
........................ NASA7,'_Y-8iJ_--

3 1176 00168 0694

NASA-TM-81355 19810011266
NASATechnical Memorandum81355

/

USER'SMANUALFORSYNC,

A FORTRANPROGRAMFORMERGING

AND TIME-SYNCHRONIZINGDATA

III __ ' I l llllll

llol m II IIIII111_II Iml! llXJl

Richard E. Maine

March 1981 "_'_' " i_.SI

i

https://ntrs.nasa.gov/search.jsp?R=19810011266 2020-03-21T13:46:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42861418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASATechnical Memorandum81355

USER'S MANUALFORSYNC,

A FORTRANPROGRAMFORMERGING

ANDTIME-SYNCHRONIZINGDATA

Richard E. Maine
Dryden Flight Research Center
Edwards, California

National Aeronautics and
SpaceAdministration

1981

,4,'2'/-/#793_

CONTENTS

Page

INTRODUCTION I

SYNCHRONIZATIONALGORITHM I

INPUT DESCRIPTION 5

Infile Definition 5
Skew Definition 7
Method Definition 7
Outfile Definition 8
Time Interval Definition 10
Examples II

PRINTED OUTPUT . 12

Normal Output 12
Error Messages 13

FILE HANDLING 14

PROGRAMTRANSMITTAL AND IMPLEMENTATION 15

APPENDIX - SUBROUTINESAND COMMONBLOCKS 17

Subroutines 17
Common Blocks 22

REFERENCES 23

SYNC (microfiche supplement) Inside back cover

iii

USER'S MANUALFOR SYNC,

A FORTRANPROGRAMFOR MERGING

AND TIME-SYNCHRONIZING DATA

Richard E. Maine

Dryden Flight Research Center

INTRODUCTION

This report is a user's manual for the FORTRAN77 computer program SYNC.
The basic function of SYNC is the merging and time-synchronization of data. The
options available allow SYNC to be used for several other types of operations on
files of time-dependent data; these operations include time-skewing data channels
and thinning or interpolating data to sample rates not necessarily commensurable
with the available sample rate.

The operation of the program is described in detail. The input cards
required to specify the program options are described. The description is
followed by a list of program messages and error conditions. The body of the
report concludes with a discussion of the transmittal and implementation of the
program. Individual subroutines and common blocks are described in the appendix.
A complete listing of the SYNCprogram with reference maps produced by the CDC
FTN 5.0 compiler (ref. 1) is included on microfiche as a supplement.

SYNCHRONIZATIONALGORITHM

In this report time-synchronization means the computation of data frames at
uniform sampling intervals. Each data frame contains the values of all of the
data channels at the time of the data frame. In general, the input file need
not have a measurement of each data channel at exactly the frame time. In this
event, some algorithm is required to compute the data values to be used between
the times on the input file.

The SYNCprogram is intended to accept data which need not be sampled at
uniform time intervals and may be in a compressed format. The time-

synchronization algorithm must, therefore, be fairly versatile. This section
describes the general algorithm used and two special cases.

The general algorithm is designed to accommodate data which were sampled at
a uniform sampling rate and may optionally have been compressed. The compression
consists of omitting data samples which have not changed from the previous
sample.

The synchronization algorithm uses two variables specified by the user, the
channel time skew, CHSKEW, and the sample interval, CHDT. These variables can
have different values for different channels.

The input file gives a time for each data value. The first step of the
synchronization is to add the time skew to the time indicated by the input file.
All subsequent computations use this skew-corrected time. If an input data
value for some channel is available at exactly the frame time under consideration,
that data value is used. Otherwise, the SYNC program computes the data value at
the frame time based on the data values at the input times which bracket the
frame time. These times are called TCLAST and TCNOW, and the corresponding data
values are VCLAST and VCNOW.

The program computesa time called THOLD that is equal to the greaterof
TCNOW - CHDT or TCLAST,where CHDT is the sample intervalfor the channel. If
THOLD lies betweenTCLAST and TCNOW (that is, 0 < CHDT < TCNOW -TCLAST),
figure 1 representsthe interpolationscheme used betweenTCLAST and TCNOW.

VCNOW --
J

J
/

/
/

VCLAST -- X -X x

I
TCLAST THOLD TCNOW

Figure 1. Illustration of hold and interpolate algorithm.

For frame times from TCLAST to THOLD, the value VCLAST is used. From THOLD to
TCNOW, the value is obtained by linear interpolation.

This algorithm is appropriate for the interpolation of data compressed as
described previously. It is presumed that the channel was sampled at time
THOLD, but that the data value was not recorded because it was equal to the
previous value. There may also have been other omitted samples between TOLAST
and THOLD. The algorithm described thus decompresses the data and then interpo-
lates. For this algorithm to work correctly, the original data must have been
sampled at uniform time intervals and the correct value of the time interval

must be used for CHDT. Otherwisethe programcannot correctlyreconstructthe
times of the originaluncompresseddata samples.

Figure 2 illustratesthe interpolationbetweenTCLAST and TCNOW when THOLD
is equal to TCLAST (that is, CHDT _ TCNOW - TCLAST).

VCNOW -- /X
/

/

/
f

/
/

f

VCLAST -- X
I= CHDT

I I
TCLAST TCNOW
THOLD

Figure 2. Illustration of linear interpolation algorithm.

The algorithm is identical to the previous case, except that there is no
interval between TCLAST and THOLD. As long as the sample interval is less than
or equal to CHDT, the program uses straight linear interpolation. This mode of
operation is appropriate to input channels that are not compressed. The input
sample intervals need not be uniform, but they should be less than or equal to
CHDT. Sample intervals greater than CHDT are treated as in figure I. The
program does not include an option to always interpolate linearly (regardless of
the sample interval) because such an option would entail significant cQmputational
burden.

Figure 3 illustrates the special case of CHDT equal to O. In this case,
THOLD is equal to TCNOW. The value VCLAST is used between TCLAST and

TTOL

I I

VCNOW -- --X

VCLAST -- x-

I I
TCLAST TCNOW

Figure 3. Illustrationof hold-last-valuealgorithm.

3

TCNOW - TTOL. From TCNOW - TTOL to TCNOW, the value VCNOW is used. Since this
situation has a discontinuity, it must be handled carefully to preclude signifi-
cant errors. The basic intention is to hold the value VCLAST until time is

exactly equal to TCNOW. Since time is used as a floating point variable in the
SYNC program, the tolerance TTOL is required to insure that a frame which should
be at a time exactly equal to TCNOW will use the value VCNOW. Without this
tolerance, the roundoff error in floating point arithmetic could result in the
use of the value VCLAST. The value of TTOL is the same for all data channels;

it is nominally 0.0001 second. This mode of operation is appropriate to some
forms of compressed data and to flags or channels which take discrete special
values such that linear interpolation is meaningless.

The previous discussion neglects the possibility that the frame time might
be before the first input time or after the last input time. If the frame time
is after the last input time, the data value at the last input time is used.
This is consistent with all of the above schemes, with TCNOW considered to be
infinite. In order to define the output used before the first input time, each
channel is initialized with a dummy value of 0 at time -1030. The data value
used will thus be 0 until within CHDT of the first input time. In the important

special case where there are never any input values for a channel, the data
values for that channel are always 0

The time-synchronized data for up to LCBUF (see the PROGRAM TRANSMITTAL AND
IMPLEMENTATION section) output frame times are stored in a circular buffer
called CIRBUF. The circular buffer is an array dimensioned MAXOUT by LCBUF;
that is, a total of 12,800 words with the current values. It is by far the
largest block of storage used by the program.

The circular buffer contains time-synchronized data for up to LCBUF output
frame times. This buffer is necessary because relative time skews, differing
synchronization algorithms, and differing input sample intervals may cause the
synchronized values of some channels to be defined many frames ahead of the data
available for other channels at a particular point of the processing. If any
time tag read from an infile is such that the time tag plus the largest channel
skew for that infile is more than LCBUF output frames ahead of the earliest
unfinished frame, S¥NC considers a significant time jump to have been encountered
on the infile. The buffer is re-initialized to start after the time jump, and ,.

an appropriate error message is printed.

The program checks the size of LCBUF; it must be sufficiently large so that
the buffer will not overflow in the above described manner during normal proces- "
sing of data with no time dropouts. If LCBUF is too small, an error message is
printed and the program stops. The exact criterion is that for each infile,
(LCBUF - 1) times the outfile sample interval must be greater than the read-ahead
time plus the maximum channel skew plus the default CHDT. The read-ahead time
is 1.1 times TTOL plus the maximum of the difference CHDT minus the channel
skew. Note that the file skew specified on the infile definition (see INFILE
DEFINITION section) does not enter into this criterion. File skews are handled
quite differently from channel skews; as a result, file skews can be arbitrarily
large without affecting dimension limits.

\

4

INPUT DESCRIPTION

This section describes the card input required to run program SYNC. All
inputis freeform;inputneednot be in any specificcolumns. Blanksmay be
freely used between keywords, values, and/or delimiters. In many cases, the
program action depends on what delimiter terminates a field. If a field is
terminated by one or more blanks, followed by a valid nonblank delimiter, the
field is considered to be delimited by the nonblank delimiter. A field is
considered to be blank-delimited only if there are no delimiters except for
blanks separating it from the following field. Blanks must not be embedded
within keywords or values. A keyword or value cannot be continued from one card
to the next. Character values must not be enclosed in quotation marks.

The card input consists of a sequence of definitions. These definitions
need not correspond to cards: there may be several definitions on a single
card, and one definition can be spread over several cards. Each definition is
composed of several fields. Fields longer than 10 characters are truncated
without comment. The first field of each definition, which indicates the type
of definition, is delimited by a blank or a comma. The various types of defini-
tions and the fields within them are described in the following subsections. If
the type of definition is not recognized, the program stops with an error message.
The definitions can be given in any order consistent with the restrictions
stated in the subsections. As a consequence of these restrictions, the first
definition must always be an infile definition, and the time interval definition
(if one is present) must be the last definition. An outfile definition and at
least one infile definition are required. All other definitions are optional.

Infile Definition

If the first three characters of a definition type field are "INF", the
definition is an infile definition. An infile definition defines the basic

characteristics of an input data file. The first definition of a job must be an
infile definition. Up to five infile definitions are allowed. (The section
entitled PROGRAM TRANSMITTAL AND IMPLEMENTATION explains how to change this
limitation.)

The second field of an infile definition must be a number between I and 5

inclusive, delimited by blanks, a comma, or a colon. This number, called the
infile number, is used to refer to the file in subsequent definitions. The
choice of the number is arbitrary within the range from I to 5. Infiles need
not be defined in increasing order, nor need the infile numbers used be consecu-
tive. The program will stop with an error message if two infile definitions use
the same infile number.

The remaining fields of an infile definition consist of keywords, which are
delimited by blanks or an equal sign and followed by values. The values are
delimited by blanks, a comma, or a slash (/). A slash delimiter denotes the end
of the definition. The keywords recognized are listed below, along with descrip-

5

tions of the following data fields. The keywords can be given in any order.
Only the characters underlined below are checked for keyword recognition; the
remaining characters of the keyword can be different or omitted. At least one
keyword/value pair must be present.

NAME - name by which the system identifies the infile. Only the first 10
characters of the name are retained. The name cannot include slashes, commas,
or embedded blanks. This name will be used in the file specifier of the FORTRAN
OPEN statement. It is used nowhere else. The allowable names are processor
dependent. The default value for NAME is 'FILE' concatenated with the infile
number. This default name may not be allowable for all processors.

FORMAT - infile format. This is a 1- to lO-character string (characters
after the tenth are ignored). This variable is made available to the routines
which manipulate the input files, so that these routines can branch to appropriate
code for manipulating different infile formats. The variable is not used by the
routines published; it is provided to facilitate possible modifications. The
default value for FORMAT is a blank string.

SKEW - infile time skew (seconds). This floating point quantity is added
to ali-time values read from the infile. Any individual channel skews specified
in a skew definition are in addition to the infile skew. The default value for
SKEW is O.

CHANNELS - number of data channels on the infile. Dimensions limit this

integer variable to a maximum value of 100. The PROGRAM TRANSMITTAL AND
IMPLEMENTATION section discusses how to change the dimension limit. Values
larger than the limit will result in an error message. Any reference to a
channel number greater than the number of channels for an infile will be
diagnosed as an error. The default value of CHANNELS is O.

UNIT - FORTRAN unit number for the infile. The default value of this

integer variable is equal to the infile number.

METHOD - default synchronization method. This floating point variable is
the default value of CHDT, which will be used to specify the synchronization
method for any data channel of the infile. This default can be overridden for
specific channels by a method definition. The dependence of the synchronization
algorithm on the value of CHDT is described in the section entitled SYNCHRONIZA-
TION ALGORITHM. The value of METHOD can alternatively be any character string
beginning with an 'H' and containing no embedded blanks, commas, or slashes. In
such a case, the default value of CHDT is O, which results in a hold-last-value
algorithm. The default value of METHOD is O.

Examples of valid infile definitions are shown below.

INF 5 CHANS = 10/
INFILE I UNIT = 9, NAME = XI5DATA SKEW = -.05 METHOD = HOLD-LAST-VALUE
CHANNELS = 15/ INFILE 3 CHANS = 20 METHOD = .025 /

6

Skew Definition

If the first two characters of a definition type field are SK, the defini-
tion is a skew definition. A skew definition defines the time skews of the data
channels within an infile. A skew definition cannot reference an infile until
after the corresponding infile definition. A skew definition is not required if
all of the channel skews for an infile are O.

The channel skews are added to the time values from the infile plus the
infile skew specified in the infile definition to obtain the skew-corrected time
values. The magnitude of the allowable skews is limited by program dimensions
as discussed in the SYNCHRONIZATIONALGORITHM section. The default value for any
skews not specified in the definition is O.

The second field of a skew definition must be the blank-delimited keyword
FILE. The third field is the infile number, delimited by blanks, a comma, or a
colon. All of the information in the skew definition pertains only to this
infile. The program stops with an error message if there is no previous infile
definition for the infile number.

The remaining fields of the skew definition are skews or channel numbers.
These fields are delimited by blanks or commas, except for the last field of the
definition, which is delimited by a slash. The content of each field determines
whether it is a skew or a channel number. If a decimal point occurs in the
field, it is a skew; otherwise it is a channel number.

The processing of,the skews and channel numbers is as follows. First, the
current channel number is initialized to 1. Whenever a skew value is encountered,
the skew for the current channel is set to that value and the current channel
number is incremented by 1. Whenever a channel number is encountered, the
current channel number is set to this value. Any attempt to assign a skew to a
channel number larger than the number of channels on the infile will result in
an error stop.

Examples of valid skew definitions are shown below. These examples assume
that infiles I and 3 have been defined with at least 10 and 7 channels, respec-
tively.

SKEWS, FILE 3: .01, .012, -.09, .01, .005, 0., .01 /
SKEWSFILE 1
10, .003, 7 .004 2 .001, -.003 .002 /

Method Definition

If the first four characters of a definition type field are METH, the
definition is a method definition. A method definition defines the values of
the CHDT variables that specify the synchronization methods for the various data
channels within an infile. A method definition cannot reference an infile until
after the corresponding infile definition. A method definition is not required
if all of the channels for an infile use the default method for the infile.

7

The allowable values of CHDT and the dependence of the synchronization
algorithm on the value of CHDT are discussed in the SYNCHRONIZATIONALGORITHM
section. The default value of CHDT for any channel not referenced in the method
definition is given by the METHODkeyword in the appropriate infile definition.
The second field of a method definition must be the blank-delimited keyword
FILE. The third field is the infile number, which is delimited by blanks, a
comma, or a colon. All of the information in the method definition pertains
only to this infile. The program stops with an error message if there is no
previous infile definition for the infile number.

The remaining fields of the method definitions are methods or channel
numbers. These fields are delimited by blanks or commas, except for the last
field of the definition, which is delimited by a slash. The content of each
field determines whether it is a method or a channel number. If the first
character of a field is "H" (for hold-last-value), it is a method field and
implies a CHDT value of O. If the first character of a field is "D" (for
default), it is a method field and the CHDT value used is the default given in
the infile definition. If the first character of a field is neither "H" nor "D",
and if the field contains a decimal point, then it is a method field giving the
value of CHDT. If the field meets none of the above requirements, it must
contain an integer channel number.

The procedure for the assignment of the method fields to data channels in
the infile is identical to the procedure used to assign skews in a skew defini-
tion.

Examples of valid method definitions are shown below. These examples
assume that infiles 2 and 4 have been defined with at least 10 and 4 channels,
respectively.

METHODS, FILE 4: HOLD, DEFAULT, .05, HOLD /
METH FILE 2:
8 .02 O. .04 4 HOLD /

Outfile Definition

If the first four characters of a definition type field are OUTF, the
definition is an outfile definition. An outfile definition defines the char-
acteristics and data channels of the output data file. One and only one outfile
definition must be present.

After the definition type, the remaining fields of an outfile definition
consist of keywords delimited by blanks or an equal sign and followed by values.
Except for the keyword FROM, each keyword is followed by a single value field
delimited by blanks, a comma, or a slash. A slash delimiter denotes the end of
the definition. The keywords recognized are listed below, along with descrip-
tions of the following data fields. The keyword DT must be specified; all others
are optional. The keywords can be given in any order, except that the keyword
FROMmust be last if it is present.

8

NAME - name by which the system identifies the outfile. Only the first I0
characters of the name are retained. The name cannot include slashes, commas,
or embedded blanks. This name will be used in the file specifier of the FORTRAN
OPEN statement. It is used nowhere else. The allowable names are processor
dependent. The default value for NAME is 'DATA' (this default name may not be
allowable on all processors).

UNIT - FORTRAN unit number for the outfile. The default value of this

integer variable is 10.

DT - sample interval for the synchronized frames of the outfile (seconds).
A positive nonzero value must be specified for this parameter. There is no
valid default.

TTOL - time tolerance used by the synchronization algorithm (seconds). The
use of this value is described in the SYNCHRONIZATION ALGORITHM section. The
value must be positive and nonzero. The default is 0.0001 second.

FROM - infile numbers and data channels from which the outfile data channels

are obtained. This keyword, if present, must be the last keyword of the outfile

definition. If this keywQ_d is omitted, the outfile data channels will be the
concatenation of all the infile data channels in the order of the infile numbers.

The program will stop with an error message if the number of outfile channels
exceeds the dimension limit of 100, or if there are no outfile channels. The
PROGRAM TRANSMITTAL AND IMPLEMENTATION section explains how to change the
dimension limit.

Following a FROM keyword, the remaining fields in an outfile definition
contain infile numbers and channel numbers delimited by blanks, commas, decimal
points, dashes, or slashes. A slash delimiter denotes the last field of the
definition.

A field contains an infile number if and only if it is delimited by a
decimal point. All channel number fields refer to data channels of the infile
specified by the most recent infile number field. Any channel number fields
that precede the first infile number field refer to the lowest infile number
defined.

A field delimited by a blank, a comma, a dash, or a slash is a channel
number field. Each channel number field specifies the infile channel source for
a single outfile channel, unless the delimiter between two channel number fields
is a dash; in that event outfile channels are obtained from all infile channels
between and including the two given. A dash separating a channel number field
from a succeeding infile number field has no special effect. Any use of a
channel number larger than the number of channels defined for the relevant
infile results in an error stop. A channel number of O can be specified to
indicate an unused outfile channel; the value of such an outfile channel will
always be O. The channel numbers can be specified in any order, except that
when a range of channels is indicated by two channel numbers separated by a
dash, the second number must be greater than or equal to the first. The data
channels on the outfile are in the order of their definition. No infile channel

9

(except for the dummy channel number O) can be used as a source for more than
one outfile channel.

Examples of valid outfile definitions are shown below. Only one outfile
definition can be in a single job.

OUTFILE, NAME= FILE1, DT = .05, FROM
4.3-20,12.604.21/

OUTF DT = .05, NAME= FILE2 FROM
4.345-10-2012.6-604.21/

OUTFILE DT = .02/
OUTFILE UNIT 11 NAME= OUT DT = .04 FROM1-20/

Note that the definitions of the files named FILE1 and FILE2 have identical
results except for the name.

Time Interval Definition

If the first two characters of a definition type field are TI, it is a time
interval definition. A time interval definition specifies the time intervals
during which available data will be written on the outfile. Data outside the
requested time intervals will be ignored. If the time interval definition is
omitted, the default is a single time interval from 0 to 24 hours. If a time
interval definition is present, it must follow all other definitions. At most
one time interval definition is allowed in a job.

Unlike other definitions, a time interval definition has specific require-
ments as to when a field must or must not be on a new card. This requirement
allows the program to check for some obvious errors which might otherwise give
unintended results.

A time interval definition consists of the definition type field, followed
by an arbitrary number of time interval cards. Each time interval card must
contain exactly eight fields of unsigned integer variables, delimited by blanks,
dashes, colons, decimal points, or commas. The program stops with an error
message if there are not exacty eight fields on a time interval card. The eight
fields contain the hours, minutes, seconds, and milliseconds for the beginning
and end of the interval, respectively. There are no software upper limits on
the values; for instance, the number of seconds can be larger than 59.

The end time for each time interval must be greater than the corresponding
beginning time, or the program will stop with an error message. The time inter-
vals need not be in increasing order and can overlap; however, the program is
more efficient if the intervals are non-overlapping and in increasing order.

A time interval definition is terminated only by the end-of-file on the
input card file.

10

Examples of valid time interval definitions follow:

TIMES
7:30:0:0 - 7:39:59:999
TIME
10, 20 - 56:0 10 21 0 0
500050100
10 20 7.500 - 10 22 13.5

Note that the end of the last intervalis 13 secondsand 5 milliseconds,
not 13.5 seconds.

Examples

This sectionpresentsbrief examplesof input cards for two jobs.

Example1_ -

INFILE1 CHANNELS= 20/
OUTFILEDT = .02/

This is the simplestpossibleinput deck. All 20 channelsof the infile
are written to the outfileat 50 samplesper second (0.02 second sample interval).
All 20 channelsuse a hold-last-valuealgorithm. All portionsof the infile
from time 0 to 24 hours are used_ By default,the file name and unit number for
the infile are FILEZ and 1, respectively;for the outfilethey are DATA and 10.

Example2. -

INFILE 3 CHANNELS= 20/
INFILE 1 CHANS = 20, SKEW = .015, METHOD = .04/
SKEWS FILE 3 -.01/
OUTFILEDT = .02 FROM

3.10-200 1.10-2030 3.1/
SKEWS FILE 1:15 .01 5 .01/
METHODS FILE 1:15 HOLD 5 HOLD/
TIMES:

7:30:0:0- 7:30:10:0
7:40:0:0- 7:40:10:0

This example is somewhat more complicated. The outfile data come from
channels 10 through 20 of infile 3, an unused channel, channels 10 through 20
and channel 30 of infile 1, and channel 1 of infile 3, for a total of 25 channels.
The data from infile 3 are all synchronized with a hold-last-value algorithm.
Channel 1 of infile 3 is skewed by -0.01 second; the remaining channels of
infile 3 have no skews. Infile 1 is skewed by 0.015 second, decompressed to
0.04 second sample intervals, and then interpolated, except for channels 5 and
15, which are skewed by an additional 0.01 second and synchronized with a hold-
last-value algorithm. (Channel 5 is not used for the outfile, so it is irrel
evant.) The outfile contains only data in the two requested lO-second time
intervals.

11

PRINTEDOUTPUT

This section describes the printed output of the SYNCprogram. The first
part of the discussion concerns the program's normal output; the second part
concerns error messages.

Normal Output

The first page of the output begins with a header identifying it as output
from the SYNC program. All of the card input information up to, but not in-
cluding, the optional time interval definition is printed in the output listing.
Any default values used are also listed. The program must gather all of this
information and check it for completeness and consistency before the processing
of the data files can begin.

The printing of a new page with the heading "SYNC. TIME INTERVALS" indicates
that the input cards (except for the time interval cards) have been checked and
that the processing of the data is about to begin.

Each requested time interval is printed in the listing when the processing
of that interval begins. If there is no time interval definition, no message
appears. The message "NO MORETIME SEGMENTSREQUESTED"appears when it applies.
The actual start time for each interval is printed. When the processing of a
time interval is completed, the message "END OF REQUESTEDTIME INTERVAL" is
printed, along with the number of frames written to the outfile for that interval
and the time of the last frame.

If an end-of-file or an error is encountered while the program is reading
from any infile, the message "END-OF-FILE OR ERRORON INFILE number" is printed
and the program terminates. The termination may be normal and expected or
indicative of an error, depending on circumstances.

If a time tag on an infile is much larger than the immediately preceding
time tag on that infile, the program considers no data to be available between
the two times. (The criterion for the allowable size of the time jump depends
on program dimensions and is discussed in the section entitled SYNCHRONIZATION
ALGORITHM.) In the event of a time jump, the program discontinues all output to
the outfile for the unavailable time period. All outfile output is discontinued,
even though data for some channels may be available on other infiles. The
program prints a message to indicate the time jump. Compressed infiles can
contain time tags with no associated data values in order to distinguish between
time intervals where no data are available and intervals where all of the data
are constant and have thus been compressed.

The message "FILES CLOSED. number TOTAL FRAMESON OUTFILE. LAST IS time,"
is issued at the termination of the program. The frame count indicated is
cumulative for all time intervals.

12

Error Messages

The error messages issued by the SYNC program are listed in alphabetical
order and explained below. Lower case quantities in the message listings indicate
variables.

"BUFFER SIZE INADEQUATE" (issued by OUTCHK). The value of LCBUF is
too small by the criterion described in the SYNCHRONIZATIONALGORITHMsection.

"CHANNEL NUMBERnumber IS ILLEGAL FOR INFILE number" (issued by MTHDEF,
SKWDEF, or OUTDEF). A channel number is larger than the CHANSspecified in the
infile definition. This may indicate that CHANSwas omitted from the infile
definition (it defaults to 0).

"DIMENSION LIMIT DOES NOT ALLOWnumber CHANNELS" (issued by INFDEF). The
number of channels specified for an infile exceeds the dimension limit of 100.

"DUPLICATE DEFINITION OF INFILE NUMBER" (issued by INFDEF). Two infile
definitions have the same infile number.

"DUPLICATEOUTFILE DEFINITION" (issued by OUTDEF). There are two outfile
definitions in the job.

"DUPLICATE USE OF INFILE CHANNEL" (issued by OUTDEF). Two different outfile
channels are obtained from the same infile channel.

"END-OF-FILE OR ERRORON INFILE number" (issued by ONEPNT). This message
can indicate an expected end-of-file or an error condition.

"END OF RANGEPRECEDESSTART" (issued by OUTDEF). Two channel numbers
separated by a dash (to indicate a range of channels) are not in increasing
order.

"END TIME BEFORE START" (issued by TIMREQ). The requested end time of an
interval precedes the requested start time.

"FIRST FIELD AFTER type SHOULDBE FILE; IT IS field" (issued by MTHDEFor
SKWDEF). The second field of a method definition or skew definition is not
FILE.

"ILLEGAL INFILE NUMBER"(issued by INFDEF). The infile number is less
than I or greater than 5.

"ILLEGAL INPUT CHANNELNUMBERnumber ON INFILE number" (issued by CHANS).
The mentioned channel number returned from the infile is larger than the number
of channels specified in the infile definition.

"NO INFILES DEFINED BEFOREOUTFILE WITH FROM" (issued by OUTDEF). An
outfile definition contains a FROMkeyword and no infiles have previously been
defined.

13

"NO OUTPUTCHANNELS" (issued by OUTCHK). No output channels have been
defined. This can occur only if no infiles were defined or if the number of
channels for all of the infiles is 0 (which usually means it was omitted).

"NOT EXACTLY 8 FIELDS ON TIME CARD" (issued by TIMREQ). This message is
self-explanatory.

"OUTFILE NOT DEFINED" (issued by OUTCHK). No outfile definition was in
the job.

"OUTPUT DT IS ZERO OR NEGATIVE" (issued by OUTCHK). This usually indicates
that DT was not specified in the outfile definition.

"PROGRAMERROR- CIRCULAR BUFFER OVERFLOW"(issued by FILL). This is an
internal program check which should not be encountered if the program is operating
correctly.

"TIME JUMP ON INFILE number" (issued by TJUMP). This message indicates
either an error or an expected time jump.

"TO0 MANYOUTPUT CHANNELS" (issued by OUTDEF or OUTCHK). The number of
output channels defined exceeds the dimension limit of 100.

"UNDEFINED INFILE NUMBER: number" (issued by MTHDEF, SKWDEF, or OUTDEF).
The referenced infile number was not defined by a previous infile definition.
This may mean that the infile definition is present, but that it follows the
first reference to the infile.

"UNRECOGNIZEDDEFINITION TYPE: field" (issued by DEFINE). The first field
of a definition is not a recognized definition type.

"UNRECOGNIZEDKEYWORD:field" (issued by INFDEF or OUTDEF). A keyword
field does not contain a valid keyword.

In addition to the above, system error messages about the internal reads in
IFMT and RFMTcan result from illegally formed fields. An example would be an
infile number field which contains a nonnumeric character.

FILE HANDLING

The outfile and the infiles are handled by a modular set of routines in
order to facilitate modifications for handling different file structures.

The subroutine OPNINF, with entry points OPNINF, CLSlNF, and REWINF,
performs open, close, and rewind functions on an infile. Each of these entries
has a single input argument, which is the infile number. Any other information
required about the infile can be found in common blocks /INF/ and /INFC/. Sub-
routine RDINF reads data from an infile. RDINF has two arguments. The first
is an input argument giving the infile number. The second is an output logical

14

variablewhich is set to .TRUE.by RDINF to indicatean end-of-file;otherwise,
this argumentmust be set to .FALSE.. Unless an end-of-fileis encountered,
RDINF must define all of the variablesin common block /INREC/(see appendix).
Each call to RDINF must returnthroughthisblock a single time tag and all of
the data associatedwith the tag. It is permittedfor the number of data channels
returnedto be O. Successivecalls to RDINF must return strictly increasing
values of the time tag, unlessthere is an interveningcall to REWINF. The time
tags need not be uniformlyspaced.

The suppliedversionsof OPNINF,CLSINF,REWINF,and RDINF handle uncom-
pressed,fixed length,FORTRANunformattedfiles. Each record containsinteger
hours, minutes, seconds,and milliseconds,followedby all of the data channels.

The subroutineOPNOUT,with entry points OPNOUT and CLSOUT,opens or closes
the outfile. There are no arguments. Pertinentinformationis found in common
blocks /OUTREC/and /NAMOUT/.

SubroutineWROUT writes a frame to the outfile;this routinealso has no
arguments. When WROUT is called,TIME containsa frame time in total seconds,
and A contains the synchronizeddata for the frame. The suppliedversionof the
subroutineWROUT writes the time and A on a standardunformattedFORTRANfile,
with the time in integerhours,minutes, seconds,and milliseconds.

PROGRAMTRANSMITTALAND IMPLEMENTATION

The following format will be used for the transmittal of the SYNC program
unless explicit instructions request otherwise. The program will be sent on
nine-track 800 BPI labeled tape (1600 BPI tape is also available on request).
The label will be an ANSI standard label with name SYNCHR. The tape will contain
ASCII coded card images (EBCDIC code is also available on request). Each card
image will be a fixed length 8D-character record. Records will be blocked in
fixed length blocks 1200 characters in length. Each block will contain exactly
15 records with no padding; records will not span blocks.

The data on the tape are FORTRAN source code. CDC UPDATE source card
images (ref_. 2 and 3) can be provided instead on request. The program is
complete as supplied; it contains no references to routines other than those
supplied and those defined in the ANSI standard (ref. 4). The program is coded
entirely in ANSI standard FORTRAN77 full language (ref. 4). The only machine-
dependent usages involve the restrictions on legitimate file names and the
precision of floating point arithmetic. The ANSl standard does not specify
these details.

The programconsistsof approximately1300 source cards, includingcomments.
With its currentdimensions,the programexecutesin approximately72,000 octal
words on a CDC Cyber 70/73 with the NOS 1.4 level 518 operatingsystem.

All array dimensionsare definedwith symbolicnames. All dimensionlimit
checks are performedwith the same symbolicnames. Therefore,in order to

15

change the array dimensionsin a subroutine,it is only necessaryto change the
statementsthat specifythe values of the symbols (the PARAMETERstatements).
This involveschangingonly a single value on a single card in the subroutine,
even though severalarrays might be dimensionedusing the symbolicname for that
value. If the program is maintainedwith CDC UPDATE (ref. 2) or a similar
utility,dimensionchangescan be made by changinga single card in the entire
program, ratherthan a card in each subroutine. The symbolicnames used for
programdimensions,the currentvalues assignedto the symbols,and descriptions
of the limitationsinvolvedare listedbelow.

MAXINF (value5) - the maximum numberof infiles.
MAXICH (value100) - the maximum numberof channelson an infile.
MAXOUT (value100) - the maximum numberof channelson the outfile.
LCBUF (value128) - lengthof the circularbuffer used for time-

sychronization. Efficiencyis improvedon some computersif LCBUF is an integer
power of 2, since numerousreferencesto the bufferare made, all of them modulo
LCBUF; the use of a power of 2 is not mandatory. The SYNCHRONIZATIONALGORITHM
sectiondiscussesthe program limitationsaffectedby LCBUF.

The accuracyof single precisionfloatingpoint variableson 32-bit computers
may be inadequatefor precisetime-synchronization.With a typical32-bit
floatingpoint word, the total time can be no greaterthan 5 hours if a time
resolutionof 1 millisecondis to be maintained. In some systems,the resolution
may not be this good. It is thereforerecommendedthat total time be stored in
double precisionon 32-bit computers. In order to use doubleprecisionfor total
time, every REAL statementin the programshould be changedto a DOUBLE PRECISION
statement. In addition,a functionDFMT must be added, identicalto RFMT,
except that it is double precisionand uses D format;the calls to RFMT to
define FSKEW and DTOUT in routines INFDEFand OUTDEF should be alteredto use
DFMT, and DFMT should be declareddouble precisionin these routines.

Dryden Flight Research Center
National Aeronautics and Space Administration

Edwards, California 93523
January 30, 1981

16

APPENDIX

SUBROUTINESAND COMMONBLOCKS

The first section of this appendix describes the purpose and general opera-
tion of the routines that constitute the SYNC program. The variables in the
common blocks are described in the second section.

Subroutines

SYNC - SYNC is the main program. It first calls the subroutines that read
the definitions and open the files. If the time segment number, NSEG, is I on
return from subroutine DEFINE, there is no time interval definition; in this
event, DEFINE has specified the default time interval and the call to TIMREQ
must be skipped. If NSEG is not 1, TIMREQ is called to read the first time
interval card.

The remainder of SYNC processes the requested time interval and then loops
back to read a new time interval card. TIMREQ returns 0 for the time segment to
indicate that no more time segments are requested.

DEFINE - Subroutine DEFINE reads the type fields of the definitions and
calls the subroutines appropriate to the type fields to read and process the
bodies of the definitions. The defaults for OUNIT and IUNIT are initialized to
O. A value of 0 for a file unit number is used as a flag to indicate that the
file has not been defined. The loop from cards 33 to 50 calls appropriate
routines to process the definitions. The loop is exited either on encountering
an end-of-file (DELIM = 'NONE') or a time interval definition. If an end-of-file
causes the exit, NSEG will be 1, to indicate that the default time interval is
used; otherwise NSEG is set to 0 to indicate that the time interval requests
must be read from the remaining input cards. Before returning, DEFINE calls
INFCHK and OUTCHK to check the definitions for completeness and consistency.

INFDEF - Subroutine INFDEF processes an infile definition. It first reads
and checks the infile number, and then sets defaults for all of the file param-
eters. The loop from cards 41 to 61 reads two fields containing a keyword
followed by a value. The value is assigned to the appropriate variable, de-
pending on the keyword. The loop repeats until a slash delimiter is encountered.

SKWDEF - Subroutine SKWDEF processes a skew definition. The subroutine
first reads the infile number and verifies that it corresponds to a defined
infile. The remainder of the subroutine processes channel numbers and skew
values until a slash delimiter is encountered.

MTHDEF Subroutine MTHDEF processes a method definition. The structure of
the subroutine is the same as that of SKWDEF; it reads and verifies the infile

number, and then processes the remaining fields in a loop. MTHDEF provides four
possible treatments for the fields encountered in the loop. The choice of
treatment depends on whether the field begins with "H" (for hold-last-value),

17

begins with "D" (for default), contains a decimal point (and thus a DT value),
or fails all of the above criteria (and must be a channel number).

OUTDEF - Subroutine OUTDEF processes an outfile definition. The initial
code checks for duplicate definitions and sets default values. The loop from
cards 38 to 52 reads in the keywords and scalar values. This loop is terminated
either when a slash delimiter is encountered after a value, or when the keyword
'FROM' is encountered. The rest of the subroutine is bypassed if the loop is

terminated by a slash delimiter. The loop from cards 60 to 62 initializes the
infile number to the smallest defined infile number. If no infilehas been de-

fined, an error message is printed. The loop from cards 64 to 101 processes the
input fields, defining the channel sources until a slash delimiter is encoun-
tered. Each field is treated as an infile number if it is delimited by a decimal

point, and as a channel number otherwise. The channel number fields are treated
differently, depending on whether the previous field was delimited by a dash or
not. If the previous delimiter was a dash, all of the channel numbers between
the previous one and the new one are included. The previous channel number is
stored in ICH, and the variable THRU indicates whether the previous delimiter
was a dash.

INFCHK (IFILE) - Subroutine INFCHK computes the characteristics of an
infile required for the processing. It computes the minimum and maximum channel
skews and the read-ahead time. The read-ahead time defines how far beyond the

output frame time the infile must be read to insure that all values required to
complete the frame are available. The argument of INFCHK is the infile number
of the infile to be processed.

OUTCHK - Subroutine OUTCHK verifies the validity of the outfile definition
and completes the definition of the outfile characteristics. The subroutine
first verifies that the outfile definition is present and that the sample interval

is positive and nonzero. If no output channels are defined (NCHOUT is 0), the
default output channels are obtained from all available input channels. If
there are still no output channels, the program aborts with an error message.
The loop from cards 46 to 55 obtains the outfile channel skews and synchronization
algorithms from the data for the appropriate infile channel.

OPENS - Subroutine OPENS calls OPNINF and OPNOUT to open the infiles used
and the outfile. It also initializes the cumulative output record count and the

latest output frame time to O.

TIMREQ - Subroutine TIMREQ reads a time interval definition card and interprets
it. If an end-of-file is encountered, the time segment number, NSEG, is set to
0 to indicate that no more time intervals are requested. TIMREQ calls FIELDS to
break the card image into eight fields; if the number of fields on the card is
not exactly eight, an error message is printed. TIMREQ then computes the requested
start and stop times in total seconds, verifying that the start time precedes the
end time.

TINIT - Subroutine TINIT performs the initialization required to begin

processing a new requested time interval. The record counts and time are
initialized. The infiles are rewound if requi'red,and the current-values-table
is reset.

18

ONEPNT - Subroutine ONEPNT processes the data for one outfile frame time.
For each infile, the loop from cards 32 to 52 calls RDINF to read the infile,
CHANS to associate the infile data with the appropriate outfile channels, and
FILL to fill the circular buffer with the synchronized data values. This process
is repeated until the infile has been read far enough beyond the current outfile
frame time to insure that all of the information pertinent to the current
outfile frame is available. If an end-of-file is encountered, the buffer is
flushed, all files are closed, and the program terminates. If a time jump is
encountered, TJUMP is called to complete the processing of the current frame
and to specify the time of the first frame after the jump; the subroutine then
returns so that the calling routine can determine whether to continue processing
on the new frame. If the infiles are all processed without encountering an
end-of-file or a time jump, ONEPNT calls WRPNT to write an outfile record and
increments the current time frame before returning.

CHANS(IFILE) - Subroutine CHANS determines the outfile channels to which a
record of data from an infile is to be routed. The infile number is indicated

by the argument. On entry to CHANS, the values in /INREC/ are all defined from
the infile: TOD is the time tag; NSIGS is the number of data values at the time
tag; and VALS and ICHANS contain the data values and corresponding infile
channel numbers. Subroutine CHANS first adds the infile skew to the time tag,
records the current skewed infile time in FTIME, and increments the infile
record count. The loop from cards 30 to 41 replaces the infile channel numbers
with the outfile channel numbers to which the data values are to be sent. Data

values not used for the outfile are deleted from the list, and subsequent values
are moved up. The length of the shortened list is put in NSIGS before the
subroutine returns.

TJUMP (IFILE) - Subroutine TJUMP handles a time jump on the infile number
indicated by the argument IFILE. TJUMP first calls FLUSH to write the current
outfile frame, if available, from the circular buffer. The outfile frame time
is then reset to a point after the time jump and a message is printed.

FILL - Subroutine FILL fills the circular buffer with synchronized data
values. Data come into FILL in common block /INREC/. The loop from cards 26 to
56 processes the data values from /INREC/ one at a time. The first step in the
processing is to place the data value and the associated time in VCNOW and
TCNOW, moving the previous values to VCLAST and TCLAST. The channel skew is
added to the time tag from /INREC/ during the move to TCNOW.

The routine then determines whether there are any outfile frames for which
the synchronized data value for the channel can now be defined. TOUT is the
time of the earliest outfile frame for which the synchronized data value of the
channel has not been defined. If TCNOW is less than TOUT, the synchronized data
value at TOUT cannot yet be defined, so the processing of the next channel
begins. Otherwise, the synchronized data value is computed and placed in,the
circular buffer. The algorithm used to compute the synchronized values is
discussed in the SYNCHRONIZATION ALGORITHM section. After placing the value in
the circular buffer, the routine loops back to statement number 200 to check
whether any further synchronized values can be defined for the channel.

19

WRPNT - Subroutine WRPNT moves a frame from the circular buffer to common
block /OUTREC/ and calls WROUT to write the record. If any data value in the
frame has not yet been defined, WROUT defines it using a hold-last-value algo-
rithm. WRPNT also increments the interval record count and cumulative number
of records.

FLUSH - Subroutine FLUSH flushes a record from the circular buffer if a
sufficiently completed record is available. FLUSH is called after a time jump
or end-of-file is detected. The criterion used in FLUSH to determine whether a

'_completedrecord is available is less strict than the criterion in ONEPNT, which
controls the normal processing. ONEPNT reads the infiles sufficiently far ahead
so that no further information could affect the output frame being constructed.
FLUSH requires only that all skewed time tags previous to the outfile frame time
be read. The less stringent criterion used in FLUSH is designed to prevent the
needless loss of the data in the last frame in an infile when the file is proc-
essed by SYNC.

CLOSES - Subroutine CLOSES closes the outfile and all defined infiles. It

also prints the cumulative record count for the outfile.

NXTFLD (FIELD, DELIMS, DELIM) - Subroutine NXTFLD returns the next field
from the card input file in the output argument FIELD. Fields longer than FIELD
are truncated without comment. The input argument DELIMS is a list of delimiters
used to terminate the field. The output argument DELIM is the delimiter which
terminates the field. The end of a card is always considered a delimiter (fields
cannot span cards). If the terminal delimiter of a field is the end of a card,
DELIM is set to 'END' If the card input file is exhausted, FIELD is set to
blanks, and DELIM to 'NONE'. See subroutine FFLD for a description of the
special handling of blank delimiters.

FIELDS (STRING, FLDS, DELIMS, NFMAX, NF, NEXT) - Subroutine FIELDS uses a
specified list of delimiters to break a character string, STRING, into fields.
The fields are returned in the output argument FLDS, which is a vector of char-
acter strings. Fields longer than the elements of FLDS are truncated without
comment. The input argument DELIMS is a list of delimiters used to terminate
fields; the end of the string is also used as a delimiter. Leading blanks are
removed from the fields if one of the delimiters in DELIMS is a blank. The input
argument, NFMAX, is the maximum number of fields to be returned, and the output
argument, NF, is the actual number of fields returned; NF may be O. The
input/output argument NEXT is the character location in STRING at which the field
search begins. On return, NEXT points to the start of the next nonblank field
not returned in FLDS, or to LEN(STRING)+I if no more fields are present.

FFLD (STRING, FIELD, DELIMS, DELIM, NEXT) - Subroutine FFLD returns in
FIELD the first field found in the string STRING, starting at the location NEXT.
Fields longer than FIELD are truncated without comment. FFLD is used by both
NXTFLD and FIELDS. The input argument, DELIMS, is a list of delimiters used to
terminate the field. The output argument DELIM is the delimiter which terminates
the field. If the field is terminated by the end of the string, DELIM is set to
'END' If no field is found in STRING, FIELD is set to blanks and DELIM is set to
'NONE' The value of NEXT on return is as described for subroutine FIELDS.

20

Blanks receive special treatment if one of the characters in DELIMS is a
blank. In this case, leading blanks are removed from the field; otherwise, the
field starts at the NEXT character of STRING. If the terminal delimiter of a
field is a blank (which is possible only if a blank is in DELIMS), FFLD searches
for the first nonblank character after the field. If such a character exists

and is one of the delimiters specified in DELIMS, this character (rather than
the blank) is considered to terminate the field for purposes of defining DELIM
and NEXT. The effect of this process is to allow blanks to be used freely
anywhere except within a field.

IFMT(A) - Function IFMT returns the integer (I format) translation of an
input character string, A. The format used is modified in execution time to
reflect the length of the string A; this is necessary to handle arbitrary length
strings correctly. The diagnostics of illegal strings for I format are left to
the system's input/output routines.

RFMT(A) - Function RFMT returns the floating point (F format) translation
of an input character string, A. The format used is modified in execution time
to reflect the length of the string A; this is necessary to handle arbitrary
length strings correctly. The diagnostics of illegal strings for F format are
left to the system's input/output routines.

SECS(IT) - Function SECS returns the total floating point seconds translated
from the integer hours, minutes, seconds, and milliseconds stored in the four-word
input vector, IT.

HMSMS(T, IT) - Subroutine HMSMSconverts time from total floating point
seconds, T, into integer hours, minutes, seconds, and milliseconds and places
the result in the four-word output vector, IT.

BOOBOO(MSG)- Subroutine BOOBOOprints an error message given as the input
argument, MSG, and then stops.

OPNINF(IFILE), CLSlNF(IFILE), REWINF(IFILE) - Subroutine OPNINF, with entry
points OPNINF, CLSlNF, and REWINF, opens, closes, and rewinds an infile. The
input argument specifies the infile number. This routine may be altered to
reflect different infile structures.

RDINF(IFILE,EOF) - Subroutine RDINF reads a data record from an infile.
The infile number to be read is specified by the input argument, IFILE. The
logical output argument, EOF, should be set to .TRUE. if an end-of-file or error
is encountered; otherwise EOF should be set to .FALSE.. The information from
the record read should be placed in /INREC/ unless EOF is set to .TRUE.. This
routine may be altered to reflect different infile structures.

OPNOUT, CLSOUT - Subroutine OPNOUT, with entry points OPNOUTand CLSOUT,
opens and closes the outfile. This routine may be altered to create different
outfile structures.

21

WROUT - Subroutine WROUT writes a frame of data to the outfile. The data
to be written are found in /OUTREC/. This routine may be altered to create
different outfile structures.

Common Blocks

CHSKEW - Common block /CHSKEW/ contains the channel skews and interpolation
methods for the outfile channels. These values are obtained from common block
/CSKEW/ by subroutine OUTCHK.

CIRBUF - Common block /CIRBUF/ contains the circular output buffer CIRBUF
and related variables. VCNOW and VCLAST are vectors of the current and previous
data values from the infile for each outfile channel; TCNOW and TCLAST are the
corresponding skew-corrected time tags. ITNEXT is the frame index of the outfile
frame being processed. The actual index used in CIRBUF is the frame index
modulo LCBUF. IDONE is a vector of frame indices that indicate the frame of the
last value computed for each outfile channel.

CSKEW - Common block /CSKEW/ contains the channel skews and interpolation
methods for each of the infile channels. This information is defined in routines
INFDEF, SKWDEF, and MTHDEF.

INF, INFC - Common blocks /INF/ and /INFC/ contain various kinds of infor-
mation about the infiles. The unit numbers (IUNIT), file skews (FSKEW), numbers
of channels (NCHF), sample intervals (FDT), file names (FNAME), and file formats

(FFMT) are specified by input cards. The computations of minimum and maximum
channel skews (FSKWMN and FSKWMX) and read-ahead time (FRDAHD) are based on the

input information. FTIME contains the latest time tag read from each file; the
time tags are corrected for the file skew. NIRECS contains a count of the
number of records read from each infile.

INREC - Common block /INREC/ contains the information from a single infile
associated with one time tag. These data are defined by subroutine RDINF.
Subroutine CHANS then deletes unused data and converts infile channel numbers to
outfile channel numbers.

MAPCH- Common block /MAPCH/ contains a map for converting infile channel
numbers to the corresponding outfile channel numbers. A zero value in this map
means that the infile channel is not used. The map is defined in OUTDEFor
OUTCHK.

OUTF, OUTFC - Common blocks /OUTF/ and /OUTFC/ contain information about
the outfile. NRECSis the record count for the time interval, and NRTOT is the
cumulative record count. The remaining variables are defined by subroutine
OUTDEF.

OUTREC- Common block /OUTREC/ contains the data for one outfile frame.
These data are picked from the circular output buffer by subroutine WRPNT.

22

REQTIM - Common block /REQTIM/containsthe descriptionof a requestedtime
interval. NSEG is the time segmentnumber,which is set to 0 if no more time
intervalsare requested. STIME and ETIME are the requestedstart and stop times
in total seconds. The informationin /REQTIM/ is defined in DEFINE and TIMREQ.

TNEXT - Common block /TNEXT/containsinformationthat definesthe time of
the next outfile frame. TNEXT is the time of the frame in floatingpoint seconds.
TTOL is a time tolerancein floatingpoint seconds. The use of TTOL is discussed
in the SYNCHRONIZATIONALGORITHMsection.

REFERENCES

1. FORTRANVersion 5 ReferenceManual. PublicationNo. 60481300,Control
Data Corp., c.1980.

2. UPDATE Version I ReferenceManual. PublicationNo. 60449900,Control
Data Corp., c.1980.

3. Maine, RichardE.: Programmer'sManual for MMLE3, A General FORTRAN
Programfor Maximum LikelihoodParameterEstimation. NASA TP-1690,
1981.

4. AmericanNationalStandard ProgrammingLanguageFORTRAN. ANSI X3.9-1978,
AmericanNat. Stand. Inst. Inc., c.1978.

23

1. ReportNo. 2. GovernmentAccessionNo :3. Recipient'sCatalogNo.
NASA TM-81355

"4. Title and Subtitle 5. Report Date

USER'S MANUALFORSYNC, A FORTRANPROGRAMFORMERGING March 1981
ANDTIME-SYNCHRONIZINGDATA 6. PerformingOrganizationCode

RTOP505-43-14

7. Author(s) 8. PerformingOrganizationReportNo.
Richard E. Maine

10. WorkUnit No.

9. PerformingOrganizationNameandAddress

Dryden Flight Research Center 11. Contractor GrantNo.
P.O. Box 273 _?
Edwards, California 93523

• 13. Typeof ReportandPeriodCovered

t2. SponsoringAgencyNameand Address Technical Memorandum

National Aeronauticsand Space Administration 14.SponsoringAgencyCode....
Washington, D.C. 20546

/5. SupplementaryNotes

Microfiche supplement is attached.

-16. Abstract

This report describes the FORTRAN 77 computer program SYNC for merging and
time-synchronizingdata. SYNC reads one or more input files which can contain
either synchronousdata frames or time-taggeddata points, and which may be
compressed. The program decompressesand time-synchronizesthe data, correcting
for any channel time skews. Interpolationand hold-last-valuesynchronization
algorithms are available. The output from SYNC is a file of time-synchronized
data frames at any requested sample rate.

.h

-17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Data merging Unclassified--Unlimited
Time synchronization
FORTRAN

STAR category: 61

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Pdce*

Unclassified Unclassified 26

*For sale by the National Technical InformationService, Springfield,Virginia 22161

