjacent pixel (^.,) a random purturbation associ-

ated with the adjacent pixel (at.,) and a mtOom purturbation spe-cific to the present pixel.

While in this paper only scan Imes indexed in the direction of scan are analyzed, Craig (1976)

has found the ARIMA (1, 0, 1) model also to be applicable for sequences in the reverse di-

rection as well as for sequences along a single element in either direction.

It was concluded by Craig and Labovitz (1980) that the value of 0 1 varies with some still

ill defined locution "effect," The authors hypothesized that the location effect is related to some

combination of topography, land cover, and/or season, The 8 1 term on the other hand varied

with the percent cloud cover. This study will examine the relative importance of two of these

sources of variation—land cover and physiography—for the acf. A second portion of this study

is motivated by NASA's intention to launch satellites processing spatial resolutions less than 80m.

Results from this investigation have implications for data analysis, data interpretation and data

compression that will be Covered in later sections. In summary then we will investigate

(a) Is the ARIMA (1, 0, 1) model appropriate for .remotely sensed data possessing a spatial

resolution < 80m?

(b) If (a) is true, how is spatial resolution manifested in the ARIMA (1, 0, 1) model?

(c) Can we start to determine the relative magnitudes of the contribution to the location

"effect of topography versus land cover?

DATA TYPES AND LOGIC OF EXPERIMENT

Data from 'three sources were used in this experiment:

(a) A Landsat 2 image, scene id 21608-1655 [nominal scene path 36, row 32 (Denver, COM

imaged on June 18, 1979,

(b) Two data sets acquired by the Landsat Thematic Mapper Simulator (TMS)—NS001—

mounted aboard a NASA C130 aircraft.
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(1) Data acquired on the plains at the eastern fringe of Denver, CO. This night took

place on June 20, 1979 starting at 1900 GMT (I p.m. MDT) and consisted of two

flight lines flown in a north-south dire!.1_n, each 20.8 nautical miles (nm) in length

with latitude 39° 50'N, longitude 104* 5r'W And latitude and 39° 24N, longitude 1040

42'W defining the upper left corner and lower right corner respectively of the study area,

(2) Data acquired in the Northern Rocky Mountains region of Montana. The data

came from flight line number 3, flown on .August 29, 1979 commencing at 1530

GMT (12:30 p.m. MDT). The flight line was 19.5nm in length, flown in a south-

to-north direction along 112' 42'W longitude, starting at 47° 00'N latitude and

ending at 47° 15'N latitude. The flight line passed over Cotter Basin, Montana

and hereafter will be called the Cotter Basin line, Both sets of TMS data were

flown approximately 10,000 feet (3,064*7 ni) abovt, ground level (AGL). Since the

instantaneous f"-ld-of3-view of the NS001 is 2.5 milliradians, the pixels are approxi-

rsateIy 7.5in (25 feWt) on a -side. Table 1 gives the bands for which data wure col=

lected by the TMS and MSS.

Table l
Spectral bands available for MSS and TMS data

Channel Number Band Width (Micrometers)

TMS MSS TMS MSS

i 0.42 -	 0.52

4 0.52 -	 0.50 0.50-0.60

3 5 0.63-	 0.69 0.60-0.70

4 5 0.76-	 0.90 0.800,70-0.80

5 7 1,00-	 1.30 1 0.80-1.1

6 1.55-	 1.75
7 2,08- 135

8 10.4	 -12.52

1 Not available from Denver THIS
2 hrtiil coverage (401"r) Denver TNIS



The paper is logically developed Into four analyses. Because the large scan angle associated

with the TNIS (*SV front nadir) represents a reasonable potential source of variation In the auto-

correlation, we first examine how the autocorreIntion function varies with thethe look angle of the

portion of the scar nine. The importance of this analysis lies In Its Implications for the way we

select starting paints for the TMS scan lines, For example, If sequences of pixels with different

look angles have different autocorreiation functions, then we must confine our scan lines to only

one look. ;angle class or randomize over all look angle classes, Otherwise, the method of selecting

the position of the sequence within the scan line is unimportant with respect to these alternatives,

Once a rational method of selecting TMS sequences has been determined, we will address the

question of the differences in the farm of the autocorrelation which are attributable to the scale

at which the obsarvations are being made (80m for MSS versus 7.5m, at nadir, for TMS). In

the third analysis, we will examine how the acf varies with changes in the land cover. Finally,

we will look at the contribution of physiography to the acf by comparing the acfs of the Denver

TMS data and the Cotter Basin TMS data,

A few caveats are appropriate at this juncture. This experimnt was set up as a series of

analyses, instead of one large experiment, to snake use of the available data, As is the. case when

a large design must be attacked in pieces, the confounding of some effects in other effects and

the failure to detect interactions are possibilities. Confounding of effects arises from having

sources of variation which covary in the experiment so that, a signlfica.nt ^ suIt assigned to one

effect may actaally represent a significant contribution from the confounded effect to the varia-

tion "explained. Interactions can only be detected when the experinientQ1 clesi f.1 is Completely

crossed or factorial, i.e., each level of each factor appears in combination with each level of all

other factors. In describing this analysis, we will point out where confounding might be a con-

sideration. Loss of information related to undetectable interactions is always a concern in explor-

atory research which does not employ a factorial design. However we will not be able to address

this problem any further here. Such problems could only be solved by executing a much larger

t
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factorial design, hence the reason for the title containing the words "Preliminary evidence .. _ , „
	

I,

However, this experiment will provide useful Information as an input to the selection of far-tors

and their levels in a larger design.

The research then is presented in the order of the experiments described above, preceded by

a discussion of the data reduction procedure.

EXPERIMENTAL DESIGN AND DATA REDUCTION

For each of the experiments outlined In the previous section, an experimental design and

randomisation procedure was constructed so that results of formal statistical hypotheses could

be directly translated into conclusions about the questions motivating the experiment. The formal

statistical framework being used is known as analysis of variance (ANOVA), Since the techniques

failing within the purview of analysis of variance are rather complex and very extensive, the

reader interested in pursuing the mechanics or philosophy beyond what is presented below is

recommended to see Fisher, 1971, Scheffe, 1959; and Dayton, 1970..

Figure 1 illustrates the summarization procedure applied to the data„ The elements of the

population are scan lines, or portions of scan lines which represent single samples within these

experiments. The information about the relatedness of pixels is contained in a scan line, but not

in a usable form. Therefore, the scan line is transformed into the acf and partial autocorrelation

function (pacf). The elements of these two functions are analogous both in meaning and method

of computation to the conventional correlation (Pearson product moment) and partial correlation

statistics. While in principle n — i (n = the number of pixels in the sequence) values of the acf

and pacf can be calculated, typically only the first few values are significantly different from

zero. Craig and ,Labovitz (1980) have found that the first 10 values of the acf and pacf convey
fi.

all the significant information. Since the acf and pacf are diagnostic of the appropriate AR1MA

model (Box and Jenkins, 1970), we can use the first 19 distinct values from the acf and pacf

(the first 10 values of the acf and the second through tenth values of the pacf, the first value of

8
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the acf and pacf are equal), However, these values the aef in particular - are correlated. Thus

we can either analyze the 19 values using a MANOVA (Multiple ANOVA) procedure or trans-

form the 19 observations to a set of 'independent (orthogonal) observations using a principal corn-

ponents procedure to produce composite or factor scores. The latter procedure was chosen since

Craig and Labovitz (:19$0) found the first two factors to be highly interpretable. The location

effect dominates factor 1, while changes in the percentage of cloud cover ve related to variation

in factor 2 scores. In short we use a procedure which transforms the information in each sample

from the intractable form of scan lines, processing upwards of 700 pixels, to a set of five inde-

pendent composite scores.

LOOK ANGLE AND ITS RELATIONSHIP TO THE ACF

A reasonable potential source of the variation between the forms of the acfs of MSS

and TMS data is the widely differing scan angles possessed by the two systems. If the con-

tribution to the variation from scan angle is significant, care must be taken in the manner in

which scan lines are selected. Otherwise, look angle effects would be confounded it, "y hypoth-

esis designed to test differences related to pixel size.

Using Figure "_, we can examine the effects of scan angle on pixel size. Under the assump-

tion that Landsat 2 has a nominal altitude of 916.6km, a nadir pixel of 79m, and a scan angle

of 15,780 about nadir (NASA 1976), it is shown in Figure 2 that the width of a pixel increases

by 0,40m or about 0.51 percent from the nadir pixel to either end of the scan line. On the

other hand, the width of a TMS pixel, assuming an average altitude of 3,049km AGL, a nadir

pixel of 7.5-m, and a scan angle of t50° about nadir, increases to 11.86m at the ends of .a scan

line. Thus, both the width and area of a TMS pixel increases by 58.1 percent in going from the

center to the end of a scan line.

We now describe an experiment set up to test for the existence of a relation between look

angle and the acf. This experimental design is a two-way factorial design with the main effects

10
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being ch;amnel and look angle, Two TMS channels are included in the analysis, channel 2 (0.52 -

0.60pm) and channel 6 (1,55 - 1 75µm), Selection of two of these channels allows its to exam-

ine first if an interaction between channel and look angle exists, Second, by selecting channels

which are set well apart spectrally, we may test the cloud cover hypothesis suggested by Craig

and Labovitz ( 1980), As has been previously noted, these authors found that differences in cloud

cover were responsibie for a sign.: cart ft,)ttem of variation i n factor 2 derived from the principal

component decomposition acf-pacf „tze,t matrix. The type, of cloudiness being captured by this

measure has been hypothesized to be general atmospheric haze. Thus, in selecting channels 2 and

6 of TMS, we have two channels which are differentially affected by atmospheric haze and back-

scattering. It would be reasonable then to expect a significant channel effect on factor 2 which

would be attributed to the "cloudiness of the scene, The reader should note that we are con-

founding cloudiness in channel, a move that is unavoidable with the data that are available. The

look angle factor is divided into four levels, these are sequences of pixels collected at scan angle

intervals of 50° = z50 , Ir = 0°, 00 25° and 25` - 50°'(see Figure 3).

Since there are 19 variables, the first 10 elements of the acf and elements 2 through 10 of

the pacf, 60 scan lines 2 per channel were selected at random throughout the flight lines. Thus,

120 scan lines were subset from the Computer Computable Tapes (CCTs) using the VICAR pro-

gram COPY as adapted on the Goddard IBM 360/91, One randomly chosen portion of each scan

line, corresponding to a scan angle class, was used to calculate the acf and pacf. Since a TMS

scan line is 700 pixels long, there are 175 pixels in each scan angle class. Figure 3 relates each

scan angle class to its coding and its position on the scan line, Acfs and pacfs were calculated3

for IS sequences in each scan angle class. A typical acf and pacf are given in Figure 4. The ex-

ponential decline in the acf and the oscillatory behavior in the pacf are characteristic of an

2A common rule of thumb in choosing the 'number of samples is that the number should be greater than 3 times the number of vari-
^bles being examined, in this case N should be greater than or equal to 3 x 19 = 58,

All aefs and pacfs in this paper were calculated using a program written by Pack et at,, 1973, as implemented on the IBM 370/3033
at the Pennsylvania State University.
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AR1MA (1 0, 1). The first 10 terms of acf and the 2nd through 10th elements of the pacf:for

each scan line were input into the SPSS subprogram FACTOR (Kim, 1975).

From the screen plot, in Figure 5, it was judged that the first five principail components

®	 contain the common portion of the reliable variation .4 These composite scores were analyzed in

five two-way analyses of variance using the P2V progr4m of the BMDP series (rennerick and

Sampson, 1979a). The results for the first five composite scores are given in Table 2. Clearly

there is no effect due to look angle. Further, the "haze" effect appears as previously hypothe-

sized in the second composite score as a significant effect due to channel. No other effects

appear to explain significant portions of the variation in the five composite scores.

The above analysis was repeated dividing the scan lines into 10 portions. The results were

identical. We thus conclude that the look angle does not effect the acf or pacf and so sequences

of pixels may be taken from any portion of the scan line.

SCALE AND THE ACF

Having demonstmr ed that any significant pattern of variation which discriminates TMS fron.,

Landsat is unlikely to be due to the large differences in the scan angles of the systems, we pro-

ceed to test the hypothesis about the relationship between pixel size and the acf. It should be

noted from the outset that confounded within the scale effect is a system effect. However, (1)

both systems are electro-mechanical scanners and (2) we may get some feel for the importance

of the confounding by examining the same portion of the spectrum with each system. For ex-

ample, if, despite using the same spectral bands we find a significant difference in the second

composite score of the two systems, we might attribute this difference to system rather than

scale differences. Therefore, scan lines of TMS channel 2 (0.52 0.60µm) and MSS channel 4

.	 (0.50 0,64m) were used for the analysis.

4A common model of factor analysis divides variation between that variation which Is reliable and taint which is noise. The re-
liable variation Is in turn divided between variation which is shared by the random variables (common variation) and variation
which Is unique to a single variable. See Rummel, 1970 for further discussion of this model.

1<5



(component number)
Figure 5. Screen plot generated from the eigenvalue decomposition of an acf - pacf correlation

matrix. X1 is the value of the eigenvalue associated with the i th component.

The sampling and data manipulation procedures are the same as used previously, Sixty scan

lines each composed of 475 pixels were selected randomly from both the TMS data and a corre-

sponding area of the MSS data, Acfs, pacfs, and composite scores were calculated as before.

Table 3 contains the results from the one-way ANOVA's for the first two composites scores

(calculations performed by the BMDPIV program [Engelman, 1979)), These analyses contain

10.

3.

8.

7.

6.

a^
5.

4.

3.

2.

1.

F
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Table: 2
Two-way ANOVA (look angle by channel)

for first two composite scores

(a) FIRST COMPOSITE SCORE

Source Degrees of Sum of Mean F P(FFreedom Squares Square

Angle 3 4~735 1.578 1,58 0,197

Channel 1 0.001 01001 0100 0,974

Angle X Channel 3 2,723 0.908 0.91 0.438

Error 112 111.540 0,996

(b) SECOND COMPOSITE SCORE

Source Degrees of Sum of Mean Fr- P(F > F*)Freedom Squares Square

Angle 3 3.004 1.001 1,42 0.240

Channel 1 34,856 34.855 49.57 0.000

Angle X Channel 3 3,384 0.795 1,13 0,340

Error 112 78.754 0.703

only one testable source of variation, scale, which is presented at two levels - 7,5m and 80 m,

The first composite score once again represents information in the acf, as all the terms of the act`

load highly on the first component. Clearly, there is a significant pattern of , ariation across the

first composite score, Meanwhile, there is no evidence of a "haze effect" (see composite score

two, Table 3b) nor were any of the other three composite scores significant at any conventional

confidence level.

The significant variation exhibited in the first composite score is specifically developed in

r

	

	 Figure 6. The plot displays the means over 60 scan lines, of the first 10 terms of the acf for

TMS-21 and MSS-4, Both mean acfs decline exponentially a5 is common for the acf of an ARIMA

(1, 0, 1) process. However, the mean of each element of the TMS derived data is significantly

17
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Table 3

One-way ANOVA (scale factor) for first two composite scores
calculated from scan lines of TMS-2 and MSS-4

(a) FiRST COMPOSITE SCORE

Source of Variance Degrees of
Freedom

Sum of
Squares

Mean
Square F P(F ? F )

Scale 1 23.299 23.299 1S.73 0.000

Error 118 95.702 0.811

(b) SECOND COMPOSITE SCORE

Source of Variance Degrees of
Freedom

Sum of
Squares

Mean
Square F* P(F	 F*)

Scale 1	 1 0.240 0.240 0.24 0,626

Error 118 118.735 1.006

higher than the corresponding MSS-4 derived mean value, even when we use a . Banfenfoni adjust-

ment (Fishi,iT, 1971) for the individual test confidence levels so that the group of tests has an

overall a level of 0.01.

We may conclude on the basis of this analysis:

(1) It appears that the ARIMA (1, 0, 1) model is appropriate for the TMS data.

(2) The effect of scale on pixel size is to be found in the acf, that is in composite score

one. From previous research (Craig and Labovitz, 1980), we believe that significant

variation in the aef alone will be reflected in the 02 coefficient only.

(3) The TMS data is more highly autocorrelated than the MSS data. Initially we believe

this means tha- the 'TMS data possess a greater pixel redundancy than MSS. This con-

jecture will need further examination in future research. However, two physical explan-

ations (relative to the ground data), which can be accepted almost intuitively, would

be supported by a hypothesis of greater redundancy generated by decreasing pixel sine.

These explanations would suggest that there are (1) a greater number of fields larger

t8
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Figure 6, Mean values for the first 10 terms of the acfs derived from 60 MSS-4 scan lines

and 60 TMS-2 scan lines.

than 7.5m than are larger tha yi 80m and/or (2) that the lengths of slopes are such that

more 7.5m pixels occur on one slope thatt 80m pixels. The next two sections will deal

with the relative importance of landcover (field size differences) versus physiography

(length of slopes) in the acf.

(4) The confounding of system in the scale effect, if it exists, is not of g;cat importance.

19
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THE INFLUENCE OF LAND COVER ON THE ACF

Tile effects upon the acf of four landcover classes -- urban, agriculture, rangeland and a ran-

dourly selected "other" class - were examined in this exieriment. The first three classes were tie

fined on the basis of the Anderson lover I system (Anderson et al., 1976). The scam lines selected

were obtained through the following procedure. Aerial photography of the Denver flight lines

was photo-interpreted to an Anderson level I classification. The authors then constrained the

classes examined to those which covered fairly large contiguous portions of the study area a

minimum of 300 pixels by 50 scan lines, This requirement reduced the number of classes to the

aforementioned thrt,%* - urban, agriculture and rangeland.

From among the contiguous areas of each of these classes, four areas (blocks) of each class

were randomly selected. The Mocks of the "other" class were selected by first determining the

average size for blocks of the first three classes, dividing the flight lines tip into areas of this mean

size and randomly selecting four such areas. Randomly chosen examples of blocks front each

class are shown in Figure 7. Within each block, two randomly selected scan Jines were chosen,

for each of two channels, TMS-2 and TMS-4. In this manner, 4 (classes) x 4 (blocks) x 2 (chan-

nels) x 2 (scan lines) = 64 TMS scan lines were selected,

Two analyses were performed, The first one was the more elaborate. In this experiment, in

addition to the TMS data, scan lines were randomly chosen from the TMS blocks averaged

(TMSAVE) tc; ^0 m pixels and the Landsat data of the same areas. Since the lengths of Landsat

sequences from these locations were only 50 pixels, the TMS and TMSAVE sequence were re-

duced to this length by choosing random starting points. However, the structure of the compo-

nents matrix of acfs and pacfs derived from these scan lines was unlike other matrices of compo-

nents in that the acf split over the first two components. Further, there was no significant effect

in the analysis of variance of the composite scores. It was concluded that scan lines 50 pixels in

length were insufficient to bring out the structure, since the standard errors of the ternis of the

acf and pacf are dependent on the length of series,
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lad the second experiment, the uri ,; at and T SAVU. s^ ucricos were dropped front the

antaiysis, Tlie form of tite exporimentat design used was a partially nested within a factorial de-

sign (Dayton, 1970). This design has a structural model given by:

YC
IjkI
	

PC *	 +	 + a`' 1 
+ ^^? + a`'' 1C^) 't` CCUkI

where:

^kt is the composite score for the A Component. c" 1, 2, ... , 5

µL is the mean of the A composite: score (li t: = 0 V 0.

e is the Contribotion ell` kda Channel (k ^ 1. 2) to variation in the A composite scare;

is the Contribution cif the jtl' laded cover Class (j a 1, :, 3, 4) to variation in the A

composite score;

eHRj is tlac Contribution of the interaction be between channel and laandcover class-,

7e . is the contribution elf' the ill) block 0 - 1, 2, 3, 4) nested within the J ill landeover

Class}

ati7k i()) is the Contribution of tide interaction of the 01 clumnel with the i d' block

nested within tlae id' landcover class;

9k, the error term associated with the ctic Composite,

The scheme ror the design is displayed in `rabic 4. Cal yatlations for this rather complicated

design were perforaned by the BMDV I program (Jenrich and Sampson, 19799) and the results

for the first two composite scores are given ill "fable 5. 1f' we use the previously mentioned

Bonferroni adjustment to set the overall a level for all 10 effects at 0,05, then the individual

effects must be significant at team 0.05110 = 0.005 level.

For the first composite} score only the blocks effect is signilic:.ant at the designated a level.

The landcover effect contributes minor, it' any. variation to the pattern of autocorrclaation in the

TMS data. Thaws, the variation among blocks is greater than the variation among landcover

Classes. In the analysis of the second composite score the "hale" effect is once again apparent

by the highly significant contribution to the variation of the Channel.
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•	 Table 4
Partial nesting in a 2 x 4 factorial design

LANDCOVER CLASS (B)

Agriculture Urban Rangeland Other
Block (D(B))

Al A2 A3 A4 U1 U2 U3 U4 R1 R2 R3 R4 01 02 03 04

TMS-2 Se1 Sc2 Sc3 Sc4 ScS Se	 Sc
6	 7 Se8 Se9 Sci0 Sc11 Sc12 Se

13 S1_4
Sc 1S Sc16

Channel (A)

TMS­4 517 s16 S19
Sc

S21 S22	 S23 SC24 S12 & S27 S28 S S30 S31 S32

Sc is the ith ample from the cth composite wore; there are two composite score-' , ',4ch wnple.

The conclusion of this analysis is that landcover class, and by implication field size or num-

ber of boundaries, does not appear to be a major contributor to variation in the "location"

effect.

THE EFFECT OF PHYSIOGRAPHY

Changes in landcover and changes in physiography were hypothesized by Craig and Labovitz

(1980) as the most likely "causes" of the "location" effect. Having demonstrated that landcover

is probably not a major factor, we will examine physiography by comparing data from Denver

versus data from Cotter Basin. The two regions are characterized by very different physiographies.

The Denver region is on the western edge of the Great Plains. The Cotter Basin on the other

hand is in the Northern Rocky Mountain Region, an area considerably more rugged.

Sixty scan lines 700 pixels long of TMS channel 2 were randomly selected from each loca-

tion. After data reduction, five one-way A'NOVA's were calculated on the composite scores.

Once again the a^^lysis of the first two scores are presented in Table 6. There is a significant

variation due to physiography in the first and second composite scores (physiography is not sig-

nificant in the other three scores). The pattern of variation in the first scores represents variation

in the acf and hence the location effect of Craig and Labovitz (1980), This will be examined in
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Table 5
Analysis of variance (partial nesting within 2 x 4 factorial design)

to test the land cover effect

It

(a) FIRST COMPOSITE SCORE

Source
Error Degrees of Sum of Mean F * F]P(. ? F
Term Freedom Squares Square

A AD(B) 1 1.234 1.234 2.03 0.180

B D(B) 3 26.526 8.842 5.00 0,018

AB AD(B) 3 01180 0.060 0.10 0.959

D(B) E 12 21.232 1,769 8,67 0.000

AD(B) E 12 7.294 0.608 2.98 0.007

E 32

(b) SECOND COMPOSITE SCORE

Source Error Degrees of Sum of Mean F* P(F > F*)
Term Freedom Squares Square

A AD(B) 1 26.237 26:237' 49.28 0.000

B D(B) 3 15.575 0.519 0.60 0.627

AB AD(B) 3 3,046 1.015 1.91 0.182

D(B) E I	 12 10,381 0.865 1.80 0.091

AD(B) E 11 6.389 0.532 I'll 0,388

E 24,

A Channel	 D(B) = Bloch Other terms are interactions
B = Landcover Class	 E	 = Error

greater detail below. It is unclear what produced the significant variation in the second score. It

could be that the weather or the atmospheric conditions were different when the data were col-

lected. Certainly the difference in solar angle between June (Denver) and August (Cottet Basin)

is considerable and this in itself might be responsible for the variation,
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Table 6
One-way ANOVA (location-physiography factor) for the first two composite scores

calculated from scan lines of TMS-2

(a) FIRST COMPOSITE SCORE

SOURCE Degrees of Sum of Mean F* P(F > F*)
Freedom Squares Square

LOCATION 1 16.347 16.347 18.97 0,000

ERROR 118 102.648 0.870

(b) SECOND COMPOSITE SCORE

SOURCE Degrees of Sum of Mean F* P(F > F*)Freedom Squares Square

LOCATION 1 15.882 15.882	 18,18 0.000

ERROR 118 103,113 0.874

Returning to the information contained in the first composite score, Figure 8 is a plot of

the means (over 60 observations) of the first 10 terms of the acfs derived from the Cotter Basin

versus the acfs derived from the Denver data, The means are significantly different for each

term at an overall a level of 0.01, with the means of the Cotter Basin acf higher than those from

Denver. This implies that the Cotter Basin is more autocorrelated than the Denver data. This

.result suggests that the influence of slope and hence physiographic province upon the aef is con-

siderable, Thus, we support the previously made assertions of Craig (1979) and Craig and Labo-

vitz (1980) about the importance of slope, It will not be tested here, but we suspect that the

results from the acfs arise form the Denver area having shorter length slopes than the Cotter

Basin area.

SUMMARY AND CONCLUSIONS

We have tried through a series of experiments to determine the basis of the location effect

of Craig and Labovitz (1980) and the applicability of the ARIMA (1, 0, 1) to data collected at

.different spatial resolutions. Subject to t.ie limitations outlined in the proceeding text, we have

demonstrated:
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Figure 8. Mean values for the first 10 terms of the acfs derived from 60 TMS-2
scan lines over Denver and 60 TMS--2 scan lines over Cotter Basin.

(1) There is no impact of look angle on the acf;

(2) Changes in pixel size act to increase the adtocorrelation of the data as the pixel size

decreases, however, this change can be accommodated in the 0 1 coefficient and does

not require abandoning the ARIMA (1, 0, 1) model;

(3) These is considerable support for the conjecture that atmospheric conditions are reflected

on the second component which in turn is related to the 0 1 coefficient;
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(4) Physiography is of for greater importance than land cover in explaining the location

effect.

It is clear fror.a the analyses that very useful i nformation can be gloaned from the acf and

pacf of remotely sensed data. Since the ARIMA (1, 0, 1) model is completely defined by the

coefficients 0 1 , 81 and apt , our results and those of Craig (previously referenced) go a long way

towards describing the behavior of the model. If 01 is Indeed largely controlled by physiography

(holding pixel size constant), then this information can be fairly easily exploited. Since there are

only 20 physiographic regions and subregions in the U.S. (Fenneman, 1938), 0 1 will take on a

limited number of values. $ Thus the value of 0 1 may readily be used to characterize the terrain

being observed. Further having obtained an estimate of 	 (and 0 1 ) the data may be filtered by

the model to yield the underlying stochastically independent process. Craig (in personal commu-

nication) has shown that the variance of a scan line and by implication the variance-covariance

matrix is vastly inflated (approximately an order of magnitude depending on the values of 01 and

0 1 ) by the presence of an autocorrelation in the data. The filtering of the data is likely to en-

hance our ability to classify using remotely sensed data. Furthermore, since the variance is re-

lated to the information content of the data which in turn defines the number of bits needed to

quantify the data, a decrease in the variance would theoretically allow us to code the information

with fewer bits. This would allow substantial savings in the storage of Landsat and other digital
7
1

imagery. We have not done very much research on looking at the feasibility of a coding scheme

to exploit this information, but recommend that some attempt be made in this direction. Finally,

since estimates of 01 and 0 1 are fairly easy to calculate (Nelson, 1973), both the filtering and re-

coding are excellent candidates for on-board satellite processing.

We wish to reiterate the need to verify our results by a more comprehensive study. This study

should have a factorial design to satisfy concerns about the reliability of tie results.

Sit has been our experience as weir as that of Craig that for remotely sensed data	 is in the range 0,85 to 0,95 and 0 1 is in the range
—0,35 to -0,45,

l
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