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I. INTRODUCTION

This report is for the second Phase of a six Phase program to
develop commercial l.y viable on-site integrated energy systems (OS/IES)

using phc,^,, phoric acid fuel cell (PAFC) modules to convert fuel to elec-
triciLy. Phase II is a planned two year effort to develop appropriate
fuel cell module and fuel conditioner conceptual designs. The fuel cell
module development effort comprises three coordinated tasks:

Task 1: Design of Large Cell Stacks
Task 2: Stack Fabrication
Task 3: Stack Testing

The "Fuel Conditioner Subsystem Development" task is the fourth technical
task of this effort. Provision.for "Management, Reporting and Documen-
tntion" is included as a fifth task.

The work accomplished during this reporting piriod is described

at the subtask level in the following section.

V
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!I - TECHNICAL PROGRESS SUMMARY

'ASK 1: DESIGN OF LARGE CRLL STACKS

1.2$tack Deslan

A review of the deNigns of Starks $60, 561, 562 and 563 waa

hold as part of the Novembor progress review mooting. The major conclu-

sions were,.

I. The bipolar and hlpolnrh ooler plates for Stack 561

will he heat troatvd,

2. 
Acid 

fill SVIlMo 2, as originally conetA ived, will bo

u-sed 
In 

all four stac-ks.

The dvc-folon to hoot tri•at 561 was bast-d largely on tho

tAk , ollent progrotms maths 
In 

the ho at, treating oxporlmonts and was mado

1 055ible by delays related rte a disappoinL-Ing flow of tivkeup acid

through Stack 559. This decision Involved heat troating assembled

coolers %inve they wore as.4vmblod prior to ihe ties ign roview. Basod on

ERC's stiocessful exporionct , on ether programs, a very vonsorvative cycle

wil li Selected, approvod by thk' NA.1-;A Projvvt Matiagor and was apparently

8110cessful.

The reduced flow of 
acid 

through tho ninkvup systvM Of Stack 559

was apparonLly due to dvtails of construction of tht- stack and these,

were associated with design modifications to the originn], conception of

Scheme 2. As part of 
the 

November progress review meeting, two plexi—

glass models of the avid makeup system 
were 

displayed. A glycerine

solution that had room tomporature viscosity and 
s
urface tension nearly

vqual to those of the acid at the stack. operating temperature was fed to

the models. The observed flow patterns indicated that the design modi-

fications were not necessary to insure COntaCL of the acid with the

matrix. Sines elimination of those modifications simplifies stack

assembly and pormiLs operation of the stack with the acid channels above

or below the cells, a decision was made to return to the original

concept.
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Other design features Of the next four. stacks (560 through
563) are:

1. An improved acid feed tube which eliminates tile
possibility of leakage into the space between the

end plate and the compression plate.

2. The use of crossed compression bars* on the 23 cell

stacks (561, 562 and 563).

A document describing these features 
in 

more detail and the

fabrication and assembly procedures and the test plans for those stacks

was prepared and submitted to the NASA ProjeCL Manager.

1.3 Full Scale Module,

1.3.1 Material Characterization of Repeating Components

The following s,wimarizes and rationalizes the work done to

determine the thermal and mechanical propel-ties of the cell materials.

This information is needed to evaluate new ideas, calculate contact

forces between components, calculate the differential motion between

stack and manifold and the resulting shear forces applied to the stack-

to-manifold seal. Height change measurements,such ns those 
of 

an 80

cell stack reported in the 4th Quarterly Report, pertain to n unique

total sy
s
tem and they oannot be generalized.

The benefit derived from knowing the basic properties of these

materials is illustrated in the following example. A cross-section

through a hypothetical cell before and after compression Ais shown in

Figure I. The shims shown 
in this de

s
ign seal the edges of the fuel

cell to prevent intermixii,,•, of the reactant gases, act as a mechanical

stop to limit the contact force on the anode-tuntrix-cathodo composite

and its protrusion into the gas flow channels, and electrically insulate

Described 
in 

the 401 Quarterly Report.
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Fig. 1 —Cross section through a hypothetical phosphoric acid fuel cell before and after
applying a compressive load
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adjacent cells. If the thermal and mechanical properties of the

repeating components are not known, the correct thickness of these shims

must be determined by trial. and error on full size calls in multi-call

stacks.

During the development phase of a project, it is good

engineering practice to design components so they can be readily changed.

This permits the evaluation of different configurations, before committing

to costly and long-lead time tooling (for example, the purchase of a mold

for the bipolar plates). Once the development has been completed, it is

equally good engineering practice to review and simplify the design.

Often, the functions of several components are combined into one compo-

nent or parts are eliminated and product cost is reduced. Thus, the

developmental design in Figure 1 can be simplified by eliminating at

least one of the shims and incorporating the shim's mechanical stop

function into the design of the bipolar plate. This can be accomplished

by increasing the thickness of the bipolar plate in the region occupied

by the upper shim, which incorporates a long and harrow opening, con-

forming to the acid channel. Moreover, the thickness of the lower shim

may be reduced by increasing the thickness of the bipolar plate (as in

the case of the upper shim) or it may be replaced by a cost of insulating

material. (such as a liquid £luoroelastomer) cn the raised portion of the

bipolar plate. Obviously, such a final design would simplify the

assembly of the fuel cells and reduce the cost of the stack. The avail-

ability of the basic thermal and mechanical properties will permit

calculating and analyzing the dimensions of the revised bipolar plates

and minimize experimentation required to evaluate now ideas.

Other design calculations which require knowledge of mechanical

}r y	 properties are: a) the protrusion of the anode-matrix-cathode composite

into the bipolar plate flow channels and b) the deformation of the stack

5



Cyclic Tests

The first tests measured "se effects of repeated cycles on

sandwiches of the soft components (anode-matrix-catbode) of the coll.

The sandwiches were compressed in a fixture with flat faces as shown in

Figure 2, The conditions and result$ of t
he 

tc - ALS are summarized In

Table I. Figure 3 depicts the sixth through the ninth cycles of a

typical test article. The results are of sufficient uniformity to

pt .rmit their use as mechanical property data over the applied-force

range. The graph or the first Lost cycle of a similar article (Figure 4)

Illustrates a quite different material behavior. The distance between

the graph'a start and end points (hysteresis loop) is much larger than

in subsequent test cycles. The congruence of the load vs. deformation

plots shown in Figure 3 indicates that the mechanical property changes

vssentially have taken place by the sixth cycle for the applied-force

range over which these tests were performed. For the tenth compression

cycle of anoLher similar article, the applied force range was increased

from 360 LO 890 Ncwtons (80 to 200 lbs.)* and tile load vs. deformation

plot with a kink depicted in Figure 5 was obtained. While the plot over

the initial range (0 Lo 360 Newtons (80 lbs.)) is curvil' , tivar, it is

almost a straight line for londs exceeding 450 Newtons (100 lbs.).

The 450 N load corresponds to a stress of 620 kPa (90 psi) on

the 7.26 um 
2 specimen. Thus it appears that for stresses over 620 kPa

(90 psi), the composite was sufficiently compacted to behave like a

solid. As approximated by the tangent to the linear portion of the

curve, the modulus of elasticity is 29 MPa (4,100 psi) at room tempera-

ture (line 5 in Table 1).

*NOTE: The test data was originally obtained in English units and then
converted to the metric system. The conver pion was rounded off
to prevent implication of greater precision.
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TEST FIXTURE FOR DETERMINING LOAD/DEFORMATION DATA
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Flg 4 --Load versus deformation plot 1st compression cycle,anode-Mat-I matrix -
cathode composite, Temperature; 2LlC)°C, Height of Test Article: 18.54 mm
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Ribbed Tests

Compression tests of anode-matrix-cathode composite positioned

between two bipolar plates with the flow channels perpendicular to each

other were also made. In these tests the applied force was 900 Newtons

(200 lbs.), but, because of the bipolar plate's flow channels, the

contact area was 16% of the nominal area. Consequently, the maximum

stress to which the soft composite was subjected was 8.5 MPa (1,250 psi).

The modulus of elasticity is 28 MPa (4,000 psi).

Additional tests of this configuration performed at 200°C (the

stack's operating temperature) had results comparable with those obtained

at room temperature.

Comparison of "Sandw1oh" Test Results

The mechanical properties measured by the two sets of tests of

"'sandwiches" are summarized in Table I. As Indicated 
in the figures,

straight lines were fitted to the data points of the load versus deforma-

tion graph for given load ranges. Usually the line is a tangent.

However, in some cases where only the end points are known, the straight

line is a chord connecting the maximum and minimum applied-load po,".nt.

The chord approximation gives a linear function over the entire load

range at a sacrifice in accuracy. The tangent gives a linear function

over a more limited load range, but tends to be more representative for

the given load range. Figure 5 illustrates the different methods. The

summary of the data in 'fable I indicates which method has been used for

calculating the modulus of elasticity.

As indicated previously, many compression cycles MUSL be

performed before reproducible plots are obtained at low loads. For the

sake of completeness, the modulus of elasticity "E" for the first

compression cycles are shown on lines I and 2 for flat surfaces and

ribbed bipolar pl-ates, respectively. The ribs were oriented at right

angles to each other so that the contacting surface was approximately

16% of the nominal surface. A stack of 14 sandwiches was used for the

12



flat contact surface listed while one sandwich was used For the ribbed

contact surface. The moduli., 18 and 12 MPa (2600 and 1700 psi), show

reaoonable agreement, considering the differences in test articles,

that the tests wore carried out at low loads eind that the slopes used
were the chords between beginning and end points. As shown in lines 5,
6 and 7, when the applied load was increased to 890 Newtons (200 lbs.)
and the data points were fitted by a tangent, the agreement among the
test data was much better (i.e., 29, 25 and 28 MPa (4100, 3700 and 4000

psi)).

We, therefore, conclude. that For the anode-matrix-cathode
composite, a modulus of elasticity of approximately 26 MPa (3750 psi)
is applicable over a wide range of pressures and temperatures. Moreover,
the modulus is not too sensitive to differences of the contact surfaces.
This is a very desirable result, since new flow channel dimensions or

configurations can be readily incorporated without Fear of effecting the

mechanical properties of the anode-matrix-cathode composite.

Matrix

The mechanical properties of the Mat-1 matrix by itself were

measured since the matrix extends over the inactive areas boxes

of the bipolar plates, see Figure 1.	 While than modulus

of elasticity for the Mat-I matrix does not exhibit a great sensitivity

to temperature changes ranging from room temperature to 200°C, it

reduces to approximately one half of its value when the pressure is

increased from 490 Kilo pascals (70 psi) to 1230 Kilo pascals (180 psi)

(Table I). Since the inactive area of the bipolar plate is only about

10% of the total nominal area (1300 cm  or 204 in 2) and the nominal	
a

pressure over the total area is 400 Kilo pascals (60 psi), there is a

great likelihood that the local pressure in the inactive area exceeds

500 Kilo pascals (80 psi). Thus the Lower modulus, applicable over the

upper load range, should be used.

13



Dipolar Plntos

The non-heat-treated bipolar plates have a modulus of 1 CPa
(150,000 pHl). After heat Lrent;me ,o , the modulus increased to 21 GPa
(3 million psi) at: room temperatiloo. rhis reduced to approximately one

half of Its value at 200% (ltne--^ *J-'1 and l/ of Table I). The large
difference between Lite heat; treated and non-heat--treated material can
probably be attributed to Lhe reduced resin conLent of the heat treated

material,

Conclusions

Based on these tests, the stack contraction (and, therefore,
Ow shear forces to which the stack-to-manifold seals are subjected) Is

primarily a function of the applied load range. The, modulus of elasticity
ranges from 18 IMPa (2600 psi) to 28 MIa (4100 psi) for an applied stress

ranging front 350 to 8500 kPa (50 to 1250 psi) and a temperature ranging

from 25 to 200 *C• The only caveat is that allowance must be made for
the initial deformation which occurs during the first few compression

cyc)e,-, at. the lower applied load range. Otte way to accormodate this is

to assemble the stack without manifolds. Then subject the stack to,
say, 15 compression cycles and 200°C and only thereafter attach the
manifold-to-:stack seals and manifolds. Most of the deformation will
have taken place, the repeating components will bavo mechanically
stabilized and Lhe shear stresses on the manifold-to-stack seals will
have been greatly reduced.

Due to the very high moduli of the bipolar plate materials
(particularly the heat treated version), the fuel cell stack contraction
results from the deformation of the matrix-shim and anode-matrix-cathode
composites, In addition we find that at effective pressures in excess
of 700 Kilo pascals (100 psi), the matrix as well as the anode-matrix-
cathode composite appear to deforn permanently. These materials behave
structurally, similar to corrugated cardboard, although not as extreme.
When a flat piece of corrugated cardboard is compressed between two

ri
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flat blocks, it will return to its original thickness as long as the

corrugations are not permanently deformed. This is the behavior of the

anode-matrix-cathode composite, observed at effective pressures from

400 to 600 kPa (60 to So psi). However, if the pressure the corrugated

cardboard Is subjected to is nufficient to crush the corrugations and

the air space between the face sheets is eliminated or greatly reduced,

the crushed corrupted board is permanently deOrmed and then behaves

like solid cardboard. That is, it still has elastic properties, but its

behavior has changed from a soft to a stiff spring. Since the effective

contact area of the bipolar plate is much smaller than its nominal area,

it is very likely that at least the matrix in the inactive area is

crushed when a nominal load of 400 kPa (60 psi) 
is 

applied to the stack.

This concludes the task for evaluating the thermal and mechan-

ical properties of the repeating components. Mathematical models have

been and will continue to be developed to calculate the pressure distri-

bution over the fuel cell surface and the expected height changes,

resulting from this pressure distribution. Depending on the contact area,

different gas flow channel configurations are expected to result in

greater or smaller height changes, which must be accommodated by stack-

to-manifold seals. We now have the tools to calculate these changes.

1.3.2 Manifold Design _end Concerts

The manifold's major function is to distribute the gas flow

evenly over the height of the fuel cell stack. At first glance, it

appears that this is not very difficult. There are, however, several

factors to be considered. Firsf,the manifold must withstand a 200°C

temperature continually. Second, it has to be corrosion resistant

because of its exposure to a phosphoric acid environment. Third, it

should reasonably match the thermal expansion characteristics of the

fuel cell stack, in ordor to minimize 
the 

shear forces on the stack-to-

manifold seal once the cell material properties have stabilized. Finally,

its surface must be an electric insulator to prevent electric arcing or

15



s;lsorting of the :.tack. 'For -ibort stacks, vonsissting of a small numbor

of fuel cells, the cilectrie arving problem is minor because of the low
voltages. As the number of cc,l,ln per istat-k C.ncreasess, however, and the

voltage incroas;e.4 proportionally, arcing or 0(l trie shorting can become:
a major problem. Thus;, various manifold dctsai}tn conc optn, materials and

their coats to ;satisfy all of these requirvinents are being evaluated.

One of the current design concepts interposes a frame-shaped
lu sulator between a metal manifold and the :stuck to prevent electricnl

shorting. 'rills eoncelsL In shown in figure 6. Examination of this dcs;ll;n

approach loads to the duostiaau Provided a material exists from which

the frame-shaprd Insulator e,an be fabricated, why not use this same

material for f:abri,c.ating the manifold and 01min4te the frame and the

HL I tIosad :sca t of gasket :seals, Two ssuch manifold designs are being explored;

onc, made of an insulating, material, the other made of ;sheet metal conted

with insaulcati.on.

Nun-dotal Mnnifol.ds

The selveLion of candidate materials from sa Westinghouse

ansaterial data base was completed and the thermal aging properties of the

selected candidate materials were extaani:ned. Tsa-use operation over "long

times provides the most desirable aging data. However, this approach is

much too time-consuming to be practical. hence, thcs Lhermal-aging

properties of insulating materials have been estimated from Arrhenius

plots. The aging properties are based on the let'tgth of time a material

can continually tolerate a given temperature and retain 50% of its

mechanical. strength. A typical. Arrhenius Plot for Bakelite Polysulfone

is shown in Figure 7.

Only two of the eight original candidate materials are still

under consideration. These are Ryton (Polyphenylene Sulfide, Phillips

Petroleum Co.) and Epoxy. Teflon has been eliminated because of its

vary high cost and lack of sufficient mechanical strength. Silicone is
too difficult to mold in Large sizes. The rest of the materials were

ruled out because their average life at 190°C was Jess than one year.

.-
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FIGURE 6
MANIFOLD DESIGN CONCEPT WITH A

FRAME--SHAPED INSULATOR INTERPOSED
BETWEEN METAL MANIFOLDS AND STACK
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Metal Tianlfolras with Protective Coatings

The thermal aging properties of protective coatings are similar

to those of the solid molded material but the mechanical strength require-

ments of the protective coatings are leas severe. Figure 8 illustrates

the relative material costs for several 0.8 mm (0.032 inch) thick sheet

metals with protective coatings. For reference purposes, bare, uncoated

316 stainless steel ($1.50/pound), nickel, and 0.32 mm (0.125 inch)

thick Ryton (Polyphenylznesulfide) have been shown. Only FFP (Tetra-

fluoxoethylene-hexafluoropropylene) coated carbon steel has a reasonable

cost of approximately three dollars per Kilowatt. This is for a 0.25 mm

(0.010 inch) thick coat on 0.8 mm (0.032 inch) thick carbon steel.. One

problem with all the Teflon coatings is their lack of long term adherence

to metals. Because of their high cost,PFA and PTFC coated steels have

been eliminated.

Since conventional 316 stainless steel., commonly used for

fabricating chemical processing equipment, corrodes 9 mm per year on

exposure to 70% phosphoric at 140%, we contacted Jessop Steel Company

(stainless steel manufacturer). They make a special stainless steel

(JS 700) which, under the same conditions, corrodes only 0.3 mm per year.

The cost, however, is $3.72/pound versus $1.50 for 316.

The evaluation and cost tradeoffs of alternate manifold

materials will be continued doing the next quarter.
.
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TASK 2: STACK FABRICATION

2.1 Methods and Approach

heal-Treatment

Experiments were performed to establish heat-treatment cycles

for the MY2 OesigA bipolar plates and for thick bipolar/cooling plates

with the innovative cooling channel configuration. The incorrectly

machined plates diacumsed in previous reports were used for these

experiments, The cycle was used for heat-treatment of plates for stacks

560 (5-cell, MK-2) and 561 (23-cell, MK-1).

Cooling Plate Assemb

To evaluate the integrity of assembled coolers, compression

and thermal cycling experiments were performed on one nonbeat-treated

straight through cooler.* After ton decompression-compression cycles

(ol to 414 kPa) and three heating-cooling cycles (1177 to 25 0c) q the
plates remained glued together, the edge seal remained intact and cooler

resistance** showed no significant change, as detailed in Table T.T.

Tests were also made to determine any poisoning effect the

bonding material used for cooling plate assembly might have on the cells.

2.2 Simulated Stack Fabrication

2.2.1 Stack 560 (5-cell, MK-2 desigal

As reported in the Uh Quarterly Report, a number of blank

bipolar plates were molded, leak tested and sent to the vendor for

machining. Fabrication of the electrochemical cell components (matrices

Assembled according to the procedure in the 4th Quarterly Report.

Measured as described in the 4th Quarterly Report.
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TABLE TI

THE k.MCT Or THERMAL AND COMPRVSSION LOAD CYCLING
ON COOLING PLATO ASSEMBLY RESISTANCE*

MGM Or RESTSTANCZo Ma t at Voltage Lead Position

ASSXMBLY 1 2 3 4 5 6 7 8

1.	 Sanded and
cleaned faces
of cooling 0.85 0.96 1.03 0.77 1.04 0.98 1.05 0.80
h,,xlves

2.	 Plates assembled
and cemented
I A I A 0.12 0.15 0.42 0.28 0.59 0.33 0,00 0.0(,

3.	 After assembled
plates under-
went 10 decom- 0.13 0.17 0.37 0.30 0.27 0.34 0.20 0.21
pression-compres-
sion cycles
(414	 kPa)

4.	 After 1 heating
(177°CY	 & cooling
(25 0 C)	 cycles.

1

0.12

- -

0.23

I

0.58

1

0.38

1.

0.33

1

0.38

.1

0.22

-

0.20

* i W 10 amrr,
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and electrodes) was also Initiated during the 4th quarter And completed

at Lh* beginning of thin quarter, 
The 

machined bipolar/and plates were

received in November and they were examined, heat-treated and leak

tested again to insure Integrity of the plates. The cell subassemblies
were Completed at the beginning of December. Stack assembly will be

started early in the next quarter,

2,3 Short Stack Fabrication

2.3,1	 Kl3 c56cStak	 1 (2 el. MK-1 ,	 iAll— — -- - -- — ^- -- -'- , dos— -- -1

Fabrication of all cell component$ And C0010rM Was completed

during the previous quarter.* Stack ussembly was postponed to make

nkiximum 
use 

of the information gathered on Stack 559 which was also as

23 evil, RK- 1 stuck.

As described under Task 1, a decision was made to use heat-
treated plates in Stack 561, The hipol,ar plates and previousl y aRsembled

cooling plates were hent-treated along with the pintes for Stack 560.
The required aLnvk auxiliary hardware (vompression Plates, 11dYSitQ

instilator, manifolds, etc.) were fabricated and cell subassemblies

completed. The stack will 
be 

assembled in January.

2.3.2 Stack 562 (23 cell. MK-2 don t1 i-1

The electrodes and matrices for Stack 562 were completed in

early October, along with the components for Stacks 560, 561 and 563,

A partial shipmvnt of machined plates for Stai,) 562 (bipolar plates and

cooling half plates) was received in November. These plates were
inspected and leak-Tested. j4hen tile balance of the machined plates card

received, they will be inspected and the complete Set will be heat

1'reatod.

*As discussed lit the 4Lh Quarterly Report.
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1.1 titack 563 (21 vull, MR-1 dwolln)

via rabrication of all electrochemical, components and bLpolar

plates wag completed during this quarter. Vie blank cooling half plates

were molded and vent to the MaChfilo shop 
on 

Novembor 24. The coolInS channel

design for LhIs stat-k will lac; finalized after itnalyslu of the Stack 561

Lemper4Lure distribution data.

-9

24

---- -- ----



TASK 3. S'L'ACK TESTING

3.3 Shor e Stack Tetsti a

Stack 559 (23-cell, ', K .1.design),

Pretestin

The stack was compressed to 340 kPa And acid addition started.

Some acid was weeping from the edges of matrices And the acid food rate

was disappointingly low. To determine the reason for the slow acid feed,

holes were drilled into the acid channels and gas tests were conducted.

These tests indicated no singular blockage but rather generally restricted

flow throughout the acid path. however, since the matrices appeared

adequately filled, the stack compression was increased to 410 kYa and

testing continued. This increase effec=tively reduced the (acid weepage

to a negligible level.

The stack was pretested at 1400 mA/cm2 for 62 hours at ERC

before shipment to Westinghouse. Its pretest history is shown in

Figure 9. The time averaged performance was 00.57 V/cell which is

reasonable for this kind of build. Approximately one cc /cell of acid

was added to the stack ,just before its shipment to Westinghouse.

OS/IES Iaoop Testing

Stack 559 was delivered to Westinghouse the last week in

October and the first test was made on October 28. A representative

from ERC waft present to witness our startup and test procedures to

insure that they conformed to those used at CRC. The test conditions

were adjusted to agree with an CRC test made five days earlier. The

measured data agreed very closely for etais duplicate test. Thu: ► we are

confident that the Westinghouse test procedure does duplicate ERC

results and that the stack was not damaged during shipment.

Following the duplicate test, a series of tests were made to

study die following:
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a) Temperature uniformity of the stack to assess the

effectiveness of the cooling plate design.
b) Stack performance at current densities of 50, 100

anti 150 mA/cm2

c) The effect of makeup air flow on stack performance.

d) The influence of mean plate temperature on stack

per%ormance.

e) The effect of total stack flow on 
temperature

uniformity and stack parrormanev.

f) The effect on temperature distribution of blocking

two cooling channels per cooling plate, near the
hydrogen exit edge of the stack.

Table III summarizes 
the 

ERO test and 12 steady state tests conducted

at Westinghouse. The tabulated data includes fuel composition, fuel
utilization, fuel inlet temperature, makeup air flow, air Inlet tempera-

Lure, air temperature, and temperature uniformity. These results are
discussed in the following subsections. For all tests, the remaining
dry fuel mole fraction was CO2 . The dry fuel mixture was humidified at

room temperature for all tests except 5 and 6. Tests I and 2 were

conducted without external thermal Insulation. The stacit ways insulated
with 5 cm, (2 in.) fiberglass for all other tests.

Temperature Distribution

Stack 559 is a 23 cell digas cooled stack using 30.5 cm

(12 in.) by 43.2 em (17 in.) bipolar plates with an active area of

approximately 1160 cm 
2 

(180 in 2 ). Process and cooling air flow in the

30.5 cm direction and fuel flows at right angles in the 43.2 cm

direction. Bipolar/cooling plates are located after cells 4, 9, 14

and 19. Cell 12 is the middle cell of the stack and is located midway

between the middle two cooling plates. The stack contained four rows

of six thermocouples. The six thermocouples in each row were equally

spaced in the air flow direction with the first and last thermocouples

27
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of each row located respectively at the Inlet and exit edge of tile active
area. The rows in cells 12 and 17 were at the center of the stack. Tile
row in cell 11, was 5.1. em (2 in.) from the fuel Inlet edge and the row

in cell 13 was 5.1 cm from the fuel exit edge. The three rows in cells
11, 12, and 13 effectively mensvred the t empera t tire distribution at the
center cell of the :shack, The row in cell 17 duplicated the row in
cell 12 between the adjacent pair of cooling plates. Tile average
temperature of each row was obtained using the trapezoidal rule. The
average stacic temperature was found from the stillple average of the

row averages in cells 11, 12 and 13. The peak to average temperature
gradient was defined as the maximum measured temperature minus the
average stack temperature. This is the most meaningful gradient since
matorlitl life Is limited by the maximum temperature and cell performance
is determined by average temperature.

The data [ ►t Table T11 show that excellent temperature uniformity
was obtained. All tests of the insulated stack with current density
between 90 and 100 mA/cm 2 produced n peak to
difference less than 10% except test 12 whi,
A plot of tile temperature distribution for a
Figure 10. The average temperatures In rows
equal and are approximately 10% higher than

average temperature
Ji land lower total air flow.

typical test is s hown in
11 and 12 are virtually
in row 13.

'Pile theoretically predicted temperature distribution for the

stack is shown in Figure 10 as a dashed curve, 'Pile high slopet	 s	 at the
air inlet was caused by localized cooling due to C process air and by
conduction to the inactive aron. This slope is sensitive to plate

thermal conductivity and air flow split. Test result.,; indie,1LO'd a
higher air flow through the process channels or a lower thermal conduc-

tivity than used in the theory. The cooling plates were designed for
all air flow split of 16 percent process and 84% cooling flow. No
measurements were made to obtain the actual split. The overall tempera-
cure uniformity call be broken Into two components: 1) the peak to
average AT along a row in the coolant (air) flow direction and 2) the
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Curve 726344-A

170

Cali° ,latest
O/A i r Out

\Measured
Air out

U 160
CU

4 150

140

130

120	
Air Inlet

110

100

Stack Voltage 11.75 V ( .511 V/ cell) 2
Stack Current 108.8 A ( 93.8 mA/ cm )
Total Air Flow 31 g/ sec ( . 0685 IN sec)
Air Temp. Rise 500C
Makeup Air 2 Stoichs
Fuel Utilization .671

o Temperature in Row 11
o Temperature in Row 12
o Temperature in Row 13
o Temperature in Row 17

--- Theoretical

0	 0.2	 0.4	 0.6	 0.8	 1.0
Relative Distance Within Active Area in Air Flow Direction

Fig. 10 --Typical temper atu re distribution for Stack 559
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difference between the nverage temperature of a given row and the average

of all rows (fuel flow direction). The peak to ave=rage differences ( AT's)

for the rows are given 
in 

Table IV. The theoretical AT was 3°C for 100 liIA/cm 
2

and 7°C for 150 mA/cm2 . The average temperatures of the rows are given in

Table V. The spacing of cooling channels was designed to produce equal

average temperatures in each row and throughout the stack. This required

more closely spaced channels near the hydrogen inlet edge of the stack

than at the exit edge. The test results showed a strong tendency for

the hydrogen inlet edge (row 11) to overheat as fuel, utilization was

increased. This was initintly interpreted as a stability problem.

However, it was finally discovered that the closer 
spaced 

cooling

channels were actually located at the hydrogen exit. Befor y the error

was discovered, 
an experiment (Test 13) with reduced cooling at the

fuel exit was conducted in which two cooling channels per cooling plate

near the fuel 
exit 

edge' 	 pluggod. This produced an excellent

balance. between the three rows 11, 12 rand 13 (Table V, test 13), but

stack performance had deteriorated too much from :initial tests to

permit accurate evaluation. It is now recognized that this test only

changed the cooling distribution back 
to 

the intended ratio 
but 

at a

reduced amount of cooling. Row 11 was undercooled and row 13 was over-

cooled relative to 
the 

intended design in all other tests.

At 2 stoich makeup, the peak to average AT's for the stack

were 6.6, 9.8 and 15.4% for respective current densities of 53, 94

and 146 mA/cm2 . The peak to average AT's for row 12 were 3.4, 5.1 and

8.0 for the respective tests. Predicted values of these latter AT's

for 50, 100 and 150 mA/cm 
2 
are 5, 3 and 7%, respectively.

Effect of Total Stack Air Flow

Nearly all insulated stack tests were run with an air flow

which gave a temperature rise of 50 to 55°C. One test at 26.7% air

rise (approximately double the normal flow) reduced the peak to average

I
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TABLE	 11'

PEAK TO AVERACH, TI^.I PEIIATURE

I)T1'FERIa CV, 141TIlTN HAC.I1 HOW FOR TESTS OF 'TABLE, 1

Testt How 11 Row 1.2 Row 13 Row 17

1 8.0 7.2 6.1 6.1

2 "" 4.4

3 7.6 h. 5.8 6.5

4 8.8 6. 2 5.4 6.0

5 7.5 5.5 4.5 5.8

6 7.6 511 4.9 6.1

7 5.3 1.4 2.5 3.8

8 11.5 8.0 4.7 7.9

9 13.1 7.6 5.1 8.0

10 5.9 7.5 14.8 6.7

11 5.4 4.2 10.6 5.8

it 819 12.0 2.9 8. 2

13 9,4 6.3 6.1 6.8
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TABLE V

8014 FOR TESTS TN TABLE 1'

Test Row 11 Row 12 Row 13 Row 17

1 155 1.67.8 161.9 168.9
2 - -- 164.4 --

3 168.1 174.7 175.2 1,77.9
4 173.7 175.9 1019.7 178.4

5 171.2 175.2 168.6 177.2

6 173.8 176.8 166.1 1.77.9

7 175.2 181.3 177.7 182.8
8 178.8 179.0 167.01 181.0

9 178.5 179.0 1.67.2 180.6

10 162.6 163.5 155.6 161,7

11 160.1 163.0 157.7 162.0

12 182.8 183.4 1.68.3 181..0

13 172.6 177.0 177.8 1.79.4
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AT from 10.4 to LOC. The performance Improved 7 WIWI due to the

increased process flow at the same inlet oxygen concenrration, Doubling

air flow theoretically Increases performance by 5 W/cell with the 2

stoich makeup used in this test. The Increased flow was not expected

to make n significant change in temperature uniformity.

The Erroct or Current Density and MAkeup Air

Polarization curves from steady state tests at 2 and 4.3 Mich

makeup air are shown In Figure 11 by circles and squares, respectively.

The data shown by open circles are for mean tomperatores between 171 and

178M. The differvoco duo to the different oxygen convvntration for 2

and 4.3 stoich makeup Is very close to they 	 15 W/roll. The

darkened circles are for two Lents at 2 stoich makeup with mean stnok

omporaLurps of 160%. The difference of 3 mV/ * C Is higher than the

expected offeet of 1.2 mV/°C but th p tests at low temperature were

performed later in the test sequence, Thus, part of the temperature

sensitivity observed Is due to the decay in performance which occurred

during the Lost period. The extent Of the decay in performnnce Is

Illustrated by the hexagonal roints In Figure 11 which were the second

and twelfth tests (Table 111) and were run at 10 stoichs maKeup air.

Although not at identical conditions, corrections for fuel oomposition

and utilization and temperature level should approximacoly balance, Thv

results Indicate a not decay of about 50 NOW ovor tho test period,

Post Test Analysis

On December 9, Stack 559 was disassembled at XRC- On the

whole, the stack electrochemical components appeared dry while the bipolar

plates, on both the anode and cathode sides, had varying degrees of

wetness. The wettest plates were at 00 ends of the stack (Cells 1, 2,

22 and 23). The modifications made to scheme 2 to ensure contact of the

acid with the matrices had reduced the area available for acid flow

severely in all cells. In addition, the Viton gasket material around

Cell I (the bottom-most cell) had extruded slightly into the acid fill
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tube ; part tall y blocking it, Tbl" Information will bo utilized for

future► stack fabrication.

When it question concerning the} orientation of cooling
plates surfaced, the plates were recovered and it was found that the
inserted plugs were in the closely spaced chranovia confirming that

hydrogen flow was in the wrong dire'c'tion,

3.4 '1`vyj Stand Cog;Vruct loan

Iacaring this cluaarLer, as detailed component checkout and several

dry ruin were made can the 2 kip Tent Facility. During this period,

pressure transducers wvr y reva ibr and, lair to aka we're av alvd, and
additional insulation was added tca the air loop where needed, The load

bank and r;e vondaary voltage rvadout were tested with Stack 559 and found
to perform sat4sfactorily. Also manifold adaptors were designed and

fabrica Led.

Stack 425, built under they DOE Technology Program, wart also

used to dobug the operation Of the y F kW WaL Facility. These tWs

indicated that it was in good working; condition and vxposvd some minor

problems (wire connections, grounding, calibration) which -ore subse-

quently corrected. rhea teat facility Is read y to receive; Stack 561.

About 80% of they H kW test facility construction work was

completed during this quarter. Figure 12 Is a schematic diagram of the
air loop showing the location of the sensor ports. The anode fuel line,

MOSL Of they air loop, and they safety system area completed and installaa-

tion of the 220 VAC line and hood are unde = rway, It is anticipated that

tho construction work will be completed in February 1981,

All the components for the automatic data acquisition system

have been received, and programming work was initiated in late December.

A trial run of the program Is planned for mid-January and the stark

tasting program on the; 2 kW loop is expected to begin in March.
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TASK H  FUM. CONDITIONER DINELOPMYNT

4.1 Fuel and Water Definition*

niv required boiler blowdown, wam ostablimht-d for use In the

Opt-rational Requirements Definition of Tamk 4.2. The following dis-

cusoWn Indivatva than adequate vatrilyat sand bollvr protection can be

providvd with as blowdown, of lesi4 than I lltvr/hr.

Buller blowduwn Is a funetion of rot-awater mollds coa lusa and

perml-isible- holler molids t ,ontvia. The j4povified fcvdwatvr solids

vonti-tit (Table VII of the 1st Quarterly Report) Is losti than 1 ppm by

weight for water. Chapter M, Tabli , 2, of "Stvam/fts (itineration and

Ust . " Bthi-tick and Wilcox Co., '191'#) , indiv.1tom maximum solids content of

35tjij ppm for boilers under 100 pmlg and revommt-nds that the boiler bt-

operated "wall below these llmltii," From Figure 10 of Lite B&W rofert-tico.

a 200 ppm concentration of pullds in the I)o1lor WilS L'St IMIlLed to prodtif."ey

a bout So gr ama of Nolid ,4 onrryover in Lho steam 	 14,000 hours of fullp	 J	 1111

load operation. If they reformer t-aLalyst bvd rk-movt , .,4 all of the

entrained solids, aahtataL 0.2'%, of the lied void spact , will Itp oovtipic(l by

solids for 
an 

avorap solid d(-nHiLy of I gram/cc, 90% volits fit the

catalyst, and as CaUllYHL Volliniv 46 liters. The 200 ppm c-oiivotitraLion

cif solids 
in 

the boiler can bo 111,1111LItnod with less than 1 liter per

hour of builer blowdown and as much as 2 111)m of solids in the fvc,dwater

(equal Lo resistivity Of 0.5 W9011111/=).

	4.2	 ^q ionrtl Requireplients

Figure 13 is the current version of the Proitvss and TnHtrumen-

Wtion Diagram for the fuel conditioning subsystvni. The state Point

data are tabulated for full. load and part (1/3) load operntion in,

Tables VI and V11. As o xplained below, the stream compositions art'

nearl y the same for both conditions and are tabulated in Table V111.

The operating set-naric used for ealviiIaLing Hie statepoints

and stream compositions assumed a fixed utilization of hydrogen in the
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fuel cells and a fixed composition of spent fuel. This implies that the
reformer temperature will be reduced at part load to hold methane con-
version efficiency down which should contribute to more reliable, longer
lived reformer operation. This also permits the reformer heat require-
ments to be met by spent fuel so no supplementary methane In required
for steady part load operation. This scenario is n reasonable one and
we will continue to use It in our definition of operational requirements

until adequate Information is developed on overall system operation to
define a more appropriate scenario.

4.3 Catalvst DaLa Base

4.3.1 shift Converter Catal yst Tost

Carbon monoxide shift experiments using United Catalyst C-18110

in crushed 
(0.5 nun) and pelleted (2.34 x 2.39 min) forms and Catalyst 201

in crushed (0.5 miii) and polleted (2.39 x 2.39 min) forms were completed

this quarter.

7110- eatalySLS are shipped in the oxidized form and were

roduced before testing following the manufacturer's recommendations
This involved carefully controlling the hydrogon concentration to main-

tain the temperature of the catalyst bed under 260°C for a period of

8 hours and maintaining 
the space velocity of the reducing gas (inert

gas 
and hydrogen) between 200 and 1500 hr- 1.

Figures 14 and 15 show the results for UC, C-18110 and Catalyst

201, respectively. A comparison of the data is shown In Table IX. The
result$ can be summarized as follows:

1. The rate of reaction for UC C-1811C :is first order 
in 

CO

and 
is 

Independent of 11
2
0 concentration. However, the rate of reaction

for Catalyst 201 is first order 
in both CO and 11 20. This dissimilarity

may be due to differcnc l^ in the catalyst supports which tire zinc and

aluminum oxides for UC C-18110 and zinc and chromium oxides for Catalyst

201.
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TADLE IX

COMPARTSON OF CO SHIFT CONVLRTI-',R CATALYSTS

ACTIVATION	
AT 204°C (4000F)

ENERGY,	 ACTIVITYCATALYST+	 TYPE	 kcal/clmol	 oc

Uc C-1811C Crushed 11.5 -2 55

Uc C-18fic polloted ?.2.6 -1 13

2 0.1 Crushed 12.0 -2 48.1.

201 Polleted 11.0 -2 28'E

* AT radial = T wall - Tbod, -c

t Catalyst activity measured at P H 0 - 0.26 atm

'J: UC C-181IC:	 r	 k . PCO
Catalyst 201: r	 k . P Co * p 11 2 0
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2. The catalysts have activation anerSten, from 11 . 0 to 12,0
kcal/gmol.

3. The activity of Catalyst 201 depends an the water partial
pressure but, at P1120 0 0.26 atm., UC 0-18110 has only a slightly higher
activity than Catalyst 201 (55 va 48 jigmol/g-atm-sec at 204"C).

4. For UC C-1811C, the crushed catalyst 
has 

much higher

activity than the pelleted catalyst (55 vs 13 pSmol/g-atm-sec at 204*C).
When the experiments were repeated, the same reflUlLS were obtained.

Since the activation energy In similar for both crushed and pelleted
catalysts, It is assumed that diffusion will have little effect 

on the

catalyst activity. The pelleted activity, to be used for design, must
be lower due to loss of available active Catalyst sines due to the
pellet forming process,

5. For Catalyst 201, the crushed catalyst has slightly higher

94activity than, the pelleted catalyst (48 vs 28	 at 20"C).7

but as similar activation energy (12.0 vs 11.0 kcal/gmul). There Is no
evidence to indicate a diffusion effect in the testing temperature range

(150% to 2751C).

The choice of whieh catalyst to use In the shift reactor design

will be made on the basis of the most aCtiVe Catalyst for the actual gas
composition (1120 partial pressure) used for design.

4.3.2 Ref̂ qjpin _^s tA&in& Ti

The methane reforming aging test was initiated in October, and
completed 

in 
December with a total test time of 1630 

hour ,,;. A total
mass of 22.7 g (volume - 19.3 cc) of catalyst 100 was used in pellet
form (1-25 x 1.25 mm). The experimental results are shown in Figure 16.

Table X compares the fresh catalyst conversion and that cal-
culated for equilibrium conditions at 585°C and a SV of 1500 hr- 1 . At
1500 hr-1 , the methane convorslon Oecreased from a fresh catalyst con-
version of 69% to a steady value of 64% in a period of 35 hours.
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TABLE X
STMM REFORMING AGING TEST

(Fresh Catalyst)

Catalyst	 - Catalyst 100
Catalyst Weight	 - 22.7q (catalyst volutno - 19.3 cc)
C11,, Space VolociLy - 1500 hr-1
Inlot Food;

0114	 - 28.962 f/hr
11,0	 - 86.886 Mir

Hal 	- 2.896 e/hr

Reactor Tomparature, *C:

Bxit (xll catalyst)	 611
Middle of Bad	 619
Inlet(Prior to Catalyst) 635

Results:

Test
t

ell,, Conversion, %: 67.6

Dry Gas,';: C14	 0.118
I I "	 Oe635

CO	 0.073

Co ..,	0.174

559
549
604

EqRJ.l jyium (5850C)

70
0.082
0.727
0.067
0.124
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_ Ixtesdiae	 the operating time to 3SO tar's showed no further	 .	 Siaar

.
the methaw conversion of 642 is ebbs to the equilibrium coomroum

II
(701) at 600*C (aad such operation reduces the sensitivity of aging

testa), the space velocity was iorrsssed to 2500 hr-1 .	 At 2500 W*1

the methane copworaion woe Constant at a value of 49% for 4,40 hours.

e In preparation for increasing the tempersturo to 700*C, the

space velocity was increased to 3M hr"i .	 No decay occurred during the

subsequent 140 hrs of operation at 600*C and the temperatureerature! was increased

to 700*C.	 The methons conversion was constant at 62g for a period of

410 hours.	 When the temperature was decreased to 6nO*C, the methane

conversion was the some as (or slightly better than) before for this

condition.

After the ,Initial breaiaP--in period, catalyst 100 suffered no

deecraaae in act wiry during 1630 hours of testing on rrs*srch-grade

methane. Operation at a temperature as high as 700% caused no deacti-

vation of the catalyst, Indicating that sintering and loans of surface

area dial not occur,	 "

4.4 Ancillary SubsystemUata base

Burner tteyelopteent

The burner test rig was commissioned and initial tests on

natural gets (specified start-up fuel) and simulated spent fuel were made.

These tests included preheat of the fuel and air to the design tempera-

ture but no humidification of the fuel gas stream since the vaporiser

was not installed. the spent fuel the flame was excessively long and CO

content was high indicating poor mixing of the fuel and air streams and

inefficient combustion. 'T'he burner was modified and reinstalled in this

rig and tests will continue in the next quarter.
F
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Heat Cxchnngers

During this quarter, heat exchanger performance specifications

were prepared for 12 heat exchangers used in thF fuel conditioner sub-

system. These specifications were based on heat balance calculations

performed on the hot and cold sides of the exchangers. Steady state

requirements for both full power and one-third power operation were

included, and were based on data from Tables VT to VIII in Section 4.2

of this report.

As an example, Table X[ is the specification for the air pre-

heater Item E-1 of the P&I diagram (Figure 13), 'These specifications

are being sent to the exchanger vendors who responded affirmatively to
the inquiry sent out during Phase T of this program. Complete sets of

the exchanger specifications are being sent to the NASA Project Monitor

and ,Jill, for review and comment.

Controls and Instrumentation

he control functions required to start, change :toad and hold

a steady load were worked out and an automatic starting sequence had

been worked out and the needed instrumentation and controls were defined

for the fuel processing subsystem. These are shown on the P&I diagram

(Figure 13).

The system control will be programmed to follow the electrical
load during a. transient condition. To control the hot water portion,

it may be necessary to cool the water via a cooling tower. It may also

be necessary to waste heat by bypassing some of the heat exchangers of

the fuel conditioning subsystem. Overrides will be provided to protect

the system in the case of conditions such as low water level, over

temperature, and low fuel. quality.

Steam P eetor

Penberthy has assured that the idea of using a steam ejector

to replace the natural gas compressor is feasible. They have tests

53



STEADY STATt RZAT TRANSFER RZQVIXV=TS

PULL POWER NORMAL DUTY SPECIFICATION

NAME/IMMBER: Air Pre heater/E-1

SERVICE; Gas to Air C3}

Maximum Heat Duty, kJ/11r,(B111/11 )x 56,150 (53,180)

Hat Side	 Culd Side

&os Flow Rater, k$/Hz,{1b/H0 	 290(639.3)	 214 (1471.8)

	

Inlet	 Outlet	 Inlet	 %tlet

Composition. tool fraction

CH 

H2O	 0.204	 ;).204

H2

N2	0.574	 0.574	 Air	 Air

02	0.081	 0.081

CO

CO2	0*141	 0.141

Molecular Wt	 28.552	 28.970

Fluid Properties

Density. kg/m3 , (lb/ft3)

Thom. Cond., W/m2 'C, (BTU/Hr ft2 OF)

Sp. Heat, kJ/kg'C, (BTU/lb'F)	 1.1$49(0.2830) 	 1.0241(0.2446)

Viscosity, P6:•S, (lb/ft hr)

Temperature, 'Cy (•F)	 393(739.4)	 230(4.16)	 60(140)	 316(600.8)

Pressure, kPa, (psis) 	 106.1(15.39)	 103.8(15.06) 17.6(17.05) 115.3(16.72)

AP, kP4, (in H2O)	 2.24(9)	 2.24(9)

Notes: (1) Sulfur free products of combustion/Compressed, filtered air.

Tnble XI - Sample of Beat Exchanger Specification

d
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i

STEADY STATE NEAT TRANSFER REQUIREMENTS

ONE-111IIRD POWER NORMAL DUTY SPECIFICATION

MANE/NUMBER: Air Preheater/E -1

SERVICE: Gas to Air

Heat Duty,, kJ/Hr,(9TU/Hr): 12,850(12,170)

Not Side Cold Side

Mass Flow Rate, kg/Hz,(1b/Hr) 65(143.3) 48(105.8)

Inlet	 Outlet Inlet	 Outlet

Composition, mol frac::ion

CH4
B20 0.204	 0.204

B2

N2 0.574	 0,574 Air	 Air

02 0.081	 0.081

CO

CO2

Nolrular Wt 28.552 28.970

Fluid Properties

Density, kg/m3,(lb/ft3)

Therm. Cond., W/m2 'C,(BTU/Hr f t2 'F)

Sp. Heat, kJ/kg'C,	 (BTU/lb •F) 1.1844(0,2829) 1.0245(0.2447)
Viscosity, Pa-S, (lb/ft hr)

Temperature, •C, (•F) 393(739.4)	 227(440.6) 60(140.0)	 321(609.8)
Pressure, kPa. (psi&)
OP, k?a, (in H20)

'fatale 11 (continued)
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+d Analyses in progro#o and we shWAA receive this report d
tit quarter.

4.6 10 kW Reforaer.allUa
w

Table gII presents the design data for a 10 kW reforaer and
shift converter. The data are basted on the 502.2 & t/hr hydrogen required
for a 10 kW fuel call at 651 utilisation. The catalysts needed for the
reformer and the shift converter are 2.291 (0.0808 ft 3 )  and 14.101 (0.5 ft'

f
	 respectively.

4.7 PrototXpo Conce p tual Dosi&g

The reformer and shift convertor designs will be started In

January. The reformer design and manufacturing cost estimate v.lj be
based on the concept embodied in Westinghouse Disclosure *a.	 22.
The shift converter dastsign will bo similar to UTC'u 40 kit unit 	 rt#rl
HDS/Zno package system.

E`	
5 fµ

i
{
i
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TABLE X11

DATA FOR 10 kW REFORMrR AND SHIFT CONVERTER*

	

.,_._	 IN	 OUT

CO.ZP%.':`; :`.' I	 kg/hr	 MOLE FRACTION	 kg/hr	 MOLE TRACTION

REFOWIER

CH. 1.9708 0.229 0.1312 0.011

li	 ,; 6.3464 0.656 3.5609 0.257
H 0,0904 0.084 0.8633 0.561

CC 0.1175 0.008 2.2198 0.103

Cc" 0.5243 0.022 2.2742 0.067

aTOT .. 9 0494 0.999 9.0494 0.999

Total catalyst volume = 2.292

CH. space velocity = 1200 hr - 1

Steam/carbon mole ratio = 2.865

SHIFT CONVERTER

C?. 0. 1312 0.011 0.1353 0.011

H	 ". 3.5609 0.257 2.2696 0.164

H- 0.8633 0.561 1.0049 0.654

Cr, 2.2198 0.103 0.1937 0.009

CO . 2.2742 0,067 5.4459 0.161

TOT.-k-': 9.0494 0..999 9.0494 0.999

Total catalyst volume = 14.12

CO space velocity = 125 hr-1

Steam/carbon mole ratio =	 1.51

11,^ rcquircd for 10 kW fuol col.l m 502.2 mol/}zr	 (65% utilization)

lIGINAL PAGE IS
W POOR QUALITY

r	
I

4
F
i
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'l'ASK 5; MNAC.I:I ENT RETORTING  AND 1)0('.I M)-.N l'A l l C1N

5.1 SupT.i i#^lott and C'c,c^rilintttalun

A combined progrests revlew and itiol cell_ stack dC.141gn review

meeLtng was held On November 5 and ft at the Went Isll,liousc, R&TI C.roiilvr.

As n result of open discu--ions Chit-hip, tlil-. mvct Ing, several trleeislc,ns

wa re madr .tod implemented;

1. All future stack,, for ti l ls progj., im will uric, "treat — t roatod"

bipolar and vooling/bipolar I,late*:.	 `I'hia 111VIstcled the 00011119/1 1 pt,l.tr

flat-es for Staok W whit-h were already atsrsemblvd. As diseutssvd under

"Short. Stack Fabrloat ioii," the-;e wort, stiocossful1v heat trented and

int'ltillc-d In tliv ,`:tat'k,

'.. Tho NA.S1 Pro `oot !1111,Ig + r t'eguostod that the dtteilmOlItitt Ion

tit Lhe sL.lt , k I' il , l Ivat, it'll . iod l+t ''ovedures be revked to reflovt Ylccot

"11.111ges. A tlt.tft of a revt' ; ett document was prepared and q uhmitted rter

itis review.

1.	 k.trt • tim rosIit w I I I be used Iit all :future mt,Idiitltrt ttf

bipolar, end and biliolar/ecii,l im, plates fc tr this l,i'ca jec• t .	 The exist Ing

plates, WIlivil ecmtain Colloid I0.1, 111, will bO "'A'd I' t,l- Strtrko-i 500, litil

.tnJ 5hx. Illauki, for bipolau• , cooling/bipolar, and end platers for

:+t-,iok 563 ware molded with Varvutn.

4. Alt explanation of the rcttiotiale ]'or the strategy of

temperature eltanues adopted f o r Lhe roforming t'atillyst a ging tog ts was

s ubmi.trLed to the NASA Proj ect. Mnatagca r ati ltis request ed to the ntOc*Ling.

5. The NASA Project 1`Ianager requested dirt the Westinghouse

and 1'RC: fuel conditioner task leaders select a eonfigovatLiotl for the

10 kW retoi -mer and ,submit, a do srr ption of it and iin ox. plonntion or the

.-olec^t ioll (ot , his approval, As do*soribod under the Fuel Conditioning

l;la:k, a tiesil*n W;v; Eselertod aitd the desk-riptic , il will sootl he submitte;l

tot approval.
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A number of informal meetings and discussions were hold among

potential contributorea to futureo work and they personnel developing the

formal plan for future work. The scope of the technical efforts required

LO Moot the overran objectives of the program were determined and formed.

the basis for task descriptions and ost imntes of effort for the plain.

5.2 Docuanont Lion and Re arti:nR

Patent approvals for the Technical Status Reports for July and

August were received and they were distributed In accordance with they

NASA supplied lists. They Fourth Quarterl y Report and the Technical

Status Reports for OvLober and November were submittY for NASA patent

approval. They management reports (533M and 533P) for October and

November were prepared and submitted along with additional cost and

manhour graphs. The financial plan for the y Sixth Quarter (533Q) was

p repared and submitted.

h.3 Plat nlu'a

A elan for the program (from :a vonceptul system, design through

field testing of three (3) 08/1ES systems) was developed. The plain

covers the period from October 1951 to mid 1986. Theplan Includes as

Work Breakdown Structure (M), task dvscriptions, and estimates of

manpower and costs in compliance with the WBS and Program Schedule.

This plan z.os submitted to the NASA. Project Mager.
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111. PROBLDIS

The assembly of Stacks 560 and 561 is halted pending submission

of documents describing the revised fabrIVIlLion. procedures to NASA

Project Managc3 r and his approval of them. The roviHeel procedures reflect

the declHionH to ume hunt trvatod plates and Ow original acid fill

Schme .1 and other detallfi assot-Luod with tbom. These, chanSes should

Inorease the prob4hillLy of stict-ofis and improve the Htack performance
but will rcsult In Ink, roa4vO vosts (por fiLaok) and probably require, time,

Lixtons W11H.



TV. PLANS

TASK l DFSIGN OF LARGE CELT, STACKS

Booed on the tomporature data obtained from Stack $61, the
cooling plate demign for Stack 563 will be finalized.

The document describing Stacks 560, 561, 562 and 563 will be

revised as needed and submitted to the NASA Project Manager.

The data on shrinkage during hent treatment will be revieaaec^
and a decision to cement cooling plate halves prior or subsequent to
heat: treatment will: be made.

The analy.,41s of the distribution of the stack compression

forces between the active* cell area and the boundary or shim area using

the recently acquired material data 114 continuing. Available data on

the effects of stack c,campression or performance will be reviewed and

correlated with the model.

A plar for evaluating several approaches to mcad.ular assembly

of stacks will be developed and implemented.

TASK 2: S'T'ACK FABRICATION

All subassemblies for .,tacks 560 and 561 are complete and

assembly will take place early in the next quarter.

Ileat-trcaatmcnt of the bipolar and coaling plates for Stack 562

will. be ;scheduled once the remainder of the plates are received from
machining. This is expected to take place in mid-.tanunry. Cell, sub -

assemblies and final stack assembly are scheduled for completion by

mid-February.

The bipolar/coolin.g plates for Stack 563 will be ma ► chinod.

Ilea t-trea tment will be scheduled as soon as the plates are received from

the vendor. This will be followed by cell subassembly and stack
assembly, scheduled for completion by the end of February.
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TASK d: STACK TESTING

Pretvating and tenting of ,Stacks 561 and 560 will be Initiated

as noun an fabrication in complete, TWO should occur early In the

first month of the next clunrter»

Immediately following prvastinS Stack 561 will he Installed

and tested in the 0S/IhS simulation Mop. The primary purpose of these

tests will he to obtain temperature profile data with the Innovative

coo Ing pIatvs under OS/IES opt rat fog condltIons. This iaiformatlon will

verify and he used In find toning vt the Waited  ranaalyt ictal model and

will provide the design basis for the cooling plates of Stark 563,

rest runs of the -' kW te=at facilit y have shoran that It In in

good workIng c ondit Ion and it will be used for test MA Stack 561 and

"cure 2 kk stacks,

Work will oontlnut- on the :waling and Insulation of the ,sir

loop, and on the i vstal lat ion of the .anode gas prehe:ator for rho 8 kW

tc° g t facility.

hry runs will he 004ducted to detect any problcm associated

with the operation of the loop's flow omonents. Stark will be initiated

on the electrical wiring In the early part of next quarter.

Programming Of the Data Acquisition System (which Is shared

between the 2 kW and the 8 kW test facilities) is expected to be

completed by mid-March.

The testing of Stack 561 In the OWES loop will be extended

to 24 hr/dray operation as experienev with the automatic control features

is gained. The 2 kW- test facility is also designed for unattended

operation and will be used for 24 hr/day tests when needed.

Construction of the 8 kW test facility will continue,

I.
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TASK 4: FUEL CONDITIONER DEVELOPMENT

The analysis of the system performance and control require -

ments will continue.

The design of the reformer and shift converter test rig will

continue and construction should be nearly completed during the next

quarter.

The Computer model will be extended to be npplicable to the

double vounterflow configuration required by our present reformer

concept. A letter Is being prepared for submittal to appropriate

reformer design and catalyst sales organizations 
to 

Solicit their hell)

In the double counterflow model adaptation and In future system design

and/or fabrication efforts. This letter, based on comments received

from JPL, Will be Mailod to Interested parties in early January.

Installation of the burner rig water vapor generator will be

oomplated early next month and the revised burner will bo teaud for

combustion efficiency and to establish its operating envelope. Further

modifications Will bo made as needed.

TASK 5: MANAGHMENT AND DOCUMENTATION

Coordination of efforts among the task leaders and between

ERC 
and 

Westinghouse will be continued.

Technical review meetings will be hold at they 	of

the NASA Project Manager and presentations to and meetings with DOE,

personnel will he scheduled as requosted.

A meeting to coordinate the parallel ERC technology program

is planned for 
the next quarter, Several key members of the OS/CES

project team will attend.

The task leaders' inputs to the Technical Status Reports will

be edited and the reports will be submitted to the NASA Project Managor

for patent approvol. The management reports will also be prepared and

submitted to the NASA Project Manager,
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This rq1ort , the 4Lh Quarterly and tht, ot-tobt-r and Novi-mbor

Luvimical narratives, will lic . dii4tributvd when approved by the NA$A

Pro jvct Kmagvr.

Am desorlbod in St-ftion 11, a plan proparod by tho WvOtlnghoul4o

Advanced Energy Systvmm Vivifilon was muhmittvil to the NASA Prolect

Manapr and a mveting to rvvIt-w It Is pl.mut-d for the nvm qiiartor,

6
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