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I. INTRODUCTION

The goal of this research is to gain quantitative fundamental
understanding of the properties and behavior of clusters of metal atoms
as a function of the number of atoms in the cluster. Among the properties
of interest are the various possible equilibrium structures a cluster of
atoms mzy adopt as each atom is added, the relative stability and degree
of order of these equilibrium structures, their characteristic fundamental
modes of vibration, and the magnitude of the energy barriers regulating
the rate of interconversion of one equilibrium cluster structure to another

one.

IT. SCIENTIFIC PROGRESS

During this reporting period, scientific progress was made in
two different areas. Continuing progress was made on developing the capa-
bility to calculate gradients of the matrix elements of the effective core
potential. Particular emphasis has been given towards finding a suitable
algorithm for the efficient processing of the derivative integrals after
use has been made of the combined translational and rotational invariance
properties of the integrals to reduce the integral calculation to just the
truly linearly independent derivative integrals.

The most significant progress during this period, however, con-
sists of the development of an entirely new approach to the calculation of

electronic potential energy surfaces. The details of this new approach are
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described in Appendix A in the form of a preprint of 2 manuscript that

has been submitted for publication te The Journal of Chemical Physics,

This new approach is based upon the atom-superposition-and-electron-
delocalization (ASED) model of chemical binding., It has the advantage of
dividing the electronic energy ints physically transparent groups of terms.
Moreover, whereas conventional methods approach a molecular calculation
without recourse to the information already calculated from the component
atoms, the structure of the ASED energy lends itself to the fullest utili-
zation of the properties already available about the atomic solution in order
to simplify the calculation of the molecular energy. This new approach has
prospects of reducing even by an order of magnitude the effort required in
the calculation of the molecular energy, and thereby constitutes a major
step towards accomplishing the goals of this research explained in the

introduction. i
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APPENDIX A
A new approach to the calculation of potential
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A first-principles analog of the semi-empirical atom-superposition-
and-electron-delocalization method for calculating potential

energy surfaces

Luis R. Kahn
Physical Metallurgy Section
Battelle Columbus Laboratories
Columbus, Ohio 43201

(Received

ABSTRAC

A new decomposition of the molecular energy is presented that is
motivated by the atom-superposition-and-electron-delocalization physical
model of chemical binding. The energy appears in physically transparent
form consisting of a classical electrostatic interaction, a zero-order
two-electron exchange interaction, a relaxation energy, and the atomic
energies. Detailed formulae are derived in zero- and first-order of ap-
proximation. The formulation extends beyond first order to any chosen
Tevel of approximation leading, in principle, to the exact energy. The
structure of this energy decomposition lends itself to the fullest util-

ization of the solutions to the atomic sub-problems to simplify the cal-

culation of the molecilar energy. If non-linear relaxation effects remain

minor, the molecular energy calculation requires at most the calculation
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of two-center two-electron integrals. This scheme thus affords the pros-
pects of substantially reducing the computational effort required for the

calculation of molecular energies.




I, INTRODUCTION

In molecular problems involving large numbers of electrons, as in
the case of molecules consisting of many transition-metal atoms and many
carbonyl groups, the application of the standard first-principles methods
of molecular quantum mechanics(1'2) becomes impracticable. 1n these cases

(3,4) that, while practical,

one must resort to more approximate methods
retain the prospects of yielding a realistic physical description of
chemical binding.

One semi-empirical method that has been actively applied to large
electronic-structure problems is the atom-superposition-and-electron-
delocalization (ASED) method f Anderson{®), This method has the desir-
able property that, in addition to the moiecular one-electron energy levels,
it also yields an approximate molecular total energy as a function of the
function of the positions of the constituent atoms. The application of
this method to large molecules has been shown to yield useful predictions
of molecular structure, force-constants, and relative bond strengths(6'10>.
The application of the ASED method ranges from the study of the structures
of clusters of transition-metal atoms(7), to the study of molecules chemi-
sorbed on metal-cluster surfaces(e), to the study of organometallic com-
pIexes(9’10).

The ASED method is a semi-empirical method. The molecular orbital
energies are obtained by what is in essence the extended-Hlickel method(5'11)

The ASED molecular energy ansatz is obtained by combining an energy
that is derived from an apnroximation to the integral Hellmann-Feynman
force formu]a(5’]2)

Hlickel energy).

with the sum of molecular orbital energies (the extended-
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The validity of the ASED method rests mainly on the evidence provided
by the numerous useful applications that have resulted from {its use., There
exists, however, no first-principles derivation of the ASED method that
would show how this method fits as a particular step into a well-defined
hierarchy of approximations to the exact molecular energy. The absence of
such a theoretical basis has been the source of skepticism about the validity
of the ASED method. Recently, Anderson has presented work aimed at elucidating
the theoretical basis of the ASED method.(]a) While the physical reasoning
in this work, based on a time-dependent approach to chemical bonding, is
compelling, the formulation of tke analytical aspects of the method, espe-
cially for the many-electron cases, remain heuristic.

In this paper we present a first-principles decomposition scheme of
the molecular total energy using the conventional procedures of molecular
quantum mechanics. We have attempted to adhere, as closely as we found
possible, to the ASED physical model of the stages in the bonding process
to set up the basic steps from which then flow, as a consequence, the
definitions of the terms in the decomposition of the energy. This energy
decomposition is formulated so that it may, in principle, be taken to any
chosen level of approximation leading up to the exact energy. There are
some inherent differences in a semi-empirical approach and a first-
principles approach such as the present one. Without attempting to resolve
this issue, we find that in zero-order of approximation the present energy
decomposition does indeed have an analogy in the form of its terms to the
semi~empirical ASED energy ansatz, This analogy in form, however, does

not extend beyond the zero-order level. The inclusion of the first-order
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correction terms yields a different energy formula that, nevartheless,
corresponds physically even more closely to one of the main effects
envisioned in the ASED physical picture of the chemical bonding process,
namely the relaxation effects subsequent to the vigid-atom superposition
stage. The main themes of the ASED physical model of chemical bonding
are found to reemerge in generalized form even on including higher order

corrections to the energy decomposition.

11, THE ASED SEMI~EMPIRICAL METHOD

Proceduraliy, the ASED method consists of two steps., The first
step is the calculation of pair-wise interaction energies among the atoms

in the molecule using the formula

at
°a (R ()

E, = YA
i EZB g TA% BEIEYE

The summations range over all unique pairs of atom labels A anc B, and

the symbols Ry, Z,, and p;t(x - gA), for example, refer to the position
vector, nuclear charge, and atomic charge density of the A'th atom re-

spectively. The spatial coordinate vector is written as y. The second
step is the calculation of the molecular orbital energies, {ek, k=1,

«esy N}, by solving the secular equation

E Z (Hp,,A;v,B " Bk su,A;v,B) Cu,/’\;k =0
S

A
He A

\JCSB§ k=1, ..., n<N (2)
The restrictions and approximations to this equation are the same as in

the extended Huckel method.(i]) The basis set on each atom, SA’ is

s D TN A i, g X . i, W i
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restricted to a minimal set of valence atomic orbjtals., The Su’A;v B's
are the elements of the overlap matrix. The hamiltonian matrix elements

are defined as
Hu.A;v,A == 1A Sy (3a)

H

k1

]
) K<Iu,A * ir'\),B>Su,l\;v,8 (3b)

The I}1 A is the jonization potential for removal of an electron from the
»

U!A;,\HB

u'th orbital of the A'th atom. The K factor, based on experience with
first-row diatomic molecules, is defined by Anderson(s) as

where D is the distance between the centers. Note that we shall be
using Hartree atomic units in all the equations. When required, the
following conversion factors are used: 1 bohr = 0.5291773, 1 hartree =
27.21165 e.V. The approximate total energy of the ASED method is ob-

tained by combining the extended Hucke] energy(1])

EEH = 231 ("occ) k €k (5)

where {n is the occupation-number of the k'th molecular orbital,

occ)k
with the Ep interaction energy, Eq. (1) as follows

E = Ep + Egy (6)

The physical picture that guides the formulation of the ASED
method envisions chemica’l binding as the synthesis of two distinct

processes.(s’}a) The molecule is envisioned as being built-up, first,
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by the process of bringing together "rigid" and “"non-exchanging" atoms.
The electrons of each atom are not allowed, at first, to be perturbed by
the proximity of other atoms, and neither are the electrons allowed to
exchange between the atows, Once the atoms are thus positioned, the
second stage of the molecule-building process is envisioned as allowing
the electrons to "delocalize" from the parent atom to all other atoms.
In order to isolate the contributions to the energy of the exchange
process, effects on the electrons due to fields from neighboring atoms,
according to Anderson,(]s) are to be neglected during this second stage,
The first process in the build-up of the molecule is envisioned as being
energetically unfavorable for binding; the second process is envisioned
as being energetically favorable. The balance of these two is envisioned
as leading to the equilibrium configuration of the atoms in a mo1ecu1e.(13>
It is convenient to separate the issue of the validity of the energy
ansatz used in the ASED method from that of the usefulness of the physical
picture motivating this approach. The ASED method proceeds from the view
that chemical bonding i5 a process ensuing in physically distinct succes-
sive stages. This is a theme that has some prospects of having theoretical
validity., 7o illustrate this point, consider reviewing the simple case
of bonding iw the H; molecule~ion in the Tight of the ASED conceptual
picture. Let the basis set for the variational energy calculation be a

minimal basis set (MBS) consisting of a hydrogen atom orbital centered

on each of the nuclai,(]4)
A= e (-l - Ryl (7a)
__1 v
|B> g exp (- |Ir - Rgll } (7b)
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The secular equation is

-k H

Ha,A AB "~ ESap

HA,B - ESA,B HA,A - E

and the lowest-energy solution is(ls)

1

(8)

(9)

Starting from the usual electronic hamiltsnian for this case(15), one

obtains

® . <' "'] ] .
L A TS A (e i

(10)

where I = =1/2 hartree = - 13,606 eV is the first jonization potential

of a hydrogen atom. One recognizes the matrix element on the right-

hand-side of Eq. (10) as the Ep energy of the ASED approach, Therefore,

we write

Hap = - T+ Ep

(1)

In the case of the Hg molecule-ion, EP physically corresponds to the classical

electrostatic energy for bringing a "rigid" and “"non-exchanging" hydrogen

atom up to a proton. Hence, we identify the HA A energy with the first
3 )

process envisioned in the ASED conceptual picture of bonding.

over, in simplifying the expression for ER one obtains

-]

g w [ o (1) e
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where D = [[Ry - Rgll and p(r) = 4 exp(- 2r). It is clear from this

that ER 50, and that, consistent with the ASED physical picture, ER
is the energetically unfavorabje factor {or binding.

The HA.B matrix element is the >wplitude for the binding
electron to make an exchange from basis |A> to basis |B>, or, equiva-
lently, to "tunnel” from one atom to the other.(lﬁ) Hence, we identify
qualitatively the HA,B energy with the second process envisioned in the
ASED conceptual picture of bonding. Starting from the usual electronic

15)

hamiltonian for this case,( one obtains

H

2 - -1 ]
ne T S N T Ty B (09

The evaluation of the matrix element on the right hand-side of Eq. (13)
shows that HA,B < 0 for all except very small internuclear distances,(15)
This is consistent with the presumption of the ASED conceptual picture
that the energy of the second process would be the energetically favor-
able one for chemical binding. The identification of the role of ex-
change matrix elements as the source of chemical binding, of course, has

(16-20)  £ipa11y, these two energetically

a long and illustrious history.
opposite factors, ER and HA,B, combine directly in Eq. (9) to yield, as
envisioned in the ASED conceptual picture, the approximate molecular
total energy. There is in Eq. (9) a renormalization factor that does
not affect these conclusions since it is a common factor of both ER and
HA.B' The dependence on internuclear distance of the competing energies
ER and HAB’ and the resultant energy, E, is illustrated in Fig. 1. The
symbol 4 in the notation AE used in Fig. 1 indicates that the Vimiting

value of E at large internuclear separations has been subtracted. We

shall adopt this convention in the rest of this paper.

ot B i i B v MR
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total energy change AE as a function of internuclear distance

for the Hz+ molecule in the Xzz; state,
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The prospects of reconciling Anderson's ASED energy andatz with
that of the MBS variational energy approximation are not good. The ASED

energy tor this case is

E = ER * ¢ (]4)
where
I B
e = sy 5T B e (15)
W (16)
Hyg =~ KISy (17)

These equations resemble those of Eq. (8) only in form. The irreducible
difference lies in the use of the K factor in the ASED exchange matrix
element, Eq. (17). This factor controls the contribution of the energy
favorable for bonding to the total energy. Moreover, the total energy
appears to be very sensitive to small variations in this factor. Figure 2
shows the sensitivity of the ASED potential energy curve for H; on the
choice of the K factor. This figure also illustrates the large differences
that can result between the MBS energy curve and the ASED energy curve.
This is a numerical indication that the justification for Anderson's

ASED energy formulae lies beyond the MBS energy formula. The exact
solution may indeed he cast into the form of just a two-state problem by

(21,22)

use of the partitioning technique. Such equations are the ultimate

basis upon which the validity of the semi-empirical ASED energy formulae

can be decided, The analysis of how semi-empirical approximations reijate

)

to the exact theoretical basis has been presented before by Freed.(z3

TP, - S




T

Wy e

rtate

g —

N

To conclude, Fig. 2 also shows, for purposes of comparison, the potential
energy curve resulting from an exact numerical solution of the H2 molecule

problem in the G state.(24)

II11. A FIRST-PRINCIPLES ASED METHOD

We present below a different molecular-energy decomposition scheme

than the traditional one.(]’z) One finds in this decomposition some
common elements, however, to the work of Kitaura and Morokuma.(zs) In

the present work, we have attempted to adhere, as much as we find possible,
to the ASED physical picture of the binding process to motivate the group-
ing of the various niclecular energy terms. ,

The first task is to find the interaction energy associated with the
process of building up the molecule by bringing together "rigid" and "non-
exchanging" atoms from infinity to their assigned positions within the
molecule. The interaction energy of this process is jdentified in *he
ASED energy ansatz with Eq. (1), the ER energy. Although this was found
to be correct in the case of the H; molecule reviewed above, it does not
appear that Eq. (1) is, in general, the correct energy of this process.
For instance, a first inspection of Eq. (1) shows that it contains, for
each pair of atoms, an arbitrary choice as to which of the two atoms is to
be chosen as the source of the electrostatic potential in this formula.

It seems unphysical that, in the absence of other factors, the correct
interaction should contain an arbitrary choice of this type.

It is possible to show that indeed ER does not, in general, follow

(5,13) (5,26)

from the premises from which it is proposed to be derived.

Anderson starts the derivation of Eq. (1) by invoking the Hellmann- .

Feynman force-formula, ‘27 28)
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molecule in the X

energy(]s) and the exact potential energy curve.
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Vo E = 2
’ A(\BZ;A “MB m!" o 17 - Ryl

where A is the gradient operator with respect to the three components

TEWE dp (18)

of the position vector Rp and p(g) js the exact molecular one-electron
density. The exact density is then written in terms of the superposition

of atomic densities and a conplementary temm,
() =2 pat(x - Rg) + 60(r) (19)

In order to isolate the energy resulting solely from the superposition

5,13,26) neglecting in Eq.

of the "rigid" atoms, Anderson advocates(
(18) all terms not arising from the superposition of atomic densities

in p(n). The result, which we denote Vp Eps is

(Rg = Ra) 5 [t (r - Ra)

E, =2, [ 2 2 - (r - 20)
LR A PR AR PEVER A

Note that, because each atomic density is of even parity under inversion
through its own center,

R (21)

at
(r - Ry) ————=—dr
TP

A

Using this result, one may write Eq. (20) in a more compact form

(5 - Ra)
E, = Z - R d 22
VQ R ™ 4 g;A f"e (x - Rg) TE Y (22)

. ;
et s e 3 et
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where

op (1 - Rp) = Zg 8t - Rg) - pp (K - Ry (23)

The function Ep 1s obtained from the gradients of Eq. (22) by a line
integral along a path taking the system from infinity to its assigned

configuration in the molecuie,

Eq ‘./EA: a Ep * Ry 124)
C
Ay

This reduces, after some manipulation, to

E, =Y T lz(- Zp } p?&t({'ﬁ/\)d
ROEST | P\IIRy - Roll S Il - Ryl

*

K

' 1
+ -
f [ZA 5 (1) - Zg pfxt(ﬁ)] f o ST Bl |

g+ Ry - Ry 2

(-]

The remaining integral over the A variable is a standard integraT.(zg)

The result is a complicated combination of terms the details of which

become unimportant here. The point to note is that the summand in

Eq. (25) is symmetric upon permutation of atom labels A and B. Thus,

the problem with the arbitrary choice in the heretofore used formula

for ER, Eq. (1), is resoived. The corrected equation also shows that,

if the atoms of a particular pair are identical, then the formula for

that pair interaction reduces to just that obtained from Eq. (1).
However, even the corrected expression for Ep, Eq. (25), does

not fully correspond to the energy uf the physical process of building

up the molecule from "rigid" and "non-exchanging" atoms. The source

- g param o - sy Ly T—— - _— v ’
L e e A il e P N ~ = yran s e
- 2 R iy g A e e g i i |
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of the problem is that, when an approximate one-electron density, such
as the superposition of atomic densities, is used, then, the Hellmann-
Feynman formula, Eq. (18), only yields a part of the gradient of the
energy.(ao) The other part of the gradient of the energy derives from
the terms involving the partial derivatives of the wavefunction. There
is in this case, no apparent physical justification for neglecting this
other part, The total gradient, which we denote A Ecz, in this case is

. T aty,
"afer " TAFR * %EA f TR (X - Ra) 9t

0%y v, o24(p'- R,) dr dp' (26)
/-/”E e - Rg) a ep (X'~ Ry) dp dr

where VA R is given by Eq. (22)., After some algebraic manipulation, one

obtains

(- k" . o
et ” B#A_[_[“E p'l) Pa{K' - Ra) eg(K - Rg) d oy (27)

where the density pA(x'- gA), for example, is defined by Eq. (23).

Proceeding just as before, one obtains the energy Eq.p from the gradient,

VaE.p» bY @ line integration, e,y. Eq. (24). The result is

1y eplL e{L'~ Ra) dp dpt
Ewp =7 Y (28
ZA#B-[[ n,»; 'l )

This is just the energy expression expected from classical electro-

statics. It is tne work of assemblying "frozen" charge distributions

pA(x - 5A) by the process of bringing each one successively from infinity
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to its assigned position in the presence of the electric field of the
"frozen" charge distributions already assembled.(31) It therefore seems
that Ec“, rather than ER, best satisfies the requirements of the correct
energy expression for the first stage of bonding of the ASED approach,
The next step 1s to incorporate the Ec& energy into the molecular

energy. The expression for the molecular total energy 1s<15’22)

+EZ.}.A._E§___. (29)
A>B IRy - Rgll

The exact electronic energy may be written as the expectation value

E'EC’/C

Epp = <¥| Alv>/<y|y> (30)

where, as usual, the exact many-electron molecular hamiltonian, Q,

is the sum, over all electrons, of the kinetic-energy, nuclear-

attraction, and electron-repulsion operators(]5’22)
TEDIICHED D IEE - (31a)
1 1>j||x:i-rj“
» 12 Zp
h = - 7V ) . W— (31b)
AL - Ryl

The exact many-electron wavefunction, ¥, is one of the eigenfunctions
of the hamiltonian operator, f. The particular electronic state to
which Ea& refers to is dictated by the choice of the eigenfunction v.
Consider constructing the following combination of terms, which we

Tabel D,
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at at
D= 1}[: }E:(: J{,._jﬁl__gﬂl dr = 2 J/.SELEEL:_gﬁlvd
%% TE A AT

f f AO8 - Ba) 057 0x' By) i o (32)

Iy -l

Adding and subtracting the term D from the right-side of Eq. (29) yields

the molecular total energy in the form
E= Eaﬂ + ﬁeﬁ -D (33)

where E , s defined by Eq. (28). As discussed above, Eep is the term
that physically is identified with the first-stage of bonding in the
ASED approach.

In order to show how the D term combines with the Eeﬂ term, we
construct a convenient energy decomposition scheme, Ve partition the
many-electron hamiltonian into a zero-order hamiltonian, ﬁ(o), and a

perturbation, ﬁ(l),

e /(04 500 (34)
where the terms of the partitioned hamiltonian are defined as
4(0) =§13(ﬁ(1) + 3(1)) (35)
and
)L T—3A— T i) (36)
i>J|r ,,,j“ i

5
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This type of partition is well=known vrom perturbation-theory approaches

(32-34)

to the electron-correlation problem. In the electron-correlation

problems, v s usually chosen as some form of the Hartree~Fock potential.

For a closed-shell system, for example, this is(22’32)
v.}“’_(.(z ‘Jk'Kk) (37a)
where the Coulomb and exchange operators are defined respectively as
3 ] )
J‘fdx-———-—-—ww(g)w(r) (37b)
k 1“21'&2” ka1’ Tkin ]
~ “ A
Ke = f dby 4, (ry) 112 9{Ky) (37¢)
k ./. K1 TN k' T2 vk

The summation ranges over all occupied Hartree-Fock molecular orbitals,
Uy (g). In the present case, consistent with the physical picture of
the first-stage of bonding of the ASED approach, we define v instead as
a superposition of atomic potentials, each centered on its own atomic
nucleus,

¢ = ‘ZAZ at (38)

There is no unique choice of the . ,omic one-electron potentials
Ogt. Physically, we wish these potentials to enable an electron of
the molecule, when in the vicinity of one of the atoms, to interact
with the electrons of this atom as though it were part of the electronic

structure of this atom.gss)

In the Hartree-Fock approximation, the
potential meeting this physical criterion (in a ¢losed-shell system)
is given by Eq. (37) but as constructed from atomic-orbitals rather

than malecular-orbitals. In more accurate approximations, a similar

B A P SIg © XS ; .y
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atomic potential exists but its form may be much more complex. In
general, an approximation for an nA~eTectron atomic system which
retains an independent-particle interpretation will have at most A
different atomic orbitals. Each of these different atomic orbitals
can be interpreted as the state of an electron moving in the field
due to the other electrons. That is, each atomic orbital, ¢k,A' is

the solution of an equation

A 0 - (39)

1
- Ve Q) bea T end
2 “l; - EA“ kaA k:A k’A k’A

where Gk,A contains the interaction effects due to the other (nA-l)
electrons of the atom. Each occupied orbital is associated with its
own characteristic (nal)-electron potential Gk,A' To accommodate
the specificity of each potential to its atomic orbital, we write, in

general,

B Zloa 9ol (40)

where we implicitly assume fin writing the equations in this form that
the atomic orbitals, ¢k,A’ form an orthonormal set of functions. 1In
the case that these orbitals are non-orthogonal, a somewhat more com-
plicated expression applies. Note that the summation in Eq. (40) is,
in principle, not restricted to just the A occupied atomic orbitals.
In practice, however, one may obtain a manifold of physically meaning-
ful unoccupied levels from the potentials for the energetically-highest

(36)

occupied orbitals., For example, one may in such a case write

Eq. (40) as

N o SRR e it AN e e ok, M i NPT

R T N T LY
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Oat

*Unat kz?w <Uk,A - umA) [, 8 2< gl )

The partition of the electronic hamiltonian into a zero-order
hamiltonian, ﬂ(o), and a perturbation, ﬁ(]>, are the basic ingredients de-
fining a perturbation expansion of the electronic energy, Eq. (30), as follows

Eqp = Eég) + E(” + E&

) 4 ¢(3)

YEQ t . . . (42)
The zero-order energy, Eég), is the eigenvalue of the zero-order
hamiltonian ﬁ(o). An eigenfunction of ﬁ(o) is a product of N one-

electron functions

oy Ko, - oK) = (K W) - uyliy) (43)
where the one-electron functions, y (r), are eigenfunctions of the

equation
Z

[ 39+ S e )] = et (oo
N is the number of electrons in the molecule. The actual distinct
number of occupied orbitals appearing in the basic product wave-
function, Eq. (43), is determined by the usual building-up principle
of occupying the energy levels, € in order of increasing energy and
in accordance with the Pauli-principle. The zero-order energy is thus

the sum of the one-electron molecular orbital energies

(0) . -
Eoe %; (noce)k ®k (45)
where (n OCC)k is the occupation number of the k'th molecular orbital

level, and the summation ranges only over the occupied levels. Al-

though ¢ is an eigenfunction of ﬁ(o), any permutation of the
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electron-coordinates also produces a degenerate eigenfunction. The
physically most complete eigenfunction of ﬁ(o) is therefore, an anti-

symmetric combination of these products which is an eigenfunction of

(37)

spin, j.e,

w0 = p [«» (12 ¢ e?’")] (46)

S’N
;
N-electron spin-function products which yield

where A is the antisymmetrizer, and o is a linear combination of

spin
$23°N = s(s + 1)oyM (47)

we indicate a sum over spin-eigenfunctions @?’N

as is well known, there are generally several linearly independent

in Eq. (46) since,

spin eigenfunctions of spin S arising from the coupling of N spin-
(37)

1/2 particles.
Expanding the molecular-orbitals, Yo in terms of a basis set
of atom-centered functions, x A
HsA,

Yy, = = - Ra)C . 48
> j%%A X, = RS, ask (48)

leads from Eq. (44) to a matrix-equation such as Eq. (2). The

hamiltonian matrix-elements are defined as
z

- 1.2 % ~at
HyAsv,B = <Xu,A|' 2V *%( - ﬁc“+ Ve ) Xy,8” (49)

The evaluation of the matrix elements of the usual one-electron

operators poses no particular problem. The matrix elements of the

t

atomic one-electron potential, Qg , may be evaluated conveniently by

Lt S abue} 0, e, o i %, Glat freiisisid b ,,
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preparing, from the atomic orbital basis, a matrix-representation of

the short-range part of the potential. For example, define an effective

charge as
- 2
gl = Ry) 2 (g = 1) [1 - exp-alr - Rl )] (50)

where A is the number of electrons on the A'th atom., The parameter

a is defined so that the onset of the asymptotic behavior of B
tplr) v (ny = 1) (61a)

coincides with the onset of the asymptotic behavior of ﬁk,A’

U,a ™ r (61b)
The difference potential,
ksA = TTx = Rall ’

is then defined as the short-range part of the Ok A potential. This
short-range potential may be represented in a basis centered only on

the origin of the potential. We write this representation as

A CA(,C = 5/\) _ (k
Uk,A - W —R.E;A zg;,\ |¢£,A>Mg,g),'<¢’£.',/»\| (53)

where

. gplr) |
Mé.l:vél =f¢£’/§£)(uksA B r ) ¢z' ,A(£> d,'\: (54)

The convergence of this representation is expected to be rapid given
the generally slowly varying character that is typical of Gk A potentials

in this inner range. Therefore, we expect that restriction of the
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representation to a finite basis yields a reliable approximation of
the short-range properties of the potential. The net expression for

the hamiltonian matrix elements is

(Zp = 5)
= 1 A I i
Hushsnad = $Xp =27 X ( g - Rell
? ) 55
zesc Zescl% C>M9‘ v <ogtael ) 8> (55)

If the basis functions xu pare chosen as the atomic orbitals, then
]
the expression for the hamiltonian matrix elements takes on yet another
simple form. We find
= ~at
Muahsvah ™ Eu,n S +<¢u,AI(§%( e = Rell T Ve )ld’v,ﬁ? (56)

and
H =l(e + )5 +l<¢ I -_.__.E.é_____+“3t
uyA3v,B 2 HshA eV9B usAsv,B 2 H’A ”,c = ,BA“ vA

+( e )|¢\,B> <, A@( *V?:t)m,? (7)

C#B
The one-electron energies, €,A° are approximations .o the true
jonization potentials of the atoms.(38) Hence, through Egs. (56)
and (57), the hamiltonian matrix has a superficial resemblance to
the corresponding matrix iin the ASED approach as defined by Egs.
(3a) and (3b). If the one-electron atomic potential, Eq. (40), can
be reduced to one common potential for all atomic orbitals, then

one obtains, even for an arbitrary basis, the simple result

TR T A Y
i Nl e i i it SO i L)

i
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H Ay, B “fk: "*k,A<Xu,A"‘“k,Ax‘*’k,A‘xv.a)
WD ( ' Uc)[x (58)
C#A

Any of these formulae are very convenient, from a practical point
of view, because their calculation, we note, requires at most the
evaluation of one-electron-type integrals.

Thus far we have established the basis for a convenient decom-

position of the exact molecular total energy into the form
_ (0) , (1) (2) . (3)
E=E,p*Ep *+Epp/ =D+ Epl +Ep + . (59)

We find that the first two terms, Eop * Eéo), have a resemblance to
the semi-empirical ASED energy formulae, Eq. (6). We consider next
the terms in Eq. (59) that are required to improve the approximation.
In particular, we consider the nature of the first-order energy and
its combinatjon with the D term. The first-order energy is defined

as

Eéé) = <w(0)lﬁ(1)|w(°)>/<&(0)lw(o)> (60)

This energy may be written generally as(22)

fou c- ol El g spon ey, o ZAZfVAn r,r' )y (61)

where p(z)(g,x';g,x') is the diagonal component of the two-electron
density matrix after integration over the spin variab]es(zz), and

p(])(x,g') is the one-electron density matrix, alse after integration
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(22) Note that we shall adopt the convention to

over the spin variables.
denote the diagonal component of the one-electron density-matrix, namely
p(‘)(z,x), as simply p(r). This is also, in fact, just the electron-
density function we have been using in the foregoing discussions. To
proceed, we find it convenient to designate a part of the two-electron
integral in Eq. (61) as a Coulomb energy, and the remainder, as an ex-
change energy. For this purpose, we use the device of defining formally

a two-electron correlation function as(ag)

c(z)()g.)g';y;.g‘) s p(Z)(;;.g';y;.;;') - p(,\g)p(g;') (62)
In terms of this definition, the first-order energy assumes the con-

ceptually convenient form
' _
J’f || rv X Z f VA p ’X: )dfC * Exo_h (63)

where

Frch * ff o iﬁg Lo (o)

The D term, Eq. (32), may also be written in the convenient form

D ):( ZAfdr -ps(;gt)) - p?\t(,\g—ﬁ;\)]/“ K- ,\,AH)

.I:[;r dy’ pizgp?;') -%;p;t(g-ﬁA)pﬁt r'-R ]/llr - 'l (65)

TR I R L ST S e I TR T e A TR T * . R P e

b o s s s ok i b 3 i .
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where o®'P(r) is defined as the superposition of atomic densities,
S
ol =Z oRE(r - Ry) (66)
n

Combining Eqs. (63) and (65) to obtain the expression for (5(1)-D),
we find

5=
st [o Y
%J mm[ () P(,v;g] dr

J_P 1 0o su su? ’
+ Z.LW 1 E.“E:(,c)p(g ) - o(po(rh)] o o

JA

A at
..Z .........:_-—_._..p (r-R )drw
Vi A

at
1 1
t2 % [[ ﬂ@‘"‘ﬂPA("‘RA F’A L'-Bp) d dx' (67)
Having completed the definition of (Eég) - D), we seek to

(0)

combine the energy terms of the zero-order energy, Ee£ , Wwith the terms

in (E él) - D), First we note that Eég), Eq. (45), may also be written

0 _ 2 z ~at 1 '
- .[[“‘" ' %(" e W) e

as

—
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Combining this formula for Eét) with ( (])~ D), Eq. (67), results in

the cancellation of some terms, The net resulting formula is

e0) w e{]) - 0= ar{0M) 4 62 (0F) 4 g2ty (1) (69)
where
- ] (oSt e )« Ve 0o
r'ﬁc ’
and
and
at < 1.2 A\ at, .,
ot %U "7 -—r_)oA (52" )y

LS
/fnr-_——n oa (r)eat(r! dp dx;:l (72)

Equations (70)and (71) give the effect on the energy of the change
in the one-electron density matrix relative to the superposition
of atomic densities. The relaxation in the density matrix is de-

fined as

s (rr') = 0 SUP(p,p) (73)

Note that

fépm(,g) dr =0 (74)

The term Eég 1 represents the linear effect on the kinetic, electron-

nuclear attraction, and Coulomb electron-electron interaction energies

A >
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due to relaxation of the electron density. The term
non-l1inear relaxation effect, Both 6E£2+1) and 62E£2+])’

the same as Eaz, approach zero as the atoms separate to the neutral-
atoms 1imit, The Ee£ energy is constant with changes in molecular
geometry. It is the sum of the kinetic, electron-nuclear attraction,
and Coulomb electron-electron repulsion energies of the isolated atoms.
The formulation of the sum (Eég) + Eél)) remains incomplete with-

out a more precise definition of the exchange energy, E(1), For this

Xeh'

purpose it is necessary to specify in greater detail the structure of
the zero-order wavefunction W(O), Eq. (46). Let the orbital product

¢ in the zero-order wavefunction be composed of n doubly occupied

orbitals and m singly occupied orbitals,

o 22 2
§ = Uty Ve Yk e Vi

2 (0+1)is the

(75)

where 2n+m = N. The one-electron density matrix resulting from this

wavefunction, Eqs. (46) and (75), is

n m
9(1) ,\, }; k(r \"k(r + kE":] \Uk.;.n(r)‘l‘k.‘.n(r")
The exchange energy associated with this wavefunction 15(40)
AU S SN AT 21 D WA S S S
where
n. n
s ''s
S,m
9., = 2 2 c. U32"(r,,)c, kL
ke S B B N  JARN]
= ] k:

(76)

(77)

(78a)

(78b)

i it Rwidatiia T et TN
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The Kk,z in Eq. (70) are just the exchange integrals defined, as usual,
by

b (Lugle) vy (8" )vgx') -
o -] e o o (79)

A11 the properties pertaining to the total spin of the system, S,
and to the relative weight of each alternative 1inearly independent
spin coupling of the m unpaired orbitals are contained in the e

(40) The number of these linearly-independent spin-

coefficient.
couplings is denoted by ngs The value of ng is determined by the

desired total spin and the number, m, of unpaired orbitals. It is

given by(zz)
n =St (80)
o lzmAS+ N (zm-S)

The properties of the e coefficients have been discussed extensively

by Goddard, Ladner, and Bobrowicz,(37:40)

The c; in the expression
for e give the relative contribution in the total wavefunction of
each alternative spin-coupling. They are obtained from the eigenvectors

of the secular equation

"s [/m m R |
J§] %%Ui' (Tkﬂ)Kk‘rn, etn ) Mk S Gk <O Tok=T50000ng (81a)

The eigenvalue Ay is the energy difference

(Eé?:) + Ee(}:)) - Egp (81b)

u

M

*
The energy Ee£ is independent of the details due to spin and spin-
coupling. It is only dependent on the number of doubly and singly

occupied orbitals in orbital product, Eq. (75). It is given by(40)

PR Sottrr e e

B T A PRSI T YT
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* n A m A n n
E,o* 23 <y lhly >+ h + 3 (20, , =
ot 25 <l + lulhlvnd+ & 2 (B p - Ky p)

k=1
m na
* E«] Pz, (2442 = Kian,e) * ,?,II El Yirn, Ln (82)

where the one-electron operator n is defined in Eq. (31b), and the
Coulomb integrals are defined, as usual, by
‘Pk(,c ‘Pen)
- dp! 83
) jf =N dp dy’ (83)

The average energy of the ng possible spin-coupling states follows
from Eqs. (81) and (82). It is

(0) , (1) - ¥ m N s,m |
(Egp' * Eop'dayg = Fee * & 3 X7 (Tke) Fien, e (842)
where

U3 (5 )/ng (84b)

A11 the information about total spin and spin coupiing affecting the
total energy resides in the U?jm($k£) matrix elements. These are the
elements of orthogonal matrices that yield the irreducible repre-
sentations of the symmetric group, Sm’ based on standard Young

shapes and tab]eux.(37’40'41) The matrix elements used here belong
to the matrix representation of the elementary transpositions sz.
is’m(?kﬁ) of Eq. (84) is, apart from the n, divisor, just the
character of the (S,m) irreducible representation for the ;kﬂ element

of Sm.

W
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The exchange energy can aliso, at least formally, be decomposed
into a term constructed from the 1imiting orbitals to which the

molecular orbitals tend as the atoms separate, E _ ,, and terms that

0
xch
give the relaxation effects relative to the first term,

(1) . g0 (1), <2¢(1)
Exch« Exch * ﬁgxah *é Exch

(85)
Let the set of molecular orbitals {y) become the set of 1imit orbitals
(wﬁ Yas the atoms separate. Then §§g115 given by Eq. (77) but
replacing the y, orbitals with the limit orbitals wé’to construct the

various terms. The relaxation energy in turn is

n N s m
65)((11)1 ® % j( - £§l Kz - %‘;l Kz+n>§p‘((1)('c"cl) d'C
| '
m n . m . : |
* k=1 l (" t% 2* g‘; e K}01+n>69|(<+r))(£'£ )dy (86)
L=
where
doy ) (rur) = (nce?, i luIwx') - vR(vR(x') (87)
and
(noeclk = 2 1<k<n (88a)
=] n+1<k<n+m (88b)

The Rz are just the usual exchange operators, Eq. (37¢). The super-
script is used here to indicate that the orbitals used to construct
Rz are the limit orbitals {wZ}. The non-linear relaxation effect on

the energy is

PESTRNS "S N i sk P ot i Sl




k=] L=
m oo (1) (v aryend1) n ’
+ 2 & ,EZ‘:'I gk,»@ spk.m(x:s,l; )GQP&,M(X:% )) dx: d’c (89)

Combining the expressions for the various relaxation energies,
Egs. (70), (71), (87) and (90), one obtains the following expression
for the ASED energy through first~order

p(0+1) | gat (0+1) (0+1)
EROED) = 2F 4 £, + B0, * oEAED ¥ 6°EAED (90)

Moreover, the energy term linear in the density-matrix relaxation

can be written as the expectation value of Fock-type operators.

Combining Eqs. (70) and (86) one obtains

el = [ P el o
ng
* EE f ‘S"k+n (rop') dr (91)

where the Fock operators F and Fk are

When the 1imit orbitals, {wﬁ}, are each just the atomic orbitals,

as in the case of all heteronuclear molecules, the Coulomb and

R T T e R S
el & onibi i, oo el s A, L it D " B 1 ik B EEE N e = =2
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exchange potentials may be grouped according to the atomic nucleus
of the atomic orbitals from which the potentials are derived. In
those cases, the Focit eperators consist, apart from the kinetic erergy

operator, of superpositions of atomic effective potentials

.. %v2'+ %% Vx (93a)
20 . _ 1.2 00 (93b)
Fi A %; Vi
where the atomic effective potentials are defined as
Z
oC A 50 _ 70 20 1 ro
v=-n-—-—”+§;(2a-f<)+2(d- -5 K,.)  (94a)

Z
mo A A0 AO S " "0 ' 5 0 A

The Sg and Sg denvi¢ sz pectively the sets of integer labels of tne
doubly and singly occupied atomic orbitals of nuclear center A.
The net non-linear effect on the energy due to the relaxation in the

density-matrix is obtained by combining Eqs. (71) and (89). One

obtains
GQE,ggE[])) = %f ﬂ';%—x—.-ﬂ [26p“)(g)ao(])()g') - 5pm(,§,g')6pm(g.g')
+ 55 £5 (2g,, + 1)6p 1)(r,r‘)6p(1)(r r')|dr dr'
k=1 £=1 ke ktn © v pap N (95)

S T



e O

A N O

T A

a2 o D"
®

1

#rpeee,

dssatmaR

[ dewrceri

ok

S

33

The correlation energy has been defined previously, Eq. (42), as

corr. _ (2) (3)
Eor E&& HEG . (96)

This perturbation expansion of the electronic energy follows along
conventional Jines{32-34) from the definition of a partition of

the electronic hamiltonian, Eqs. (34)-(36), and Eq. (38), The
second-order Rayleigh-Schrodinger perturbation correction to the energy,

for example, is

(2) - LT < O R512 (e e, )

'Z‘G’%%l(\y(o)lﬁ]qr?(:'g)lz/(ca'*cb- Ep = Gk) {)7)

The wﬁ and wi’% are the configuration functions generated, re-
N

spectively, by replacing one or two of the occupied orbitals
(denoted by k,£,...) in the orbital product of the zero-order wave-
function W(O) with unoccupied orbitals (denoted by a,b,...). The
second-order energy, Eéﬁ), has non-vanishing contributions from
single-excitation configuration functions because the molecular
orbitals used here do not satisfy the Brillouin condition.(qz)
This perturbation formulation is not directly applicable when
an incorrect admixture of covalent and ionic terms in the wavefunction
causes extraneous long-range terms to apuzar in the first-order energy.
The terms in the correlation energy that cancel this extraneous long-
range behavior derive, as is well known, from the configuration-

functions involving excitations to those unoccupied molecular orbitals
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that become degenerate with the occupied orbitals as the atoms
separate. In order to continuously treat the correlation correction
to the exchange energy, a prior transformation of the hamiltonian
matrix has to be made that properly resolves the ‘increasing de-
generacy in the domain of large internuclear separations. One method
applied to a variety of problems of this type is the Van Vieck trans-

(43) Consider the hamiltonian submatrix that derives from

formation.
the subspace consisting of w(o) and all configuration functions gen-
erated by excitations to unoccupied orbitals that, as the atoms
separate, become degenerate with the occupied orbitals. A straight-
forward application of the Van Vleck transformation modifies the
coupling of the sub-matrix to the remaining matrix so that the modified
off-diagonal coupling terms are reduced to be of second-order or higher
in the perturbation. As is well known, the eigenvalues of the actual
transformed sub-matrix are then automatically accurate through third-
order in the perturbation expansion, since the modified off-diagonal
coupling terms can only contribute to these energies in fourth-order
or higher.

The correlation energy can also be obtained by the more tradi-
tional variational configuration interaction (CI) approach.(44) The

standard CI variationai energy is

Eop =Z; ? c; Hijy €5 (98a)
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where

Hyg =< ¥yliilyy > (98b)
and ¥; stands for the i'th configuration-function, and ¥y is defined
as the zero-order wavefunction, W(O). Each diagonal hamiltonian
matrix element can be decomposed as shown in Eq. (91). Note that
the latter equation is just a prototype for all diagonal matrix-
elements since

el0) 4 £ = <o liig> (99)

Each element, in general, has its own particular separated-atoms
limit characteristics relative to which the relaxation terms are
defined. Extending these arguments to the off-diagonal hamiltonian

matrix elements, we write formally
- at -0 2

= KO . o8 .

where H$j is the off-diagonal element constructed from the limiting

orbitals of the configuration functions ¥y and wj, and GHij and

GZH.. are the relaxation effects relative to H?j.
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IV, DISCUSSION

The molecular orbitals energies, €y obtained by solving the
ASED one-electron equation, Eq. (44), become the atomic orbital
energies in the 1imit as the atoms of the molecule are infinitely
separated. The reason is that, in this 1imit, the ASED orbital
equation describes a single electron in the field of the isolated
atomic potentials. The resulting spectrum of one-electron states
in this limit is, therefore, just the superposition of the one-
electron states of each of the atomic potentials. This property
enables one to follow in a continuous fashion the evolution of the
ASED molecular orbital energy levels from their parent atomic levels.
Moreover, in this Timit the molecular orbitals, Vs become either
the atomic orbitals themselves, or, otherwise, just spatial-symmetry-
dictated combinations of these atomic orbitals.

The ASED zero-order energy, Eq. (45), is determined by occupying
the molecular orbital levels resulting from Eq. (44) in order of in-
creasing energy, e according to the usual building-up principles.

This choice of the orbital occupation may not always lead to the desired
diabatic electronic state at all internuclear separations. A different

orbital occupation may be characteristic of the adiabatic state in these
other domains of the energy surface. In these cases it clearly becomes

necessary to go beyond the ASED energy through first-order, Eq. (91),

to a configuration interaction (CI) calculation of the energy. The con-
figuration functions are the various zero-order wavefunctions, Eq. (46),

corresponding to the different choices of orbital occupation. Despite
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the increased complexity, the ASED energy decomposition scheme can stil)
be used even in this case to simplify the CI energy calculation.
A. The LiH molecule
To illustrate the above, we consider formal aspects of the ASED
appiication to the LiH molecule in the X1§:+ state. The molecular orbitals

obtained by solving Eq. (44), {lo, 20, 30, 40,}..., approach the limits

lo —=15 (101a)
20 ~————1SH (101b)
30 ——=2s ; (101¢c)
4o —2pa, ; (101d)

s 000

as the Li and H atoms separate. The application of the building-up

principle leads to the following ASED zero-order wavefunction

0 = a (1% 267 ap ap) (102)
As the atoms separate, this wavefunction approaches the Lit (1s)

+ H'(1S) 1imit. The one-electron density matrix deriving from
W](O) is
o1 (r.r') = 2(10.10)+ 2(20.20) (103a)

At large internuclear distances, p(]) (K’E') approaches the superposition

of atomic-ions density matrices

pSUP(rrt) = 2(1s . Ts )+ 2015 1s,) (103b)
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We adopt here the convention of using a dot between each pair of

orbitals in the expansion of the density matrix to indicate that they

depend separately on the spatial coordinates r and g'. In contrast
the adiabatic electronic X‘ZF state approaches the neutral atom
limit Li(zs) + H(ZS) at large internuclear separations. The ASED

zero-order wavefunction describing this limit is
Wéo) = A (102 2030 af iﬁ§~:*gil) (104)
V2

with obviously different orbital occupations than obtained by appli-
cation of the building-up principle. The one-electron density matrix

deriving from wéo) is

p(1)(g,£-) = 2(10.10) + 20.20 + 30.30 (105a)
At large internuclear distances, p(1)(r,r') approaches the super-

position of neutral atom density matrices

oo (rap') = 2(1s Vs )+ 25 .25 4 + Ty Tsy, (105b)

The CI wavefunction is a linear combination of the two alternative
zero-order wavefunctions, Eqs. (102) and (104). The diagonal
elements of the hamiltonian matrix in this configuration function
space are the same as the energies through first-order for each zero-
order wavefunction separately. The ASED decomposition for each

diagonal hamiltonian matrix element is obtained in Eq. (100a).
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Whereas the ASED decomposition for the H22 element is based on the
superposition of neutral atoms in the first stage of bonding, the ASED
decomposition of the H]] element is based instead on the superposition

of atomic ions. Thus, at large internuclear separations. D.

'| .
E N (10¢
( cﬁ) 1 D )
while (Ec£)22 Just falls off exponentially to zero. The detailed
formulae for (E p).: , (532)11' Egch)ii are special cases, respectively,

of Eqs. (28), (72) and (77). We divide (EJ ), into those terms that are

i
atomic exchange energies, and hence remain constant, and those terms

that vary with internuclear separation. We write

O = (Eat ) +[2EC ) (107)
( XCh) .i.i xeh i1 ( xch ,i.i

In the present example, these terms are

at - -
(Exch )11 T sprsy T sy, fose)

(o}
AE = - 2 Ky (108b)
( Xch) 1 15H915L,i

and

t
E2 = - K - K A
( X.Qh.) 22 ]SLT. ,1SL1. ]SL.i ’ZSL,i

1
- §'K (108c)

]
- 5 K
2 ]SH,]SH

25) 5225 4

g ) = - K + K (108d)
( xch 22 ]SH’]SLT- ]SH,ZSLi

A A A b e B e ket e et < L ket « &
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The general formulae giving the effects on the energy of relax-
ations in the one-electron density matrix are Eqs. (92), (93) and (96) .
For purposes of illustration, we next give just the linear relax-
ation terms for this case, First, relative to the superposition

of atomic-ion density matrices, one obtains
Hyy = 2<Vo = 1 |FC[10 + 15> + 220 - 15,17¢120 + 15> (109a)

where

'~h+( - K )+(ﬁ - K ) (109b)
]sLi lsL1 ]sH ]SH

Sacond, relative to the superposition of neutral-atom density matrices,
one obtains

SHpy = 210 = Vs 5 [FC|10 + 15> # <2 = 15,[F) |20 + 15,

20
+ <30 - 254 |F5 |30 + 25, ? (110a)

?°=6+(23 R ) (a - 1%, )
s 5 155 255 2 7254

where

- " A
+(J - 5K (110b)
( ]SH 2 15H)
?g = ﬁ * (2315 B Rls ) * (325 + R?s )
o Li Li Li Lj
+ {3 - K (110c)
( ]SH ]SH)
° Li Li Li L
(s, + g, ) (10d)
1sH 1sH
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Both the (Asg

to zero at large internuclear separations., The lonn-range inter-

i)y and oMy terms are seen to fall off exponentially

actions, if present, are carried by the (Ee£)11 terms., The net
Vimiting values of H11 at the separated-atoms 1*mit is given by com-

bining (Ef‘zz),H with (Eazh)11 one obtains

X
at at _ ’
and
at at =
ELﬁ* and EH_ are the L1'+ and H™ ion energies in the Hartree-Fock
approximation,
E b = 205, 4 [hy s |18, > + (zo - K ) (112a)
Ep- = Ksylhy1sy> + J]SH’]SH (112b)
EL1 and EH are the analogous energies for the Li and H atoms,
E ;= E .+ +<25, [N |25, ;> + (20 - K (113a)
Li Li Li Li‘ Li ]SLi’zsLi 15L1.,25Li
Ey = sy lhy[1s,> (113b)

In these equations HLi and BH are the one-electron operators, Eq.
31b), for the Li and H atom cases respectively.

The off-diagonal hamiltonian matrix element is folded into a
form analogous to that obtained for the diagonal elements as indjcated

in Eq. (100b).
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The first term of Eq. (100b) in this case is
W, = V2 Cas 4 |FS 115y (114a)

where
7.+ (23 -k ) +J (114b)
]SL.i ]SL'i 15H

In relaxation terms are

~+f ‘jlsH,Zsu épél)()g) dx;) (115a)
and
2 1 1 1) (o
g = "fffmﬂ* [ 5°§623Q(5)(59§c)(£ )
* 6p§l)(g'-)> - 32- apél),%(;;.g') spﬂ)(,r;.y;'):\ dp dr' (115b)
where
6pél23o(n,g‘) = 20,30 - ]SH'ZSLi (116a)
ot (gt = 2 (000 = 15y 15y4) (116b)
sos W) = 20,20 - 1575y (116c)
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B. The H2 molecule

A prototype case 11lustrating a quite different challenge for
the ASED energy decomposition is found in the H2 molecule in the
X‘Z:; state, The ASED orbital equation in this case is the same
as that of the HZ molecule~fon problem, The molecular orbitals
obtained from solving the equation, {1ag, 1ou,...}, approach the
Timits

1 ;
1gg---2 ('ISA + ]SB) (117a)
l— -
]“9 . (15A 1s5) (117b)

as the H atoms separate. The two hydrogen atom orbitals are labeled
1sA and 1sB. The ASED orbital energies, however, both approach the

hydrogen atom orbital energy, €1g0 @S the atoms separate

E]S (1183)

g, ——

g

E14 el | (118b)
u

The application of the building-up principle leads to the following ASED
zero-order wavefunction

af) (119)
The zero-order energy is

Eég) =2 1o, (120)

It follows that the zero-order energy approaches the correct limiting

energy as the atoms separate.

iRy “ @, FIETAN i " N
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However, at large internuclear separations, the zero-order wavefunction,

Eqn. (119a), becomes

w(o)-—-—-—-A [(15A158 + 1sB1sA) aﬁ] + A [(15,2\ + 15%) as]

The first component correctly describes the ni2s) 4 H(ZS) Timit, The
second component of this wavefunction, however, describes an fonic
1imit, This admixture of the covalent and ionic wavefunctions even in
the separated-atoms 1imit is the cause of extraneous long-range terms
in the first-order ASED energy to be discussed later,

The zero-order ASED energy is defined as

Eiodp = Eop * ELY) (121)

The two components of Eﬁgéo superficially resemble the ER and EEH
components of the energy ansatz in Anderson’s semi-empirical ASED
method, Eq. (6). Figure 3 shows that E,g» except for a small attractive
region, is mostly a repulsive energy curve. Figure 3 also shows that
Aﬁég), in contrast to Eﬁﬁ. is a strongly attractive energy curve. The
nature of these curves is consistent with Anderson's qualitative argu-
ments.(]3) In these calculations we have used the approximation of re-

stricting the orbitals to a minimum basis set in order to simplify the

ca1cu]ations.(45) The net energy curve, AEXS%O’ is also shown in Fig. 3

together, for reference purposes, with the exact potential energy curve.
This comparison shows that the zero-order ASED energy is quantitatively
in gross error. The binding en2rgy is overestimated by an order of

magni tude.

SRV
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The first-order ASED energy is defined as

(0+1) _ at (041) , (2:(0+1) , -(0+1)
EASED Ee£ + Ea& + GEet + § Ee£ + F (122)

The Tinear relaxation energy is divided into contributions from the kinetic,

electron-nucleus, and electron-electron repulsion energy

se0%1) = ge(0F1) 4 5 (0M1) 4 4 (04) (123)

The various relaxation energies are defined as

EQ?;]> = 5{4; <; %ﬂ?)&p(T)(K,n') dy (124a)
(0+1) -1, - (1)
5E, , f(ﬂ? R + I 58”) o' (x) dr (124b)
6F£0+1) _ %ff[rg_l - psupm) 5('\)(n1) d’n dx:l (124c)
where the relaxa*ion in the one-electron density matrix is
otV ') = 2010y T0g) = P (r,p!) (1252)
oS (ron') = 15y . 15y + 1. 1sg (125b)

The non-1linear effect on the energy due to the relaxation in the

electron density is
2g(0+1) 1 1 (1) (pyeo (1) (o .
tf 7)) - o (pheet xt) de dg (126)

Note that we have dispensed with the division of the electron-

electron repulsion energy into a coulomb and an exchange contribution.
As is well known, in this case, the first-order energy contains terms
that cause this energy to approach the wrong 1imit as the atoms supa-

rate.(47) The partition of the electron-electron repulsion energy only
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serves to obscure the problem in this case. The terms in the ASED

energy, Eq. (122b), that cause this incorrect approach to the 1imit
are isolated in the F(0+]) term, This term is

F(O*W) e J (g -
7 15A,15A

J (127)
15A,158 )

with the property that, at large internuclear distances, D, it be-

haves as

(041)

] ( 1) ;
T ) - (128)
2 ]SA,1SA D

The first term in Eq. (122), Ezz, contains the corypct separated-

atoms 1imit energy, namely

at _
Eop = 2895

(129)

The various relaxation energies are shown in Fig. 4 as a function

of internuciear distance. This Ffigure shows that the relaxation

effects in the kinetic energy and the electron-nuclear attraction

energy, 65&?:1) and 6E£g+]) respectively,

are by far the dominant

contributions to the total relaxation energy. The linear relaxation

effect in the electron-electron repulsion energy, E(0+]) is shown in

A

Fig. 4 to be a comparatively small and slowly varyinga. The non~linear

2.(04

relaxation effect, & Eee ), is shown in Fig. 4 to be negligibly small.

(0+1)

The total linear relaxation energy, 5EQ£ , and the classical

electrostatic energy, Ec&’ are shown in Fig. 5 as a function of inter-

nuclear distance. As already seen on Fig. 3, Ecc does have a small

attractive region. The linear relaxation energy, however, is the

dominant attractive energy contribution.

At small internuclear distances,

-y
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(0+1) term

the repulsive energy is derived dominantly from Ect‘ The F
is not by itself a meaningful term. We show later that there are terms

in the correlation energy that precisely match this term, and that, when
combined with F£0+]> yield a net meaningful interaction. For this reason,
we only show a part of the first-order ASED energy in Fig. 5, namely

(a2t - F(O1)) | tiis partial energy 15 in fact just the sum of e

ASED
and 6Eég+]). The A in the notation AEgggg) indicates that the energy

of the separated atom, Eig, has been subtracted from Eﬁggé). Figure 6

shows an alternative interesting decomposition of the partial energy

(Afégzé) B F(0+])>- In this figure we show that, when GE§2+])
ok

08+1) are combined with Eaa’ a purely repulsive effective electrostatic

type of energy is obtained. This decomposition focuses attention on

and

the relaxation in the kinetic energy, 5Eﬁ?21), as source of the attractive
energy leading to chemical binding!]9’20’48) Figure 7 shows a comparison
(46)

of the partial first-order ASED energy curve with the exact energy curve

(47) We note that there is a consider-

and the Hartree-Fock energy curve.
able improvement in the comparison with the exact result in going from
the zero-order curves, Fig. 3, to the present one. The binding energy,
for example, is now within 5% of the exact result instead of being off by
an order of magnitude. Detailed properties of the partial first-order
energy alone, however, are not in good agreement. The equilibrium bond
Tength is overestimated by about 0.5 bohr, and the range of significant
binding extends to internuclear distances that are much too large. The
Hartree-Fock energy, EHF’ is shown inp Fig. 7 for comparison purposes in

(49)

the form of a'rationalized" potential energy curve, namely

N R el e i T cilascantaa et e Beemdil] R TE DA A I N 7 o
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BEye = Eye - EOF (130)
The first-order ASED potential energy curve is equal to this
"rationalized" Hartree-Fock potential energy curve, i.e.
(0+1) (131)

AEpsgp” = AByp
except for negligible second-order effects. It appears from Fig, 7
that either AEHF or (?EASED - F(O+1)> are equally unsatisfactory by
themselves.

0+1) term has a direct counter-

As alluded to previously, the F(
part among the terms in the correlation energy. Let us consider the

configuration interaction (CI) approach to the calculation of the

correlation energy.(47’50) The configuration functions(so) are
vy = Allo ag) (132)
g
and
v, = Allo%a) (133)

where ¥, is just the zero-order wavefunction, Egq. (119a), and the
1°u orbital in Yo is the unoccupied solution of Eq. (44). The total CI

wavefunction is

y = c] ¥yt Cp ¥ (134)

and the corresponding variational energy is
(€ Co) /My Hyp\ /G
E , = (135)
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The hamiltonian matrix elements can each be partitioned as we have
already indicated in Eq. (100). The ASED molecular total energy,
Eq. (29), is then obtained as

(0+1)
(c] cz) cH” F + oHy\ /C

CI _ .at
Fasep = Eoe t Eop *

(041)
F + GH]Z 5H22 C2

+ pl0H1) GZES,IC (136)

where s%E contains all effects that are second-order in the relaxation
of the appropriate one-electron density matrices. The relaxation
matrix elements, 6Hij’ are divided again into contributions from the
kinetic, electron-nuclear attraction, and electron-electron repulsion
energy,

6H

H]

i (6Hﬁ)kin * (GHﬁ)(m * (‘”‘ﬁ)m (137)
These three types of terms are defined as

(GHﬂ)m ) :cfr ( Jz’vz) ool} (k') o (13%a)

AV -1 y =] 5o 1) (r) dr (139b)
( ”)"‘” ff(lln-feAH Hn-ﬁall)p” v
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The relaxation in the density matrices of each CI matrix element is defined

as follows:
{1 (pr') = 2(1og. 1) o°% (rar') (140a)
o5 (') = 2oy 1ay)- P () (140b)
sod k') = 200 10,)- o58P (k) (140¢)

and the superposition density matrices in this case are

o3P (rok') = 0P (rr") (141a)
p15° (Ksg') = 1sp.05, - 1sp.1sp | (141b)

We note that, the same as for (Egg) + Eé}))’ Eqs. (90)-(94), the
relaxation matrix-elements, Eqs. (138) and (139), are clearly integrals
of just atomic operators acting on relaxation density matrices.

The molecular total energy, Eq. (137), can thus be written as

(0+1) (corr)) I, 2.0l (142)
. (F +F + €0k + 6201

where the correlated 1inear relaxation energy is

CI . (O, Ol
6Egp = Efg, * OE., sE : (143)

The individual types of energy contributing to the 1inear relaxation energy

Byt * f;g( ]?"2) segy (or") o (1442)

are
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se¢! = [ [- — . 581 (p) dp (144b
en f( TEVETEE 1 K/ 9K )

; | seC1 5P () ap{1)
- 17ng-rn[ ) g )

ez

-
: +p3pr (X) (2 ¢, sl (x") cz>] dr dr' (144c)
; where the relaxation in the CI one-electron density-matrix is defined as
o U DRI D (1452)
and
S ook = 6 (2 109.1ag> + 022<2 100.1%). (145b)
r, i '
K i
; Also,
% ploorr) - 5 ¢ #(®1) g, (146)
r i The CI coefficients C] and 02 are the components of the eigenvectors
' ; of the secular equation that follows from Eq. (137). Neglecting non-
; ) linear relaxation effects, these CI coefficients are given by
| i
| i
| ¥ - )
| ™ Cy = (f(0+]) ¥ G“lé%/q (styy - 07+ (FO) + oty )f (147a)
|
. €27~ <5”n " ")/\F‘s“n SRR (147b)

and the CI eigenvalues are given by

W

o R
o ? ¥ E :

21 1 (e 2 0+
A= (GHH * ds“22) . J b (ot - o)? + (FLOTT) 4 amy )%, (148)
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As the separated-atoms 1imit is approached, the CI coefficients

of the lowest energy root approach the 1imits

e
¢,——=L (149b)
V2
and, hence, .

The behavior of F(0+1), F(corr), and their sum (F(q+1) + F<c°rr))as

a function of internuclear distance is illustrated in Fig. 8. This shows
that while F(0+1) and F(corr) each approach some non-zero limit as the

atoms separate, their sum, FO*1) 4 F(COPP) orrectly goes to zero. The
behavior of the components of the relaxation energies, Eqs. (144a)-(144c),
as a function of internuclear distance is shown in Fig. 9. Qualitatively
these correlated relaxation curves resemble those in Fig. 4 except that

it is apparent that they fall off to zero much more quickly than their
first-order counterparts in Fig. 4. We note that again the kinetic energy
and the electron-nuclear attraction energies yield the largest contributions
to the total relaxation energy. The linear relaxation in the electron-
electron repulsion energy is shown in Fig. 9 to remain comparatively slowly
varying with internuclear distance, the same as was found earlier for its
first-order counterpart in Fig. 4. This indicates that this energy con-
tribution has little o} no role in determining the equilibrium bond length
in this case. The non-linear effect, azEg;,

comparison and is therefore omitted from Fig. 9.

is found to be negligible in
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Figure 10 shows the effects on the ASED potential energy curve of
the inclusion of correlation correcticns. The two reference potential
curves in this figure are the previously obtained (see Fig. 7) partial
first-order ASED energy

(041) (0+1) _ (0+1)
AEASED - F - EG& + 6Ee£ (]5])

and the full CI potential energy curve,(47’50) AEE?Z. The Jatter re-
presents the best possible result attainable given the present particular

(0+1)

choice of basis set. The first-order ASED energy with F corrected

by F(corr)’ is shown in Fig. 10 to be a considerabie improvement

of the potential curve at small internuciear distances up to about

the equilibrium distance. At larger internuclear distances, however,
the fall-off to zero in this curve is much too slow again, and indeed
has a peculiar shape. In contrast, the partial correlated ASED energy

(the analog to Eq. (151)),

Cl (0+1) _ g(corr) _ ¢l
AEASED - F F Ecﬁ + 6E€£ Y (]52)

exhibits the correct fall-off to zero at larger internuclear distances,
but fails to attain good agreement with the full CI curve at smaller
internuciear distances. The two correlation effects at play here are the
effect at smaller internuclear distances of adding F(corr)’ and the effect
at larger internuclear distances of the improved fall-off rate of the
correlated relaxation energies (see Fig. 9). When both these factors

are combined one obtains AEgéED' This is shown in Fig. 10 to be in

(50)

excellent agreement with the full CI potential energy curve, The

small discrepancies that remain are due to the neglect of effects on
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the matrix elements that are non-linear in the rel:.irv‘'on of the one-
electron density matrix. The energy associated with the non-linear

effects is

2 2
(Cy Cp) f sy 8 “12\/C1

2.Cl
§°EY) = p (153)
¢ . 52”21,'\(’2
where
5%H, . = 1/4 — 1 (1)(r)6 (!)(r') dr dr' (154)
T gy s e e |

In addition to the contribution through Eq. (153), the non-linear re-
Jaxation effects modify the solutions to the CI secular equation,
Eqs. (147) and (148), and through this they also affect the linear
relaxation terms Egi and F(corr).In the present case, however, we find
these non-linear relaxation contributions to be negligible.
C. The He, Molecule

The LiH and H2 molecules are examples, respectively, of the most
favorable cases and the most complicated cases for the application of the
ASED energy decomposition. There exist also cases of intermediate com-
plication in which the ASED first-order energy does approach the separated
atoms 1imit correctly, but for which the exchange energy appears in the
least tractable Torm because the molecular orbitals are symmetry functions.
An example illustrating this intermediate case is found in the He2 molecule

in the X1E; state. The ASED zero-order wavefunction is

oo o A(wg wﬁaeaa) (155)
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where the ASED occupied molecular orbitals approach the limits

1
]—.—.-—.]s +'|
9 /?,< A SB) (156a)
]
lo,—= =(1s, - 1s 156b
w75 (15a = 1%p) (156b)

as the He atoms separate. The two helium atom orbitals are labeled

lsA and ]SB respectively. The exchange energy in the He2 molecule case

is
N
E( = - K - 2K - K (157
xeh 109,109 109,1ou 1cu,1cu )
The 1inear relaxation of the exchange energy in this form is
(1) ., : : (1)(p ot
SExeh ™ - ./f ( K108 * K103>5p (£’~'/ dr, (158)
]

X =L
where the limit orbitals, Eq. (156), are denoted by 1090 and 1cu°.
The exchange operators appearing in Eq. (158) are yet fully molecular-
type operators. The practical advantages that derive from being able
to express the relaxation energy as the expectation value of atomic-
Tike operators are non-existent in the present form. However, one can

reexpress the ASED energy in terms of an equivalent set of orbitals, A

convenient equivalent set of orbitals is defined as

21 /
]UA = /5 ('Icg + 'Iou> ’159a)

_ \
'Ich = /7 (109 - 1ou) (159b)
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These orbitals have the property that, as the atoms separate, they

approach the atomic orbitals themselves,
]UA—‘—’]SA (]605)

log—=1sg (160b)

The exchange energy in terms of these orbitals is

(1) .. .2 - \
Exch = = Klop,lop ™ ZK10p,105 ™ Miogs10; (161)
and the linear relaxation in the exchange energy is
(1) . " ' (1)
SEyep = f (- Kis, - K“B) s, ) rar' dr (162)

L'
We note that, by the choice of this equivalent set of orbitals in terms
of which to construct the exchange energy, one can once again express
the iinear relaxation in the exchange energy as the expectation value
of atomic-1ike exchange operators. The relaxation in the one-electron

density matrix in this case is

where

(1 TN § b PN
st )(ﬁ’ﬁ )- of )(L'L) . psup@&.) (163a)
p“)@,g) = 2(1oy 10y ) + 210 10g) (163b)
and
psuPﬁﬁ’ﬁf) = 2(15A-15A> + 2(]58-]SB> (163c)
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The total linear relaxation energy is again the expectation value of

a Fock operator

(0+1) f ;
SEpsrp Fon! ( L) dr (164)
lgr
where, as a result of the transformation to the equivalent orbitals,

the Fock operator contains superpositions of atomic effective potentials,

Fe- 24 |2 wy2d. - K e [- 2 (20, -k Y] 065
F=-1/2V [‘”A (s, K‘SA) it (2, 158)( )

D. General properiies

We conclude with some observations about the general properties
of the ASED energy decomposition. The calculation of the ASED molecular
orbitals, Eqs. (48)-(58), appears to require only the evaluaticn of one-
electron type of integrals, while avoiding the calculation of the

numerous two-electron multi-center type of integrals. The calculation

2,
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of the ASED molecular energy through first-order, Eq, (91), also appears
to offer similar practical advantages over the calculation by the tra-
ditional approaches of the molecular energy. The Ea& component of the
ASED energy is a pair-wise additive term. Each pair contribution requires
at most the calculation of two-center two-electron integrals. The tech-
niques dealing with this particular type of calculation have been ex-
tensively developed and refined.(51'56) Moreovar, these two-center
energies in Ec£ can be calculated prior to their use in a polyatomic
molecule calculation. In many cases, the same practical advantages exist
in the calculation of E(1) by partitioning it into Egch and the relaxation

xeh
ternms 6E(1) and 625(1) This advantage may only exist, however, after

xch xeh'
reexpressing Eilz in an equivalent set of orbitals. The linear relaxation
energies, Eqs. (92) and {93), are just expectation values of Fock-operators
containing superpositions of short-ranged atomic-1ike potentials. This
lends itself to the use of matrix-representations of these atomic-1ike
potentials in an atomic basis set, in a manner analogous to the procedures
discussed in solving for the molecular orbitals, The practical problem
of evaluating the linear relaxation energy thus reduces to the calculation
of the projection of the relaxation in the one-electron density-matrices
onto the various atomic orbjtal spaces. Provided the non-linear relaxation
effects remain minor, the calculation of the molecular energy via the
ASED approach has the prospect of avoiding the most time-consuming
practical aspects of the traditional approaches. Complications, however,
remain yet to be fully resolved in those cases when a limited CI is re-

quired because the ASED energy, through first-order, does not approach

the separated-atoms 1imit correctly. On the other hand, it is apparent
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that each of the CI hamiltonian matrix elements may themselves be decom-
posed as we have done for the zero and first order ASED energies. The
Jatter are in fact just a prototype of a diagonal hamiltonian matrix
element. Such a decomposition of the CI matrix-elements, aided possibly

by first formulating these elements in terms of equivalent orbitals,

has prospects of resolving the problem with the correct long-range behavior
of the ASED energy. Moreover, such an ASED decomposition of the CI
hamiltonian matrix has some interesting simplifying aspects in its own
right for use in CI calculations. The tailoring of the molecular orbitals
to lead to a convenient decomposition of the total molecular energy is

(67,58) The use of the

well known from its use in the PCILO method.
properties of the solutions to the atomic and diatomic subproblems for
simp1ifying the calculation of the polyatomic molecular energy as in the
present ASED method is also commonly used in the well known approach of
atoms-and-diatomics-in-mo1ecu1es.(59'6]) Finally, we note that the ASED
energy decomposition may be applied without further change to just the
valence electrons by using, for example, the method of effective core
potentia]s(ﬁz) to remove the core electrons from explicit consideration,
Relativistic effects on the valence electrons may also be incorporated

into the ASED energy decomposition without further change via the effective

core potent1a1s.(62)
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V. CONCLUSION

We have presented a decomposition of the molecular energy. This
particular decomposition is motivated by Anderson's ASED model of chemical

(5,26) The energy through first-order is found to adopt the

bonding.
form of the classical electrostatic energy, of a zero-order exchange energy,
and of various relaxation energies. The latter give the effect on the
energy of the relaxation in the one-electron density-matrix relative to

the superposition of atomic one-electron density-matrices. We have illus-
trated three different possible cases using the LiH X’E:'r, H2 X1 Z:g+; and
Hez x]2:g+ molecules as examples., The ASED approach presented here has

the advantage of dividing the energy into physically transparent group of
terms. Moreover, the form of the terms in the ASED energy lends itself to
the fullest utilization of properties of the atomic solution in order to
simplify the calculation of the molecular energy. The result is that at
most two-center two-electron type of integrals are needed for a calculation
if non-linear relaxation effects remain of minor importance. Thus, the
ASED approach presented here has prospects of reducing even by an order of
magnitude the effort required in the calculation of the molecular energy

by the conventional approaches.(]’z)
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FIGURE CAPTIONS

FIG, 1. The electrostatic energy ER, the exchange energy HA B? and the
’

total energy change AE as a function of internuclear distance

for the H2+ molecule in the Xzzg state,

FIG. 2. Comparison of various ASED potential energy curves for the H2+

molecule in the Xzz+ state with the minimum basis set variational

g
energy(]s) and the exact potential energy curve.(24)

FIG. 3. The zero-order electronic energy AE&E), the classical ejectrostatic

energy Ecz, and the net ASED zero-order potential energy, AEgg%D,

as a function of internuclear distance for the Hz molecule in tie

g
for purposes of comparison.

state, The exact potential energy curve is also shown

FIG. 4. The relaxation in the various components of the electronic energy

as a function of internuclear distance, for the H2 molecule in the

X1z; state,

FIG. 5. Decomposition of the partial ASED energy through first-order,

ggzs) (0+]>, into the classical electrostatic energy, Ece ,
and the relaxation energy, 6E£2f1), for the “2 molecule in the

1. *
tate,
X Lg S e

FIG. 6. Decomposition of the partial ASED energy through first-order,

v
ﬁggé) F(0+1/, into an effective electrostatic energy,
Ecﬂ + 6E(0+]) + GE(0+]), and the relaxation in the kinetic energy,

1

(0+1)
SEkAn for the H, molecule in the X Eg state.
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FIG. 7.

FIG. 8,

FIG. 9.

FIG.10.

FIGURE CAPTIONS
(Continued)

Comparison of the partial ASED energy through first-order,
AEXg;g) - F(0+1). with the Hartree-Fock(47) and the exact(46)
potential energy curves, for the H2 molecule in the X1 Eg+ state,
The term causing the incorrect long-range behavior in the ASED

(041)

energy through first-order, F , its countdrpart in the

F(corr)

correlation energy, , and their sum as a function cof

internuclear distance for the H2 molecule in the X] xg+ state,

The relaxation in the various components of the correlated elec-
tronic energy as a function of internuclear distance, for the H2
molecule in the X] Zg+ state.

Comparison of ASED potential energy curves resulting from various
levels of inclusion of electron cor-elation effects, and the full

CI potential curve(so), for the H2 molecule in the X] zc;'state.
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