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I, Recent Progress Summary

This progress report summarizes the recent and projected efforts in
investigating the reduced order model problem in distributed parameter
systems adaptive identification and control under NASA Grant NAG-I-7
sponsorship. A lengthy si‘ulation study [1] of the reduced order problem
in scalar adaptive control of lumped-parameter systems, projected in a
previous interim report, has only recently been completed. A compre=-
hensive examination (compiled over the past several months) of real-time
centralized adaptive control options for flexible spacecraft is provided
in the remainder of this section of this progress report. (The real-time
objective, as usad here, excludes the possibility of separating identifi-
cafion and control in time as suggested in [2].) This overview prompts
the departure from the anticipated narrow focus on the NASA Langley beam
control experiment and a shift to development of an original, general
approach to this problem as projected in scctlon TI. Section TTII 1lists
the references cited in the first two sections. Sections IV and V provide
a listing of recent presentations and publications of work sponsored by
NASA Grant NAG-I-7, The final section is a cumulative list of sponsored

papers, which have appeared in the open literature.
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1, Introduction to Four Approaches to Adaptive Control of Flexible
Spacecraft

The four approaches to adaptive control of flexible spacecraft dis-

cussed in the next four subsections are:

(1) Assume that sufficiently accurate eigenshapes are provided a priori
and perform simultanecus adaptive modal identification and control as,
e.8., in [3] and [4].0

(11) Assume that eigenshapes can be accurately approximated by a finite
dimensjional, linear combination of preselected orthogonal spatial functions
(as suggested in [2]) and simultaneously estimate the parameters forming
the elgenshapes and the parameters in their dynamic amplitude behavior.
Combine this identification with on~line solutiea of the decoupled control
problens as in [3] and [4].D

(1i1) Treat the actuator/distributed parameter aystem (DPS)/sensor com-
bination as a multi-input, multi-output (MIMO) system with finite (but
large) "state" dimension. Adaptively observe [5] {6] or identify [7]) this
MIMO system and solve the coupled MIMO control problem on-line using these
parameter (and state) estimates in a state feedback [8, sect. 6.3) [5] or
transfer function configuration [8, sect. 7.3] [9].0

(iv) Select an adequately dimensioned feedback control structure for the
MIMO actuator/DPS/sensor system and directly update the controller para-
meters to asymptotically achieve pole placement (as proposed in the scalar
case in [10] and [11]). O

These four approaches (especially the last three, which remain open develop-
ment issues) are discussed in sufficient detail to pinpoint their respective

limitations requiring further study.




=

H
[ O

RS SRR AL T

TR Tk

s o gt i o

2. Simultaneous Modal Identification and Control

In (3] and [4] a modal adaptive control strategy for distributed
parameter systems is developed, which relies on a priori specification of
the decoupling, spatial eigenbasis. As is commonly acknowledged, the most
accurate modal model synthesis procedures yleld eigenshape predictions
with possibly high inaccuracy increasing with the spatial frequency of the
eigenshapes. It is expected that in certain cases such a priori eigenshape
errors in the strategy of [3] and [4] would lead to instability. The un-
answered question 1s the problem dependent on: How inaccurate can these pre-
specified eigenshapes be before such unacceptable behavio: results? This
does not even consider the problems introduced by the reduced-order uffects
of modal expansion truncation as noted in [4] and [12]. The next three
subsections are aimed at circumventing the requirement of exact eigenshape
prespecification. The study of reducsd order effects would follow as noted
in Section II. See the appendix in subsection 6 for a brief summary of
the separated variable technique of modeling distributed parameter systems

used in [3] and [4].
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3. Simultaneous Eigenshape and Modal D

namics Estimation

Consider the distributed parameter system output described, as in
[3] and [4], by the sum of products of modal eigenshape and decoupled

amplitude dynamics

N
y(x oK) = i)_jloi(xqwi(k) (3-1)

wvhere y(xq.k) represents the output measured at the qth sensor location X
at time k, Qi(xq) is the magnitude of the ith eigenshape at location Xqo
and yi(k) is the amplitude of the ith mode at time k. Since the modal

dynamics are uncoupled

n
yq(k) = zgllaigyi(k-z> + by,u, (k=2)], (3-2)

where the order of the dynamics n 1s typically 2 for the linearized small

amplitude motion of flexible structures and ui(k—ﬁ) the ith modal input at
time k-2

C
uy (k) = jZl¢i(xj)u(x k), (3-3)

where u(xj,k) is the actual force applied through the actuator located at xj.
Assume, as suggested in [2], that the eigenshapes ¢i can be formed as a
finite~-dimensioral, linear combination of prespecified independent spatial

functions fa(x) as
8

P
¢, (x) = ) cisf,(x). (3-4)
=]

The simultaneous eigenshape and modal dynamics estimation problem is,

given the "structural” indices of (3-1)-(3-4), i.e, the prespecified basis
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functions f.(x). the number of significant modes N, the order of the modal
dynamics n, the number of actuators C, and the number of sensors Q, to
apply an actual input sequence at each actuator [u(xj,k)}. measure the
resulting output at each sensor (y(xq.k)}, and recursively estimate the

eigensliape parameters e and the modal dynamic parameters and h

842
(L.e. N(P+2n) pavameters) to minimize the prediction errors

iz

e(xq.k) = y(xq.k) - y(xqpk)- (3-5)

These predicted outputs can be formed from (3-4) with the parameters Cig

replaced by their current estimates Eia(k) in

P
b4 0x,k) = zléi,(k>fscx> | (3-6)
a=s

providing the estimated mode shapes $i used in

- C»

ui(k) - j§1¢1(xjok)u(xjpk) (3'7)
to provide estimated modal inputs Gi(k) to

A n A ~ - -~

yy (k) = leail(k)yi(k~i) + by (Kuy (k-2)] (3-8)

=

to provide modal cutput estimates to

N ~ ~
g'(xqsk) - 1§1¢1(xq1k)yi(k)- (3"’9)

The approach of [3] and [4], as noted in the preceding section, 1is to
assume that the ¢1 are known and from measurements of y(xq,k-l) to solve

(3-1) for the yi(k-z) to be used in

e L
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yglk) = Lglliu(mi(u-z) + 6, (K)u, (k-1)) (3-10)

for comparison with euch y‘(k) from solution of (3-1) given y(xq.k). In order
for (3-1) to be uniquely solvable the number of sensors Q must equal the

number of Roden N to solve

PY(Xl)k)- P‘l(xl) ‘z(xl) tes "N(xl)_ -yl(k).

$,(xy)  5(x,) ouo dy(x,) (k)
- 111%2? 921% N*2? Y2 (3-11)

[ [ ] L] L) L
. . . . .

I Y(X(;,k) i | .l(;Q) ’2(;(2) LR QN.(XQ) i -y;‘(k)g

y(x,,k)

by matrix inversion or its equivalent. The question is whether or not such
a technique can (or should) be incorporated to alter (3-6)-(3-9) and avoid
the propagation of 91 in (3~8). One problem is the need for asmany sensors
as modes. If this is not feasible, it seams that the left-side of (3-11)
could be augmented with further measurements y(xq,k+£). However, this would
require inciusion of the plant dynamics on the right hand side resulting in
essentially a multivariable modal observer configuration, which does tot
address the same problem as (3-11) but reverts to the full problem of
(3-6)-(3-9). (See the next section for consideration of the multivariable
adaptive observer problem, without the modal structure.) Assuming that

Q = N is feasible the problem remains of how to simultaneously provide a
correction term to (3-6) 1if the &1 are used in (3-11). That is, since
(3-11) with 01(') replaced by 51(-,k) could be used to provide the ﬁi(kpl)
in (3-8), would y—§ using (3-9) provide useful information regarding the

error in the ¢, ?

is
Since Q = N is itself unattractive, consider the apprcach of (3-6)-

(3-9). First, combine (3-2) and (3-3) to form
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N ¢
y k) = Lgllauyi(k-»&) + bigj:l¢1(xj)u(xj,k-z)]. (3-12)
Substituting (3-12) into (3~1) ylelds
N - n g
y(xq ok) - 12101(xq) { zgl [“uyi (k=2) + b“’j-]fi (xj )u(xj ok"g‘> ] }.

§ (3-13)
Then using (3-4) in (3-13) yields

ylxgok) = Z [ z Ctafaxgl X Paeyg (k)]

N P
g + i-ll.glﬁi.f (x N z biz Zlfmélcimfm(xj)}u(x Jk=2)] (3-14)
0 or
i
. : !’(X k) = a £ (x )y, (k-2)
N 1§1 agl zzl 1251878 q’71

N P n cC P

‘ "~ -
i lgl sgl z§1 j£1 L1 C1s%im by £ () E(xyJu g, ko0) (3-15)

Note that even if the measurement point xq is constant over all k, since

f $ (x ) (k-2) # a b, ( ) (k~2)
g Z i Z 81071 221 121 it l i%¥q?Y1

'3
Joag,y(x k=) (3-16)
} gy g=y 4T

(3-15) is not directly transferable to a multi-input (u(x,,*) over j),

single-output (y(xq,-) for one q) ARMA process. This is due to spatial
coupling, i.e. the output y(x1,°) at sensor location Xy is dependent on the

past outputs y(xq,~) over all q not just those for q = 1. Therefore even

AR I R

M
i

£

& f

. s " : v ’ it it ) P




@
'
:
3
F
]

[m—;

To—t

.
[a—1

[as——

_—1 =

8-

the problem of estimating the N(F-#Pz)n different parameter products in
(3-15) (rather than the desired N(P+2n) parameters ITORLTY eis) cannot
be phrased as an equation error parameter estimation [13] problem, because
the y4 are not available. (Note Cie ™ Cim for s=m). Due to the lack of a
single-output ARMA form an output error formulation [7] [14] is also im-
possible. One temptation is to relate the form of (3-8) to that for output
error estimation. The measurement of y and not ¥y requires (3-9) for the
prediction error and causes a combination of the y, as in a parallel
filter implementation, as noted in [15]. The difficulty of (3-6)-(3-9)
in addition to this structural peculiarity noted in [15] is that the
effective parameters in this Yi combiner are also now unknown, which leads
to products of unknown parameters, as is apparent from (3-15). This pro-
duct form wfllwbe termed (as in [16]) a bilinear-in-the-parameters
estimatioa problem, for which there is no known globally stable recursive
solution.

Do not confuse the difficulty in establishing a multi-input, single=-
output ARMA model from (3-15) with an inability to do so in general.

Clearly if a linear multi-input, multi-output ARMA form exists of the form

n
X(k) = } [AX(k-1) + ByU(k-1)] (3-17)
1=1
then
n LI St S et
X(z) = [2'T - [ Az ) I Bz 1U(z) (3-18)
1=1 i=1

. n n n~-i Ny _ L n-i B4 n-1
X{z){det(z"1 = ] A,2" )} ={Adj{z"1- ] Az 1} I 82" UCz)
i=]1 i=1 i=]1
(3-19)




Taking the inverse z-transform yields

U(k*i :h (3-20)

t t
X(k) = ) a,X(k=1) +
1£1 1 12 i

1

wvhere t = (n):(dimension of X). So, a degree change and loss of internal
information is required to use a model of the form of (3-20)if it is used in
place of (3-17). That a coupled model, such as (3-17), exists will be the
premise for the next two sections,

Returning to the computation of the prediction error in (3-5) further
emphasizes the bilinear-in-the-parameters form of the underlying parameter

estimation problem. Using (3-13) and the similar form arising from (3-0)-
(3-9), (3-5) becomes

N
e(x k) = fc, = 8 (R Gy ()
q 1§1 sgl is t

+ k)£ (k) -y, (k) (3-21)
1gllszlc“( Y (x )Ly (k) -7 (K]

Using (3-2) and (3-8) converts (3-21) to

elx k) = 121 llec -y (R IE (x )y, (K)

+ixlt Z ey (R (x )] Z LIt a, ()1, (k)
= s.

+{by, = by, (k) hy (k-2)]

+;§1[szl°1ﬂ<k)£ M 2 T ¥y (k=2)}

+ big{ui(k-i)-ﬁi(krz)}]e (3-22)
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“hen from (3-3), (3-4), (3-6), and (3~7), (3-22) becomes

e(x k) = 1}:1 X AUt & {ILE x )y, ()
n] gw=]l

‘) X !aiz-a Ay Z cis(k)f (xq)7 (k1]

1=l ¢
- K
+ (b, - b, ,(k) (k) (x )iy (K-t
I A L Xgtuy (k)]
¢ p i
+ - A k-
1§1 m§1[c “1a] [zél szb' s§1c15(k)f5(“q)}fa(xd)"(xj'k vl
U s :
tE zl[yi(k”g)"fifk‘g)}[ﬁ“{sﬁlﬁig{k)fs(xq)}}. (3-23)

Due to (3-16) the last term in (3-23) Is not a regression of e(xq,') that
could be moved to the left side of (3-21) as in an output error formulation

[14]. Also by is unknown in the next to the last term (as in Yy in the

first term) in (3-23) where it is needed to form the "input" to the

cim(é Cim"aim) segment of the welghted parameter error combination. This
latter problem can be solved by approximating biz with ﬁi& (and Yy with §1)
as 18 done in [16) and [17) for a different bilinear-in-the-parameters
estimation problem. Since o™ %m for s=m the two terms in ¢ present a
nontraditional problem.) This clearly limits any subsequent estimaticn
scheme, based on this approximation, to local convergence. The structure
of the last term in (3-23) is the more bothersome iesue. Assuming that

vy * §i 1s an unacceptable method of Ignoring this last term. To assume

that a Ls constant over i is also absurd (unless a breakdown similar

" - 3 ) W 855 oo e oot ¢
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to (3-23) is achievable for the plant form in (3-20), which prasently
seems possible only by losing the decoupled structure of (3-2)). Another
improbable situation is that one set of constant prediction error
smoothing coefficients would make each of the 1 forward dynamics in an
output error identifier error system atricni; positive real [18]. The
form of (3-<23) is enticingly close to a standard output error formulacion
but the problem noted in (3-16) alleviated only by effective solution of
(3-11) hinders further considerition of thls distributed parameter system
identification technique.

The justification for developing a simultancous eigenshape and
amplitude dynamics estimator is appurent from [13], [4], and the preceding

section, {.e. the recursive estimation of the dig0 biz' ¢, , and ¢y Per-

is
mits real-time solution of decoupled, sealar pole placement problems, This
contrasts with the large computational effort involved in solution of the
pole placement problem for a coupled matrix ARMA description as would
result from an arbitrary fixed cholce for the "modal" shape "basis" g
Coupling would result in (3-2), i.e. each modal output Yy would be depend-
ent on past values of all modal outputs and modal inputs, not just its own
as in (3-2). Note that "pulge" forms for the cisfs(x) products, for
excaple, would result in a measured, input (u(xj,') - output (y(xq,'))
matrix ARMA description, thereby effectively bypassing the modal co-
ordinate transformations. As this approach makes the centrol problem

solution more involved, the parameter estimation problem bhecomes solvable.

Such an approach is taken in the next two sectlions.,

o N R e i . EPSURURN
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4. Simultaneous Multivariahle Identification and Control

As an alternative to the modal decomposition representation for DPS,
consider a coupled multi-input multi-output system description. In the
time domain, this becomes a state space repressntation with multiple inputs
and outputs and suitable state variables. The state space dimension will
depend on the characteristic behavior of the system in the space and time
dimensions and the modeling accuracy required. Since DPS require an
infinite number of modes in their modal description, this corresponds to
the need for an infinite dimensional state space for a correspondingly
complete description. In practice.’howevar. only a finite set of modes
and therefore finite state space will be assumed for analysis. (See the
appendix (sec. b) for a more detailed discussion of this modeling issue.)
Even though a DPS 1s accurately modeled by a finite state space description,
this dimension may be too large to manipulate in sny reasonable real-time
control application., The required additional reductlion in usystem state
dimension results in the reduced order concrol problem, and subsecquent 111
effects caused by modeling inaccuracy spillover, etc. [12].

This discussien though, will be limited to the use of simultaneous
identification and control (indirect adaptive control) on multivariable
systems without considering these reduced-order modeling effects. The time
domain approach of simultaneous parameter identification and state obser-
vation for use in state variable feedback, will:be based on the parameter~
ized scalar adaptive observer developed by G. Kreiselmeier [5][19]. The
alternate approach to the indirect adaptive control problem will be based
on the frequency domain representation of the multivariable system. This
is commonly expressed by either a transfer function matrix or matrix

fraction description relating plant inputs to plant outputs. Here, the

et 13500 . e o B
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discussion will focua on the frequency domain version of a Luenberger
observer and full state feedback to accomplish the desired closed loop
control objective,

4.1. Time Domain Approach

Multivariable extension of Kreisselmeier's adaptive observer [19] can
be approached by first looking at the major steps in the development for
single-input single-output systems. If the plant is known to be observable
and of state dimension n, 1.e.

X = Ax + bu A: nxn, b: nxl, x: nxl

y = ch c: nxl

(4-1)

where (A,c) is obhservalle, an n dimensional observer cawn be constructed to
assymptotically estimate the plant states [20]
§ =Fx+gy+hu F: nxn, g: nxl, h: nxl. (4~2)
For the state estimate errot x = x-x to approach zero, it $s required that
F=A-gcl  and b= h (4-3)
where F has eigenvalues strictly in the left half complex plane. This
observer has the structure in Fig. 4.1. The solution for the state

estimator is

t
X = &(A—gc)tio + | e(A-8e) (t=1) y + h u)dt. (4~4)
0

However, 1f the parameters of the plant are unknown i.e. A, B, C are
known only in dimension, then the observer parameters g and h must be
estimated such tlat the state estimate X does indeed converge to the plant
state x. Kreisselmeler's estimation methods [19] rely on being able to
separate the observer dynamics and the observer parameters g and h. For
scalar input and output systems, this is easily accomplished by simply

commuting terms in the integrand in (4-4)

b A A bt 53
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t
f &(A~gc)(t-1)(8 y + h u)dt
0

£ t
= [I “(A-8c>(t~T)y d {] s+ [f o(A"gc)(t“T)u d {}h v (4=5)
0 0

The system can now be represented by the structure in Fig, 4-2.

1f this approach is now 5! for the multi~input multi-output case,

the plant state description b s

X = Ax + bu Az uxn B: nxm, u: mxl, x: nxl
(4~-6)

y = 0x C: pxn, y: pxl

where there are m inputs and p outputs. The system is still assumed

observable. The observer is describad by

X = Fx 4+ Gy + Hu F: nxn  G: nxp, H: nxm (4=7)

with ¥ having strictly 1left half plane efgenvalues and

F=A-GC , B=H (4-8)

to cause assymptotlc state observatlion. This system has the same structure

as the scalar system shown in fig. 4-1, except that y and u are now vectors

and g and h are now matrices. The solution for the state estimate X

(corresponding to (4=-4)) is
t N F b
% - Q(A”GC)C&O + f G(A“CG)(t f)(Gy + Hu)dT (4-9)
0
Notice that the outputs y and inputs u will not, in gencral, commute with

G and H, respectively.

To separate the observer dynamics from the observer parameters con-

tained in G and H, a unique solution to

Gy = y*G* and Hu = u*h* (4-10)
OR

SA-CONE (o (A-CC) ¥
and e AGOIE o Ly G(A=GO)*t (4-11)

must exist for some set of (+)*quantities. Notice that a unique solution

o b s
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to equation (4-10) will not exist unless G and y span equivalently
dimensioned suhspaces, i.e. G and y are square, invertible matrices of

the same dimension. The same is true for H and u, The only possibility is
when y and u are scalars, which reduces the problem to the SISO case
discussed earlier,

Equation (4-11) has similar restrictions. Here, however, if G and H

are square, invertible, and of the same dimension as e(A~GC)t, then unique
gsolutions for G* and H* will exist. For convenience, let e(A"GC)t = ${t), then

cr = 4(e)ee L (e) G: nxn, Invertible

-1 (4-12)

H* = $(t)H ~(t) H: nxn, invertible
The solution for the state estimate bepomes

. . -l t -1

% = ¢(t)x0 + Gk I ¢(t) Tydr o+ H¥ f d(t) Tudr . (4-13)

0 0

This system has the structure in Fig. 4.3, which is similar te Fig. 4.2.
The required restrictions for thils result, however, are severe:
(1) The G* and H* estimates must be assymptotically invertible for
; to converge to x .
(ii) The number of inputs and outputs must he the same as the number
of states.

(111) The minimum number of states used to describe the system behavior
must not be overestimated, or G* and H* will never be assymptotical-
ly invertible and the state observer may never converge to the
true plant states., Also, a non-minimal state description implies
that some states are either unobservable or uncontrollable or both.
If an observed state is uncontrollable, the feedback law may
require unbounded control inputs in an effort to effect such a

state. This may drive the -system out of the region of linear

operation, and is clearly to be avoided.
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The specializaticn of the plant model for flexible spacecraft may lessen
the severity of the restriction in point (11), since it may be poesible
to add sensors and actuators to satisfy this point. Restrictions (1) and
(111) still remain, though, with their inherent numerical problems.

4.2. Frequency Domain Approach

Consider the plant having m inputs, p outputs and a pxm proper
transfer function matrix T(z). Represent T(z) in a left matrix fraction
description (MFD), not necessarily minimal [8] (i.e. irreducible, relatively
left prime [20])

1(z) = P21 (2)L(z) (4-14)
where P(2) and L(z) are polynomial matrices. The elements of P and L are
polynomials in z whose coefficients are unknown, The system output y(z)
and input u(z) are then related by

y(z) = P M@ (z)u(2) (4-15)
and

P(z)y(z) = L(z)u(z) (4-16)
Rewrite P(z) and L(z) as sums of products of constant coefficient matrices,

Pi and Li' and powers of z:

q i
y(z) = X Liz
1=0 _

R
[1Zop121

where n is the largest power of z in P(z) and g is the largest power of 2z

u(z) (4-17)

in L(z), where q < n due to the properness of T(z). Now if P(z) is row
proper [B8], P, will be invertible and the natrix ARMA difference
equation for y(k) can be given by
n q
-1 .
y(k) = L [-121 Piy(k—i) + 1éDLiu(k-n+q—ii} (4-18)

Based on this matrix ARMA, some estimation procedure, e.g. [7], can then
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be used to estimate the ARMA coefficients, thereby providing the plant
parameter estimates for the left MPD,

A curious quirk in multivariable systems not found in scalar systems
1s that an equivalent right matrix fraction description for T(z)

T(z) = R(2)Q" (2) (4-19)
does not lead, in general, to an ARMA difference equation for y(k). Notice
that the dual to equation (4-15)

y(z) = R(2)Q"L(2)u(z) (4-20)
cannot be separated to a dual form of equation (4-16) since R(z) 1is not
square unless p = m and even then not necessarily invertible. If such a
special case holds, then a result similar to (4=16) is

det[Q(z)ladj[R(z)]y(z) = det[R(z)]adj[Q(z)]u(z) (4-21)
If Q(z) and R(z) contains only common unimodular [21] right factors (Q(z)
and R(z) relatively right prime (r.r.p.) [8][21]) then the highest power
of z on cach side of (4-21) will be < 2n. Herc n 1s the order of the plant,
being the pumber of shifts in a difference equation needed to describe the
plant. Silnce an nth order system has the orvder of detfQ(z)] equal to n
(Q(z), R(z) r.x.p.) or greater than n (Q(z),R(z) not r.r.p.) [8,p.173] and
the order of adj[R(z)] in z is one or greater, the minimum order on both
sides of (4-21) is n. This minimum order of n occurs when R(z) contains
only constant elements in which case the system has no transmission zeros
{8,p.189]. Thus, a minimal right MFD can result directly from a matrix
ARMA difference equatinn only in the special case where p = m and R(z) is
unimodular. Tor any particular plant in an adaptive control structure,
the system order n must also be known for an estimation procedure to
eventually converge to a minimal right MFD for the plant, However, if

p # m then a right MFD can never result from a matrix ARMA difference
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equation. Contrast this to the existence of the left MFD based on a

xists, although it will be

matrix ARMA. A left MFD, so derived, always

ainimal only 1f the ordexrs n'nnd‘q are known for the plant. Therefore,
how the estimates of the plant parameters embodied in the left MFD are
used in feedback control, as well as the role minimality plays in the
control effort calculation will now be discussed.

Using the frequency domain representation of a Luenberger observer
[8,p.238] provides full plant "state" information for feedback to provide
arbitrary pole placement., This "transfer function compensation" scheme
has the structure found in Fig. 4.4. If K(z) and H(z) can be found
to satisfy the well~known Bezout Identity [21]

K(z)Q(2) + H(z)R(z) = T (4-22)
then the partial state v can be recreated by messurements of the plant
inputs u and outputs y, 1i.e.

K(z)Q(z)v + H(z)R(z2)v = v (4-23)

The new plant input is then

noe o= F(ziv (4-24)
and since

u = Qfz)v (4=25)

v o= [Q(z) + F(2)]v (4~26)
and with

y = R(z)v (4-27)

y = R(2)1Q(2) + F(2)]17'x (4-28)

in which F(z) 1is chosen such that
Q{xz) + ¥F(z) = Pd(z) (4-29)
where Pﬂ(z) 1s the desired closed-loop denominator matrix. At each ltera-

tion of an adaptive control algorithm F(z) could be found, based on the
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current estimate of the plant matrix Q(z), to satisfy (4~29). Note
however, that Q(z) is the denominator matrix of a rvight MFD, and the
estimation of the plant parameters produces a left MFD. Moreover, the
right MFD factors Q(z) and R(z) must be relatively right prime for (4-22)
to be guaranteed a solution for K(z) and H(z) [21]). A required step, then,
will be to find a minimal right MFD from a (not necessarily minimal) left
MFD at each iteration. That this can always be done (but is computation-
ally invoived) will now he shown.

Following the procedure in [8][21] for obtaining a greatest common
left divisor (g.c.1.d.) for the left MFp P (2)L(z), find a unimodular
left multiplier U(z) for the pair P(z) and L(z) to reduce the construction
to lower left triangular form

(P(z),L(z) Ju(z) = [M(2),0]. (4=30)
The g.c.l.d, M(2z) is lower triangular and has the same rank as that of
[P(z),L(2)]. 1f [P(z),L(z)) has Full row rank m for all z, them M(z) has
rank m for all z, and is therefore unimodular. In this case, since a
g.¢.l.d. of the pair is unimodular, that pair is relatively left prime.

If the palr [P(2),L(2)] has rank m for almost, but not all 2z, then M(z)
will have similar rank, and M(z) will be invertible. In this case the
pair is not r.l.p. but can be made so by eliminating the common nom=-
unimodular factor M(z). Multiplying both sides by M'i(z) yields

M7 (2) [PL2) L) 0C2) = (1, 0] (4=31)
or equivalently (Im is an mxm identity matrix)

[Pr(z),L*(z) Ju(z) = [Im’~Q] (4-32)

where P*(z) and L*(z) are r.l.p. factors of a left MFD fnr T(z). Now a

r.r.p. MFD for T(z) can be obtained by partitioning U(z) as

i b o i
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Ki(z) R(z)
(Pr(z),L*(2)] = (1, 0], (4-33)
nx(z) -Q(z)

[ o

U(z)

Since U(z) 15 unimodular, R(z) and Q(z) are r.r.p. [22] and

P*(z)R(z) - L*(z)Q(z) = 0 (4-34)
giving
R(z)Q“l(z) w px L) LA(z) = T(2) (4=35)

making R(z)Q“l(z) a minimal right MFD for T(z). Now since K*(z) and H*(z)
are also r.r.p., there exist a K(z) and H(z) that satisfy

HCz)K*(2) + K(z)Hk(z) = L, (4-36)

and if K{(z) and H(z) are r.l.p. then
H(z)R(z} = K(2)Q(z) = 0 (4=137)

resulting in the constructlon [21]

P*(z) L*(z) K*(z) R(z) I, O
: (4-38)
H(z)  K(z) | | H%(z) =-Q(z) 0 1,
T

where U(z) 1is unimodular, and therefore invertible, so the solution for H(z)

and K(z) can be given by

[H(z),K(z)] = [2 g U"J‘(z) . (4-=39)
LUN

This H(z) and K(z) are a set of polynomial matrices that satisfy equation
(4-22) for the re-creation of the partial state v. It should be pointed
out that the above procedure for finding these matrices, while always
possible, is almost never a trivial matter. The key difficulty is in

finding the unimodular matrix U(z), which must be done at every iteration




et e

B

;
&
&
¢
?
:
E
:
)

R il AR

kA

AT
—
[ .

N e

of the adaptive algorithm on each new estimate of the P(z) and L(z)
matrices.

After the required H(z) and K(z) matrices have been found, a problem
still exists in the implementation of the fesdback control: H(z), K(z),
and F(z) are polynomial matrices so that feedback paths are non-proper,
hence the syst;m is not realizable in real time applications. To over-

come this difficulty, introduce a stable, invertible matrix X(z) into

(4=-22) along with the feedback F¥(z)
X(2)F(2)K(z)Q(z) + X(2)F(z)H(2)R(z) = X(z)F(z). (4-40)

For any X(z) and F(z), the above calculated H{z) and K(z) are solutions
to (4-40), and since the r.l.p. pair P*(z) and L*(2) form a left prime

basis [22) for Q(z) and R{z), the peneral solution fur (4~40) is

[ X()F(z)K(z), X(2)F(2)G(z) ]
= X(z)F(z) [K(2),H(2)] + W(z)[P*(z),L*(z)] (4-41)

where W(z) 1is any polynomial matrix. In this solution, X(z)F(z)[K(z),H(z))
is the particular solution and W(z)[P*(z),L*(z)] is the homogeneous

solution. Now choose W(z) such that the general solution

{ X(z)F(z)K(z), X(z)F(z)H(z) ] has row degree less than X(z) so that

)((z)"1 X(z)F(2)K(z) and )((z)'1 X(z)F(z)H(z) are proper matrix fractions.
The system now takes the form shown in Fig. 4-5. The selection of

W(z) depends on the particular choice of X(z} and the F(z),L(z) and

P(z) at each iteration of the adaptive algorithm and is not a trivial

problem. For example, the procedure in [8] requires the inversion

of an "eliminant matrix" to solve for the X(z)F(z)K(z) and

X(z)F(z)H(z) (in thelr notation K(s) and H(s#) respectively, which is

N T T
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lations involved in any solutlon technique are complicated by the poly-

nomial form of the matrix elements, particularly if a machine-calculated

solution is desired.
\‘ ! ! Minimality of the system MFD is important in two respects. The first

{ is that the estimation procedure, used to provide the coefficients of the

typically a 10x10 matxrix for p=m=3, Note also that the matrix manipu=-

r , initial left MFD, may require that a minimal structure be known a priori

for the plant estimation to converge to some meaningful characterization 3
of the plant [7]. ‘This required a priorl information Includes knowledge

i of the degrae n of the plant and effectlve forcknowledge of the control-

5 | lability or observability indices [8], as well as other structural ;

informarion [23]~[25], such as the relative system degree n-q which is

A - related to high frequency behavlor, The sccond reason for minimality

P occurs in the solution for the feedback dynamics based on some estimated

plant MFD. Here, the general solution does not require the initial left

MFD estimate to be minimal, since the required minimal right MPFD i{s found *

in the course of the solution regardless of the minimality of the left MFD.
However, the solution process 1s simplified I a minimal left MFD is
availablie.
The key problems with this [requency domain approach are;
(1) Depending on the particular plant parametcr estimation schemes
and control effort calcucation techniques used, minimal system

descriptions may be requived, (This Is analogous to the result

F T
w———

obtained in the discussion of time domain indirect adaptive control.)

(11) The necessary calculations (left to right MFD conversion and

compensator parameter calculation) are excessive for performance

‘ at each step in a real-time adaptive algowithm.
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The next section will discuss direct adaptive control, which does ;
. § not require explicit identification of the plant parameters, as a possible f
“ alternative to this scheme and its associated problems, i
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5. Diract Adaptive Multivaviable Pole Placement

Consider the multi~input, multi-output plant described by the partial
state description

A Hz ) = uik) (5-1)

8@ Hz(k) = (i), | (5-2)

1 is

where the nxn polynomial matrix A(q“l) in the time delay operator q
invertinle such that (5-1) and (5-2) results in the right matrix fraction

description (MFD) [21,chpt.6]

y(k) = B~ HA g Huw), (5-3)
where y and u are appropriately dimensioned output and input vectors.
Kote that a left MFD results fron, a matrix ARMA model as shown in [7] and
discussed in the preceding section. It turns out that left MFDs are best
suited for parameter estimation and state observation but right MFDs are
assumed for feedback control design. As shown in [8] and {9], in order
to achieve pole placement via the control law

et Hut) = vy + p@™hHy o, (5-4)
where € and D are appropriately dimensioned polynomial matrices, C and

D must be chosen to satisfy

P = ca™Ha@™ - v HeE™, (5-5)
where F(q‘l) is the desired denominator polynomial matrix. This 1s sub-
stantiated by substituting (5-1) and (5-2) into (5-4) for

el Ha Hzk) = vy + dla™BqH 2k (5-6)
or

(et Hae™ - p@™HBE™HIzM = r). (D)
Using (5—5) in (5-7) and assuming F is invertible yields

2(0) = 7 g Hr). (5-8)

P
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Use of (5-2) in (5-8) results in the right MFD

y(k) = B HF g e, (5-9)
which in comparison with (5-3) shows that the poles of (5-3) have been
shifted but that the transmission zeros of (3-3) are unchanged if (5-3)
and (5-9) are minimal. A critical question is the a priori structuial
information required to structure C and D and F such that a solution
exists to (5-5).

Following the scalar discrete-time strategy [11] (based on the con~
tinuous~time strategy in [10]) for adaptively parameterizing (5-4) without
a priorl specification of A and B in (5-3), a discrete-time multivariable,

adaptive pole placer will he proposed. Use (5~5) to operate on z yielding

Fa Yz k) = cg™Ha™) - niaHe™Hz k) (5-10)
If (5-3) is minimal, according to the Bezout identity [21,p.379) G(q‘l)
and H(q*lj exist such that

6™ Ha™ + wiaHsEh = 1. (5-11)

Inserting (5-11) into (5-10) yields

r”he@™Ha@ hzm + r @ s Ham
= ¢t hHatg ™z - pia"hHe ™z k). (5-12)
Using (5-1) and (5-2) in (5-12) ylelds
P e Hutk) + Fa by
= c(q”Hu) - gy (5-13)
Assuning that F and G (and H) are interchangeable ylelds
e i@ Hum) + n@H e Hy )
- caHuw) + p@Hiyw) = o. (5-14)
As in [10] and [11], estimating G, H, C, and D results in
e(k) = &q™H, 0 (F@ ™ Hu® ) + fita™L 0 (F@™Hy )
- B L L® ) + D@y k)

!
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= 8™ u) - Bk {y (o)

- 8L r@ et - iw e hy ), (5-15)
where, e.g., G = G - G. The error vector e in (5-15) 1s recognizable as an
equation error formulation [13],[26], which suggests a recursive solution
of the form

8(k+1l) = 0(k) + P(k)X(k)e(k) (5-16)
where
0k) = (8™t Ba™h K Gt i),

and ey

u(k)
X(k) = | y(k) (5-18)
F(q-l)u(k)
Py (k)

and P is a suitable chosen step-size matrix., Note that this recursion
could be performed line by line with ecach of the entries {n the equation
error vector e, which permits parallel processing thereby reducing the
computation time per iteration, The number of terms in each of these
parallel problems increases linearly with the degree of the system in (5-3)
thereby requiring an increase in the order of the entries in (5-5).

As noted in [10] and [11] the stability problem even for the scalar
case is unresolved. If the G and H of (5-11) are known exactly and not
updated in (5-16) then, at least in the scalar case [10][11], stability
can be assured by the technical device of [27] due the stably invertible
transfer function from u (and y) to e. Comparing (5-5) and (5-11) reveals
that foreknowledge of ¢ and H is cquivalent to foreknowledge of the solutlon’
to the decoupling, inverse control problem, which need not be internally
stable. (learly knowledge of this solution corresponds to knowledge of the

plant parameters. However this encourages the expectation of local

;
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stability if the G and H are approximately correct initially. In order to
retain the similarity of growth rates of the input or output and the
equation error, [10]) suggests bounds on the G and H. How this is to be
achieved with limited a priori plant information is uncertain; though

a priori ranges for A and B may translate into acceptable G and H.
Possibly as uncertainty in A and B increases the acceptable range for G and
H narrows to the solution of (5-11).

Peculiar to the multivariable case is the structural information
required for C and D to provide a solution to (5-5), especially 1if F is
selected in order to form (5-14) from (5-13). In the scalar case, this
structural information is limited to plant order and bulk delay (or
relative degree). The extra complications in the multivariable case,
just for inverse or model-following contrel, require foreknowledg: of the
Interactor matrix [23]([24] or the Hermite form [25]. For this pole place-
ment case, structural constraints may be different.

The one possibility of this direct adaptive implementation of pole
placement, versus indirect schemes, is the seeming possibility of order
overspeciflcation in the scalar case [L1}. This is not possible in the
indirect case due to the uncontrollable pole-zero cancellation required in
the identified model for zero identification error. This uncontrollability
would result in a request for infinlte controller gains leading to adaptive
controller instability or requiring further logic for avoldance of this
difficulty. As described in [11] e in the overspecified scalar version
of (5-15) can be zero with the disappearance of some poles in the overall
transfer function. This cancellation is stable Jdae to the stability of F
and therefore does not destabilize the adaptive controller. This possibi-

lity of overspecification in the scalar case raises the hope of overspecified
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6. Appendix: Separated Variable Modeling

Backgtound

A plausahility argument will be made for the discrete state space
representation of a distributed parameter system as an approximation to
the partial differential equation (P.D.E.) representation, subject to a
limited number of sensor and actuator point locations on the system, The
argument rests heavily on the validity of the separated variable solution
technique for the P.D.E.. A solution -mpored of a factor dependent only
on time and a factor dependent only on the spatial variables can be
obtained, provided that the system possesses at least cylindrical symmetry
about the t-axis in the space spanned by the spatial coordinates and the
t-coordinate. Only the class of systems for which this is the case will
be considered here, Also, the system is assumed linear,

P.D.E. Representation and Solution

A linear D order P.D.E, in RK can be represented in general by the

equation
P3d 0
a (x,t) —5— [ulx,t)] = £(x,0). -
1=0 =0 k=1 113k axiaed (6-1)

I+J=N

In this equation u(x,t) 1s a vector of the out-of-equilibrium deflections of
the system in the spatial coordinaves indexed by k. u is a function of the
spatial position vector x and time. f(x,t) is a vector forcing function,
also a function of the position vector x and time. The ui,j,k(ﬁ’t) terms
are the coefficients of the various partial derivatives of u., The solution
of this equation for u(x,t) is required to satisfy the P.D.E. and be
uniquely determined by the boundary and initial conditions on some domain

Q sn x and t throughout which the P.D.E. representation is valid.
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If the assumed separated variable solution
ulx,t) = X(x)T(t) (6-2)

is substituted into the P.D.E., an integrating factor can be found such
that the equation can be arranged having sums of terms, each dependent only
on x or on t. Those terms that depend on x alone sum to a constant that is
the negative of the sum of the t-dependent terms, This separation constant
then appears in the separate solutlons for X(x) and T(t), and will be seen
to play an important role in the connection between the spatial and temporal
system solutions. Since the P.D.E., equation 1s linear, the solution can be
expressed as the sum of a part due to the natural response to initial con-
ditions (homogeneous solution) and a part due to the system forcing function
(particular solution). The homogencous snlution‘gn(ﬁ,t) will be considered
first.

The separate homogeneous equations for X(x) and T(t) take the general

forms

ad
F RO R [T(£)] = 0 (6-3)
ai
X Z V1,8 5 [X@] =0 (6-4)
i=0 k=1 xk

where the separation constant ¢ is buried in the 31 and Yik coefficients.,
gy »

J is the order of the O.D.E., in time, and I is the order of the P.D.E. in

space. Under certain conditions, the solutions to the above equations

can be given by linear combinations of orthogonal eigenfunctiouns

P(t) § § (x)

b s g i
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[ ]
| T(e) = § A v (t) (6-5)
| ! n=1
!
3 [ ]
X = e (6-6)
» n=1
\ ; where the constants An depend on the initial conditions, and the constants

i“ are determined by boundary conditions. The eigenfunctions (modes) are
indexed by n which,t!along with the separation constant o, determines

the frequency of the eigenfunctions. Thus the temporal mode frequencies

w . and spatial mode frequencies W are related by o.

nt
The total solution is then

e e e gt

Yy (xet) = X(x)T(E) = ngla‘,w,,ct:m by (%) (6-7)

For any particular system represented on the region 2 by the above solution,

the factors I“,w“ and gﬂ are dependent on the physical nature of the system,

O S PSS

and the constants An depend on the initial conditions of the system. If the
former factors are known, and the An can be sensed or estimated on some
manner, then the entire status or state of the system is completely known

in that the output at any time and position can be predicted.

In practice, the state of the system must be sensed by some finite

T TR Y T

collection of sensors, each of which has a limited area of interaction with

the system and has a limited frequency response. Therefore, some spatial

[ror——

as well as temporal modes will not be sensed. The deflections, velocities,

etc,, must then be considered as approximations to the true ones at the

sensor locations. Represent the approximate deflections as made available

by physical sensors as a finite sum of the eigenfunctions, known constants,

and constants to be estimated:
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Uyxet) = nzlAnwn(c)gﬁg“(x) (6-8)

where the lowest frequency (spatial and temporal) moder are not necessarily
the ones sensed, and therefore the index n no longer refers to con-
secutive mode frequencies. By sensing the u at various points on the
structure, it is desired that the unknown coefficients in the sum be
estimated so that the system deflection at any time and at any point in
space can be predicted. The next section discusses the estimation problem

for the case of a single point sensor.

State Estimation - Single Sensor

If the sensor i{s located at some point X, on the system, the sensed

deflection at that point is represented by

L
upx,t) = ] A g (x )OI v (t) (6-9)

n=1 0~

constants'“eigeﬁfunctions
This equation is a linear combination of I solutions of the Jth order 0.D.E.
in time. Each solution to the Jth order 0.D.E. can be represented by a
linear combination of solutions of a coupled system of J first order 0.D.E.s.
These J solutions are represented by J state variables. The total repre-
sentation forqg is then a linear combination of L sets of J state
variables. Therefore the output u can be considered a linear combination
of I°J state variables. This can be represented by the following vector-
métrix equation:

v(t) = Av(t) 5 w(t ) =

R T 0 (6-10)
l‘.l{(l(ob t) = ¢ v(t)

S e e e et e e
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where the v is a vector of the state variables, A is a parameter matrix

that contains the information about the natural response to initial con-

I ditions, and ¢ is a vector that determines how the state variables com-

bine to form the output u , Note that the u vector doez not represent

A

a vector of outputs but rather a single output on the system at a
location specified by a position vector, The initial conditions are

specified by the vector v, It is Important to notice that the expression

for u in terms of the eigenfunctions ¥,(t) in equation (6-9) has been

replaced by a similar sum of more elementary cigenfunctions in equation
! (6-10). These elementary functions are all solutions to a first order

differential equation in time and they all have the form

; ‘f"g(c) = '(‘C'!E"'\:p[rp(tmtu)1 ’ vi’p = “’j“‘) (6-11)

]

? ‘ where the zero superscript denotes an elementary eigenfunction, the index

p ranges from 1 to L-J, and the qp and rp are constants determined by the

phygical precperties of the system. The Q,is then given by:

) LeJ
Eﬂ(xo,t) ~ Zlcpvp(t) (6-12)
, - :

where the cp are the elements of the ¢ vector. If the physical properties

of the system are known by some estimation procedure on the sensor output QJ

y
?’

and the state variables are known at some time t = t through some state

observation procedure then the state at any time after t = cO can be found

from equation (6-11) and the sensed deflectlion at any time after t, can be

obtained from equation (6-12). It should be painted out here that some

vibration modes may not be represented in the sensed deflection of

i Aot s e
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equation (6-9) even though thelr spatial and temporal frequencies as well
as modal amplitudes are within the detectable region of the sensor. This
is duc to the possibility that the sensor may be located at a point where
the deflection of the body due to some modes is always too small to detect
no matter what the modes' amplitude at other points may be. 1In this case,
the sensor is located at a vibrational node of those particular spatial
modes. Such modes are then unobservable in the sensed deflection given by
equation (6-9). It is important then that the sensor (or sensors) be
located such that this observability problem does not affect those modes
of interest in the system,

The discussion so far has centered on the deflection of the system
due to initial conditions only (i.e. homogeneous respouse). The forced
(particular) response involves the additional consideration of external dis-
turbance forces and actuator forces applied for control purposes. These
forces can be included in the system model by realizing that external
forces add energy to each of the characteristic modes in space and time as
determined by the system's phvsical properties. With respect to the eigen-
function expansion description of the system, the forces on the body as
function of x and time contribute toward spatial modal forces as functions

of time as expressed by
m .
E(x,0) = )jlg,,(cm“ (x) (6-13)
n-

where f 1s the collective force on the body and ﬁ“(t) are the time varying
coefficients of the spatial mode shapes ¢n(§), Thus the force on the body
is represented by a sum of modal forces. TFor each mode, the deflection
resulting from a corresponding modal force depends on the physical nature

of the system such as modal mass, modal damping, modal stiffness, etc.
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Just as in the expression for the sensed system deflection given by
equation (6-9), all physical actuators are limited as to the spatial and
temporal frequencies they can excite, so the sum in equation (6-13) is not
infinite but limited to say Q excltable modes:
£(x,t) = §_A_n(t)gn(5) . (6-14)
n=1

The modal force amplitudes effoctively applied to the system are the Q
functions of time An(:). If these modal force amplitudes are introduced
into the 0.D.E. in time, equation (6~3), as a non-homogeneous term on the
right hand side, the result is a Jth order non-homogeneous differential
equation. If the equation 1s linear, each solution can be represented,
as before, by a linear combination of J first order non~homogeneous 0.D.E.
solutions, Using such a set of J equations and corresponding state
variables for each of the L solutions of equation (6-3) that can be sensed
by the gensor, a non-homogeneous state space model of dimension L°J is

obtained

(
(x_,t) = clv(t) (6-15)

where B is a matrix whose elements are spatial operators on iﬁx,t) with
respect to the elementary eigenfunctions instead of the original eigen-
functions as iIn equation (6-13). These elements depend on the locations
of the scnsors. The system now takes the form of a multi-input, single
output state space model. Now the system state depends on initial con-
ditions as well as the applied forces. Here, a similar problem exists

wvith the location of the actuators. Depending on the relative location

of the sensors and actuators, some modes may be excited that have nodes
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at the sensor locations, and are therefore unobservable. Also, some sensed

modes may be impossible to control if the actuators are located at those
moda's zeros, or nodes. The result in the latter case is uncontrollability
, of those system vibrations. Yor this discussion, it will be assumed that
there are no problems with observability and controllability in the system
model.

State Estimation - Multiple Sensors

If more than one sensor is used to detect the system state, an
equation similar to (6~9) can be written for each sensor, The constants
premultiplying the modes in the sum for cach svnsor will depend on the
locatlon occupied on the system by cach sensor, Since the same cligen-~
functions are comnon to all such sensor deflection representations, the
same set of state variables can be used to describe the system state at
any location, where a different linear combinatlion of the state variables

is used at each different location. The vector of sensor measurements is

given by

e —y

u(xy,t)

8(x,,t) | = Cu(t) (6-16)

_Ci(xxpt)

- —

+

where C is & matrix whose 2 rows.gl? reflect the particular linear com-

bination of states at each sensor position,

These particular state variables, being solutions to a modal system
representation, result in a block diagonal A matrix in equation (6-15).
Each block represents the solution for cach mode, which {s orthoonal to

any other mode, and hence each block is an independent dynamic system of

dimension .J.
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In more or less their order of importance and development, the
assumptions and results of this appendix are

® The P.D.E, representation is linear.

e This P,D.E, is separable into spuce and time components, Separate
space and time solutlons provide that the eigenfunction
form In space does not depend on time and the form in time does
not depend on the location in space where measurements are taken,

® The solutions of the separate homogencous space snd time equations
can bhe represented as infinite sums of orthogonal eigenfunctions.

® The frequencies of the space and time vigenfunctions are related
by the P,D.E., separation constant,

® The constants in the lincar combinations of these eigenfunctions
depend on boundary conditions (for the spatial equation) and on
initial conditions (for the temporal equation),

® The Infinite linear combinations of elgenfunctions must be eon-
sidered finite for any reallizable measurement or actuation due to
physical limitations.

® Sensor and actuator placement is very Important with respeet to con-
trollability and observability of system modes of vibration,

® A state space representation of the system for arbitrary combira-
tirng of actuators and sonsors can be theoretically found if the
0.D.E, in time is linear.

® The order of the state space description depends on the order of
the 0.D.E. in time and on the number of modes sensable by the sensor.

® System forces do not alter the eigenfunction forms, but do effect
the modal amplitudes,

® Knowledge of the states in the state variable representation is
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sufficient to characterize the state of the entire system
within the accuracy of the sensor measurements,
® A reducad order model results when the number of states selected

in the model are fewer than can specify sensor-measurable modes.
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II. Projections

output, truncated, linear models of flexible structures discussed in the

. efforts.,  Our current emphasis (s in veverse ovder to the order of thelr
presentation, f.e. we Intend to Investipate, In the following priority
(1) Dircct adaptive multivariable pole nlacement
(ii) Simultancous coupled multivarinble system ifdentification and
control via time or frequency domain approaches
(i11) $imultaneous eigenshape and dynamic modal parameter estimation
and decoupled modal control.

In order to interrelate these approaches a modeling study is planned to

develop algorithms for conversion irom one model form to another, i.e.

the decoupled modal, canonleal state, and matrix fract on descriptions
? of flexible structures for vairous sensor actuator locations. Unce a
promising adaptive cvontrol candidate emerges it will be investigated in
a reduced order settlug appropriate to DPS or flexible spacecraft

control [12}1.

i
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The last three approaches to adaptive contrel of multi-input, multi-

preceding section (in subsections 3=5) will form the basis of our ongoing
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