NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

```
(NASA-CK-163993) CALCULATIUN OF THE N81-20184
ROUM-TEMPEAATURE SHAPES OF UNSYMMETRIC
LAMINATESS Plogress Repurt, 1 Sep. - j1 Dec.
1980 (Vil:yruia Polytechaic Inst. and sitate Unchas
Univ.) 35 PHC AUS/MFA01 CSCL 11DG3/24 19406
```


COLLEGE

OF ENGINEERING

College of Engineering Virginia Polytecinic Institute and State Univeraity Blacksburg, VA 24061
VPI-E-81-4

March 1981

Calculations of the Room-Temperature Shapes of Unsymmetric Laminates

Michael W. Hyer ${ }^{1}$
Department of Engineering Science and Mechanics NASA Cooperative Agreement NCCI-15 Interim Report No. 24 Prepared for: John G. Davis, Jr., Head Materials Processing and Applications Branch National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

$1_{\text {Associate Professor of Engineering Science and Mechanics }}$ Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

Preface

The enclosed report is a copy of a paper submitted for publication In the Journal of Composite Matertals. The issuing of this report is not Intended to duplicate the Journal's publication effort. This report is intended to accelerate the dissemenation of information resulting from investigations of advanced composite materials.

Abgtract

The cured shape of unsymmetric lamantes do not always conform to the predictions of classical lamination theory, Classical lamination thoory predicts the room-temperature shapes of ajd unsymmetric laminntes to be a saddye. Experimental observations, howper, indicate some unsymmetric laminates have cylindrical room-temperature shapes. In addition, some unsymmeric laminates, exhibit two stable room-temperature conflgurations, beth cylindrical. Tlis paper presents a theory which explains these charouteristics. The theory is based on an extension of classical laminocion theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obcain quantitative information regarding the roomtempernture shapes of square $\mathrm{T} 300 / 5208\left[0_{2} / 90_{2}\right]_{\mathrm{T}}$ and $\left[0_{4} / 90_{4}\right]_{\mathrm{T}}$ graphitem epoxy lnminates. It is shown that, depending on the thickness of the laminate and the length of the side of the square, the saddle shape conflguration is actually unstable. For values of length and thickness that render the suddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.

Introduction

Most calculations used to predict the response of laminates to static, dynamic, or thermal loadings are based on what has become to be known as classical lamination theory [1], [2], [3]. This is a innear theory and is based on the following major assumptions:
(1) the displacements are continuous throughout the laminate,
(2) the Kirchhoff hypothesis regarding undeformed normals is assumed to be valid,
(3) the strain-displacement relationship is inear,
(4) the material is inearly elestic, and
(5) the through-the-thickness stresses are small in comparison to the in -plane stresses.

The theory smears the individual lamina properties by integrating the constitu:ive equations through the thickness of the laminate, is a result of this integration, force and moment resultants are defined. In addition, the well-known A, B, and D matricies are defined. While this theory is quite capable of accurately predicting static deflections, natural vibration frequencies and mode shapes, buckling loads and mode shapes, and thermal expansion coefficients of laminates, there are physical situations for which the theory fails to predict the correct answer. Two situations of note are: the inability of the theory to predict the response of thicker laminates, and; its inability to explain the behavior of laminates near edges. The former problem has been studied by several investigators [4], [5] and satisfactory corrections to the theory have been obtained. The latter problem is now a classic and has been studied by many individuals, at least for the case of the
straight free-edge, A survey of the edge problem has been put forth in [6].

There appears to be another situation for which classical lamination theory fails to give the correct answer. Specifically, it appears the theory is unable to correctly predict the room-temperature shapes of thin unsymmetric laminates. Hyer [7] has documented the roomtemperature shapes of several familles of unsymetric laminates and found that the room-temperature shapes of some thin unsymmetric laminates are closely approximated by right circular cylinders. In addiCion, some thin laminates have two room-temperature cylindrical shapes. These results are in contrast to the predictions of the classical theory. The classical theory predicts the room-temperature shapes of all unsymetric laminates to be a saddle with unique (single=valued) curva= ture characteristics. Specifically, Hyer found that $100 \times 100 \mathrm{~mm}$ and $150 \times 1.50 \mathrm{~mm}\left[0_{2} / 90_{2}\right]_{\mathrm{T}} \mathrm{T} 300 / 5208$ graphite-epoxy laminates cured to become cylindrical at room temperature. In addition, they exhibited a snap-through or ofl-canning phenomenon. The cylindrical shape could be snapped into another cylindrical shape which had the same characteristics as the first shape. However, the second cylinder was orfented perpendicular to the first cylinder and the curvature of the second cylinder was of opposite sign. Hyer showed that thicker (say, 8-layer) $100 \times 100 \mathrm{~mm}$ unsymetric laminates conformed to the predictions of the theory.

To explain the behavior of unsymmetric laminates, it was assumed that it would be necessary to incorporate a nonlinear effect into classical lamination theory. The existence of two room-temperature shapes
(i.e. the two cylinders) essentially ruled out a linear extension to the theory since a inaar extension would lead to the prediction of a unique shape, alblet perhaps not a saddle shape. Furthermore, since the out-of-plane deflections of the sisymnetric laminates were of the order of many laminate thicknesses, geometric nonlinearities were felt to be an important effect. Thus, in an effort to explain the behavior of unsymmetric laninateg, classical lamination theory was extended to includa geometric nonlinearities through the strain-displacement relationship. This extension was applied to the analysis of the $\left[0_{n} / 90_{n}\right]_{T}$, $\mathrm{n}=1,2, \ldots$ family of laminates. This family was chosen for study because this class of laminates always exhibits a snap-through phenomenon, there is data available for different thickness $\left[0_{n} / 90_{n}\right]_{T}$ laminates, and due to some of the $A_{1 j}, B_{1 j}$, and $D_{1 j}$ terms being zero with this family, the algebra associated with this family of laminates is simplier than the algebra associated with other families. The analysis of the roomtemperature shapes of this family of laminates is the subject of this paper. The paper traces the development of the analysis which successfully predicts the existence of two room-temperature cylindrical shapes, and compares the predictions with the available data.

Problem Fornulation
Since a problem formulation which includes geometric nonlinearities would resuit in nonlinear governing equations, it was assumed from the beginning that obtaining a closed-form exact solution for the unsymmetric laminate problem would be difficult and not really necessary. The occurence of the cylindrical shape is so prevalant with thin laminates that it was hypothesised that one is dealing with a fundamental
phenomanon rather than some higher order effect. Thus any good approximate theory would reveal the mechanics of the problem. The prokiem is Idalized as follows. A cura laninate (and uncured prepreg) is flat at the elevated curing temperature, fig, in. As the laminate cools, it is assumed it is free from any external mechanical forces which produce net work. It is assumed the out-of-plane deflections develop only because of the differences in thermal expansion properties of the individuel lamina, This idealization ignores the effects of any mechanical constraints the autoclaving and vacuum bagging process may exert on the 1aminate. Upon cooling, the laminate deforms Into one of the shapes given by figs. $1 \mathrm{~b}, \mathrm{c}$ and d . of these shapes, the one that actually occurs is the one associated with a minimum of the total potential energy, The shape scenario given by figs, $1 \mathrm{~b}, \mathrm{c}$ and d Includes the saddle shape observed for the thicker laminates and predicted by the cleaical theory, and the two possible cylindrical shap/ss observed for the thinner laminates. It is assumed that in attaining these shapes, geometric nonlinearities are important.

Since it is assumed external tractions are not important during the cooling process, the total potential energy, including the effects of thermal expansion, is given by [8],

$$
\begin{align*}
& W=\int_{V o l} \omega d V o l, \tag{1}\\
& W=\frac{1}{2} C_{i j k 1} e_{i j} e_{k 1}-\beta_{i j} e_{i j} \Delta T, \tag{2}
\end{align*}
$$

where W equals the strain energy density. The $C_{i j k l}$ are the elastic conatants of the material and the $\beta_{\mathrm{d}, \mathrm{j}}$ are coefficients related to the elastic constancs and the coefficients of thermal expansion of the material. Both the elastic properties and the thermal expansion coeffi-
cients are assumed to be temperature-independent. The $e_{i j}$ are the strains in the material and ΔT is the temperature change in the material due to cooling from curing. In eq. (2), since the problem is a planestress formulation, i and j assums the values 1 and 2 . These values are not directly related to the principal material djections of the lamina, but rather, 1 and 2 are associated with the x and y directions of the laminates (see fig. 1). Thus the following relations apply:

$$
\begin{align*}
& e_{11}=\varepsilon_{x}^{0}-z \frac{\partial^{2} w}{\partial x^{2}}, \tag{3}\\
& e_{22}=\varepsilon_{y}^{0}-z \frac{\partial^{2} w}{\partial y^{2}}, \tag{4}\\
& e_{12}=\varepsilon_{x y}^{0}-z \frac{\partial^{2} w}{\partial y \partial x}, \tag{5}
\end{align*}
$$

with

$$
\begin{align*}
& \varepsilon_{x}^{0}=\frac{\partial u^{0}}{\partial x}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{6}\\
& \varepsilon_{y}^{0}=\frac{\partial y^{0}}{\partial y}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2}, \text { and } \tag{7}\\
& \varepsilon_{x y}^{0}=\frac{1}{2}\left(\frac{\partial u^{0}}{\partial y}+\frac{\partial y^{0}}{\partial x}+\left(\frac{\partial w}{\partial x}\right)\left(\frac{\partial w}{\partial y}\right)\right) . \tag{8}
\end{align*}
$$

As usual, $z=0$ is the midplane of the laminate. The quantity u° is the laminate midplane displacement in the x-direction, v° is the laminate midplane displacement in the y-direction, and w is the out-of-plane displacement of the midplane.

Equations (6) - (8) represent the principal departure from classical lamination theory and include the usual approximations associated with thin-plate theory when employing the nonlinear geometric effecta in
the strain-displacement relations. These approximations nssume the elongation and shearing strains and the squares of the rotations are the same order of magnitude and this order is small compared to unity [9], [10].

For a laminate the $C_{i j k}$'s can be related to the $\bar{Q}_{1 j}$ ' B, the reduced stiffinsses, and the $\beta_{1 j}$'s can be rejated to the $\bar{\sigma}_{1 j}$'s and α_{x}, α_{y}, and $\alpha_{x y}$, the laminate thermal expansion coefficients in the $x-y$ coordinate system. Expanding eq. 2 ylelds

$$
\begin{align*}
& \omega=\frac{1}{2} \bar{Q}_{11} e_{11}^{2}+\bar{Q}_{12} e_{11} e_{22}+2 \bar{Q}_{11} e_{12}^{2}+\frac{1}{2} \bar{Q}_{22} e_{22}^{2} \tag{9}\\
&-\left(\bar{Q}_{11} \alpha_{x}+\bar{Q}_{12} \alpha_{y}\right) e_{11} \Delta T-\left(\bar{Q}_{12} \alpha_{x}+\bar{Q}_{22} \alpha_{y}\right) e_{22} \Delta T
\end{align*}
$$

($\alpha_{x y}=0$ for this family of laminates.) the problem has now been reduced to one of finding the deformation u°, v°, and w as functions of x and y which, through eqs. (2) - (9), minimize eq. (1). As previously mentloned, approximate solutions to u°, v°, and w are sought. In seeking realistic approximate solutions, two basic assumptions are made. First, it is assumed that even in attaining the cylindrical shape, the midplane elongation strains, ε_{x}^{0} and ε_{y}^{0}, do not vary much from the linear prediction (i.e. ε_{x}^{0} and ε_{y}^{0} independent of x and y). Second, it is assumed that to the order of the nonlinearity considered here, the midplane shear strains are negligible i, e, $\varepsilon_{x y}^{0}=0$, Since for $\left[0_{n} / 90_{n}\right]_{T}$ laminates classical lamination theory predicts $\varepsilon_{x y}{ }^{0}$ to be zern and ε_{x}^{0} and ε_{y}^{0} to be constant, these two assumptions could be lumped into one by saying it is assumed that even in attaining the cyindrical shapes, magnitude of the midplane strains do not vary much from the predictions of the classical theory. However, for rationalizing the choice of the
functional form of the approximate solutions, the two issues are efenarated.

It is assumed $\omega(x, y)$ is of the form

$$
\begin{equation*}
w(x, y)=\frac{1}{2}\left(a x^{2}+b y^{2}\right) \tag{10}
\end{equation*}
$$

a and b being constants. With this functional form for w, both the classical lamination solution, $a=-b$, and either of the two cylindrical. shapes, fig. 1c and d, can be approximated, For fig. 1c the solution can be $a \neq 0, b=0$ while for fig, 1d the solution can be $a=0, b \neq 0$. Using the kinematic assumptions rcgarding the midplane strains, ε_{x}°, ε_{y}°, nd $\varepsilon_{x y}{ }^{0}$, the approximate sedutions for u° and v° are given by

$$
\begin{align*}
& u^{0}(x, y)=c x-\frac{a^{2} x^{3}}{6}-\frac{a b x y^{2}}{4} \tag{11}\\
& v^{0}(x, y)=d y-\frac{b^{2} y^{3}}{6}-\frac{a b x^{2} y}{4} \tag{12}
\end{align*}
$$

c and d being constants. Using eqs. (11) and (12) in eqns. (6) - (8) ytelds

$$
\begin{align*}
& \varepsilon_{x}^{0}=c-\frac{a b y^{2}}{4} \tag{13}\\
& \varepsilon_{y}^{0}=d-\frac{a b x^{2}}{4} \tag{14}\\
& \varepsilon_{x y}^{0}=0 . \tag{15}
\end{align*}
$$

Note that if it were not required to have $\varepsilon_{x y}{ }^{\circ}$ be zero, the third term in each of eqs. (11) and (12) would not need to be included and then the second term in eqs. (13) and (14) would not appear. However, with the $\left[0_{n} / 90_{n}\right]_{T}$ fanily, it is felt in-plane shear strains are impossible and this is the prime factor in choosing the functional form for u° and v^{0}.

At this point a, b, c and d are considered as generalized coordi-
nates and are to be determined. The problem of finding a minimum for the rotal potential energy, W, becomes a problem of finding solutions to the values of a, b, c, and d so that the first variation of W is zero, i.e.

$$
\begin{equation*}
\delta W=\left(\frac{\partial W}{\partial a}\right) \delta a+\left(\frac{\partial W}{\partial b}\right) \delta b+\left(\frac{\partial W}{\partial c}\right) \delta c+\left(\frac{\partial W}{\partial d}\right) \delta d=0 . \tag{16}
\end{equation*}
$$

This variation is done with all the assumptions in the Introduction with the exception of (3).

Calculations Associated with the Solution

The $x-y-z$ coordinate system in fig, 1 is assumed to be situated such that at the elevated curing temperature the laminate is defined by the region

$$
\begin{align*}
& -L_{x} / 2 \leqslant x \leqslant L_{x} / 2 \\
& -L_{y} / 2 \leqslant y \leqslant L_{y} / 2 \tag{17}\\
& -h / 2 \leqslant z \leqslant h / 2 .
\end{align*}
$$

With these limits on the spatial variables and with the various material properties involved, eq. (1) takes the form

$$
\begin{equation*}
W=\int_{x=-L_{x} / 2}^{L_{x} / 2} \int_{y=-L_{y} / 2}^{L_{y} / 2} \int_{z=-h / 2}^{h / 2} W\left(a, b, c, d, \bar{Q}_{1 j}, \alpha_{x}, \alpha_{y}, \Delta T, x, y, z\right) d x d y d z \tag{18}
\end{equation*}
$$

The involved, but stralght-forward, process of substituting eqs. (10) and (13) - (15) Into eqs. (3) - (5), substituting these results into eq. (9), performing the spatial integrations in eq. (18), and finally taking the first variation, eq. (16), leads to an equation of the form;

$$
\begin{align*}
& \delta N=f_{1}(a, b, c, d) \delta a+f_{2}(a, b, c, d) \delta b+ \tag{19}\\
& \quad f_{3}(a, b, c, d) \delta c+f_{4}(a, b, c, d) \delta d=0 .
\end{align*}
$$

Equation (19) Immediately Leads to four equations:

$$
\begin{align*}
& f_{1}(a, b, c, d)=-C_{1} c b+C_{2} a b^{2}+2 C_{3} a b-B_{11} c+ \\
& D_{11} a-c_{4} c b+2 C_{5} a b^{2}-C_{6} d b+ \tag{20}\\
& D_{12} b-C_{7} d b+C_{8} a b^{2}+C_{9} b^{2}+ \\
& \left(L_{y}^{2} / 48\right) N_{x}^{T} b+M_{x}^{T}+\left(L_{x}^{2} / 48\right) N_{y}^{T} b=0, \\
& F_{2}(a, b, c, d)=-C_{1} a c+C_{2} a^{2} b+2 C_{3} a^{2}-C_{4} a c+2 C_{5} a^{2} b+D_{12} a- \\
& C_{6} d a-C_{7} d a+C_{8} a^{2} b+2 C_{9} a b-B_{22} d- \tag{21}\\
& D_{22} b+\left(L_{y}^{2} / 48\right) N_{x}^{T} a+\left(L_{x}^{2} / 48\right) N_{y}^{T} a+M_{y}^{T}=0, \\
& f_{3}(a, b, c, d)=A_{11} c-C_{1} a b-B_{11} a+A_{12} d-C_{4} a b-N_{x}^{T}=0, \tag{2.2}\\
& f_{4}(a, b, c, d)=A_{12} c-C_{6} a b-E_{22} b+A_{22} d-C_{7} a b-N_{y}^{T}=0 . \tag{23}
\end{align*}
$$

The constants $C_{1}-C_{9}$ are defined In the Appendix and $A_{1 j}, B_{i f}$ and $D_{i f}$ have the familiar definitions associated with laminates. The other definitions used in eqs. (20) - (23) are,

$$
\begin{align*}
& N_{x}^{T}=\Delta T \int_{-h / 2}^{h / 2}\left(\bar{Q}_{11} \alpha_{x}+\bar{Q}_{12} \alpha_{y}\right) d z \tag{24}\\
& N_{y}^{T}=\Delta T \int_{-h / 2}^{h / 2}\left(\bar{Q}_{12} \alpha_{x} \alpha \bar{Q}_{22} \alpha_{y}\right) d z \tag{25}\\
& M_{x}^{T}=\Delta T \int_{-h / 2}^{h / 2}\left(\bar{Q}_{11}{ }^{\alpha} x+\bar{Q}_{12} \alpha_{y}\right) z d z, \tag{26}
\end{align*}
$$

$$
\begin{equation*}
M_{y}^{T}=\Delta T \int_{-h / 2}^{h / 2}\left(\bar{Q}_{12} \alpha_{x}+\bar{Q}_{22} \alpha_{y}\right) z d z \tag{27}
\end{equation*}
$$

These quantitias are immediately recognizable as the effective in-plane thermal loads, N_{x}^{T} and N_{y}^{T}, and the effective thermal moments, M_{x}^{T} and M_{y}^{T}. It ghould be noted that when $L_{x}=L_{y}=0$, the coefficients C_{1} through C_{9} are all zero and eqs. (20) - (23) reduce to the equations of classical lamination theory.

Solution of Equations, Numerica), Results
Solutions to eqs. (20) - (23) were obtained by solving eqs. (22) and (23) for c and d in terms of a and b and substituting these relations into eqs. (20) and (21). Thus eqs. (20) and (21) become coupled cubic equations for the quantitites a and b. These two resulting equations have the characteristics of being able to be reduced to a single cul."c equation for either a or b. Such an equation would have either one or three real roots. This reduction approach was not used, however, and eqs. (20) and (21), in terms of a and b, were solved numerically, Solutions were obtained for several laminates using elastic and thermal expansion properties of $\mathrm{T} 300 / 5208$ graphite-epoxy. It was assumed the curing temperature of $1300 / 5208$ is $177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$ and titat the laminates are cooled to a room temperature of $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$. The material properties used in the calculations were:

$$
\begin{aligned}
& E_{1}=181 \mathrm{GPa}\left(26.2 \times 10^{6} \mathrm{psi}\right) \\
& E_{2}=10.3 \mathrm{GPa}\left(1.49 \times 10^{6} \mathrm{psi}\right) \\
& v_{12}=0.28 \\
& G_{12}=7.17 \mathrm{GPa}\left(1.04 \times 10^{6} \mathrm{psi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}=-0.106 \times 10^{-6} \rho^{\circ} \mathrm{C}\left(-0.059 \times 10^{-6} \rho^{\circ} \mathrm{F}\right) \\
& \alpha_{2}=25.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}\left(14.2 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

The elastic properties were taken from [2] while the thermal expansion coefficients were taken from [11]. Solutions were obtained for square laminates ($L_{x} m L_{y}=L$) ranging from 0 to 150 mm ini length on a side. Two thicknesses were considered, $\left[0_{2} / 90_{2}\right]_{T}$ and $\left[0_{4} / 90_{4}\right]_{T}$. Experimental data were available for some checking of these two thickness cases, Figure 2 shows the characteristics of the predicted room-temperature shapes of the $\left[0_{2} / 90_{2}\right]_{\mathrm{T}}$ laminate and Fig. 3 shows the characteristics for the thicker laminate. Each figure illustrates the effect of the size of the laminate, L, on the room temperature shapes.

Immediately obvious from the figures is the existence of three possible room-temperature shapes of the laminate if the lengths of the sides are greater than some critical value. For both ifsaates, at $\mathrm{L}=0$ the room-temperature shape is the saddle predicted by classical lamination theory, $a=-b$. This solution is denoted by point A on figs. 2 and 3. As the sides of the laminate increase in length, say to $\mathrm{L}=25 \mathrm{~mm}$ for the $\left[\mathrm{O}_{2} / 9 \mathrm{O}_{2}\right]_{\mathrm{T}}$ laminate of fig. 2, the shape is still predicted to be a saddle but one which is shallower than the one predicted by the classical theory. As the lengths of the sides increase, the saddle shape is still predicted to exist but it gets shallower and shallower. At some critical length, the solution bifurcates. For the thinner laminate the critical length is 35 mm while for the thicker laminate the critical length is 71 mm . The bifurcation point is denoted as B on the figures. For lengths greater than the critical length, three room temperature shapes, each represented by a different branch on the figures, can
possibly exist. These branches are denoted as $B C, B D$, and $B E$ on the figures. Branch BD represents a continuation of the saddle shape ($a=-b$) but the other two branches represent a radical departure from a saddle shape. Branch $B C$ represents a shape which has a large curvature In the x-direction and practically no curvature in the y-direction, fig. 1c. On the other hand, branch $B E$ represents a shape which has a large curvature in the y-direction and very ilttle curvature in the x-direction, fig. ld. The shapes associated with these latter branches can be considered cylindrical because as the laminate gets larger, i.e. L Increases, the one curvature asymptotically approaches zero while the other curvature asymptotically approaches a non-zero constant value. As seen from the figures, the latter two branches have certain symetry characteristics. These symmetry characteristics are such that for a given length, the values of a and b associated with branch $B C$ are equal, respectively, to the yalues of -b and -a associated with branch BE .

Figures 2 and 3 show both laminates exibit similar behavior. There are differences kowever. The two main differences are that the curvatures for the thicker laminate are less than the curvatures for the thinner laminate, and, the critical length for the thicker laminate is greater. Thus, compared to a $\left[0_{2} / 90_{2}\right]_{T}$ laminate, a $\left[0_{4} / 90_{4}\right] T$ can be made larger before the triple-shape phenomenon occurs.

Stabllity of the Predicted Shapes

With multiple solutions to a nonlinear problem, the question arises as to the stability of the various solutions. If any of the solutions do not represent a stable solution, those solutions will not be physically realizable. Equating the first variation of the total potential
energy to zero yields equilibrium positions of the laminate which either maximize or minimize the total energy. For stable equilibrium, the total potential energy must be mimimized. Thus, for stable equilibrium the second variation of the total potential energy, $\delta^{2} \mathrm{~W}$, must be posirive definitc. Fom stability theory [12] for this discretized system, stability of the rguil tbrium positions for the laminate is possible if and only if the following matrix of coefficients is positive definite:

$$
\left|\begin{array}{cccc}
\frac{\partial f_{1}}{\partial a} & \frac{\partial f_{1}}{\partial b} & \frac{\partial f_{1}}{\partial c} & \frac{\partial f_{1}}{\partial d} \tag{28}\\
\frac{\partial f_{2}}{\partial a} & \frac{\partial f_{2}}{\partial b} & \frac{\partial f_{2}}{\partial c} & \frac{\partial f_{2}}{\partial d} \\
\frac{\partial f_{3}}{\partial a} & \frac{\partial f_{3}}{\partial b} & \frac{\partial f_{3}}{\partial c} & \frac{\partial f_{3}}{\partial d} \\
\frac{\partial f_{4}}{\partial a} & \frac{\partial f_{4}}{\partial b} & \frac{\partial f_{4}}{\partial c} & \frac{\partial f_{4}}{\partial d}
\end{array}\right| .
$$

For a given equilibrium solution at a given length, e.g. the saddle solution of the triple-valued solution at $\mathrm{L}=100 \mathrm{~mm}$, each element of the matrix is evaluated numerically by substituting in the values of a, b, c, and d corresponding to that solution. If each of the principal minors of the matrix are positive definite, the matrix is positive definite and the solution corresponds to a stable equilibrium solution. Otherwise the solution corresponds to an unstable equilibrium solution. Using this scheme for the solutions shown in figs. 2 and 3, it was found that the saddle solutions corresponding to the single-valued solutions, segments $A B$ in the figures, were stable. On the other hand, the saddle solutions corresponding to the triple-valued solutions, segments BC in the figures, were unstable. The other two branches of the triple-
valued solutions, segments $B D$ and $B E$, represent stable solutions. Physically this means that for square laminates of the $\left[0_{2} / 90_{2}\right]_{T}$ family, if the length of the sldes of the laminate exceed 35 mm , the saddle shape does not exist. Instead, two cylindrically shaped equilibrium configurations exist. If the laminate is from the thicker $\left[0_{4} / 90_{4}\right]_{\mathrm{T}}$ family, the length of a side must exceed 71 mm before the saddle-shape equilibruim configuration disappears and dual cylindrical shapes appear. The fact that two stable cylindrical equilibrium solutions are predicted to exist is felt to be significant since it correlates well with the the reported snap-through phenomena associated with these types of laninates.

Experimental Results

Shown on fig. 2 are two data points. These points correspond to the curvatures of cylindrical $\left[0_{2} / 90_{2}\right]_{\mathrm{I}}$ laminates as measured by Hyer. Figure 3 shows one data point. This point corresponds to the curvature of a $\left[+45_{4} /-45_{4}\right]_{T}$ saddle-shaped $T 300 / 5208$ graphite-epoxy laminate as measured by Pagano and Hahn [13]. The comparison between magnitudes of the predicted and experimentally measured curvatures is fair. More importantly, however, the character of the measured shapes, i.e. cylindrical or saddle, compares well with the predictions. For the 150×150 mm laminate shown in fig. 2 , only the major curvature of 11 laminates were measured in the original work and the average curvature and the range are shown here arbitrarily as a y-direction curvature, b. These curvatures could have just as easily been called an x-direction curvature. In this case the experimental data would have been associated with the variable a. Also the major curvature from the one $100 \times 100 \mathrm{~mm}$
specimen is also arbitrarily associated with the y-direction curvature. For the data roint in fig. 3, the curvature of the specimen was never measured directly. The out-of-plane deflection across the diagonals of a $63.5 \mathrm{~mm}\left(2.50 \mathrm{in}_{\mathrm{f}}\right.$) square laminare was measured and the curvature was computed from this measure. Again this single curvature measurement was arbitrarily associated with the variable b.

It should be noted in fig. 2 that the x-direction curvature for the $100 \times 100 \mathrm{~mm}$ laminate was measured to be slightly negative. The theory predicts this curvature to be slightly positive. The reason for the descrepancy is not clear. However, it is not felt to be due to measuring error in the experimental determination of curvature. This points needs further investigation.

Discussion

Despite the lack of large amounts of quantitative experimental data to compare with the complete range of the numerical predictions, the results of the work reported here are quite encouraging. First, the theoretical calculations predict the disappearance of the saddle shape, a phenomenon observed by many investigators, Second, the snap-through or appearance of two stable equilbrium states is predicted, anothar phenomenon observed by investigators. Finally, the transition from stable single-valued saddle solutions to stable cylindrical solutions is linked with a size effect. The figures show that both the thickness of the laminate and the length of the side determine whether the cylindrical shape exists or whether the saddle shape exists. This investigator, as well as others, has felt a size effect exists in unsymmetric laminates and the model put forth here lends some credence to that
notion.
While the predictions presented here exhibit all the important fentures associated with unsymetric laninates, several comments are in order before closure, First, the solution presented hare is a one-term Galerkin, or Rayleigh-Ritz, solution. Thus the solution is, as with all one-term Galerkin solutions, over-constrained. This deficiency can be remedied by using more terms, and hence more generallzed coordinates, in the assumed functional forms for u°, v°, and w. Modifying the current approach this way would probably change the numerial values associated with each solution branch of figs. 2 and 3 but not the main features of bifurcation and criple-solution. Second, the effects of moisture absorption, viscoclastic relaxation, or any other mechanism that alters the Intarial stress state of the laminate is felt to be important for laminatas with lengths near the critical length. Alteration of the internal stress state most likely influences the numerical value of the critical length. Thus a laminate sized Just above the critical length could, with time, actually be sized fust below the critical length due to any of the above mentioned time-dependent effects. Related to this Is the fact that unsymmetric laminates slzed near their critical length could exhibit "strange" behavior, requiring practically no force to snap them from one shape to another. More than likely, these multiple shapes would be some barely stable combination of shallow cylinders and shallow saddles.

Finally, the analysis presented here is based on symmetric curing (symmetric about the $z=0$ plane) of the laminate and, as noted above, the lack of any effects to alter the internal stress state over and above
that due to temperature change during the cool-down from curing. The resuit is that for lengths graater than the critical langth, two simIliar shapes are possible. Each of these shapes has the same possiblility of actually occurring, However, any external perturbation which Is unsymmetric with respect to the midplane will cause one or the other of the two possible cylindrical shapes to be favored. Such a perturbation could be unsymmetric curing (due to unsymmetric cooling), unsymmetric moisture absorbtion, or any other process over which our control is limited. Thus in reality it may requine, for example, more force to snap the cylinder of fig, Ic to the cylinder of fig, Id than it does to make the reverse snap.

Apperidix

$$
\begin{array}{ll}
C_{1}=A_{11} L_{y}^{2} / 48 ; & C_{2}=A_{11} L_{y}^{4} / 1280 \\
C_{3}=B_{11} L_{y}^{2} / 48 ; & C_{4}=A_{12} L_{x}^{2} / 48 \\
C_{5}=A_{12} L_{x}^{2} L_{y}^{2} / 2304 ; & C_{6}=A_{12} L_{y}^{2} / 48 \\
C_{7}=A_{22} L_{x}^{2} / 48 ; & C_{8}=A_{22} L_{x}^{4} / 1280 \\
C_{9}=B_{22} L_{x}^{2} / 48 &
\end{array}
$$

The coefficients $A_{11}, A_{12}, A_{22}, B_{11}$ and B_{22} have the familitar definitions associated with classical lamination theory.

Raferences

1. Jones, R. M., Mechanics of Composite Materials, McGraw-H111 Book Co., New York, 1975, Ch. 4.
2. Tsai, S. W. and Hahn, H. T., Introduction to Composite Materiala, Technomic Publishing Co., Inc., Westport, CT 06880, 1080 , Chs. 4 , 5 and 6.
3. Agarwal, B. D. and Broutman, i. J., Analysis and Performance of Fiber Composites, John Wilay and Sons, New York, 1980, Ch. 5.
4. Whitney, J. M., "Shear Correction Factors for Orthotropic Laminates Under Static Load," J. Applied Mech., Trans. ASiNE, vol. 40, Series E, no. 1, 1973, p. 302-304.
5. Whitney, J. N. and Pagano, N. J., "Shear Deformations in Heterow geneous Anjsotropic Plates," J. Applied Mech., Trans, ASME, vol. 37, Series E , no. 4, 1970, p, 1031-1036.
6. Salamon, N. J., "An Assessment of the Interlaminar Stress Problem in Laminated Composites," J. Composite Materials, to appear.
7. Hyer, M. W., "Some Observations on the Cured shape of Thin Unsymmetric Laminates," submitted to J. Composite Materials.
8. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall Inc., Englewood Cliffs, NJ, 1965, p. 354.
9. Chia, C.-Y. Nonifnear Analysis of Plates, NcGraw-Hill, Inc., New York, 1980, Ch. I.
10. Novozhilov, V. V., Fouridations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, NY, 1953, p. 83.
11. Bowles, D. E., Post, D., Herakovich, C. T. and Temy, D. R., Thermal Expansion of Composites Using Moiré Interferometry, Virginia Polytechnic Institute and State University, Colilege of Engineering Report, VPI-E-80-19, 1980.
12. Simitses, G. J., An Introduction to the Elastic Stability of Structures, Prentice-Hall, Inc., Englewood Cilffs, NJ, 1976, p. 814.
13. Pagano, N. J. and Hahn, H. T., "Evaluation of Composite Curing Stresses," Composite Materials: Testing and Design, 4th Conference, ASTM STP 617, 1977, $\mu, 317-329$.

Fig, 1 Laminate Shapes: (a) at the elevated curing temperature, and at room-temperature, (b) a saddle shape, (c) a cylindrical shape, (d) another cylindrical shape.

Fig. 2 Room-temperature shapes of square $\left[\mathrm{O}_{2} / 9 \mathrm{O}_{2}\right]_{\mathrm{T}} \mathrm{T} 300 / 5208$ graphiteepoxy laminates

LENGTH OF SIDE, L, mm

Fig. 3 Room-Temperature shapes of square $\left[0_{4} / 90_{4}\right]_{T}$ T300/5208 graphiteepoxy laminates

Prof. Donald F. Adams Dept. of Hechanical Engineering Oniversity of Wyoning Larmie, WY 82070

Dr. N. R. Adsit
General Dynanics Convair P.O. Box 810837

San Diego, CA. 92138
Winfield H. Arata, Jr.
4414 Countrymood Drive
Santa Maria, CA 93455
Dr. Clifford J. Astill
Solid Hechanics progran National Science Poundation 1800 G St. M.W.
Washington, D.C.
AVCO, Systems Division Subsystens 6 Meth. Structures 201 Lovell Street Wilnington, HA. 01887

Dr. J. A. Bailie
D81-12 Bldg. 154
Lockheed Missiles δ Space Co,Inc 1111 Lockheed May Sunnyvale, CA. 94088

Dr. Charles W. Bert, Director School of Aerospace, Hechanical
δ Nuclear Engineering
The University of oklahona Norman, Oklahoma 73069

Dr. C. H. Blackmon
NSWC, Code K2l
Dahlgren, VA 22448
Mr. Richard Doitnott
Mail Stop 190
Nasa-Langley Research Center Hampton, VA. 23665

Mr. David Bowles
Mail Stop 188 B
NASA-Langley Research Center Hampton, Va. 23665

Dr. H. P. Brinson
ESH Dept.
Virginia Tech
Blacksburg. VA. 24061
Mr. Eraie Brooks
Code 1844
DTMSRDC
Bethesda, MD 20084
Dr. Hicharl P. Card
Mail Stop 190
Nasa-Langley Research Center
Hampton, Va 23665
Dr. C. Chanis
Masa-Levis Research Center
2100 Brook Park Rd.
Cleveland, Ohio 44135
Dr. Paul A. Cooper
Mail Stop 190
Nasa-langley Research Center
Hampton. Va. 23665
Dr. Frank Crossman
Lockheed Research Lab
Org. 52-41, Bidg. 204
3251 Hanover street
Palo Alto, CA. 94304
Dr. I. M. Daniel, Manager
IIT Research Institute
10 West 35 Street
Chicago, 1L. 60616
Dr. John R. Davidson
Mail Code 188E
HD-Structural Inteyrity Branch
Langley Research Center
Hampton, VA. 23665

Dr. John G. Davis, Jr. Mail Stop 188a
Langley Research Center Hampton, VA. 23665

Mr. Jerry W. Deaton
hail Stop 188a
NaSA-Langley Research Center Hampton, VA. 23665

Mr. H. Benson Dexter
Hail Stop 1884
NaSa-Langley Research Center
haspton, VA. 23665
Mr. O. Barl Dhonau
Section 2-53400
Vought Corp.
P.O. Box 5907

Dallas, TX. 75222
Dr. H. F. Duggan
52-33/205/2
Lockheed Palo Alto Lab.
3251 Hanover st.
Palo Alto, Ca. 94304
Prof. John C. Duke, Jr.
ESM Dept.
Virginia Tech
Blacksburg. VA. 24061
Prof. George J. Dvorak
Civil Engineering
University of $0 t a h$
Salt Lake City, UT. 84112
Dr. Wolf Plber
Mail Stop 188E
NaSa-Langiey Research Center
Hampton. VA. 23665
Mr. Dave Erb
Aero ε Ocean Engr. Dept.
Virginia Tech
Blacksburg, 7A. 24061

Mr. Gary L. Farley
Mail stop 188A
NaSA-langley Research Center
Haspton, VA. 23665
Hr. Larry Pogg
Lockheed-California
Dept. 7572, Bldg. 63, Plant A1
P.O. BOX 551

Burbank, CA. 91520
Dr. R. L. Foye
OSAMRDL
SAUDLAS (207-5)
Boffet Field, CA. 94035
Dr. D. Frederick
BSM Dept.
Virginia Tech
Blacksburg, VA. 24061
Mr. Samuel P. Garbo
HeDonnell Aircraft Co.
Bldg. 34, Post 350
St. Louis, MO. 63166
Mr. Ramon Garica
Mail Stop 190
MASA-Langley Research Center
Hampton, VA. 23665
Prof. Jin Goree
Dept. of Hechanicai Engr.
Clenson University
Clemson. S.C. 29631
Dr. Login B. Greszczuk
McDonnell Douglas Astr. Co.
5301 Bolas Avenue
Huntington Beach, CA. 92647
Dr. O. Hayden Griffin, Jr.
Bendix Advanced Technology ctr. 9140 Old Annopolis Road Columbia, HD 21045

Mr. Glen C. Grimes Dept. 3852/82 Morthrop Corp.. Aircraft Div. 3901 West Broadway Hawthorne, CA. 90250

Dr. H. T. Hahn
Washington University St. Louis, HO. 63130

Dr. J. C. Halpin
Plight Dynanics Lab Wright-Patterson APB
Ohio 45433
Professor Z. Hashin
School of Engineering
Solid Hech. Haterials 6 Struc.
Tei aviv Uaiversity
Tel Aviv, Israel
Dr. R. A. Heller
ESM Dept.
Virginia Tech
Blacksburg, VA. 24061
Dr. E. G. Henneke
ESM Dept.
Virginia Tech
Blacksburg, VA. 24061
Prof. Carl T. Herakovich Laboratoire de necanigue des Solides
Ecole Polytechnique
yll 28 Palaigeau cedex, FRAMCE
Professor Phil Hodge
107 heronautical Engr. Bldg. University of Hinnesota Minneapolis, 1 W 55455

Dr. K. E. Hofer
IIT Resciarch Institute
10 Rest 35 Street
Chicago, Illinois 60616

Mr. Edvard A. Humphreys
Haterials Science Corporation
Blue Bell office Campus
Blue Bell. PA. 19422
Dr. Hichael W. Hyer
BSH Dept.
Virginia Tech
Blacksburg, VA. 24061
Dr. Eric R. Johnson
ESH Dept.
Virginia rech
Blacksburg, VA. 24061
Dr. N. J. Johnson
Mail Stop 226
Hasi-Langley Regearch Center
Hampton. VA. 23665
Dr. M. P. Kamat
ESA Dept.
Virginia Tech
Blacksburg, VA. 24061
Dr. Keith T. Kedward 1768 Granite Hills Dr.
E1 Cajon, CA. 92021
Mr. John M. Kennedy
Mail Stop 188E
Masa-Langley Research Center
Hampton, Va. 23665
Mr. Bric Klang
ESH Dept.
Virginia Tech
Blacksburg. VA. 24061
Mr. Janes P. Knauss
Yorthrop Corporation
3901 Hest Broadway
Dept. 3852/82
Havthorne, CA. 90250
Dr. Ronald D. Kriz
Dept. Com. mbS Blag. 2
Boulder, CO. 80302
Dr. S. V. Kulkarni1342 Lavrence Livermore LabP. O. Box 808Livermore, Ca. 94550Dr. Trent R. LoganMgr. Structures, Design, Dev.
Boeing Comercial Airplane Co.
P.O. Box 3707 - H.E. 3H-23
Seattle, WA. 98124
Dr. M. R. Louthan
Materials Engineering
Virginia Tech
Blacksburg, VA. 24061
Mr. Vic Mazzio
General Electric Co.
P.O. Box 8555
Bldg. 100, He. 64018
Philadelphia, PA. 19101
Dr. Bartin M. Mikulas
Mail Stop 190
NASA-Langley Research Center
Hampton, VA. 23665
Hr. J. Steve nills
A3-220 13-3 HeDonald Douglas
5301 Bolsa Avenue
Huntingtion Beach, CA 96247
Dr. D. H. Horris
ESM Dept.
Virginia rech
Blacksburg, VA. 24061
Mr. Anya Nagarkar
Material Sciences Corp.
Blue Bell office Campus
Blue Bell, PA. 19422
nasa Scientific ε Technical
Information Facility
p.O. Box 8757
Baltimore/Hashington Inter. Air.
Baltimore, MD. 21240

Hr. Hichael Weneth
ESH Dept.
Virginia Tech
Blacksburg, VA. 24061
Mevan $\begin{aligned} & \text { Library } \\ & \text { Min }\end{aligned}$
Virginia Tech
Mr. David A. O'Brien
5902 Kingsford P1. Bethesda, GD 20034

Dr. Donald W. Oplinger
Arny Haterials $\&$ Hechanics
Research Center
Department of the army
Watertown, Ma. 02171
Dr. Micholas J. Pagano
WPAFB/HBH
Wright Patterson AYB
Ohio 45433
Mr. Michael Parin
3M Co., 3n Center
Bldg. 230-1F
St. Paul. HN. 55101
Dr. Nicholas Perrone, Director
Structural Rechanics Prograø
Department of the Navy
office of Naval Research
Arlington, VA. 22217
Prof. T. H. H. Pian
Mass. Inst. of Tech.
Dept. of Aero. E Astr.
Cambridge, MA. 02139
Mr. Harek-Jerzy Pindera
ESH Dept.
Virginia Tech
Blacksburg, VA. 24061
Dr. R. Byron Pipes
Dept. of Hech. ε Aero. Engr. 107 Evans Hall
University of Delavare Gevark, DE. 19711

Prof. Robert Plunkett Dept. Aero 6 Eng. Mech. dero 107
University of Minnesota Minneapolis, HN. 55455

Dr. K. L. Reifsnider ESM Dept. Virginia Tech Blacksburg, 7A. 24061

Dr. Gary D. Reniert
HeDonnell Douglas Astro. Co-Rast P.O. Box 516

Bldg. 106, Level 4, Post C-5
St. Loúis, hó. 6З166
Dr. Michael W. Renieri
McDonnell Aircraft Co.
Bldg. 34. Post 350
St. Louis, HO. 63166
Dr. Larry Roderick
Mail Stop 188s.
Nasa-Langley Research Center Hampton, VA. 23665

Dr. B. H. Rosen
Materials Science Corporation
Blue Bell office Campus
Blue Bell. PA. 19422
Dr. R. B. Rovlands
Dept. of Engineering Hechanics
University of Wisconsin
Madison, UI. 53706
Dr. Edmund P. Rybicki
Hechanical Engineering Dept.
The Univ. of Tulsa
Tulsa, OK. 74104
Mr. Harminder Saluja
Boeing Vertol Conpany
Structural Technology
P.O. Box 16858

Philadelphia, PA. 19142

Dr. J. Hayne Sawyer
Mail Stop 190
NaSA-Langley Research Center Hampton, VA. 23665

Dr. George P. Sendeckyj
Structures Division
Air Force Flight Dynamics Lab.
Oright-Patterson AFB
ohio 45433
Mr. Steven M. Serabian
28 Berkeley Drive
Chelasford, HA. 01824
Mr. John S. Short, Jr.
BSH Dept.
Virginia Tech
Blacksburg, VA. 24061
Hr. Hark J. Shuart
Mail Stop 188
NASA-Langley Research Center
Hampton, Va. 23665
Dr. J. R. Stafford
B.F. Goodrich

500 s. Main St.
D/6145, B/10-E
Akron, Ohio 44318
Dr. James H. Starnes, Jr.
Mail Stop 190
NaSA-Langley Research Center
Hampton, VA. 23665
Prof. Yehuda Stavsky
Gerard Swope Prof. of Mech. Technion-Israel Inst. of Tech.
Technion City, Haifa, Israel
Dr. W. W. Stinchcoub
ESM Dept.
Virginia Tech
Blacksburg, VA. 24061
Dr. Dairel R. Tenney
Mail Code 188B
MDMaterials Rewearch Branch
Langley Research Center
Hampton, VA. 23665
Dr. S. W. Tsai
Nonmetallic Materials Division
Air Force Haterials Laboratory
Oright-Patterson AFB
Ohio 45433
Dr. J. R. Vinson
Dept. of Hech. 6 Aero. Engr.
107 Evans Hall
Oniversity of Delavare
Nevark, DE: 19711
Mr. M. E. Maddoups
General Dynamic Corp.
Port Worth, TX 76101
Prof. A. S. Wang
Mechanical Engineering
Drexel University
Philadelphia, PA. 19104
Prof. S. S. Wang
Dept. Theoretical ε Applied
Bechanics
University of Illinois
Urbana, IL. 61801
Dr. T. A. Neisshaar
School of Aero. ε Astro.
331 Grissom Hall
Purdue Univ.
West Lafayette. Il. 47907
Dr. J. H. Whitney
Nonmetallic Materials Division
Air Porce Materials Laboratory
Wright-Patterson AFB
Ohio 45433
Dr. Ernest G. Volff
The Aerospace Corp.
P.O. Box 9295\%
Los Angeles, CA. 90009

Dr. Edvard Wu Lavrence Livermore Lab. University of Calitornıa Box 808, L-338 livermore, CA. 94550

Mr. Thonas A. Zeiler School of Aero. E Asro. Grisson Hall
Purdue Univ.
West Lafayette, IW. 47907
Dr. Carl H. Zweben
General Electric Co. Space Division P.O. Box 8555

Philadelphia, EA. 19101

