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DISTORTED WAKE MODEL OF A HOVERING ROTOR
Keliji xiwachi*

Ames Research Center

Summary

The fundamentals of the local Momentum Theory and a recent extension of
this theory are presented in this report. The Local Momentum Theory 1s based
on the instantaneous balance between the fluid momentum and the blade elemental
1ift at a local station Iin the rotor rotational plane. Therefore, the theory
has the capability of e.aluating time-wise variations of air-loading and
induced velocity distrihutions along a helicopter blade span. Unlike a complex
vortex theory, this theory was developed to analyze the Instantaneous induced
velocity distribution effectively. This presentatlon of the fundamentals of
the Local Momentum Theory makes c¢lear the boundaries of this theory and assists
to make a computer program using this theory. A new concept introduced into
the theory in this report is the effect of the rotor wake contraction in
hovering flight. A comparison of this extended Local Momentum Theory with a
prescribed wake vortex theory is also presented. The results indlcate that
the extended Local Momentum Theory has the capability of achieving a level of
accuracy similar to that of the prescribed wake vortex theory over wide range
variations of rotor geometrical parameters. It is also shown that the analyti-
cal results obtajaed using either theory are in reasonable agreemeut with

experimental data.

Introduction

This paper has two purposes: (1) to give a more ¢~tailed explanation .7

the Local Momentum Theory than has been given i previous papersl’2’3; and

(2) to present recent improvements of the theory.

*National Research Council Associate.




There are two theories commonly used to estimate the induced velocity
distribution and the airloading distriburion of a helicopter rotor, vortex
theory and momentum theory, Vortex theory has the capability of analyzing
the induced flow field exactly, but the numerical integration requires
considerable computer time, In addition, difficulties exist in the analysis
of complex problems such as predicting rotor airloading under maneuvering

conditiong, even if a rigid wake system is assumed.

In contrast, the ordinary momentum theory is simpler, being based on
the assumption that the induced velocity is uniform over the entire rotor
disk". This, however, leads to unreliable airloading calculations. To
overcome this shortcoming, various changes have been suggested, First, a
rotor djsk was assumed to be divided into annular ring elements”, and
momental balance was cousidered on these elements. Then, the concept of
the annular ring elements was cxtended to the pie-shaped elements® in order
to analyze the azimuth-wise asymmetric flow {field. Using these clements,

a few analyses were presented tor a low frequency response of a helicopter
rotor’*8, In addition to the nonuniformity in space. the time-wise
variation of the induced veloeity has been considered within the frame

of the momentum theorv, The concept of apparent mass was proposed for an
entire rotor disk, the value ot which was determined by an experimental
study of the thrust variation tollowing a rapid collective pitch change s 1Y,
The concept was then extended to apply to the pie-shaped elements, and im-
provement of the predicting capability was achieved!171® for low frequency

response of a rotor. As a further extension, the Local Momentum Tiwcory

was proposed by Dr, Azumg and this authorls< |
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In the Local Momentum Theory, a rotor blade is represented by a scories
of n overlspping wings of decreasing wing-span. BEach overlapping wing has
an elliptical circulation along its wing-span, producing, thersfore, a uni-
form downwash velocity. The actual airloading and induced velocity distri-
bution of a real rotor blade is represented by the summation of the lift
and induced velocity nf this series of n overlapping wings. Momentum theory

is used to obtain the relation between the 1ift distribution and the induced

velocity distribution for each overlapping wings, Consequently, in thia theory,

the momentum generated by a blade itself is counted., In contrast, in the
previous momentum theory, the momentum generated by an entire or partial
rotor disk is considered. Because of this basic difference, the theory was
named Local Momentum Theory, and it has the capability of predicting the
higher frequency loading ol a helicopter rotor and also a more precise air-
loading distribution aleng a blade span than have the previous momentum
theories., The present theory,however, requires the use of a computer; there-
fore, the theory cannot give an analytical solution which is useful in ob-

taining a general view of a phenomenon,

By comparison with vortex theory, the Local Momentum Theory can achieve
an equal level of accuracy, using a much smaller amount of computer time,
The reasons are as follows: the theory does no. require the iterative pro-
cedure nor the calculation of the inverse matrix; and numerical integration
{s avoided by using the attenuation coefficient, which expresses the time-
wise variation of the induced velocity. The present theory, however, requires
more complicated analytical procedure than that which is required by vortex

theory.



The thecry presented in this paper is applicable not only to steady
state conditions, but also to various kinds of low frequency rotor responses,
where trailing vortices play the primary role in the creation of the un-
steady phenomena., The present theory is, however, based on steady aizfoil
characteristics; tharefore, some extension of the theory is necassary when
applying it to a problem of very high frequency rotor response, such us
flutter, where shed vortices are the primary cause of the unsteady phenomena.
An example of the extension of the present theory is shown in Ref. 21, where
the unateady airfoil characteristics, such as Wagner function, Kilssner func-
tion or the apparent mass for a blade, have been introduced in order to

study the rotor gust response,.

The Local Momentum Theory was recently extended to include the effect

ol the rotor wake contraction in hovering flight, The theory previously

assumed that the wake of a hovering rotor did not move in the radial direction;

therefore, the theory gave alm-st the same result as the rigid wake vortex
thOTYI’J. It has been pointed out, however, that the wake deformation
has strong effects on the airloading and induced velocity distribution in

) lo,17 18
hovering £1ight™® 77 . This extension of the theory to include the wake

deformation effect was necessary in order to analyze airloading distributions
measured by a laser velocimeter33»3“, In the new contraction model to be
described in this paper, fluid elements surrounding a rotor can be moved as
observed in experiment816917:18. In addition, the model to calculate the
attenuation coefficient was improved in order to include the effect of the
blade tip vortex. The spanwise lift distributions obtained by this extended
Local Momentum Theory are compared with experimental results wich those of a

prescribed wake vortex theoryl8,22,
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Notation
matrix
aspect ratio of a wing
1ift curve slope (rad'l)
gpeed of sound
constant or tip loss factor
wing sﬁnn or number of blades
consta: ¢ or attonuation coefficient
equivalent attenuation coefficient given by equation (57)
thrust coefficient = T/ pr R*(QR)*
wing chord
function given by equations (15) and (16)
function given by equation (A,1-9)
function given by equation (A.1-5)
function given by equation (A, 3=7)

R
moment of inertia of a4 blade about flapping hinge = g (r-t;)ﬁinb

running index or inclination angle of tip path plane (positive
forward tilt)

coordinate of a blade element

running index

parameters showing tip vortex positions

spring stiffness at flapping hinge

1ift

airloading

coordinate of a station on rotor rotational plane

Mach number

apparent mass of impervious disk given by equation (65)

mass moment of a blade about flapping hinge = SRY'(T'" r')dm,
"o
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X

X3

ZT

mass of air

mass of air associated with local momentum given by equations
(21), (26) and (47)

number of spanwise partition

rolling angular velocity of a rotor (positive advancing-side
down)

pitching angular velocity of a rotor (positive nose up)
rotor radius

radial rcsicion

flapping hinge offset

thrust

time

horizontal inflow velocity of a blade elemeant given by
equation (29)

furward velocity

mean horizuntal inflow velocity of the i-th elliptical wing
given by equation (33)

normal component of inflow velocity (pcsitive downward)
induced velocity (positive downward)

coordinate of fixed wing shown in Fig, 1
nondimensional radial position = CVh

nondimengional radial positiun given by equation (44)

nondimensional radial position of tip vortex given by equation
(66)

nondimensional flapping hinge offset = r§1i
spanwise position of fixed wing
distance from rotor rotational plane (positive downward)

nondimensional axial position of tip vortex given by equation
(67)
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down

elp

flapping angle (positive blade up) = F,-f-ﬂu cosy + Bis smw
preconing angle

circulation

lock number = f‘-CR‘/I‘

small increment

functlion given by equations (50) and (53)

nondimensional spanwise position

nondimensional spanwise position of fixed wing given by
equation (6)

blade pitch angle (positive leading-edge up) = 8o + By (X~ 0.75) + B, cos¥
+0SinYP 4y

blade twist rate

collective pitch angle at x = 0,75

running inde:x or inflow ratio = (v’s-'nb + ‘”/_E?.R

advance ratio = Vw-"l'f/Q.R

nondimensgional spanwise position of each elliptical wing

cir density

summat ion

solidity = b%R

inflow angle or wake age

skewed angle

azimuth angle

rotor rotational speed

number of blades
cylinder
downwash

elliptical ing

B P G




root

tip

Superscript

")
+
¢ F

ES SR

sparwise partition, the quantity of i-th elliptical wing,
or the quantity of tip vortex No. 1

azimuth~wise or time-wise partition, spanwise position,
or the quantity of j~th elliptical wing

the quantity of k-th blade

representative point

blade root

blade tip

upwash

circulation

azimuth~wise or time-wise partition

uniform or initial value

first harmonic contents of Fourier corine and sine series

the quantity at thres-quarter radial posicion

d ()/de

the quantity at a station (4, m) at time t = J
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Fundamentals of the Local Momentum Theory

Fixed Wing
Fig., 1! shows the air flow field surrounding an elliptical wing flying

with constant forward speed V. A well-known :ciult from the lifting line

theory!? is that the induced velocity is uniform {nside the wing span and

the uniform induced velocity,Us is developed to 2Vs far downstream, Outside

the wing span, there are upwash regions, but thev are concentra.ed near the
wing tips. Considering the momentum change, the total lift of wing L is

given:

L=2m1e )

where, m= PV T (“g‘)z (2)

The 1ift distribution, ¢, and induced velocity distribution, ¢& , are:

L=4 o (3)
o = Vo ; IML$1 inside the wind span  (4)
= v (1= TUGs ) 1151 outside the win spam (5)

-

where
M= (6)

When a wing has an arbitrary planform or lift distribution, we may
consider that the wing is composed of a series of n hypothetical elliptical
wings, The elliptical wings may be arranged arbitrarily, for example, Fig.
2! ghows a symmetrical arrangement and a one-sided arrangement. In each

elliptical wing, tie momentum balance is given by equations (1) and (2).

Using a suffix to designate quantities of the i-th elliptical wing, equations

(1) and (2) are rewritten as follows:

ST U o e T T AT S I U ST T o R o VT T TRV

-
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L,=2m.AVL (7

where,
my=PVT (‘%‘)2 (8)

The present theory was developed with the use of a computer; therefors,
expressions with suffixes are adopted in this report for convenience in

programning.

The 1ift distribution, itv ), on the most left hand wing in Fig., 2! is
expressed by the summation of elliptical 1lift, £§(£), on the component wings.
As the 1ift distribution of aach elliptical wing, Li(f{), can be obtained by
using a relationship similar to equation (3), the following equation is ob-

tained :

¥ T S
L(V)'§$L(§)=5%%%J|—5‘ @)

where

g’(%"?oo)/(%) (10)

and yoq shows the origin of the { axis, that is, the mid-span of each
elliptical wing, Substitutingy = 0!%)7 from equation (6) into (10),

equation (10) becomes

10
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where

Po, = ?ob/ %) v2)

In the above equations, f 1is the non-dimensional coordinate fixed to
each of the elliptical wings and j is the number of elliptical wings which
include the point,7 , within their span; therefore, only |§| & 1 is

considered in equation (9).

Substitucing equations (7) and (8) into (9), the 1lift distribution,

2(?7) , can be expressed directly by the downwash of each elliptical wing

AUE, s, then

401 =5, 2PV biati V18 (3)

The induced velocity distribution of the most left hand wing in Fig. 2!,
‘I‘YD’ is also given by the summation of downwashes and upwashes of the component
elliptical wings. As the Iinduced velocity distribu.ion of each elliptical

wing is given by vquations (4) and (5), the following can be obtained:

V() =5 av; f§) =L§Aug Fpounl®) + 580 £, 8)  (14)

whers

~ s

= Finun (8) =1 15| &1 (15)

=$p®)=1- Ve TP ae
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In the above equations, f,..., expresses the uniform downwash inside
the wing span of each elliptical wing and fup expresses the upwash outside
the wing span of each elliptical wing. According to blade element theory,

the 1ift distribution of a wing is:

L) = pvica(p-¥t) (1)

Substituting equation (14) into (17), equation (17) becomes

s =k pvica(6- EoVif)4,)  (8)

Now, two expressions of lift distributicn, that is, equations (13) and (18),
have been obtained using momentum theory and blade element theory respectively.
In both equations, the only unknown variable is the downwash generated by

each elliptical wing, |, €., AV, ({= {~N).

Equations to solve for A\}{, from equations (13) and (18) are derived as follows:

The 1ift per unit span, %4, acting on a local segment spanned by
(‘75 ; —7;,' ) (cross hatched area in Fig. 3) is given

Tt
Li= L,i L) AT/, - By 1)

where, 75 and 7]5,, are the tip positions of the j-th elliptical wing, and the
(3 + 1)=th elliptic&l wing respectively (Fig. 3), and they are non-dimen=
sionalized by using equation (6)., Substituting eque:ions (13) and (18) into
(19) gives two expressions for zj. Then, equating thesac expressions and

using equation (11), the following relation is obtairad:

12
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£i= S?&% Prica (8- EUSEy) Ay n,..)

&
= Z;, 27, AU:', @0)
where
i = ﬁ’?bav‘fi—‘feﬁﬂv— B (21)
s (73~ Ms41)

and 770"18 given by equation (12). The above equation indicates that the 1lift
due to blade element theory at a local segment spanned by (- 7]5, , -’75‘,1 ) 1is

balanced with the local momentum change.

When the wing chord 0(7) and the geometrical attack angle 6(!’ ) are
given in the simple forms, equation (20) is analytically integrated, and
n X n simultaneous equations to solve for AUL ( (=1 ~7V) are obtained
by changing j value from 1 to n in equation (20):

AV, B,
(A;,i) ; (22)
AV B

When equation (20) cannot be analytically integrated, C(7) and @ (7]) are

i

considered uniform inside the local segment spanned by (—’]’-,‘ —77’-,.7 ),

and the values at the middle point of the local segment may be adopted:

13
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Cy= C (9= i Tiat) (23)

by = 6 (7= ~BgTist) ()

In this simplitication, equation (20) can be integrated analytically,
but a larger number of spanwise partitions is usually necessary to achieve

a4 similar level of accuracy.

Instead of the integral method as stated in equation (20), there is
another way to obtain nX n simultaneous equations, i.e., equation (22) to
solve for UL ((= ]~ M), Selecting a representative point:,?]”., inside
the local segment spanned by (-’]5 ) ——77,'..,.’ ) and substituting ’IP}
fnto equation (13) and equation (18) respectively, the following relations

are obtained:

Lip3) = £ PVACpy0 (Bpy= 52V Sl )

2 NE

2 ;’-bl(, Ay (25)

= o

s

whaere
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o PV b T-85 '
Cos= C (7= Tpp) | (26)

Ops = O (1= "Tr3) !
&py = (’1,;-70.»)(%‘,} J

Although equations (25) and (26) have simpler form than equations (20), (21),
(23) and (24), the author preferg the integral method (equations (20), (21),
(23) and (24)) to the other (equations (25) and (26)). His previous cal-

«ulations for a rectangular wing showed that a smaller number of spanwise

partitions was required in the integral method than in the representative

point method to achieve a similar level of accuracy.

As g8hown in Fig, 1!, the upwash regions outside the elliptical wing are
concentrated near the wing tips; theretore, let us assume the upwash velocity
induced by each elliptical wing can be neglected, that is, fup (L ) = 0 in
equation (16). Substituting equation (15) into (14) and using the assumption

fup (&) = 0, equation (14) becomes

yp=Yavkfg) = )f.lml:; @7)

!

Using equations (23), (24), and (27), equation (20) becomes
'75*1
o[ pricsa(or-Fovify) 4
17l 2 P GG ) T
“Eoman 28
1
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where Ei is given in equation (21). In the above equation, the only unknown
variable is AUZ((,J 1~}) instead of Alfb (L= {~W) as in equation (20);
therefore, changing the value of j from 1 to n in equation (28), the
golution ofAU;, from 1 to n can be obtained wiuiiout calculating the inverse
matrix or any iterations. In other words, ihe coefficient matrix in equation
(22), UQ;*), becomes triangular by neglecting the upwash outside each
elliptical wing. The sample calculation of this procedure and recurrence

equation to solve A!fi‘, are presented in appendix A-1, After the value of

AHJ} has been obtained in the above procedure, the induced velocity distribution

and the 1ift distribution can be calculated by using equations (27) and (17)

respectively.

An example of the application of the present method for calculating
1ift and induced velocity distributions for a rectangular wing wi.h aspect
ratio (AR) = 6 is shown in Fig. 4!. The number of spanwise partitions is
n = 50, The solid line and the broken line show the results when using the
Local Momentum Theory with a one-sided arrangement and with a symmetrical
arrangement respectively. The chain line shows the results when using
1i{fting line theory’o . The discrepancy in the results between the present
theory and lifting line theory can be eliminated completely by introducing
the upwashes that have been neglected in the present calculation. The error
due to the neglect of the upwash is less in the middle of the wing span than
in the other parts for the symmetrical arrangement. On the other hand, for

the one-sided arrangement, the error is less in the tip of the wing than

16
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in the other parts., Therefore, Fig. 4! shows that the error due to the
neglect of the upwash is less in that area of each elliptical wing which

is common to every other clliptical wing., Also, it is xhown that the error
is not very much even in the worst case, because the upwash region is limited
to an area near the tip of each elliptical wing as shown in Fig. 1l!. When

a more precise estimation is needed in using the Local Momentum Theory,

the upwash generated by an elliptical wing can be calculated as an iterative
procedure, Usually, however, this procedure is not necessary when applying

the present theory to the rotary wing.

Rotary Wing

When trying to applv the present theory to a rotary wing, the following
dilterences between the 1ixed wing and the rotary wing should be congidered:
(1) the torward speed of a rotor blade is not uniform along the blade span
because the rotor blade {s rotating, and (2) the following blade may pass
throupgh the local station on the rotor rotational plane where the induced
veloeity generated by the preceding blade still remains. Therefore, the
time-wise variation ot the induced velocity generated by a preceding blade,
should be estimated whea analyzing the airloading of the following blade.
To aceount tor these difterences, the theory is extended as follows. As
shown in Fig. 51, 0 rotor blade is assumed to be op.rated in a sheared tlow
in the rotor rotational plane. The forward velocity of the sheared [low is

piven along the blade span as follows:

U=V sin¥ + QRX (29)

17

-




e et

whare V is the forward speed of the rotor, and YV is the azimuth angle of

the rotor blade.

It is assumad that the rotor blade is composed of hypothetical ellipti-
cal wings similar to the case of the fixed wing. (For convenience, an ael-
liptical wing means a wing which has elliptical circulation along tha span,
although such a wing does not have elliptical planform nor elliptical 1lift
distribution because of its operation in sheared flow.) By this approxi-
mation of the flow, the trailing vortices shed from each elliptical wing
may be considered to be straight, perpendicular to the wing span and to extend
to infinity; therefore, referring te the Biot-Savart relationship, the
induced velocity distribution along the span of each elliptical wing is
the same as Iin the case of the fixed wing, i.e., uniform within the blade

span, and it is given by equations (4) and (5).

If each elliptical wing is one-sidedly arranged as shown in Fig. 5!,
the 1ift near the blade tip can be estimated more correctly than the lift
in other parts of the blade by using the Local Momentum Theory, as discussed
above. As the greater part of lift acts on the blade elements near the blade
tip, this arrangement is especially suitable for the calculation of a heli-

copter rotor blade, and it gives a better estimation of airloading.

In each elliptical wing spanned by (R, R ), as shown on the right-
hand side of Fig. 51, the following momentum balance can be obtained (Refer

to Appendix A-2):

Lo=2mi 0o U:, (30)
mi= P(BE)P V.. 31)
18




where

bo = R(1-z) (32)
Vee=Vsiny + QR (1+ :C.‘,)/Z (3%

In the above equations, b; means the span length of each elliptical
wing and Vi,c expresses the mean speed of the sheared flow along the
span of the elliptical wing (Refer to equation (29)). Referring to
Appendix A-2, the 1ift distribution on each elliptical wing, (,L‘,)Jr ’

Ia given as follows:
(.at‘.u‘))“?" (zf\/;,,c, b,;AVE )(I{/V., c)‘/"_sz (34')

where U@, by and Vi’c are given by equations (29), (32) and (33),
respectively., © is the non-dimensional axis fixed to each elliptical wing
and it Is related to the non-dimensional rotor radius, i.e. x, as shown

in the following cquations, because a one-silded arrangement is adopted

here (Refer to Fig. 61).

5={2z.-(|+x.:)}/<'_~x‘b) (35

Similar to the case of the previous fixed wing, the lift distribution and
the induced velocity distribution of the rotor blade shown on the most left-
nand side in Fig. 5! are given by the summation of those of the component

elliptical wings. These concepts are schematically shown in Fig. 6l.

19
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Using equation (34) and neglecting upwash outside each elliptical wing, the

following squations are obtainad:
£ Lo (x))
L(X—) = 5’( ¢ .l'
= 2 (2 b sV (V% W= 06

&’

V)= Uy, = ghAV; 6N

-~)

where i/ means the number of elliptical wings which include the point, x

within their span.

In this subsection, for convenience in numerical calculations, many

variables are expressed by using subscripts. Generally, the first subscript

of any quantity, i, indicates the i-th radial segment of the blade, the
second subscript, j, indicates the time or azimuth-wise location of the
blade segment, and the third subscript, k, indicates the k-th blade of a
b-bladed rotor. When using this subscript form of expression, variables
may be considered as uniform inside a given blade segment. For example,
the spanwise induced velocity distribution, W(x) in equation (37), is
also the azimuth-wise variable and may have a different value for each
blade; therefore, V(%) is expressed as Vi, j,ks that is, the induced
velocity generated by the (i, j, k) blade segment. However, for the sake
of simplicity, more abbreviated expressions are sometimes used., In
equation (37), for example, Vi is used instead of 8V 3« , although
AV is the spanwise and azimuthwise variable and is also a function

of each blade.

20
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The other expression of the spanwise 1lifc distribution may be derived

by using blade element theory as follows:
Lx)=Hpyurca (6-¢) (38)

where ¢ is the inflow angle., In the case of the rotary wing, the induced
valocity generated by the preceding blade may affect the inflow angle, How-
ever, for simplicity, the equation to obtain the 1lift distribution is dis-
cussed first, and the mathematical model to estimate the inflow angle

will be prusented later.

From the above discussion of the "integral method" in the case of the
fixed wing, we may now derive simultaneous equations to solve AU:-,from
equations (36), (37) and (38). Here, the integral area is chosen as
(A, X+g), because Ay and Lihfare the tip positions of the {-th elliptical
wing and (J#])-th elliptical wing respectively (Refer Fig. 3). Equating
the lift per unit span, ./, acting on a local segment spanned by (X, X))

the following equations can be obtained;

5

Lu= ju '—% f’U.-f' oy (6~ ¢d)dz/(1\‘.’ﬂ -2)

= ﬁ 2" Alfz, (3?)

where =l

Ug=Vsin¥ + QR Xy, 40
Ce = C(X= Life) (41)
By = 6 (%= xc) 42)
Ay = A (L= %e) “3)
Lie= (X + Lwg) /2 (44)
by = (WH VU + ik /), )

21
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Vo = V gint (40)
N
Wi = S\\:: ﬂ\,"‘ - (.ullx-::m ;>JT-:F' Ax y C47)

Cxitgy =%y
In the above equations, by, Vi’c, £ and Vi j k are given by equations (32),
(33), (35) and (37) respectively, As discussed in the case of the fixed wing,
equation (39) can be analytically integrated when U(x), C(x), 8(x) and a(x)
are given in the simple form. However, for convenience, expressions with
subscripts are presented here, and U(x), C(x), §(x) and a(x) are representad
by values at the middle point,Xt/¢ , of the local segment (Refer to equations
(40), (41), (42), (43) and (44)). For convenience in numerical calculation,

the azimuth angle l}'fis expressed as follows:

T
¥; = \Pk,o'" é‘A‘yA (48)

where L}’ho and Alp are the initial azimuth angle of the k-th blade and the

azimuth-wise increment of the numerical calculation, respectively,

Similar to the case of the fixed wing, the combination of equation (37)
and equations (39) through (48) gives the recurrence equation to szolve for
aJy, if J‘tv is given as discussed below. The complete procedure and the

recurrence equation are presented in thre Appendix A-3.

Now let us discuss the inflow angle,d} , in equation (45). The flow

velocity normal to the ro::» rotational plane is generally composed of the
induced velocity and thz normal component of the rotor forward speed Vy .
Furthermore, in the case of the rotary wing, the induced velocity may be
generated by the preceding blade in addition to the blade under consideration.
For example, in the case of the forward flight of the rotary wing, Fig. 71
shows that the air flow at a local station (£, m) on the rotcor rotational

plane is influenced directly by two blade passages, i.e., by the i-th blade
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slement of the k=th blade at time j or (1, j, k) blade segment and by the
i“th blade element of the k&th blade at time j' or (i', j', k') blade seg-
ment. Consequently, the normal component of the total flow velocity at a
local station (¢, m) on the rotor rotational plane is given by the summation
of the following: 1) Vi, the normal component of the rotor forward speed
(given by equation (46)), 2) Vi,i,ke the induced velocity generated by the
blade under consideration, 3) “ﬁtu , the entire remaining induced velocity
generated by blades that have previously passed through the local station
(¢, m). Among the three kinds of flow velocity, only the induced velocity,
v}'J’k, senerated by the blade under consideration is related to the lift
when momentum balance is considered (Refer to equations (36) and (37)),
Dividing the normal component of the total flow velocity by the level

forward velocity of the blade element, equation (45) can be obtained.

Here, let us discuss the time-wige variation of the induced velocity
on the rotor rotational plane. It is shown in Fig. 8! that the rotor rota~

tional plane is assumed to be divided into small elements called stations,

The position of each station is given by the coordinate, (¢, m). A blade ‘
element is shown to proceed on the rotor rotational plane within a small

time ‘..lerval for the case of hovering or steady vertical climb. The

blade element is located at a station (£', m') at time t = j-1 with forward

speed of Uy j-1,k» and it moves to stations (i, m) and (2", m") at time t = }

and t = j+1 respectively., At time t = j-1 shown in Fig. B(af, the normal

velocity at the station (t', m') is given by the summation of the three

components i.e., VN, vg;é and vi,j-l,k- As a small time interval has
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passed, the disturbed air at station (L', m') has gone downward and

the field in the rotor rotational plane is partially filled with fresh air.
The induced velocity at station (L', m') has been changed at time t = j§,
therefore, while the normal component of the forward velocity, Vy, is still
constant (Refer to Fig. S(bi). By introducing the time-wise changing rate
of the induced velocity, the remaining induced velocity, v;Ld » &t station
(+', m') at time t = § can be related to the previous induced velocity i.e.

‘\f:,:o, and J;”H'“ as follovws:
-~} -
U;? ' - Cio,“_ Uj,’tl + UL 31 k) (41)

This time-wise changing rate of the induced velocity,(igz, ie called "an
attenuation coefficient," Generally, each station has its own attenuation
coefflcient, and the attenuation coefficient is a function of time,
Because the blade element induces the velocity vi,j,k only at the station
where the blade element {8 just passing through, equation (49) can be

expressed in a more general form as follows:

Vﬁ»" 2’1 w*zg‘ Vi 41 k" S ) (s2)

where Sem i8 one if any blade element exists at station (2, m) at t = j-1
and otherwise it is zero. Thus, if the attenuation coefficient di”‘ is
known, a combination of equations (39-48) and (50) gives the solution for
AV, with a given initial condition and a specified blade pitch input.

After the value of 8V, is determined, the induced velocity distribution can
be obtained by using equation (37). The lift distribution is given by using

equations (37), (38) and (45). Methods to obtain the atteruation coefficient
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wili be discussed in the next subsection,

ln the case of the rotary wing, each assumed elliptical wing is one-
sidedly arranged; therefore, when summing up induced velocities of each
elliptical wing$, upwashes are concentrated vutboard of the blade tip as
shown in Fig., 6}, Although each upwash outside an elliptical wing is negli~-
gible, the summation of upwashes outboard of the preceding blade tip is
sometimes strong enough to give an effect un the 1ift distribution of the
following blade (Refer to Fig, 9'), Consequently, it is necessary to take
this into account when estimating the lift distribution of t..e following
blade operating outside the tip vortex of any preceding blade. Remembering
the calculation procedure to obtain the value of the induced velocity of each
elliptical wing, {.e, A&ﬁ‘ » it i# necessary to omit the upwash only inbhoard
of the blade tip (x - 1 }. This i8 because in the one-sided arrangement,
the angle of attack at any spanwise station of the blade is {rdependent of
the tip-side upwash, unlike the inboard upwash. Therefore, after the value
of the induced velocity,lAlJE y 18 determined by omitting the upwash inboard
of the blade tip (x £ 1), it is a simple matter to estimate the upwash

outboard of the blade tip (x >~ 1) as follows:
vix>1)= 5 8 (I - "'%—-————) (51
1 -1 )

Substituting equation (35) into (51) and using the expression with

the suffix, equation (51) becomes

"
1};"“‘(1‘.‘>1) =—")\Z,AI&(1.— 22, -1=Zx ) (52)

2 [ -1 1)
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whare i is larger than n because x; is located outboard of the tlade tip.
Thus, when the blade under consideration is operating outside the tip vortcx
of any preceding blades, (1uation (52) should be added to the calculation
procedure stated before, Furthermore, in equation (50), the induced velocity
«r‘tv at station (¢, m) should be given by the summation of all velocities
induced, not only those induced by the real blade elements (x £ 1, or i £ n)
passing through the station, but also those induced by the hypothetical blade
elements (x > 1, or i > n) extending through the tip~side upwash region. In
addition to this, similar to the downwash, the time-wise variation of the
upwash is expressed by using the attenuation coefficient., Consequently, in

this case, equation (50) becomes

Tl S 53)
‘)},w" t»(‘fgw*-o_‘.’_, bi-ik«'s.h-.) (53)

where n'! is the number of the spanwise partitions of the real and hypothetical

blade. j&"ﬁhould be considered to be one if any real or hypothetical blade

elvment exists at station (!, m) at time t = j~1; otherwise it should be

considered to be zero.

When the pitching or rolling motion of a rotor hub or the blade flapping
motion is considered, only the normal velocity component Vy needs to be

modified an follows:

Vyj = Vsind + Veosi-geosify

+R(X=%)p = RL(JeosP; + psinypy) (54
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It should be realized that the normal component Vy is now the function of
time or the aximuth angle in the above equation, Similar to the modifica-
tion shown in aquation (54), more complex hub wution or the blade deformation

can also be iptroduced into the present cheory without any essential change

of the iInflow calculation procedure.

The only difference betwaen the present theory and other numerical
calculations comes from the procedure to obtain the 1lift or induced velocity
distribution from the given blade operating cendition. Therefore, the cal-~
culation procedure s very similar to the usual computer progvim used for
rotor acrodynamic analyses, One sample calculation procedure using the

pregent theory is sghown in Fig. 10,

Az the present theory is designed to trace a time-wise variation of
the 1ift or of the induced velocity digtribution, a sultable numerical
method, such as thie Runge~Kutta method, should be used in order to solve the
blade flapping equation. As an example, the sample blade flapping equation

1T

v 2 - 2¢1
Top + My 2'p+he(8-4.) =R Sz"ux)xdx (55)

where kﬂ 18 gpring stiffness at the blade root and P—’ ig the preconing or
neutral angle. The shear force at the blade root can be obtained by the
numerical integration of the 1lift distribution from the root to the tip
along the blade span, and the rotor thrust is obtained by the summation of

the shear force at each blade root.
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Because the initial induced velocity distribution and the initial blade
flapping motion are unknown, a calculation to obtain the initial trimmad
condition is required at the beginning of the computation. In the case of
the calculation of a steady state, this initial trimmed condition is the
solution, and the computaticn is completed. This initial trimmed condition
ig usually obtained within eight revolutions of the rotor in hovering, and
within five revolutions in forward flight 9“.7 0.15). The initial value of
the induced velocity is assumed to be zero in the present program, It is not
effective in shortening the initial transient period to ase the value of the
induced velocity 'J'a_Q.RE instead of zero. This .8 because this initial
transfent period depends mainly on the number of blades, on the development

ol the wake, and on the damping of the blade {lapping motion,

In the actual caleulation using equation (53), the following dis-
cussion might be useful; as stated before, the axes [¢, m] exist
ot the rotor rotational plane, and the origin is fixed to the inertial
space In the case of a steady {light. The axes [i, }, klarelixed
to the blade, and the origin exiats on the hub., The small difference
hetween the two reference Irames due to the coning angle is ignored. In
the cage of hovering or vertical ¢limb, the axes [i, j, k] haveonly a
rotating motion relative to the axes [¢, m]; therefore, the pie-shaped
clement {8 recommended for the station (¥, m), for the convenlence ol
the conversion between the two reference frames. In contrast, in the
case of the forward flight,the axes [{, J, k] havethe transversal motion
in addition to the rotating motion velative to the axes |¢, m]; therefore,

in this case the square element is preferred for the station (¢, m).
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Attenuation Coefficient

As statad in the previous section, the attenustion coefficient is intro-
duced into the present theory in order to express the time-wise variation of
the induced velocity at a lncal station on the rotor rotational plane. When
it is necessary to estimate the induced velocity distribution on another
specified plane such as the tail rotor operating plane, the¢ attenuation co-

efficient should be obtained for that plane using a model which is different

from the one presented here. The information obtained for the induced velocity

distribution on the rotor rotational plane is usually enough, however, for
an analysis of the rotor airloading. Consequently, discussion in this paper
i3 limited to the use of the model in wbtaining the attenuation coefficient

on the rotor rotational glane.

The attenuation coefficient can be defined as the time-wise changing
rate of induced velocities between any arbitrarily chosen time and that time
when the blade element passes through the local station (¢, m), Therefore,
if the exact value of the attenuation coefficient is desired, the physical
model used should be very complex, such as the distorted wake vortex theory.
Such a complex model requires greater computer time, however; consequently,
the balance between accuracy of calcualation and complexity of the model is
the most important consideration in determining the model to be used in

obtaining the attenuation coefficient,

Let us assume steady flight of hovering or of vertical climb, and,
remembering the calculation procedure stated in the previous section, let
us limit the purpose of the present analysis to the estimation of the lift

distribution acting on & rotor blade. It is necessary, then, to know the
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induced velocity remaining at station (t, m) only if after the preceding
blade has passed, the following blade is located just before the station,
The attenuation coefficient at station (2, m) can be given, then, as the
ratio of the induced velocities of two times; one, when the preceding blade
is passing through the station, and the cther, when the following blade is
located just before the station, The period between the two moments is

given by

Aty = :!"5/1711. (56)

The period At*, in the above equation, can be obtained before the beginning
of the calculation, and it is corngtant during the entire calculation pro-
vedure; therefore, during the calculation, the attenuation coefficient is
no longer a function of time but a function only of the position of the

station.

Furthermore, in the case of the simplest model, the attenuation
coefficient is assumed to be uniform over the entire rotor disk., This
simplest model was used in the earliest stage of the development of this
theory to check the characteristics oi the attenuation coefficient. The
valve of the uniform attenuation coefficient is determined by comparing the
theoretical thrust coefficient with the experimental results. Thrust co-
efficients of a rotor were obtained theoretically by using the Local Mo-
mentum Theory, assuming various values of the uniform attenuation coefficient

selected between 0.5 and 0.95. The curve of the thrust coefficient versus

the uniform attenuation coefficient for a given collective pitch is shown
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as a solid line in Fig. 112. The thrust coefficient tends to become small
when the value of the uniform attenuation coefficient is increased, because
more induced velocity remains on the rotor rotational plane and the angle

of attack of the rotor blade decreises. Eventually, the thrust coefficient
becomes zero at the point C = 1,0, where all induced velocity remains; there-
fore, new induced velocity to be balanced with the 1ift acting on a blade

is added to the previous induced velocity until the angle of attack of the

blade bhecowmes zero over the entire disk.

The chain line in Fig. 11° shows the thrust coefficient obtained by
an experimental study” using a model rotor, This thrust coefficient, of
course, is independent of the attenuation coefficient. The intersection of
theoretical (solid) and the experimental (chain) lines gives the value of

the uniform attenuation coefficient for a given collective pitch,

In Fig., 124, the intersections for various kinds of model rotors
are”»” 6y 30 plotted. As the present uniform attenuation coefficient is
defined by the period given by equation (56), the attenuation coefficient
depends on the number of blades, i.e., b. Consequently, the equivalent
attenuation coefficient C* is used for the lateral axis in Fig. 12¢ in
order to unify various attenuation coefficients depending on the number
of blade. As a three~bladed rotor is used as the standard in this figure
(Fig. 12-), the equivalent attenuation coefficient of a b-bladed rotor is
defined by

% (%)
¢c=c (5T
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The next step in estimating the attenuation coefficient is to develop
a purely theoretical model. As shown in Fig. 13, the air mass hit by a
preceding blade (Blade (A)) at a station (&, m) at time t = j-1 moves
downward as time passes. When the following blade (Blade (B)) comes to
the same station (£, m) at time t = j, the distance batween the air mass
and the station (¢, m) is shown as Z in Fig. 13. Here it is assumed that
the air masses inside the rotor disk move downward with the same constant
speed, in other words, the circular disk composed of the air masses moves
downward., Such a flow field can be expressed by a semi-infinite vortex
cylinder of uniform disk loading, and the circular disk moving downward
corresponds to the upper end of the cylinder. Because the flow around the

vortex cylinder is determined by using simple vortex theory?3, the attenu-

ation coefficient is given as the ratio of the induced velocity at the rotor

rotational plane and that at the upper end of the vortex cylinder, that is,
between the two hatched elements shown in Fig. 13. After the blade (B)
passes through the station, the process starts again. In other words, it
is as if the cylinder suddenly returns to the rotor rotational plane and
again begins to move downward. Each station, then, has its own vortex
cylinder which moves up and down at each blade passage. Consequently, the
attenuation coefficient obtained from the semi-infinite vortex cylinder is

a function of two variables. One is the position cf the station, i.e.,

coordinate (¢, m), and the other is the length between the upper end of the

vortex cylinder and the rotor rotational plane that is shown Z in Fig. 13.

In the case of hovering, Z is given by

Z= Vo alyp (58)
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where Jstb is obtained from equation (56) and{/p is the downward moving

velocity of the upper end of the vortex cylinder; therefores,

Vo = V& OR (9

The theoretical attenuation coeffient obtained from the semi-infinite vortex

cylinder in the case of hovering is shown in Fig. 142,

The merits of this theoretical model for the case of hovering are as
follows. First, the attenuation coefficent is a function of three variables,
the coordinate (¢, m), the length Z given by equation (58) and the span-
wise positnnlgﬂh . Therefore, a general chart of the attenuation coefficient
can be obtained (Fig. 14¢) before the beginning of the calculation, and the
chart can be used for any single rotor configuration., In addition to this,
the flow field around the semi-infinite vortex cylinder can be obtained with

very short computer time because of the available analytical solution?3,

Using equations (56), (58) and (59), the attenuation coefficient can
be calculated for each model rotor from the given thrust coefficient and the
specified position of the station. The result at"R.~ 0.7 and 94; = 0.8 is
compared with the previous experimental results in Fig. 122, The reason-
able agreement hYetween the two results verifies the theoretical approach
presented here. The result shows that the theoretical value at p¢§-=o.75
may be used as the uniform attenuation coefficient when the simplest cal-

culation is desired.
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The use of the theoretical model in hovering flight to obtain the
attenuation coefficient can be extended easily to the case of forward flight,
Similar to the hovering case, the semi-infinite vortex cylinder with uniform
disk loading is used to give the attenuation coefficient, In the case of
forward flight, however, the cylinder is assumed to be inclined, the angle

of which is given by
1= tam (H/n) (60)

The flow around such an inclined semi-infinite vortex cylinder is known from

simple vortex theory-?,

Furthermore, the attenuation coefficient in the case of forward flight
fs assumed to be uniform over the entire rotor disk. This assumption is
based on the following considerations, From a moving axis fixed to a
helicopter, a station on the rotor rotational plane appears to move
rearward at the same gpeed as the forward velocity of the helicopter,

Thus, every station has come from the upstream and has gone again to the
outside of the rotor disk after a finite number of encounters with blade
¢lements, Consequently, it is expected that the attenuation coefticient
under the usual operating conditions of forward flight does not play as

ifmportant a role as under hovering conditions, and therefore, the simpler

model might be sufficient.

In the case of forward flight, in addition to the above assumptions,
it is also necessary to assume that the period during which two successive

blades pass through the same station, is given again by equation (56).
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Exactly speaking, the period is no longer given by such a simple .»pression.

The period is shorter or the advancing side (¢ % 900) and is longer on the
retreating side (¢ 2700) than the period given as equation (56), bacause
the rotor moves forward. FHowever, as stated above, the simpler model might
be sufficient in the case of forward flight, and the rotational speed of the
blade is much greater than the forward speed under usual operating condition;

therefore, equation (56) gives a sufficient approximation of the period.

Thus, the downward distance of the movement of the vortex cylinder

during the period is given by

Z=(Vsini + Veosi -geosyp + 5 )ats  (41)

whereqfy is the mean induced velocity. Also, the rearward distance ch is

given by

Xey = Veosi - ath (62)

Combining the analytical approach?3 to solve the inclined semi-infinite
vortex cylinder with equations (56), (60), (61) and {62), the attenuation
coefficient can be obtained at any station., Remembering the discussion in
the case of hovering, the value at 94; = (0,75 and ¢ = 90° or 270° may be
used as the uniform attenuaton coefficient in the case of forward flight,
Thus, similar to the case of hovering, the general chart for the theoretical
attenuation coefiicient in forward flight can be obtained with very short
computer time. The Eesult is shown in Fig, 152, and it car be used for any
single rotor configuration., As will be seen in examples in the next section,
this uniform attenuation coefficient based on the above assumptions gives a

sufficiently good estimate of the variation of the induced velocity in
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forward flight, It is, however, recommended that the attenuation coefficient
at low forward flight (u & 0.10) be a function of rsdius and azimuth angle?“,

similar to the case of hovaring.

1n the case »f unsteady flight, the mean induced velocityyp is a
functivn of time. Therefore, the valus of Uy is given by the averaged in-
duced velocity along the blade span at each instant, Substituting the value
of Vo into equation (58) or (61), and using the general chart, the attenua-
tion coefficient can be obtained at each instant, The introduction of the
time-wise variation of \Jp into the present theory is nearly equivalent to

time-wise change of the pitch of the helikal wake in the vortex theory,

Furthermore, when the rotor hub has unsteady motion, equations (58) and
(61) should be modified. For example, when the rotor hub ig rolling or

pitching, equation (58) becomes

Z={v-Rx (§eosy +psin)} oty (63)

PquaLion (61) becomes
Z={Vsini + Veosi-Beosy — R ( Z-ws)P+P5mlP)
+ U} ath (64)
Thus, the wake deformation and the interaction between a wake and blade

airloading, which are caused by an unsteady hub motion or an unsteady control

input, can be easily introduced into the present theory,

$
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Application of the Theory
Hovering Rotor

The 1ift distribution along a blade span of a hovering rotor was cal-
culated by the theory given in the previous section, Ir the calculation,
the number of the blade spanwisa partitions is n = 20, and the azimuth-wise
increment is Alpuz% » The latter may seem too large, but it is allowed

because only the steady state with no blade~flapping motion is concerned.

An example of the result is shown in Fig. 16!, It is compared with the
result obtained from vortex theory*” and also compared with the experimental
result<® using a model rotor in the wind tunnel. As shown in the figure,
the result of the present theory using non~uniform attenuation coefficients
ie very clese to that of the vertex theory and is reasonably close to the
experimental result. Even uging the constant attenuation coefficient, the
present theory gives a good estimation of the blade spanwise lift distri-
bution of a hovering rotor. The computer time of the present theory is at

most about 1/10 of that of the vortex theory.

Advancing Rotor

When a rotor ig operating in forward flight, the effect of the upwash
velocity observed outside the preceding blade-tip must, as stated before,

be included in determining the angle of attack of the following blade,

An example of the analysis is shown in Figs. (17), (18), (19), and (20).
In the calculation, the number of blade spanwise partitions is n = 20, and
azimuth-wise increment is A ¢ = 10 deg. The rotor rotational plane is
divided into a net of square elements of dimension R/80, the number of which

ig ¢*m = 160~320. The 1ift coefficient is assumed to be zero in the reversed
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flow region. The rotor is assumed to have articulated rigid blades and

the airloading is coupled with the blade flapping motion. The spanwise and
azimuth-wise 1ift distributions are shown in Pig. 17! and in Pig. 18!
respectively, being compared with experimental results?’, For the sake

of comparison, the result obtained by using a vortex theory?® is also
shown in Fig. 18(a)., In addition to the lift distribution, the radial
distribution of time averaged induced velocity over one rotor ravolution is
shown in Fig. 19!,, The result of the present theory is compared with that
of a simple vortex theory??, Furthermore, the distributirn of tha angle

of attack obtained by using the present theory is shown in Fig. 20%° .

In this figure, the broken line indicates the trace of the intersection of

the blade under consideration with the tip vortex of the preceding blade,

As shown in Figs. 17! and 18!, the correlation between the present theory
and the experiment {8 reasonable, even though the constant attenuation co~
efficlent is used for simplicity of calculation. The correlation near the
intersectiona of the blade under consideration with the tip vortex of the
preceding blade (Refer Fig. 20) is not, however, as good as the rest. This
is because the wake deformation is not considered in the present calculation.
Since the 1lift distribution at the outer part of the blade is more sensitive
to the tip vortex positions, the difference between the present theory and

the experiment becomes greater at tnis part.

In addition to the eftect of the latest tip vortex, the effects of the
older tip vortices on the angle of attack distribution are observed in the
result using the present theory (Fig. 20“2)., These tip vortices cause the
variation of the spanwise lift distribution (Fig. 17!), and the high fraquency
oscillations of the 1ift (Fig. 18!). The use of the constant attenuation
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coafficlient tends to emphasise thase effacts. This is because the variable
attenuation cosfficient near the intersections of the tip vortices with the
blade is smaller than the constant attenuation coefficient. When using the
variable attenuation coefficient, the effect of the latest tip vortex alone

is remarkable“?.

As shown in Fig. 18(a), the lift obtained by the present theory is more
quickly changed than that obtained by vortex theory, This is because the
present theory is based on the steady airfoil characteristics and ignores the

shed vortices.

Rotar Response due to Rapid Increase of Collective Pitch

A transient response of the rotnr thrust and & related induced velocity
variation following a rapid collective pitch change have been studied in
experimental tests®»310, Analyses also have been conducted by introducing
an apparent mass assoclated with the rotor disk into the classical momentum
theory®»19, Such an analysis, however, requires the use of experimental
results to cbtain the value of the apparent mass, The approach using the
vortex theory is orthodox but it requires much computer time, even though the
rigid wake is assumed??, 1In contrast, it is very easy to appiy the present
theory to this problem and the result can be obtained with much less computer

time.

Fig. 21! compares an analysis for the case of hovering using the present
theory with cne using the vortex theoryzg. The aerodynamic thrust shown

in the figure means the thrust which does not include the inertia force due

to the blade flapping motion,
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In the calculation, the mean induced velocity \Jp , which is used in
equatioa (58) in order to calculate the moving distance of the vortex cy-
linder, is determined by two methods: by averaging the induced velocity

along the biade span at each instant, and by using the same value used in
the calculation for the vortex theory. The solid line shows the results
using the former, and the chain line shows the results using the latter,
In eituer way, the results of the present theory are coincident with those
of the vortex theory shown by the broken line., This indicates the insen-

sitivity of the transient shape of Vo to the thrust coefficient.

in the varlation of the aerodynamic thrust, the first decrement following

a peak results from the blade flapping motion which reduces the blade attack
angle. The second decrement following the maximum thrust is due to the

development of the wake which increases the induced velocity.

A comparison is shown in Fig. 221 of the results of the present theory

and those of the classical momentum theory in which the apparent mass of the

entire rotor disk has been introduced. The value of the apparent mass as-

sociated wit | *he rotor disk is assumed My or 2Mp, where M. is the apparent

mass nf the ..npervious disk in the unsteady translation perpendicular to

its plas~, My 1is given by

Mo= 4 PR? (65)

The blade is constrained at the flapping hinge in this calculation in
order to comnpare only the aerodynamic characteristics obtained by using two
theories. The irregular curves of the thrust and the induced velocity ob-

tained by using the present theory result from the mutual interference among
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the inducaed velocities of all blades. In the calculation, the number of
blade spanwise partitions is n = 20, and azimuth-wise increment 154np'- 10
deg. The present calculation supports Carpenter's experimental result!?

that the apparent mass of the rotor due to rapid collective pitch change is

o wemeER e s e e

equal to that of the impervious disk in the normal translation.

E Rotor Response due to Sudden Increase of Cyclic Pitch

| Fig. 23 shows the time history of the inclination of the tip path plane
following the step cyclic pitch input into a hovering rotor. The lines show
the traces of the point «f the unit vector which stands at the hub center
normal to the tip path plane. The inclination of the unit vector is obtained
from the individual blade flapping angle by using the multiblade coordinates??

at each instant. As the sample rotor does not have {lappin hinge offscet nor

a spring at the blade root, the coordinate of the steady state is (0, -1).

The golid line shows the results of the present theory, The broken line

shows the result using the model of constant induced velocity .istribution

over the entire rotor disk3<. The double chain line indicates the result
obtained by the theory’ based on the momentum balance in the pie-shaped

area in the rotor disk., The results obtained by the introduction of the

apparent mass of the rotor disk to the theory, in addition to the former
theory itself<, are shown by the chain lines. The results indicated by

the chain lines are reasonably close to those of the present theory for

various values of Lock number.

In the classical momentum theory, the time-wise variation of the
induced velocity is approximated by the inertia term due to the apparent

. mass of the rotor. Therefore, the difference between the chain line and
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the double chain line shows the effect of the time-wise variation of the

induced velocity. Furthermore, the difference between the chain line and
the broken Jine indicates the effect of the space wise non~uniformity

of the induced velocity distribution, in addition to the time-wise
variation, As shown in the figure, the latter difference is small at the
beginning of the motion, and the former difference becomes small as time

passeq,

The reasons are as follows. In the model shown by the broken line, the
induced velocity is constant; therefore, when the imbalance of the flapping
moment is produced by the step cyclic pitch input, only the blade motion is
changed in order to satisfy the new equilibrium. In the model shown by the
double chain line, the induced velocity distribution can be changed ir addi-
tion to the blade {lapping motion. However, the induced velocity distribu-
tion i8 given by the condition at the terminal steady state’; therefore,
the induced velocity has developed to the terminal value even at the very
beginniny of the transient motion. In the model shown by the chain line,
due to the inertia term associated with the apparent mass, the induced
velocity distribution is not changed as rapidly. Consequently, at the
beginning of the transient motion, the imbalance of the flapping moment
is satisfied largely by the change of the blade flapping motion. The
induced velocity, then, develops to the steady state. In the case of
the very low frequency response of the rotor, therefore, the effect of the
apparent mass may be neglected, and the model shown by the double chain line

can give a good approximation of the rotor inclination?.
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The step cyclic pitch response of the advancing rotor is shown in
Fig. 24!. The time histories of the thrust coefficient and the coning
angle are indicated in Fig. 24(a)!, The inclination of the tip path plane
is shown in Fig. 24(b)}, The small high-frequency variation observed in
the thrust coefficient results primarily from the non-uniformity of the
induced velocity distribution, caused primarily by the tip vortex of the
preceding blade. The effect of the inclination nf the tip path plane on
the thrust is shown as the low frequency variation in the figure. In the
calculation, the number of the spanwise partitions is n = 20, and the

azimuth-wise increment is A\P = 10 deg.

A few more applications of the Local Momentum Theory have been tried,
For example, the tandem rotor in yawed flight and the coaxial rotor are
analyzed in Ref. 31. The gust response of a single rotor is studied in

Ref, 21.

The new hovering model including the wake deformation

Calculation model

A recent extension of the Local Momentum Theory to include the wake

deformation of steady hovering flight is presented in this section. Although,

as discussed in the previous section, the results using the Local Momentum

Theory showed good correlation with a few experimental cases, this extension

of the theory was necessary in order to analyze the airloading distributions

as
measured by a laser velocimeter.,

The wake deformation of a hovering rotor is separated into spanwise
deformation and axial deformation. The spanwise wake deformation includes
the contraction and rollup of the vortices. The axial wake deformation is
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the axial deviation from the rigid helical wake position. In the Local
Momentum Theory, the spanwise wake deformation is equivalent to the spanwise
movement of a local station on the rotor rotational plane. In order to
express the axial wake deformation, a new model to give a corresponding
attenuation coefficient was developed. Because of the effect of the tip
vortex on a spanwise lift distribution is dominant among all the wake com-
ponents, the model of the present theory was daveloped primarily to trace
the behavior of the tip vortex. Fig. 25(a) and Fig. 25(b) show the side
view and top view of the tip vortex. The tip vortex No. 1 in Fig. 25(a)

is shed from the blade under consideration (blade (A)) at position P at
time t = j, The tip vortex No. 2 was shed from the preceding blade (blade
(B)) at position Py at time t = j~1, and is located at position P, at time
t = j. The period between t = j~1 and t = j is the period during which two
neighboring blades successively pass through the same position of the rotor
rotational plane, that is, ate given as equation (56). During the period
Athy , the tip vortex No. 2 moves from Py to Pp. Following the motion of
the tip vortex No. 2, a station on the rotor rotational plane moves from rj
to ry during the period, where r; is a radial position of the tip vortex
No. i. Similarly, each station moves from rigto ri during the period
following the motion of the tip vortex No. i. The positions of the tip

vortices are given by a generalized wake modellt,17,18,35;

Xr = Ke+ (1~ Ke) e:K’¢ (66)

(67
=K|(—£‘LE')+K2(¢"2E‘) %—24)
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where xr and xr are the axial and radial non-dimensional pusitions of the
tip vortices. Using equation (66), the radial position of the tip vortex

No. 1 is given as

f=R{Ke+ (k2 €% ] (68
qk =.£%§ (L-1) 69)

Outside the rotor disk (r > R), each of the stations moves a distance equal
to that between r) and rp toward the blade root in order to avoid making a
gap between neighboring stations. At the inner area of the rotor (r=RKy),
the stations don't move, because no tip vortex moves into this area (Refer
to equation (66)). Therefore, the positions of the stations in the inner
area are coincident with those of the rigid wake model. The parameters Kj,
K2, K3 and K4 in equations (66), (67) and (68) are determined by experi-
mental data using flow visualization techniques. There are three available
generalized wake models, one proposed by Landgrebel!®, one by Kocurek and
Tangularl7, and one by Kocurek, Berkowitz and Harris3®., In this paper,

the second model is most frequently used, because of the applicability over

wide range variations of rotor geometry, and because of the convenience of

comparison with other computer codes.

As each station moves, a part of the following blade (the hatched area
in Fig. 25(b)) operates in the upwash region generated by the preceding blade,
even in the hovering case. Therefore, it is necessary to calculate the up-
wash distribution outside the blade tip in addition to the downwash distri-
bution along the blade. The upwash or downwash distributions are calculated
at each station by using equation (37), equation (39) through (48) and
equation (52).
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The new model was also developed to take the wake deformation into
account and to obtain the attenuation coefficient at the upwash region,
Fig. 26 shows the new model which is composed of a vortex ring and a semi-

infinite vortex cylinder, The vortex ring represents the tip vortex nearest

to the rotor rotational plane, and the vortex cylinder represents the re-
maining tip vortices. The vortex cylinder is made of the continuous vortex,
the strength of which is equal to that of the axially averaged tip vortices??
The strength of the vortex ring is equal to that of the tip vortex. Fig.
26(a) shows that the preceding blade passes through a local station at time
t = j-1. The vortex ring is localed on the rotor rotational plane, and the
top of the vortex cylinder is located at the position of the second tip
vortex. The distance between the top of the vortex cylinder and the rotor
rotational plane is Z3 Fig. 26(b) shows that the following blade comes
just belore the station at time t = j. During the period between time

t = j=1 and t = }, the vortex ring and the vortex cylinder move downward

and radially contract. Using equation (67), the vertical position %Z; is

piven by

|}

RKi @, L2
Z, (70)

= R{K(E) + k(- 3] 072
where ¢; is given by equation (69). The radius of the vortex ring is equal
to that of the tip vortex nearest to the rotor rotational plane (Refer to
Fig. 26(b)). For simplicity, the radius of the vortex cylinder is assumed
to be equal to that of the vortex ring instead of the corresponding tip
vortex radius, This leads, however, to an overestimation of the radius
of the vortex cylinder because of the contraction of the tip vortices as
shown in Fig. 25(a). The radii of the vortex ring and the vortex cylinder
are given as equation (68).
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The attenuation coefficient is defined by the changing rate of induced
velocities at a station (¢, m) betweean time t = j and t = j~1, In the
present model including the wake deformation, the statiun (£, m) moves from
position rj_; to position rj on the rotor rotational plane during this
period. Consequently, the attenuation coefficient of that station is given

as

Cf:= Vew / pi-t 1)

whenz1ﬁ£:is the induced veloeity at poaition ry_; on the rotor rotational

plane at time t = j-1, and '\ri

w18 the induced velocity at position ry on

the rotor rotational plane at time t = j, Because the station at the inner
part of the blade (YSRKg does not move, the attenuation coefficient of
that station {8 pgiven as the changing rate of the induced velocities at the
game radial position between time ¢t = § and t = j-1. The stations which
are located between positions ry) and R at time t = j were situated
outside the rotor disk (r ~ R) at time t = j-1l. Therefore, when determining
the attenuation coefficients of these stations by using equation (71), the
induced velocity ﬂf:l is calculated outside the rotor disk. If the old
model, which is composed of the vortex cylinder alone (Refer to Fig. 13),
is used, the induced velocity‘vz:L is zero outside the rotor disk, and it
is impossible to define the attenuation coefficients of these stations.

Consequently, the discrete vortex was introduced into the present model.

In the Landgrebe wake model and in the Kocurek and Tangular wake model,
the parameters K;, Ky, and K3 in equations (66), (67), (68) and (70) are
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functions of a thrust coafficient!®,17, Iy the present method, those
parameters are calculated at each time step by using the value of a thrust
coefficient. There is an analytical solution?3 for the induced velocity
around the vortex cylinder or the vortex ring. Based on th!s solution,
general tables of the induced velocity are constructed for the vortex ring
and for the vortex cylinder, before the start of the calculation. The
attenuation coefficient is calculated at each time step from these general
tables by using equation (71). The entire calculation is completed when the
thrust coefficient reaches a steady state, The calculation procedure of the

present theory is shown by Fig. 27.

e . b

A romprehensive study has been conducted to check this extended lLocal
Momentum Theory. The spanwise lift distributions for five different rotors
were calculated by this theory. The results were compared with experimental
data and with those obtained by using other analyses. Table 1 shows the
geometrical characteristics and the operating conditions of sample rotors
used in this study (see also Refs. 26, 34, 36-38). Three of them are model

rotors, and two are full scale rotors.,

Two computer codes of the prescribed wake vortex theory were used in

this study, the AMI 1ifting surface program’~, and the UTRC lifting line

rogram!®, In the present theory and the UTRC code, the lift curve slope
prog

of airfoil sections is given as

a= a5/ a2
Qo= 6.05 (Vysd.) (73)
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M is the Mach number of the airfoil section and it is given as

M= QRXi/z (74)

where ag is the speed of sound. The above equations are based on Refs. (39)
and (40)., Because the angles of attack of the airfoil sections are far
below the stall angles in all experimental cases p'eserted here, the above

simple relations are applicable.

The results are shown in Figs. 28 through 37. A comparison of the pre-
gsent theory with the AMI code and with the first experiment3“ when using
the Kocurek and Tangular wake model is presented in Fig. 28. The experi-
mental result was obtained using a laser velocimeter to measure the bound
circulation. Although there are differences, especially around x = 0.8,
the result obtained by using the present theory shows good correlation with
that of the AMI code. The experimental data show a higher 1ift peak at the

blade tip than either theoretical estimation. This is probably caused by

the existence of a larger wake deformation than estimated using the generalized

wake model*!, rather than by modeling errors in the two theories. The

same experimental result3" was analyzed by using the Landgrebe wake model
as shown in Fig. 29. In addition to the comparison of the present theory
with the AMI code, the result obtained by the UTRC code is also presented.

The three theoretical results are very similar, Comparing Fig. 29 with

Fig. 28, the Landgrebe wake model gives better estimation than the Kocurek
and Tangular wake model in this experimental case. The di{ference of laft

distributions between the two wake models is, however, very small.
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In addition to the results shown in Fig. 29, the results using the
previous rigid wake model of the Local Momentum Theory and using blade ele-
ment theory with a uniform induced velocity are shown in Fig., 30. The
uniform iduced velocity is given illk-51R{qg where the thrust coefficiant
is equal to that of the AMI code., For convenience, the lift curve slope
of the airfoil section is again given as equations (72), (73) and (74) in
the rigid wake model of the Local Momentum Theory and in blade element
theory. It is apparent that the present extension of the Local Momentum
Theory improves the capability of estimnling the 1lift distribution near the

blade tip.

An analysis of the second experimental case using the Kocurek and
Tangular wake model is shown in Fig. 31. The experimental data were measured
by a flight test using H-34 rotor (Table 4 in Ref. 36). Although the cor-
relation between the present theory and the AMI code is not as good as the
first experimental case shown in Figs, 28 and 29, {t i{s reasonable. Compared
with either theoretical prediction, the experimental data show a lower value

of the 1liit distribution at the inner part of the blade.

Results of another analysis of the second experiemental cagel® using
the Landgrebe wake model are shown in Fig. 32. The previous results, shown
in Figs. 28 through 31, were obtained by using the collective pitch input mode
for all codes, in which the measured value of the collective pitch is given
to the computer program. In this experimental case, the collective pitch
input mode showed poor correlation between the UTRC code and the AMI code.
Therefore, the thrust coefficient input mode, in which the value of the
thrust coefficient is given to the computer program, was also tried. The

results using the cnllective pitch input mode and the thrust coefficient
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input mode are shown by the double chain line and by the broken line,
respsctively. The thrust ooefficlent input mode gives bettesr correlation,
but a measursable difference betwseen the two computer codes still exists near
the blade tip., Because ths same thrust coefficient is used in the AMI

code and in the UTRC code when using the thrust coefficient input mode,

the difference between these two results comes from the difference between
1ifting surface and 1ifting line, and also comes from the difference between
the numerical methods to calculate the thrust coefficient. In this
experimental case, the tip vortices generated by the preceding blade are
closer to the following blade than in the first experimental ocase shown

in Figs. 28 through 30. Therefore, the airloading distribution is more
sensitive to the tip vortex positions, which depend on the thrust coefficient,
This is the primary reason for the poor correlation between the two computer

codes when using the collective pitch input mode,

The results of the third experimental case, analyzed by the Kocurek
and Tangler wake model, are shown in Fig. 33. The experimental data were
obtained by a UH-1A helicopter37. The correlation between the present
theory and the ANMT code is very good. The correlations between the experiment
and the present theory or the AMI code are good. It is also apparent
that the present extension of the Local Momentum Theory shows good

improvement in the capability of estimating the 1ift distribution.

The analyses of the fourth experimental case26 using the Kocurek and
Tangler wake model are presented in Figs. 34 and 35. Fig. 34 shows the

results using the collective pitch input mode. The experimental data,
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however, show poor correlation with the theoretical estimations. Ironically,
the previous rigid wake model gives better correlation with the experiment

in this input mode (Refer to Fig. 16). When using the thrust coefficient

input mode, the present theory and the AMI code show good correlation with
the experiment as shown in Fig. 35. The airloading distribution near the

blade tip can be estimated only when using the distorted wake model.

The fifth experimental case3® was analy'.ed by the Kocurek and Tangular
wake model. The results using the collective pitch input mode and the thrust
coefficient input mode are shown in Figs. 36 and 37, respectively. Again,
only the thrust coefficient input mode of the present thecry or of the AMI
code show good corralation with the expariment. The correlation between

the present theory and the AMI code are reasonable in both input modes.,

Reviewing analyses of the five experimental cases, correlation between
the present theory and the AMI code is always good. However, the correlation
near a blade tip is not as good as that of the inner part of the blade, nor
it 1s as good when the aspect ratio of the blade becomes smaller, or when
the tip vortices of the preceding blade are closer to the blade under
consideration. These tendencies of the correlation are due to the simplicity
of the present model. An improvement of the attenuation coefficient at the

upwash region might be effective in obtaining a beatter correlation.

The difference between the results obtained using the AMI code and the
UTRC code is sometimes greater than the difference between those obtained
usiug the AMI code and the present theory. The experimental results fluctu-
ate around the three theoretical results, and it is difficult to determine

which computer code gives the best correlation with the experiments. There-
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fore, the development of a more complicated model of the present theory, which

might make it possible to obtain a better correlation with the AMI cods alone,

is not necessary at prasent,

The computer time required for each of the three codes to obtain the results
shown Pigs, 29 and 32 is given in Table 2. These calculations were conducted

under the sams condition by using CUC~7600 at Ames Research Center. The

variation of the computer time of the UTRC code in the case of Fig. 32 is
due to the difference of the convergence speeds of the iteration included
in this code. The computer time required by the present thaory is less

than 1/15 of that of the UTRC code, and less than 1/60 of that of the AMI

code.

The experimental data of the fourth and the fifth cases are very dif-

ferent from the theoretical estimation obtained by the present theory and

by the AMI code when using the collective pitch input mode. This may be
due to clastic torsion deflection of the blade. When the thrust co-
efficient input mode is used, however, : ie results obtained from using the
distorted wake model show the best correlation with the experiments. In
the other three experimental cases, the results obtained using the present
theory and the AMI code show reasonable correlation with the experimental

results, even when the collective pitch input mode is used.

Conclusion
The fundamentals of the Local Momentum Theory were presented to make
clear the boundaries of this theory and to assist to make a computer pro-
agram using this theory. Then, an extension of this theory te include the

effect of the rotor wake contraction in hovering flight was presented. This
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extended Locs. Momentum Theory was compared with a prescribed wake vortex
theory. The results indicated that the extended Local Momentum Theory has
the capability of achieving a level of accuracy similar to that of a pre-
scribed wake vortex theory over wide range variations of rotor geometrical
parameiers. It was also shown that the analytical results obtained using
either theory were in reasonable agreement with experimental data. The
computer time required by the present theory was less than 1/15 of that

of the prescribed wake vortex theory. Consequently, this extended local
Momentum Theory is especially effective when calculations are required for

numerous cases,
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Appendix A-1

Recurrence Fquation to Give the Induced Velocity Distribution in the

Case of the Fixed Wing

In this section, a sample procedure is presented tv derive a recurrence
equation from equation (28). This recurrence equation is used to solve the

induced velecity distribution along the fixed wing span.

For simplicity, i* is assumed that the wing has & rectangular plarform,
no twist angle and the same airfoil section along the span, that is, the
chord, the geometrical angle of attack and the slope of the lift coefficient
are constant along the wing srwm., Furthermore, the assumed elliptical wings
are onesidedly arranged as shown in Fig. 2. In addition to this, the dif-

ference of the span length is constant betw=en neighboring elliptical wings,

that is, A= '73-“- "h,. is constant.

Substituting j = 1 into equation (28), equation (28) becomes
;!
=1t prica (o= o) 1
-1 (-17) 11
= 2 m; AV, (A- )
Also, in the case of j = 1, equation (21) becomes

— N, 7
TR j-" fblVJW(i 73) (A.1_2)

Substituting equation (A.1-2) into (A.1-7) and performing the integration,

the following equation can be obtained:

_ Vb e,
AV = /{Hug(m}} A-3)

ac o
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where

A’? = |- 7[; | (A-"‘4')

In equation (A.1-3), g(x, y) comes from the integration and it is generally

defined by

G, )= F (2 1-2 + sinx - YVImF —sin 3)
(A.1-5)

Therefore, g(1,%,) is given as

41, M)z 5 (L -2 —sin ) (A1-6)

Similar to the case of j = 1, the following can be obtained from

equations (21) and (28) in the case of j g 2:

AU;:{OV—;::A%- dekbudv. G(’I Z",b&)}

/twm,, 6(Ty, T, b)) (A7)

where

"" !

G (M Ty, b )= J \/1 BFM-.Fdn  (A1-8)

Performing the integration in the above equation and using equation

(A.1-4), equation (A.1-7) becomes
G (M, Tyt bb)’(’%‘)?“@; 5;4»1) (a1-D
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where

5 = (-'i;) (75+ M) (A1-10)
$ar1= (B) Bug t Mor) (A1-11)

As the one-sided arrangement is assumed here, %, is given by

7= (- 1207/ (M-12)

In summary, the initial value a));is given by equations (A.1-3),
(A.1-4) and (A.1-5). The ramainingaﬂ'.} (J & 2) is given by equations
(A.1-4), (A.1-5) and from (A.1-7) through (A.1-12). After the values of
AU%, (j = 1~N) have been obtained, the induced velocity distribution and

the 1ift distribution can be obtained by using equations (27) and (17),

respectively.
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Appendix A-2

Momentum Bal

In this section, a momentum balance of each elliptical wing operating
in the sheared flow shown in Fig. 5! is discussed. As defined in the sub-
section of the rotary wing, amelliptical wing means a wing which has an
elliptical circulation distribution along the span, The horizontal velocity
for the elliptical wing is linearly increased from the root to the tip
along the wing span as given by equation (29). The trailing vortices shed
from each elliptical wing are straight, perpendicular to the wing span,
and they are horizontally extended to infinity. The elliptical circulation
distribution of the wing can be expressed by the following equation using

a constant Cyp :

T)=Cr V-8
= Orv - fax-1-t )N (A2-1)

vhere the relation between § and x is given as equation (35). Using the

Biot-Savart relation, the induced velocity inside the wing span is given as

_1 1 dr(xh
AV, = TR .‘k x-x (A2-2)

Substituting equation (A.2-1) into (A.2-2) and performing the integration,

equation (A.2-2) becomes

av, = CV[ZRU-Xz)j (A-2-3)
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Substituting G, = 2R(1-X)al; from the above equation into

(A.2-1), equation (A.2-1) is rewritten as

T)=2R(1-%)apy1-§

= 2R (1-2) AV - {(21.-1—2%_10)1’ (A.2-4)

The spanwise 1ift distribution of each elliptical wing, i.e., (-L"(l))elp

is given as
(betw) = PUT (A2-5)
Substituting equations (29) and (A.2-4) into (A.2-5), equation (A.2-5) becomes
(L',('L))R‘P= (2PV.e R (1~ zi«)dd:‘z)(u/\/:.,c)
xﬁj—s—z CA.Z"é)
The total 1ift of each elliptical wing L; can be given as
1
Lb’S PUE)T () Rdx (A2-T)
L)

Substituting equations (29) and (A.2-4) into the above equation, Li can be

expressed by

Ly =2m 8V, (A2-8)
where 2

My = P {RO-2) PV, (A-2-1)

Vie= Vsin¥ + QR 1+ %) /5 (A-2-10)
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Appendix A-3

Becurrence Equation to Give the Induced Velocity Distribution in the Cage

of the Rotary Wing

In this section, a sample procedure is prasented to derive a recurrence
equation from equations (37) and (39)-(47). The recurrence equation is used

to solve the spanwise induced velocity distribution of the rotary wing.

For simplicity, it is assumed that a rotor blade has a rectangular
planform, no twist angle and the same airfoil section along the span, that
is, the chord, the pitch angle and the slope of the lift coefficient are
constant along the blade span. Furthermore, it is assumed that the difference
of the span length is constant between neighboring elliptical wings, that

is, AL= Agey~ Xi/is constant.

Using equation (35) and replacing x in equation (47) with§ , equation
(47) becomes

LY
miy =48 (- Y L AG3+Vee) V1-3d8 (A3-1)

7

where

co=2ZR(1-x) (A3-2)
Si,un= 1,2153'1'(1"'1"’.}/(1—1.;) (A-3-3)
Seu=t2xe =X} /g, (A-3-4)
AL = Ly~ Xy (A3-5)

anl where VE,L is given as ecuation (33). Performing tha integration in

equation (A.3-1), g can be given as

= LR (1= H (Som, Siw)  (A3-6)

o0




In the above equation, H(x, y) comes from the integration and it is defined
by

H(z, 9=~ ${0-20% _ (1- )%}

4+ Vie * 4 (X, %) (A3=7J

where g(x, y) is given as equation (A.1-5). Replacing .. in equation (39)
with (A.3-6), substituting i' = 1 into equation (39) and using equations

(37), (45) and (A.3-5),A);jcan be obtained,

= - —1/.;" 1)
aVi=(BUi-w-Y %HM'HG“’S“'}}

acax |,

(A.3-8)

where | \/w’ H(z.%), 5“ and ¥, are given by equations
(40), (46), (A.3-7), (A.3-3) and (A.3-4), respectively.

Similar to i' = 1, the following can be obtained in the case of 1i' z 2:

8V = [0Us = - vk - S 1+ ZEGTTH S, Bu0fart )

acax Yy

/{‘*-%Z:% 'H(SL‘, L’"'/Sb‘,i,' J (A,a-‘})

where Uy, Vy, H(x, y), SL";‘” and gc‘«.t’f are given by equations (40),

(46), (A.3-7), (A.3-3) and (A.3-4), respectively,
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In summary, when 'Lr‘iil known, the initial value 4\)‘,’ is given by equa-
tion (A.3-8), and the remaining 41}2‘0 (L" 2) is given by equation (A.3-9).
After the values ofau;,(t,'-]'\v’b) have been determined, the induced velocity
distribution and the lift distribution can be obtained by usine equations
(37) and (38) respectively. The upwash distribution outside the blade tip

can be obtained by using equation (52).
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Blade section 0012 0012
Blade twist,
et (deg') "10. 902 -8.0
Collective pitch @ngle at x = 0,75,
eo.v (degc) 9.8 9,41
Rotor radius,
R(m) 1.045 8.53
Number of blades,
b 2 4
Solidity,
o~ 0.0464 0.0621
Aspect ratio of a blade,

13.7 20.5
Flapping hiuge offset,

0 0.0357
Mach number of blade tip,
Mup 0.226 0.583
Source NASA T™ NASA TM

78615(34) X-952(36)

Model H=34
Flight
Test

Table ] Rotor parameters and operating conditions
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0012

"12.0

8.97

6.67

0.0369

17.3

0.639

TCREC~
TR-62-
42(37)

UH-1A
Flight
Test

0015

8.0

0.762

0.0637

10,0

0.188

NACA TN

2953(26)

Mndel

0012

5.3

2,32

0.0974

6. 54

0.360

NACA TN
3688(33)

Model




Computer time (sec)

Code/Case Fig. 29
Present theory 0.34
AMI code 23.18
UTRC code 6.37

Table 2 Comparison of comput-'r time
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Fig, 2 Decomposition of a fixed wing to hypothetical elliptical wings%
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Fig, 3 Lift acting on a local segment of a fixed wing.
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Fig. 5 Decomposition of a rotor blade to hypothetical elliptical wings,
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A PART OF BLADE OPERATING
IN UPWASH FIELD

FOLLOWING BLADE
PRECEDING BLADE

TIP VORTEX

Fig. 9 Effect of upwash of a preceding blade on the following blade!l.
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Fig. 10 Global flow chart,
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Fig. 11 Thrust coefficient versus unifora attenuation coefficient in hover?.
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Fig. 12 Comparison of theoretical and experimental results of uniform
attenuation coefficient?,
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Fig. 15 General chart of attenuation coefficeint in forward flight?.
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Fig. 16 Spanwise airloading of a rotor blade in hover!s, (u = 0, b = 2,
8¢ = 0 deg.).
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Fig. 17 Spanwise airloading of a rotor blade in forward flight! (u
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Fig. 18(a) Azimuth~wise variation of airloading in forward flight! (u = 0.18,
b =4, G=-8.0 deg.).

88




T T e

PO x e

L OADING, ¢ (kg/m)

SPANWISE AiR

400

200

100

b/in.

Fig. 18(b)

20

10

Azimuth-wise variation of airloading in forward flight! (u = 0.18,

b

R e e - wabseanitlNNEEY R

e x=0.56 PRESENT THEORY
A x=0.56 EXPERIMENT (NASA TND—1637)27

1

18
4
L

y, deg

= 4, et= -800 deg-)o

89




.03

v/QR
o
N

01
2 o/ 4 5 0 3 1.0
// t/R r/R

(a) ¥ =0° AND 180°

emamemee PRESENT THEORY |
= == = SIMPLE VORTEX THEORY USING A VORTEX CYLINDERZ3

051 T

¥ =270° y = 90°
.04 H +
.03 +

v/QR

-02 H .V T j

- pm -

01} +
0 . . . ;
1.0 5 0 5 10 |
t/R /R

(b) ¥ =90" AND 270°

Fig. 19 Radial distribution of time averaged iiiduced velocityl (u = 0,18,
b = 4, l’e‘. -8'0 dego)o

90



-

=~ = = — TRACE OF INTERSECTION OF BLADE
UNDER CONSIDERATION WITH TIP
VORTEX OF PRECEDING BLADE

Fig. 20 Distvibution of angle of attack (deg.)"?
deg.).

91

(v =0.,18, b = 4, H¢=-8.0




(a) Cy TOTAL Cy INCLUDING BLADE INERTIA TERM

AERODYNAMIC COMPONENT OF Cy

6
¥
»
S
PRESENT THEORY
o= PRESENT THEQRY WITH ASSUMED v,
2r —=== VORTEX THEORYZ?
0 i 1 L J
A6
.14
LY
L-%
10
08 1 1 1 4
0
(c) 6
.—..’ 60° ja—— l
13.3°
00.75 3.6° 07°
085
(d) vy/S2R
'c:; ASSUMED v,
.m T O™
»
|
'mo 180 380 540 720

v, deg

Fig. 21 Time response caused by a rapid increase of collective pitchl
(u = 0, b = 4.9‘&’ -800 deg.)a
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Fig., 22 Comparison of the results obtained by present theory and classical

momentum theory! (u = 0, b = 3, 8¢ = 0.0 deg.).
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Fig. 27 Global flow chart of extended Local Momentum Theory.
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Fig. 28 Comparison of measured and calculated snanwise lift distributions
in hover, with Kocurek and Tangular wake model, (b = 2,0t = -10.9
deg. ,AR = 13.7,9”;* 9.8 deg.).
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Fig. 29 Comparison of measured and calculated spanwise 1lift distributions

in hover, with Landgrebe wake model, ( b = 2,8¢ = -10.9 deg.,
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Fig. 32 Comparison of measured and calculated spanwise lift distributions
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in hover, with Landgrebe wake model , (b = 4,6t = -8.0 deg.,
AR = 20.5).
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Fig. 33 Comparison of measured and calculated spanwise lift distributions

in hover, with Kocurek and Tangular wake model, (b = 2,0t = -12.0
deg. ,R = 1703. 90.1,- 8.97 dGGQ)-
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Comparison of measured and calculated spanwise lift distributions
in hover, collective pitch input mode, (b = 2,0t = 0.0 deg.,
MR = 10.0 deg, G4~ 8.0 deg.).
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Fig. 35 Comparison of measured and calculated spanwise lift distributions
in hover, thrust coefficient input mode, (b = 2,0¢= 0.0 deg.,

AR = 10.90).
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Comparison of measured and calculated spanwise 1ift distributions
in hover, collective pitch input mode, (b = 2,60t = 0.0 deg.,
AR - 6-5[0, 60-’15" 5.3 dﬁ&-)o
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Fig. 37 Comparison of measured and calculated spanwise 1lift distributjons
in hover, thrust coefficient input mode, (b = 2,0¢ = 0.0 deg.,
*' 6. 510)0
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