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INFRARED SPECTRA OF SOME SULFIDES AND THEIR ANALOGS OF BINARY
COMPOSITION IN THE LONG-WVE REGION

A. S. Povarennykh, G. A. Sidorenko, L. S. Solntseva and
B. P. Solntsev

Kiev Institute of Geochemistry and Physics of Minerals of
the Academy of Sciences of the USSR, Moscow.

All-Union Scientific Research Institute of Mineral Raw Materials

The study of the infrared spectra of minerals in the nor-

mal range of wavelengths (from 4,000 to 400 cm -1 ) has a number

of substantial shortcomings. The impossibility of recording of

the most important bands of absorption in the spectra of a con-

siderable number of minerals, which possess low interatomic bond

strength, should be considered the chief shortcoming. These in-

clude primarily mineral facies of binary composition, which belong

to the classes of chlorides and fluorides, sulfides, arsenides

and tellurides, and also a considerable part of the class of

oxides, especially low-valence elements L2, 171.

The situation is exceptionally poor with sulfides and their

analogs, for which the basic bands of absorption in the infra-

red spectra are located in the low-frequency (long-wave) range,

usually below the 400 cm- 1 boundary. For this reason, the

sulfides in the normal region of the infrared :spectrum which

have been studied prior to now [1, 11, 15, 16, 171 provide a
clearly non-indicative picture, insofar as, in this interval

(4.000--400 cm- 1 ), they possess only very high, but sufficiently

uniform, absorption of infrared beams. This is most clearly

noticeable in studies L1, 15j, where data are presented on the

study of many sulfides of both simple (binary) and complex compo-

sition. Distinct bands of absorption L1, 17] are observed only
for some minerals (pyrite, marcasite and arsenopyrte) in the

region close to 400 cm- 1 1 the remaining bands of absorption,

usually of insignificant intensity and located in the 1,100 cm-1

region, are not characteristic and do not have cognitive value.

*Numbers in the margin indicate pagination in the foreign text.
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It is evident that the recording of their infrared spectra

of absorption in the long-wave region (from 400 to 50 cm -1 3 will

be uniquely productive for sulfides, just as for halides L63.

For some natural and synthetic sulfides, such studies have been

recently carried outs very interesting and important results

were obtained L9, 10, 131. It is natural that the use of long-

wave infrared spectroscopy may be expanded considerably, and

utilized for the characteristics of all of those miner,,^ls, the

composition of which contains large cations with low valency,

as was recently shown in some carbonates L7-1.

Our goal is the systematic study of all of the most im-

portan^ natural sulfides, beginning from simple 001nary compo-

sition) to complex compounds (with three and four types of

atoms). Studied in the present article are the infrared spectra

of 22 minerals of primarily binary composition, of which 14 are

sulfides, 6 arsenides, one telluride, and one belonV2 to the	 Za2

class of simple substances (native arsenic). The study was

carried out on the FIS-1 infrared speotrophotometer (Hitachi,

Japan) . The thickness of the mineral layer was from 3 to 5
mg/cm 2 l the infrared spectra were recorded in the interval from

500 to 60 cm-1.

0

In this group, which consists of representatives of eight

mineral fades, minerals with coordination structures and sub-

stantially covalent bonds dominate. The group includes the

coordination structures—galena, alabandite, pyrrhotite, nicco

lite, sphalerite, wurtzite, domeykite and cinnabar, which possesses

a chain structure.

Among them, pyrrhotte is distinguished by the greatest

portion of the metallic bond, which substantially affects the

shape of the curve of their infrared spectra. The scattering

and absorption of the infrared rays by free electrons leads to

smoothing, and partially to "blurring", of the bands of absorption

1
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FLg. 1. Infrared spectra of
absorption of sulfides and
arsenides of uni and di-
valent elementsi
a—galenas b—alabandite;
c—pyrrhotitet d--nicco-
litet e—sphaleritei f--
wurtzi.tes g—cinnabars
h— domeyk ite .

in the infrared spectra, making

them of little significance. With

a decrease in temperatur.e # this

effect of the electron "gas" should

decrease vraduallyt for room temp-

erature (about 3000 K), it is

rather great, and severely dis-

torts the picture of the inter-

atomic bonds.

The curve of the infrared

spectrum of galena PbS (Fig. l,a)

has one wide and rather deep band

of absorption in this range # with

a peak at 155 cm- 1 (Table 1) . This
position of the basic band of ab-

sorption of the galena, which is

most shifted into the low-frequency

region of the spectrum, as compared

with other sulfides, is easily

explained by the large inter-

atomic distances and the mass of

the lead atom L51-

The curve of the infrared

spectrum of alabandite MnS (Fig. lob) has amore complex configu-

ration of the band of absorption with a peak at 230 cm -1 and two

inflections at 300 and 180 cm-1 (Table 1). In addition, there

qre two slight inflections (steps) on the edges of this main

'nand of absorption, the nature of which is unknown.

There are three wide bands of absorption with peaks at 360,

280 and 180 cm- 1 (Table l) on the curve of the infrared spectrum

of pyrrhotite Fe l _ XSx (Fig. l,c), with the firet of them, which

should be taken for the band of valent variations of the Y3 -bonds

in the Fe iji S 6 polyhedra, being the most distinctly manifested.
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The curve of the infrared spectrum of niccolite (Fig. l,d),

which is isostr^actural with pyrrhotiteo is nearly completely

analogous to it s and, in addition to three bands of absorption,

located in those same places (370 9 285 and 190 cm -1 ), it has

a fourth band with a peak at 120 cm- 1 (Table 1), which is probably

attributed to the deformational variations of the Y 4-bonds in the

NiAs 6 polyhedra. The effect cf an increase in the valency of

the Ni, as compared with the Fe in pyrrhotite, is compensated by

an increase in the mass of the "anion" (S- ►As), and, therefore,
the bands of absorption in the niccolite are located roughly in

the same places as in pyrrhotite.

ZI 08

The curves of the infrared spectra of polymorphous facies

of ZnS —sphalerite (Fig. 1 0 e) and wurtzite (Fig. l,f)—are idonti-
cal, and are characterized 'Oy a single intense wide band of ab-

sorption with a peak in the region of 300 Cm-1 (Table 1). The

slight branching, of this hand for wurtzite is associated with the

presence in it of t, substantial number of atoms of isomorphous

Iron. just as we observed for ferrous sphalerite.

TABLE 1
Position of Bands of Absorption in Infrrred Spectra of

Some Sulfides and Arsenides of Uni- and Divalent Elements

Mineral, Its Formula,	 Max
Location

Galena VbS
U. Roclopy , (11111garia)
Al }̂ zb ^+ n^ ^^ t,	 MnS
5tele l' 

F
^")'11)

1
h IRf2111atiitI

Pyrrhotite Fe	 ti	 .1-^' x
S5kntal;lsh	 Kirg. SSSR)
N1ccV Lte	 As

I1 )lc ` " er ^

	 As
	 (GDR)

Av
)ha^c'1'1^^ wtl^

maden (Sha in)
Wiirt i.tc Z11S*

t,i n 11 a13h r
Khayclarkan ( g ent. Asia)
1lomeyl ite Cu3As	 .^
1'svikau, Saxony (GDR)

'T

^D.^..,..^112.^tS2^.1^.I.#.Qll_ I^.1^.1^5^..̂ ,a.. .lQ^.•i

tM^	 • »350 3lN ► 2,50 'n10 1 ►0 ^.

970 i n 300 i n 230 w 160 in 140 in

360 w 280 w 180	 w ---

370 w 2S5 in - 160 i 

1

120 w

- • 299 w 220 w 185 , -

335 .i n 316 213 IN WO i
296 w

34 1 289 ,._ 160	 w 12Q

310- w 280 in - - 180	 w

Note to tables 1-3. The most intense bands of absorption
are set up as half-darkl w—wide, in—inflection, d—doublet.
Wurtzite, containing about ?% iron, is marked with an asterisk.
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The curve of the infrared spectrum of cinnabar and HgS

(Fig. log) possesses three intense bands of absorption with

peaks at 345 9 283 and 120 cm- 1 (Table 1). In accordance with

the characteristics of its chain structure L81 the two first

bands are evidently attributed to the valency variations of the

Hg--S bonds in the chains (distance Hg--S=2.36 X) and between

then; ( Hg--S=3.1-3.3 X), and the last band probably corresponds

to the deformation variations of the shortest Hg- T»S bonds.

The curve of the infrared spectrum of domeykite Cu3As

(Fig. l,h) is reminiscent of the curves of pyrrh,)tite and nicc^j-

lite, both in the weak intensity of the bands of absorption and

in their location in the spectrum (Table 1).

Studied in this group are representatives of six mineral

,facies, among which, as is generally characteristic of high-

valency elements of the class of sulfides and their analogs [4],

there are no minerals with coordination structures. Chiefly

represented here are facies with chain and laminar structures,

and only realgar is related to the typical molecular structures

with a circular motif at the base X12]. All of these minerals

have substantially covalent bonds between the atoms, and only

in molybdenite, and especially tetradymite, is the fraction of the

metallic bond detected.

The curve of the infrared spectrum of realgar Aa 4S4 (Fig.

2,a) is characterized by several intense bands of absorption with

peaks at 373 -°368 , 341 and 224 cm-1 and many weaker harmonics

(Table 2). All of these bands are in good accordance with the

data In L93, but, evidently, the band of absorption with a peak 	 10

at 341 cm-1 , in contrast to the doublet band at 373-368 em -1,

should be associated with the valency variations of tae longer

As--As bonds, rather than the As—S bonds [4, 12] .

The curve of the infrared spectrum of laminar orpiment As2S3

5
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Fig. 2. Infrared spectra of
absorption of sulfides and
tellurides of tri- and tetra-
valent elementso
a realgars b—orpiments c-
getchelites d --antimonites
e—tetradymitet f--molyb-

denite.

Fig. 3. Infrared spectra of
absorption of sulfides and
arsenides with a structure of
the pyrite—marcasite types

a—pyrite = b—marcasite= c-
heazlewoodites d--arsenopyritei
e--lol lingite s f---rammeisbergite s
g— skutterudite s h--arsenic.

TABLE 2
Position of Bands of Absorption in Infrared Spectra of

Some Sulfides and Tellurides of Tri- and Tetravalent Elements

Minera l, 	 Its	 Maxima nn..Batuis,	 p^' lnf- ^?^bsorp .t

Formula, 	 L o c a t i o 400	
1	

350
1	

300 2,50 200 1	 4)

R e a l g a r,	 A s 4 S 4 224 - 210 d t'^ da371 U ..459 374
Racha	 (Grur.	 SSR) MA  341 201 d t	 +^	 d

M
iment As, S3 MOin 345 w W-

M9
243 1a5in

utiva	 (RSFSR 375
Getchel i.te	 AsSl)	 3 --- 330in 273 w 1"n w	 w
Khaydarkan	 (Cent.	 Asia)
Antimonite Sb2S3 -- 335 ?7?w 240W ,in,	 '	 w
gg aY a- 'iris	 ( Rpmjni^i)
Tetra ymite	 ^^	 ^e .S 350 w 3 Din 235 w

" w
I,	 w

agq t 1^ asl1	 (K',.	 SSR)610	 Yb^ ell I try	
r

10, 382 n Go w I	 r	 w j

Koy-tash (Cent. Asia)

Y

r^^

r

6

•	 X



(Fig. 2,b) differs appreciably from the curve of realgar in

Intensity and location of the bands of absorption (Table 2).

The intensity of the bands associated with valency variations

is sharply ,educed, wh,,ch, generally speaking, is quite charac-

teristic for laminar structureel in this case, all of the bands

are shifted slightly (by 10-15 cm- 1) into the high-frequency

region of the spectrum. Granted, the deepest band of absorption,

which may be attributed to valency variations cf the As—S bonds,

is located in the region of 300 cm- 1.

The curve of the infrared spectrum of getchelite AsSbSS

(Fig. 2,c), which is close in its structural characteristics to

orpiment L33, possesses a quite simple configuration with the

main band of absorption in the region of 270 cm- 1 (Table 2).

This makes it more similar, however, to the infrared spectrum of

antimonitE, and not orpiment, which is possibly associated with

the ordered location of the Sb atoms in the getchelite structure.

The curve of the infrared spectrum of antimonite Sb2S3

(Fig. 2 9 d) also has weak and rather broad bands of absorption

of the valency variations with peaks at 335 9 272 9 240 and 220

cm-1 (Table 2). which are sufficiently well linked with the four

basic groups of interatomic Sb--S distances Loa.

The bands of absorption are very weakly expressed on the

Curve of the infrared spectrum of tetradymite B 2Te 2S (Fig. 2, e) ,

just like in other minerals with a metallic fraction of the bond—

pyrrhotite, niccolite, domeykite (Fig. 1). Here, we see four

broad bands with peaks at 350, 320 9 235 and 175 cm-1 (Table 2),

to which two types of interatomic distances between Bi t Te and

S correspond L 47 .

The curve of the infrared spectrum of molybdenite MoS2

(Fig. 2,f) has a single intense and two weak bands of absorption

with peaks at 382, 260 and180 cm-1 , respectively (Table 2). The

simple form of the curve of the infrared spectrum is brought about

by the simple and highly-symmetrical structure of the molybdenite L41.

7
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Studied in this group were representatives of eight mineral

facies, among which five have a structure of the pyrite—marcasite

types pyrite @ maro asite, arsenopyritee lollingite and rammels-

bergite @ two--heazlewoodite and okutterudite—have specific

structures @ and the .last—native arsenic—belongs to minerals

with a "channeled" laminar structure. All of the arsenides and

arsenic possess a considerable fraction of the metallic bond@

and are characterized by weakly-pronounced bands of absorption

on the curves of the infrared spectra.

The curve of the infrared specNtrum of pyrite FeS2 (Fig. 3,a)

has three distinctly expressed bands of absorption with peaks at

422, 349 and 294 cm-1 (Table 3). The value of the peat of the
most intense band, which corresponds to valency variations of the

S —S bonds, differs slightly from the value given in study L171.

The curve of the .infrared spectrum of marcasite Fee
Fig. 3,b) has a more complex configuration, with a sharp in-

crease in the Intensity of the two bands with peaks at 398 and

328 cm- 1 , which are just barely noted on the curve of pyrite
(peaks at 376 and 325 cm-1 ) (Table 3) . This is brought about
primarily by a reduction in the symmetry in the structure of

the marcasite, a change in the interatomic; distances and removal

of the degeneration of the bask variations of the lattice.

On the curve of the infrared spectrum of heazlewoodite
	

11

lv,3 S2 (Fig. 3,c), in addition to the inherent bands of ab-

sorption, there are parasitic bands, owing to admixtures of

tbravoite and weissite, from which it is impossible to completely

separate. The basic band, which corresponds to valency vari-

ations of the Ni--S bonds in the coordination structure of this

mineral. C41, has a peak at 310 cm- 1 (Table 3) .

The curve of the infrared spectrum of arsenopyrite FeAsS

(Fig. 3,d) has a general similarity to the curve of marcasite,

8
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TABLE 3
Position of Bands of Absorption in I:lfrared Spectra of Some

Sulfides and Arsenides with a Pyi-ite -Marcasite Structure

Mineral, Its	 Maiia ati Absorpi)Utr Bander
F o r m l it,  L o c a-	 ,1110	 3.. 1 + 3^1U	 250	 71M1 I	 11"11

N y r i t y	 F a 5 2 422 376 i n 37.1,w 2701 In -.-

RSFS %gy ta i 	1	
,,Ural)

c 51 410

.14")
31',

"I
«+413 IRO

Donbass	 (USSR)
11 e a zle wo odite	 NI J S 2

31*is

(413
311,18

Now
'.►Sin
310 w (2R0i r# 210 w

rail	 Hark)or	 Tas"Iani	 )
r e 10	 t c	 Q	 s	 ,

'444
3111! 275 w --

IR5

17''+ --

Lollingite	 FeeAs .> - 370w 20 w 180 1n 130 in
^I^m^^stirr	 E i '	 N4 -° w ^. ._ 1651n ..,

Bu-Azor	 (Morocco)
Skutterudlte Co3 (As4)

370 w Tzjin _ . ??t► in -`
Bu-Azr	 Moroccoa	 ((	

)Arsenic	 his ,- ^Ow
^SIn

?10i Y►
ItW w

NO w

Shneeberg	 (GIM)

Ncte. In parentt,,Pses—maxima of the binds of absorption of
the admixture mineri,A, "3--»bravoite and weissite.

but with a lesser number and sharpness of the bands of absorption

than in the latter (Table 3), which is evidently brought about by

the increased fraction of the metall.icity of the bonds.

The curves of the infrared spectra of lollingite FeAo2

and rammelsbergite NUS2 (Fig. 3,e and f) are little-pr nauncedi
the bands of absorption are blurred and broad. The characteristic

band of each differs slightly in its maximum, which is 370 cm - 1

for lollingite and 325 cm-1 for rammelsbergite (Table 3).

On the curve of the infrared spectrum of skutterudite

C0 4 [As 4 ] 3 (Fig. 3,9), the basic band of absorption is broad, with

two maxima at 370 and 325 cm-1 1 the narrower band with a peak at

180 cm-1 ( Table 3) is evidently attributed to deformational vari-

ations of the Co--As bonds.

The last curve of the infrared spectrum belongs to arsenic

9
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(Fig. 3,h), and alto has a rather "smoothed" and simple forms

noted on it are only three bands of absorption with peaks at 350.

240 and 160 cm- 1 (Table 3).

Knowledge of the structure of the studied minerals and the

basin crystal chemical factors which determine the strength cf

the interatomic bonds L53 makes It possible for us to correlate

the most important bands of absorption on the curves of the

infrared spectra of these minerals to the variations of wertain

atomic polyhedra. Unfortunately, a sufficiently accurate cal- 	 Z212

culation of the values of the f-equencies of the characteristic

bands of absorption, according to the formula of one of the

authors in L5.1, can not be applied to these minerals, insofar

as the degree of polymerization of the atomic polyhedra, which

strongly affects absorption, is sharply different in them. In

addition, it is impossible, with sufficient accuracy, to take

into account the effect of the valent electrons which do not

take part In the bond, which increase the forces of interatomic

repulsion, just like the effect of the mass of the atoms, and

especially the heavy atoms, which is not as simple as for many

complex oxygen compounds.

For this reason, for interpretation of the curves of the

infrared spectra of the studied minerals, we made use of the

magnitudes of the relative strength of the interatomic bond in

-the corresponding coordination polyhedra L41 which is calculated
according to the following formulae

K W u'• ^,
°	 CN d2

where K is the strength coefficient of the bond, which depends on

the degree of covalence= W k and W a are -the valence of the "cations"

and "anions"; CN is the coordination number= d is the interatomic

distances; 0 is the coefficient of weakening of the bond, which de-

10
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(the bands of absorption

pends on the number and state of the valent 3lectrons which do

not take part in the bond.

Compared in table 4 are the maxima of the bands of absorption

of the valence variations with the magnitudes of the relative

strength of the bond of the corresponding atomic polyhedra. Ob-

served on the whole is a rather weal-pronounced cymbate dependence

between the frequencies of the characteristic bands of absorption

and the strength of the bonds a in the polyhedra. The existing

specific deviations from this dependence, for exrAmple for the

polyhedra of zinc, antimony and mercury, may be easily explained

if one takes into account the mass (atomic weight) of these three

elements. with an increase in which, as is common knowledge, the

TABLE 4
Interrelationship of Crystal Chemical Factors and Relative
Strength of R --X Bonds in Various Polyhedra with Valence

Variations

Value
`._

of,  maxi-
mum v 3i corres-

^^ ponding to vari-

^4t>.Fd' H of bonds

+ter-
atomic

SIndseX

polyhedra

('h	 w

ina-
do

lei

6

^3-1lr,ter-

m-antes

tomic
ist-

11	 ,'

2,06

iValen
cy,
of

atoms
Il	 F,,^'

'l	 2

Coef-
fic-
ient

0,'15

ass
of

at m

207.19

Re1a-
tive
trengl
of

bondsk_X

0.0

l a-	 8 6 2161 2	 2 0,91 51,04 0112

r 13 2,"d ^ l	 '2 11,914 55.85 0,17

ti
r ti 2,27 2	 2 (►,50 55,95 U.31
ar5 6 2,2,) 3 43 0,80 5,"a4b O,39

i 6 2.43 3 &3 0,90 58,71 0110
Mo S 6 2,38 4 & ? U! ►(► 43 ",71 0,30

Yri--- , 4 2.1 i 2	 2 1100 65,37 0,3;1
N_ 5 4 '1."P 2	 2 O k 1 58.71 0,29

.!; 3 2,'.':1 31 2 0,90 74,02 0,,58
Vin . ti 3 2,x52 3 0,90 121,75 0.43
A%	 A ,, 3

1

2,'31 ,3	 3
;2

O'ho 74,02 0,76
S - -S(Vv)	 r5--,1sq`eFr s

1	 1
1 - 1•1

2,10
2,30

2	 '2
2	 3

1,00
1,00

312"6
3!.06

O.115
0.57

110. N 2 2,G 2	 2 1,00 201.59 0,70

n,1r)
7NU iT)
S 1'.1
3(iE3
370
;342
2:18

373
272

422 (7)
4.11
345

Note. Pyrr. -pyrrhotite, pyr.-pyrite. ars. - arsenopyrite.

frequencies of the variations decrease

are shifted to the right).
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Being supported by the correspondence of the bands of

absorption of the valence variations and the magnitudes of the

strength of the interatomic bonds, one can more reliably in-

terpret the curves of the infrared spectra of a number o. ►' studied
sulfides and their analogs. Thus, for galena, the sole broad

band in the spectrum corresponds to the valence variations of

the Pb—S bonds= the deformation variations of these bonds are

{	 absent in the studied range of its infrared upectrum. The very

same picture is characteristic for three other sulfides with a

low bond strength— alabandite, sphalerite and wurtzite (Fig. 1).

But yet another picture is observed for cinnabar with its high-

strength (because of the double coordination of the mercury

atoms) bonds. Picked out on its curve of absorption are two

sharply different bands of valence variations with peaks at 345
and 263 cm- 1 , while a third band, slightly less intense, corre-

sponds to deformation variations of the —Hg—S—Hg--S-- chains.

Detected for realgar and orpiment, studied by R. Forneris

L93, are bands of absorption which correspond both to valence
and deformation variations of the As--S bonds. However, because

of the low symmetry of the minerals and the incomplete identity

of tLe As—S distances and S--As—S angles ( and As—S--As, accord-

ingly) X12, 14], both those and other bonds have a complex struc-

ture.

Clearly evident on the curves of getchelite and antimonite

(Fig. 2,c and d) are the broadening and shifting of the m? "1e

of the main band of absorption into the low-frequency range (peak

at 270 cm-1 ) and the considerably lesser manifestation of the

bands which correspond to the deformation variations.

On the other hand, for molybdenite (Fig. 2,f), bands of ab-

sorption of both valence and deformation variations are clearly

displayed.

There is special interest in the infrared spectra of sub

stantially covalent minerals (with the addition of a metallic

12



TABLE 5
Attribution of the Most Important Bands of Absorption to the
Variations v3 and v 4 in the Infrared Spectra of Some Sul-

fides and Their Analogs

Mineral and ^Ma.AA.,Z11a,L_of Ab sornt i.00__-Bands,. ca-1
Formula Valence Vari- Deformation

_....._...._^_._ Y^	 ations Variations

Galena PbS i5S
Alabandite MnS 2;10 --
Pyrrhotite Fe	 S *(); 280
Niccalite NiAsi-x	 x 370 120
5p hal	 rit	 ZnS
WUrtzTte FLns

298
2'.'6

-
--

Cinnabar HggS 31f) ; 233 t74
Domeykite Gu 3 As 379 180
R e a l g s r A s 4 S 4
0p r p imtnen .	 As ^ g

373, 3t,	 :f;0, 3-11.274
48	 t. 1 ^, XA.2IS

224,210.701.182-170
IWO

Get^elxt e As9bS 3 .3.1t; V73 IM;Ia.1
".nt monil`e	 Sb	 S,

e2SMorblymt o p i
3M),17?,^210.20

.3511, ;1A
d'^'. 2('A)

It(),	 I",n
735; 175

I HuM
Pyri

en L' a	 o	 2
te Fes 291

MMarc	 site	 ^, e S 2
Heazlewoodite Ni3S2

420.399;	 )5.32A 20.2.55. IRO
IR:r

A r is O o y r i t i F e A s S
Lo	 ON ite	 eAs2

310
433; •'K+11
370; 260

275;179

ISO;IMRR mm	 lsu	 r	 "t	 N'As2
Sfut eru 1 6 eo 4 ^ASO 370.32S - 2201;
Arsenic As

3

bond.) with structures of the pyrite--marcasite type (,'ig. 3,
Table 3). Here, as shown by A. Gillieson X101, pyrite and the
minerals which are isostructural with it display two b,;^tinds of ab-

sorption, which correspond to valence variations of the S- S and

Fe—S bonds, and one band which corresponds to deformation vari-
ations of the Fe—S--S.

For marcasite and its analogs, as a result of the sub-

stantial structural rearrangement, as compared with pyrite (the

change in the interatomic distances, acquisition of a sub-chain

"rutile-like" motif), which leads to an appreciable difference

iri the interatomic distances and the angles of Fe—S--S, all three
types of bands turn out to be doubled, that is, they acquire a

9
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doublet nature. Granted, even beginning from the infrared spectra

of arsenopyrite and switching to arsenides with a marcasite struc-

ture, the doublets of the bands of absorption are removedq and the

bands of absorption themselves, because of the effect of the

metallic bonds, broaden considerably, becoming indistinct and

weakly resolved.

An attempt is made in table 5 to interpret the most important
bands of absorption of the infrared spectra of the sulfides and

minerals close to them that we studied. For some of them, where

these bands are weakly pronounced, such a correlation has an

approximate nature to a certain extent. This correlation will

probably be jade more specific in the rear future, if we manage

to successfully use low temperatures for the recording of infra-

red spectra.

r`
t
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