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SUMMARY

A pair of formulas representing the time-average "finite part" electric

and magnetic stored energies for planar antennas are derived. It is also

shown that the asymptotic reciprocal relationship between quality factor and

relative bandwidth exists for planar antennas.

INTRODUCTION

Several years ago, Rhodes published a pair of formulas which represented

the time-average "physically observable" electricl and magnetic stored

energies for planar antennas [I]. Since his formulas arise through the use

of the complex Poynting Theorem in which the volume integrals of the electric

and magnetic fields appear only as a difference, their uniqueness were

questioned by Borgiotti [2] and Collin [3]. Rhodes defended his formulas

by offering a physical interpretation which supported his mathematical con-

clusions given in his earlier paper [reply following refs. 2,3].

Rhodes derived his formulas by adding and substracting terms (which were

finite) to the magnetic and electric volume integral representations (which

were infinite). These infinities come from the volume integrals of the

field components that do not vanish outside the aperture of a planar antenna [I].

The added and subtracted finite terms were identical to the terms produced

by the remaining field components. The subtracted terms were then grouped
w

with the volume integrals whose contributions were infinite. Whenthe

• electric and magnetic volume integrals were differenced, the grouped terms

cancelled identically, leaving what Rhodes defined as time-average "physically

observable" stored energies.
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The purpose of this paper is to derive expressions which represent time-

average electric and magnetic stored energies for planar antennas by using

the concepts of Hadamard's "finite part" of divergent integrals and Schwartz's

"distribution" functions [4,5]. The time-average stored-energy formulas,
d

based on these concepts, come directly from the time-average electric and

magnetic volume integrals; the complex Poynting Theorem is not used in their

derivation. These time-average "finite part" stored energies are shown to

give exactly the same reactive power expressions as the ones given in

references [I-3 and 6] (with the proper notation change). But, more importantly,

these "finite part" stored energies are shown to establish the asymptotic

reciprocal relationship between quality factor and relative bandwidth for

planar antennas.

APPROACHTO THE PROBLEM

For definiteness the problem of an aperture in an infinite perfectly

conducting plane, lying in the x-y plane, is considered (see fig. I).

The tangential electric field components (Ex,Ey) and the normal magnetic

field component (Hz), therefore, vanish outside the aperture on the ground

plane. It is the nonvanishing components (Ez,Hx,Hy) on this ground plane

that causes the contributions to the volume integrals to become infinite.

These divergent integrals are given explicitly as [I]

fff=
z:O x=-_ y:-_ IEzi2 dx dy dz - (2_) 2 4

+_ky [kxFx + kyFyI2× kx2 2 _ k2 2(kx 2 + ky2 - k2) 3/2 dkx dky (I)
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f f i,xl2dx  a _ 3
z=O x=_ooy=.oo (2_) 2

4
• aJ p

+i( 2)Fyl 2

IkxkyFx + (k 2 _ kx

x 2 k2 2 2 3/2 dkx dky (2)
kx2 Z 2(k x + ky - k2)

_fff 12 1 1 1
-4- IHy dx dy dz - (2_)2 2 k 4

x ff l(k2- k_2) Fx + kxkyFy12 dk dky (3)+ _ k2)3/2 x
kx2 + ky2 > k2 2(kx 2 ky2

where

Fx = ff Exa(X,y,k)eJkxXeJkyy dkx dky ('4)
• y aperture ya

;?

and Exa are electric fields in the aperture. Equations (l) to (3) do not
ya



exist in the ordinary sense; however, treating the integrands as distributions

will enable one to attach some meaning to these divergent integrals [4,5].

More will be said later about the treatment of the integrands as distributions

in this section.

The tenlls of the integrands multiplying the F functions are rewritten

as

2 k2 - ky2kx = 1 +

(k 2 - k2) 3/2 2 k2 ( + ky2 - k2) 3/2
x + ky2 _/kx2 + ky - kx2

= 22 2
1 + _ (-_kx 2 + k - k2)

_kx 2 + ky2 - k2 3kx2 Y

kxky 22 2 k2
- (-_kx 2 + k - ) (5)

(kx 2 + ky2 - k2) 3/2 3kx 3ky Y

2 k2 k 2
ky _ 1 + - x

2 2 k2)3/2- 2 k2 (kx + k -
(kx 2 + ky2 k2)3/2 _/kx2 + ky - y

22 _ k2= 1 + (__kx2 + )
2 k2 _ ky2_/kx2 + ky -



where they are to interpreted as distribution functions because interpretations

as ordinary functions do not exist. Substitution of these equations into

equations (I) to (3) combined with volume integrals (which do exist in the

ordinary sense)

= 2 1 =iS IFxl2dk dk 1_f_IExl dx dy dz - x y

(2_)2 4 _ 2 + k 2 k22 kx y -

2 1 _Si IFyI2 dkx dky-# fff IEyl dx dy dz -

(2_)2 2_/ kx2 + ky2 - k2

(6)

_SSS 12 1 1 1IHz dx dy dz - t)'2_'2 2 4up

IkyFx - kyFyl 2

+ >
m

the total electric and magnetic volume integrals are written, respectively,

as



2 I 2- ,.g- IEI dx dy dz - (27T)2_ k2 dkx dky

+l Fx[2 22 _F ) + IF 12
_kx2 + (FxFy* + Fx Y _kx _ky Y _

(-_/kx2 + ky2 - k2) dkx dky (7)

2 1 1 1 ( fl'[kyFx - kyFy[2

-/// - 'JJ i---_p+ _ -_4 IHI dx dy dz (27)2 m_ 4 k k2
dkx dky

(_kx_ y

4k2 ff 22 22 22+ T Fx12--
akx2 + (FxF* + Fx*F ) + IFyl2"Y Y _kx _ky

- + - k2) dkx dkyl( V kx2 ky2 (8))
The integrationon the right hand side of equations(7) and (8) is performed

over the region kx2 + ky2 _ k2. The first term in each of these equations t

is the exact "physicallyobservable"storedenergy relationshipgiven by

Rhodes If], (eqs. (16), (15)). The last term in these equationsdiverge



when the integrands are interpreted as ordinary functions but converges when the

concepts of "finite part" and distribution "distribution" are introduced into

the interpretation [4,5]. Interpretation of last integrands in equations (7)

and (8) as ordinary functions, therefore, lead to infinite stored energies in

" both electric and magnetic fields. Rhodes' concept of "physically observable"

stored energies is based on the complex Poynting Theorem in which the volume

integrals given in equations (7) and (8) appear only as a difference. It was

through this difference that he was able to arrive at his stored energy pair

(first terms in equations (7) and (8) since the last terms cancelled identically)

[I], (eqs. (16), (15)). In essence, therefore, the last terms in equation (7)

and (8) have been neglected in the definition of "physically observable"

stored energies. In the next section, the last terms in equations (7) and (8)

are not neglected but redefined in terms of the concept of "finite parts" of

divergent integrals [4,5].

The validity of introducing the concept "finite parts" in divergent

integrals may be justified by recalling the mathematical steps leading up to

the divergent integrals. In determir:ing the volume integral representations

for the Ez, Hx, and Hy components, an interchange in the order of integration

was assumed valid. This interchange is guaranteed to be valid only if the

integrand is continuous over the range of integrations and if the integral

is uniformly convergent. Even though Ez, Hx, and Hy have integrable

singularities at kx2 + ky2 = k2, they produce discontinuous integrands in

the volume integrals. It is at the points on this circle that causes the

volume integrals of these components to diverge. To include these points in

• the existing stored energy integral representations of these components

necessitates special consideration in order to produce meaningful results. The

use of the concept of "finite parts" of divergent integrals allows one to take
7



only the finite parts of the integrals and disregard the infinities associated

with ends points of the integrals. Therefore, these points are included

in the evaluation of these divergent integrals but the infinities are moved

by the concept of "finite parts" of divergent integrals. The inclusion of

this circle of values in the other field components contributes nothing to

their energy integrals, and hence, can be included without special attention.

"FINITE PARTS"OF THE DIVERGENTINTEGRALSOF THE

ELECTRICANDMAGNETICVOLUMEINTEGRALS

In this section the divergent integrals in equations (7) and (8)

(last term in each) are examined in detail from the standpoint of interpreting

the integrands as "distributions" and not as ordinary functions; the latter

interpretation, as noted earlier, leads to divergent integrals.

Let

II = kx2 y2 > k2 (_ 2 + ky2 _ k2) _ iFxl2 dkx dky

which converges due to the properties of Fx [I]. Since the integration is

outside the circle kx2 + ky2 = k2 and the integrand is an even function of

both kx and ky,

I 1 = 4 (-Vkx 2 + ky2 - k2) 2 IFx 12 dk dky
_kx

o k,/__ky2

iL? x]_2 12+ (-Vkx 2 + ky2 - k2)_IFx dk dky (9)
k _kx2
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Integration by parts twice yields

: fl _2I-_/kx_ k_2ii + - k2) IFx 12 dkx dky

" +ky2 _ k2 3kx2kx2 >

k

+ 4o 3kx (-_/kx 2 + ky - k2) IFxl dky

kx = k2 - ky

co

3_x IFxl dky (I0)

k=O

Since the left side of equation (I0) converges the right side must converge

as a whole although the individual terms may produce divergent parts (first

and second terms); the existence of the first two terms on the right side

has been called by Hadamard the "finite part" of the divergent integral [4,5].

With the notation FP denoting the "finite part,"

SS 32 2 2FP (-_/kx2 + k - k2) IFxl dkx dky

2 + ky2 > k2 3kx2 Ykx

--&SS 32 2 22 (-Vkx 2 + ky - k2) IFxl dkx dky
, k3kx

J 3 2 k2)lFxl_ dky (II)+40_(-_/kx2+k - ._I



equation (I0) becomes

+_ky a2 _/ "I 1 = FP kx2 2_> k2 8kx2 (- kx2 + ky2 - k2) IFx 12 dkx dky

oo

+ 4 {k 2 _ k2 _k IFxl dky (12)k Y x

k =0
x

a2/akx2 (__kx21 + ky2 _ k2) exist not as an ordinary function but as
where

a distribution. Therefore,

II 82
FP - dky

kx2 + _ k2 8kx2 (-_/kx2 + ky2 k2) IFx 12 dkxky2

_2
-- J'_" (-{kx2+k_2- k2)--IFxl 2akxak_

kx2 + ky2 >_k2 _kx2

oo

k =0
X

or
Q

I0



FP II a2 2 k2• (-Vkx 2 + k - ) ]Fx12dk dky

kx2 + ky >_k2 _kx2 Y x

II a _kx 2 + ky2 k2 a 2= ak - akx ]Fxl dkx dky

kx2 + kY2 _>k2 x
(14)

A similar argument shows that

a22 _ k2) __ iFyl2 dkx dky (15)
12 = (-_/kx 2 + ky akY2

2+ >k 2kx ky2

and

j'J"_,--_22 -_/k2+k2 k2)IFy _kyFP ( x y -

a 2 k2) IFyl2 dkx dky-
co

I _ (-_/kx2. - k2) IFyl_ dkx (16). + 4o aky ky2

ky =_/k 2 - kx2

ll



Therefore, 12 becomes

H •

22 kx Y I Fy dkx dky ,
12 = FP - -

kx2 + kY2> k2 _kY2 ( _/ 2 + k 2 k2) 12
oo

k - _ky IFy I dkx (17)

ky = 0

where _2/_ky2 (_/kx2 + ky2 - k2) is interpreted as a distribution.

Therefore,

22 2 k2 2
-- (-_kx2 + ky ) I Fyl dkx dky

FP ff >__k2 BkY2kx2 + ky2

= Yf (-Jkx 2 - k IFyl dkx dky
kx2 + ky2 _>k2 + ky2

-4kjr_/kx 2 k2 ;) l- ;)ky IFyl (18)

ky=O

or
o
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FP II _2 2 k2 22 (-{kx 2 + ky - ) I Fyl dkx dky

2 + ky2 > k2 _ky- kx _

= _ _/kx2 + ky2 - k2 _ I Fyl 2 dkx dky

kx2 y2 > k2 _ky _ky

(19)

The second terms in the divergent parts of equations (7) and (8) are

now examined in terms of their finite parts; let,

_2 F * + Fx*F,) dkx dky

13 = kx2ff+ kY2 >__k2 (-_/kx 2 + ky2 - k2) _kx _ky (Fx y

! (20)

which converges due to the properties of Fx and Fy [I].

Integrating by parts first on ky and then kx, 13 becomes

F
=| + - F *+ *F13 L ff _2 (__/kx2 kS k2)(xFy Fx_,)dkx%

2 + ky2 > k2 @ky _kxkx

k

f _ (-{kx2+kSk2 * _ _1+ 40 _ky - (FxFy + Fx*F _] dk

_k 2 k 2kx= - y
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oo

+ 4 kx - 3kx (FxFy + FxFy .

k =0
Y

oo

+ 3 F* )_
k 3ky (Fx y + Fx*F__] dky (21)

kx = 0

The finite part of the double integral is defined as the terms in the square

brackets:

ff 32 l 2

FPkx2 + kY2 _ k2 3ky y
3kx (-Vkx 2 + k - k2)(FxFy*+ Fx*F,)dkx dky

II 32 _ 2 + k 2 . k2) * + * dkx dkyA= 3kx aky (- kx y (FxFy Fx Fy)
kx2+ky2_k 2

k

f _ _k2)( *+FxFy_+40 Ty (-{kx2+ky2 FxFY dky (22)

kx =_/k 2 _ ky2

14



so that 13 becomes

I 22 2 k2 * *F• 13 = FP _ky @kx (-_/kx2 + ky - )(FxFy + Fx y) dkx dky

oo

_kx (Fx y + Fx y

ky = 0

O0 ,

+ 4 - k2 _ * + Fx Fy
aky (FxFy

k =0
x

Therefore,

22 + - k2)( * + Fx*Fy) dkx dky
FPff_ky _kx (-Vkx 2 ky2 FxFy

22 .

:/'/'(__/kx2+k2_k2)_kx_ky(FxF_+Fx*FY)dkx_k_,
oo

ky = 0

co

-4 k 2 _ k2 _ + Fx Fy dky (24)

kx = 0
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or

pf.f_ ;)2 2 _ "k2) * + *F
F ky _kx (-Vkx 2 + ky (FxFy Fx y)dk x dky

x + - k2) ;) F * + *F

oo

_Tx (FxFy + Fx Fy dkx (251

ky = 0

The time-average electric and magnetic stored energies are now defined

in terms of finite parts as

::<We>FP= _ FP o _oo IEI2 dx dy dz (26)

or

l ff IFx12+ IFy12
= dkx dky

<We>FP "4- (2_--_ > k2 _/kx2 _ k2kx2 + ky2 + ky2

ff _ . . ;)2 "+ 1 FP Fx12;):2+ (FxFy. Fx Fy);)kx ;)ky
kx2 + ky2 >_k2

L Kx
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+IFyl2 _-_y22] 2_k2({kx 2 + ky ) dkx dky (27)

and

<Wm>FP- T FP Io f_ IHI dx dy dz (28)

or

I 1 I ff Ikix- kxFyl2
<._>_:__ T >_{_x_+_ _x_m kx2 +, ky2 k2 2 _ k2

k2 +_"{ky _ * 22

+ T FP Fx 12 22 *
+ (FxFy + Fx Fy) _k; _ky

2 _ k2 _kx2kx2 >

+iFyI2_2] (_{kx2+kY2_k2) dkxdk_ (29)@ky2

where the individual finite parts are given by equations (13) or (14),

(18), or (19) and (24) or (25).

The reactive power, which will be needed in determining the relative

bandwidth, is given as*

_Ilote that no new definition is neededhere because the difference in the
usual volume !qtegra!s is the Sameas <we>FP- <Wm>FP

17



1 1

2_(<We>FP- <Wm>FP)- (2_)_ 2m_

(k2(IFxl2+ IFyI2)"IkyFx" kxF"vI2) I "

II >__k2 _kx 2 + kY2 _ k2 dkx dkykx2 + ky2 1

(30)

which agrees with the representations given in references [I] to [3], and [6].

q ANDRELATIVEBANDWIDTH

ThequalitY factor Q is defined in terms of the finite part stored

as

A _[<We>Fp+ <Wm>FP]
Q = Pr

: angular resonant frequency (31)

where <We>FPand <We>FPare given, respectively, by equations (27) and

(29) and Pr is the radiated power given by [I]

i I ffPr = -_
(2_)2 2kZo 2 k2

kx2 + ky <

(k2 - kx2)IFyl2 + (k2 " ky2)IFx12+ 2kxkyReFxFy*dkx dky

V k2 - kx2 - ky2 (32) '

where Zo is the free space impedanceand Re denotes the real part.

18



Substituting equations (27) and (29) into equation (31) Q becomes

. Q A: prl (2_--_-_Im-_l[ // 2 k2 [IkyFx -_ kxFyl2+ +kyk2(IFx- 2 + Fyl2]kx2 + ky >_ kx2 2 k2 dkx dkyJb

F

k2 FP f/ llFx 12 22 * * 22

+ 2 k2_' _kx2- + (FxFy + Fx Fy) _kx _kykx2 + ky >__

 ,F,2 21-k2,dkxdkI ,33,_ (-#"x_ "S
= angular resonant

frequency

The relative bandwidth is defined as*

-='1

A , Pr i

B.W. - dr[ ' _]J (34)
m _(<We>FP - <Wm>FPII

m = angular resonant frequency

*Note that no new definition is needed here because the difference in the

usual volume integrals is the same as <We>FP - <Wm>FP

f,.'f,: 19



The purpose of this section is to showthat at resonance the asymptotic

relationship between Q and relative bandwidth is given by

l 4

q - B,W. (35)

This will be accomplished by explicitly taking the frequency derivative

shownin equation' (34);

B!W.-IpZr dd-m[m(<We>Fp- <Wm>FP)]l (36)

at resonance

1 _ d 1
B.W, d--IT k_

kx2 + ky2 >__k2

k2(IFx12+ IFyl2) - IkyF×- k×Fyl dkx dk (37)
+ k2

at resanance

2B



i_I k I //_
B.W. Pr C2_)2ZQ ky2-k2• l<x2 + >

• >___2kx2 +ky 2

21



2(IFx12 . IFyl - IkyFx - kxFY,I-

{kx2 + ky2 ' k2 _] dkx dky

i d[4f_ _ <k2-k_2)IF×I2

+ " k2 kx=Vk2"kx2 _kx2 + ky - k2 dkxdky
kx=O ky=O _/kx 2 ky2 ky=O 2

at resonance
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The derivative with respect to k of the double integrals in equation (39)

is determined via the generalized Leibnitz formula [7], with the modifications

• that the integrands and their derivatives with respect to k exist as

distributions. Performing the differentiations, therefore, I/B.W. becomes

'--I'k(K: dkx dky
• ' 2 2 _ k2

B W Pr (2_)2Zo \k x +ky >k {kx 2 + ky2

1 If IkyFx " kxFyl 2
+ -_ dkx dky

2>k22+ky2 k2kx2+ky_

(k2 " kY2)lFxl2 - 4f k2 IFx
+ dkx dky o - k"y2 dky

kkx2+ky >_k2 (kx2 + ky2 - k2) 3/2 Vkx2 + ky2 - k2 kx=k2_F_.ky2

I " kx2)IF'vl " 41 k2 - k'x21Fyll I

ff (k 2 2 k

+ x2+ky 2>k2 (kx2 + kY2 k2)3/2 dkx dky o _ dkx
_ " _/kx2 + ky2 - k_ky=._k2_-_x2__

kx y(FxFy + Fx Y) - 41 ( F F * + )
+ + k2)3/2 dkx dky o ky( x y Fx*Fy dky

- 2 k2

<x2 ky _>k2 (kx2 ky2 Vkx 2 + ky - kx=_y 2
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1 II (k2 - ky2) dlFxl2+ dk dkx dky

kx2+ky2>k2{k-x2 + ky2 - k2

,._ (k2" kx2) dlW2+ dkx dky

kx2+ky2->k2_/kx 2 + ky2 - k2

II kxky d * * 1 (40)+ . + . k2 _ (FxFy + Fx Fy) dkx dky
kx2+ky2>k2 Vkx 2 ky2

at resonance

At resonance the derivatives of the F's are zero and the terms in the square

brackets are precisely the finite parts of integrals defined, respectively,

in equations (II), (16) and (22); therefore,

*For a parallel circuit I = V(k) Y(k) and at resonance Y is a minimum;
therefore, the voltage V(k) is a maximum, hence, dV/dk = 0 since

resonance

V(k)= Ex, then _Ex/_k = O. Therefore, _Fy _Ex leJkxXeJkyyresonance _ II_(x,y,k) dx dy = O.resonance ,resonance

24



i k  2 k2,Fx2I- dkx dky

,, 2 k2 {kx 2 + _B.W. Pr (2_)2_P kkx +ky .> ky2 k2

F
+k2Fp_ _Fxl2

_2 _2

_kx------_+ (FxFy + Fx Fy) _kx _ky

_k

kx2+ky2>k2

k

IFyI222] 1
+ _ (-{kx _ ky2 k2) dkx dky (4])

_)ky2 + -

= angular resonant freque_,;L,

This equation is identical to equation (33), thus, proving the asymptotic

relationship between them as given by equation (35).

CONCLUSION

The concepts of Hadamard's "finite part" of divergent integrals and

Schwartz's "distribution" functions are used to derive a pair of formulas

representing the time-average "finite part" electric and magnetic stored

energies for planar antennas. The asymptotic reciprocal relationship

between quality factor and relative bandwidth known to exist in circuits is

shown to be valid for planar antennas.
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