NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
(NASA-CR-164059) THE RELUCED ORDER MODEL
adartive ingntiricat on and chnibol ic inst.,

```
progress kegoL}49 P HC A03/MF AO1
```


Virginia Polytechnic Institute and State University

Electrical Engineering BLACKSBURG, VIRGINiA 24061 IN dis'tributed parameter systems adaptive IDENTIFICATION AND CONTROL

PROGRESS REPORT
 II

for NASA Grant NAG-I-7
by
C. Richard Joinnon, Jr. Principal Investigator
and
Dale A. Lawrence Graduate Research Asststant.

Department of Electrical Engineering Virginia Polytechnic Institute and State University . Technical Report No. EE-8121. Blackaburg, VA 24061

NASA Technical officer: Dr. R. C. Montgomery
Flight Dynamics and Control Divistion nasa Langley Research Center
Hampton, VA 23665

1. Recent Progress Summary

This progress report $u m m a r i z e s$ the recent and projected efforts in Investigating the reduced order model problem in distributed parameter systems adaptive identification and control under NASA Grant NAG-I-7 sponsorship, A lengthy simulation study [1] of the reduced order problem in ecalar adaptive control of lumped-parameter systems, projected in a previous interim report, has only recently been completed. A comprehensive examination (compiled over the past several months) of real-time centralized adaptive control options for flexible spacecraft is provided In the remainder of this section of this progress report. (The real-time objective, as used here, excludes the possibility of separating identification and control in time as suggested in [2].) This overview prompts the departure from the anticipated narrow focus on the NASA Langley beam control experiment and a shift to development of an original, general approach to this problem as projected in section II . Section TII 1ists the references cited in the first two sections. Sections IV and V provide a listing of recent presentations and publications of work sponsored by NASA Grant NAG-I-7. The final section is a cumulative 11st of sponsored papers, which have appeared in the open literature.

1. Introduction to Four Approaches to Adaptive Control of Flexible Spacecraft

The forr approaches to adaptive control of flexible spacecraft discuswed in the next four subsections are:
(1) Assume that sufficiently accurate eigenshapes are provided a priori and perform simultanecus adaptive modal identification and control as, e.g., in [3] and [4].0
(ii) Assume that eigenshapen can be accurately approximated by a finite dimensional, linear combination of preselected orthogonal spatial functions (as suggested in [2]) and simultaneously estimate the parameters forming the eigenshapes and the parameters in their dynamic amplitude behavior. Combine this identification with on-1ine solutich of the decoupled control problems as in [3] and [4].0
(iii) Treat the actuator/distributed parameter system (DPS)/sensor combination as a multi-input, multi-output (MIMO) system with finite (but large) "state" dimension. Adaptiveiy observe [5] [6] or identify [7] this MIMO system and solve the coupled MIMO control problem on-1ine using these paraneter (and state) estimates in a state feedback [8, sect. 6.3] [5] or transfer function configuration [8, sect. 7.3] [9].口
(iv) Select an adequately dimensioned feedback control structure for the MIMO actuator/DPS/sensor system and directly update the controller parameters to asymptotically achieve pole placement (as proposed in the scalar case in [10] and [11]). a

These four approaches (especially the last three, which remain open development issues) are discussed in sufficient detall to pinpoint their respective limitations requiring further study.

2. Simultaneous Modal Identification ard Control

In [3] and [4] a modal adaptive control strategy for distributed parameter systems is developed, which relies on a priori specification of the decoupling, spatial eigenbasis. As is commonly acknowledged, the most accurate modal model synthesis procedures yield eigenshape predictions with possibly high inaccuracy increasing with the spatial frequency of the eigenshapes. It is expected that in certain cases such a priori eigenshape errors in the strategy of [3] and [4] would lead to instability. The unanswered question is the problem dependent on: How inaccurate can these prespecified eigenshapes be before such unacceptable behnvio: results? this does not even consider the problems introduced by the reduced-order effects of modal expansion truncation as noted in [4] and [12]. The next three subsections are aimed at circumventing the requirement of exact eigenshape prespecification. The study of reduced order effects would follow as noted in Section II. See the appendix in subsection 6 for a brief summary of the separated variable technique of modeling distributed parameter systems used in [3] and [4].

3. Simultaneous Eigenshape and Modal Dynamics Estimation

Consider the distributed parameter system output described, as in [3] and [4], by the sum of products of modal eigenshape and decoupled amplitude dynamice

$$
\begin{equation*}
y\left(x_{q}, k\right)=\sum_{i=1}^{N} \phi_{i}\left(x_{q}\right) y_{i}(k) \tag{3-1}
\end{equation*}
$$

where $y\left(x_{q}, k\right)$ represents the output measured at the q th sensor location x_{q} at time $k, \phi_{1}\left(x_{q}\right)$ is the magnitude of the ith eigenshape at location x_{q}, and $y_{1}(k)$ is the amplitude of the ith mode at time k. Since the modal dynamics are uncoupled

$$
\begin{equation*}
y_{i}(k)=\sum_{\ell=1}^{n}\left[a_{i \ell} y_{1}(k-\ell)+b_{i \ell} u_{i}(k-\ell)\right] \tag{3-2}
\end{equation*}
$$

where the order of the dynamics n is typically 2 for the linearized small amplitude motion of flexible structures and $u_{i}(k-\ell)$ the ith modal input at time k-l

$$
\begin{equation*}
u_{i}(k)=\sum_{j=1}^{C} \phi_{i}\left(x_{j}\right) u\left(x_{j}, k\right), \tag{3-3}
\end{equation*}
$$

where $u\left(x_{j}, k\right)$ is the actual force applied through the actuator located at x_{j}. Assume, as suggested in [2], that the eigenshapes ϕ_{1} can be formed as a finite-dimensional, linear combination of prespectfied independent spatial functions $f_{s}(x)$ as

$$
\begin{equation*}
\phi_{i}(x)=\sum_{s=1}^{P} c_{i s} f_{s}(x) . \tag{3-4}
\end{equation*}
$$

The simultaneous eigenshape and modal dynamics estimation problem is, given the "structural" Indices of (3-1)-(3-4), 1.e, the prespecified basis
functions $f_{m}(x)$, the number of significant modes N, the order of the modal dynamics n, the number of actuatora C, and the number of sensors Q, to apply an actual input sequence at each actuator $\left\{u\left(x_{j}, k\right)\right\}$, measure the reaulting output at each sensor $\left\{y\left(x_{q}, k\right)\right\}$, and recursively estimate the eigenshape parameters $c_{i s}$ and the modal dynamic parameters $a_{i f}$ and $h_{i f}$ (1.e. $N(P+2 n)$ pazanetere) to minimize the prediction errors

$$
\begin{equation*}
e\left(x_{q}, k\right)=y\left(x_{q}, k\right)-\hat{y}\left(x_{q}, k\right) \tag{3-5}
\end{equation*}
$$

These predicted outputs can be formed from (3-4) with the parameters $c_{\text {is }}$ replaced by their current estimates $\hat{c}_{\text {is }}(k)$ in

$$
\begin{equation*}
\hat{\phi}_{1}(x, k)=\sum_{s=1}^{p} \hat{c}_{i s}(k) f_{s}(x) \tag{3-6}
\end{equation*}
$$

providing the estimated mode shapes $\hat{\phi}_{1}$ used in

$$
\begin{equation*}
\hat{u}_{i}(k)=\sum_{j=1}^{C} \hat{\phi}_{1}\left(x_{j}, k\right) u\left(x_{j}, k\right) \tag{3-7}
\end{equation*}
$$

to provide estimated modal inputs $\hat{u}_{1}(k)$ to

$$
\begin{equation*}
\hat{y}_{i}(k)=\sum_{\ell=1}^{n}\left[\hat{a}_{1 \ell}(k) \hat{y}_{1}(k-\ell)+\hat{b}_{i \ell}(k) \hat{u}_{i}(k-\ell)\right] \tag{3-8}
\end{equation*}
$$

to provide modal output estimates to

$$
\begin{equation*}
\hat{y}\left(x_{q}, k\right)=\sum_{i=1}^{N} \hat{\phi}_{1}\left(x_{q}, k\right) \hat{y}_{i}(k) \tag{3-9}
\end{equation*}
$$

The approach of [3] and [4], as noted in the preceding section, is to assume that the ϕ_{1} are known and from measurements of $y\left(x_{q}, k-\ell\right)$ to solve (3-1) for the $y_{1}(k-l)$ to be used in

$$
\begin{equation*}
\hat{y}_{1}(k)=\sum_{l=1}^{n}\left[\hat{a}_{1 \ell}(k) y_{1}(k-\ell)+\hat{b}_{i l}(k) u_{1}(k-l)\right] \tag{3-10}
\end{equation*}
$$

for comparison with each $y_{1}(k)$ from solution of (3-1) given $y\left(x_{q}, k\right)$. In order for (3-1) to be uniquely solvable the number of sensors Q must equal the number of moden N to solve

$$
\left[\begin{array}{c}
y\left(x_{1}, k\right) \tag{3-11}\\
y\left(x_{2}, k\right) \\
\vdots \\
y\left(x_{Q}, k\right)
\end{array}\right]=\left[\begin{array}{cccc}
\phi_{1}\left(x_{1}\right) & \phi_{2}\left(x_{1}\right) & \cdots & \phi_{N}\left(x_{1}\right) \\
\phi_{1}\left(x_{2}\right) & \phi_{2}\left(x_{2}\right) & \cdots & \phi_{N}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
\phi_{1}\left(x_{Q}\right) & \phi_{2}\left(x_{Q}\right) & \cdots & \phi_{N}\left(x_{Q}\right)
\end{array}\right]\left[\begin{array}{c}
y_{1}(k) \\
y_{2}(k) \\
\vdots \\
y_{N}(k)
\end{array}\right]
$$

by matrix inversion or its equivalent. The question is whether or not such a technique can (or should) be incorporated to alter (3-6)-(3-9) and avoid the propagation of \hat{y}_{1} in (3-8). One problem is the need for as many sensors as modes. If this is not feasible, it seams that the left-siue of (3-1,) could be augmented with further measurements $y\left(x_{q}, k+\ell\right)$. However, this would require inciusion of the plant dynamics on the right hand side resulting in essentially a multivariable modal observer configuration, which does not address the same problem as (3-11) but reverts to the full problem of (3-6)-(3-9). (See the next section for consideration of the multivariable adaptive observer problem, without the modal structure.) Assuming that $Q=N$ is feasible the problem remains of how to simultaneously provide a correction term to (3-6) if the $\hat{\phi}_{1}$ are used in (3-11). That is, since (3-11) with $\phi_{1}(\cdot)$ replaced by $\hat{\phi}_{i}(\cdot, k)$ could be used to provide the $\hat{y}_{1}(k-l)$ in (3-8), would $y-\hat{y}$ using (3-9) provide useful information regarding the error in the $\hat{c}_{1 s}$?

Since $Q=N$ is itself unattractive, consider the apprcach of (3-6)-(3-9). First, combine (3-2) and (3-3) to form

$$
\begin{equation*}
y_{i}(k)=\sum_{\ell=1}^{n}\left[a_{1 \ell} y_{i}(k-\ell)+b_{i \ell} \sum_{j=1}^{C} \phi_{1}\left(x_{j}\right) u\left(x_{j}, k-\ell\right)\right] . \tag{3-12}
\end{equation*}
$$

Substituting (3-12) into (3-1) yields

$$
\begin{equation*}
\left.y\left(x_{q}, k\right)=\sum_{1=1}^{N} \phi_{1}\left(x_{q}\right) l \sum_{l=1}^{n}\left[a_{i l} y_{i}(k-l)+b_{i l} \sum_{j=1}^{G} \phi_{i}\left(x_{j}\right) u\left(x_{j}, k-l\right)\right]\right\} \tag{3-13}
\end{equation*}
$$

Then using (3-4) in (3-13) ylelds

$$
\begin{align*}
y\left(x_{q}, k\right)= & \sum_{i=1}^{N}\left[\sum_{s=1}^{P} c_{1 s} f_{s}\left(x_{q}\right)\right]\left[\sum_{\ell=1}^{n} a_{i \ell} y_{i}(k-\ell)\right] \\
& +\sum_{i=1}^{N}\left[\sum_{s=1}^{P} c_{i s} f_{s}\left(x_{q}\right)\right]\left[\sum_{\ell=1}^{n} b_{i \ell} \sum_{j=1}^{C}\left\{\sum_{m=1}^{P} c_{i m} f_{m}\left(x_{j}\right)\right] u\left(x_{j}, k-\ell\right)\right] \tag{3-14}
\end{align*}
$$

or
$y\left(x_{q}, k\right)=\sum_{i=1}^{N} \sum_{s=1}^{p} \sum_{\ell=1}^{n} a_{i l} c_{1 s} f_{s}\left(x_{q}\right) y_{i}(k-p)$

$$
\begin{equation*}
+\sum_{i=1}^{N} \sum_{s=1}^{p} \sum_{\ell=1}^{n} \sum_{j=1}^{C} \sum_{m=1}^{p} c_{i s} c_{i m} b_{i, \ell} f_{s}\left(x_{q}\right) f_{m}\left(x_{j}\right) u\left(x_{j}, k-\ell\right) . \tag{3-15}
\end{equation*}
$$

Note that even if the measurement point x_{q} is constant over all k , since

$$
\begin{align*}
\sum_{i=1}^{N} \phi_{i}\left(x_{q}\right) \sum_{\ell=1}^{n} a_{1 \ell} y_{i}(k-\ell) & \neq \sum_{\ell=1}^{n} \sum_{i=1}^{N} a_{i \ell} \sum_{i=1}^{N} \phi_{i}\left(x_{q}\right) y_{1}(k-\ell) \\
& =\sum_{\ell=1}^{n} \sum_{i=1}^{N} a_{i \ell} y\left(x_{q}, k-\ell\right) \tag{3-16}
\end{align*}
$$

(3-15) is not directly transferable to a multi-input ($u\left(x_{j}, \cdot\right)$ over j), single-output $\left(y\left(x_{q}, \cdot\right)\right.$ for one q) ARMA process. This is due to spatial coupling, i.e. the output $y\left(x_{1}, \cdot\right)$ at sensor location x_{1} is dependent on the past outputs $y\left(x_{q}, *\right)$ over all q not just those for $q=1$. Therefore even
the problem of estimating the $N\left(P+p^{2}\right) n$ different parameter products in (3-15) (rather than the desired $N(p+2 n)$ parameters $\left.a_{i \ell}, b_{1 \ell}, c_{1 s}\right)$ cannot be phrased as an equation error parameter estimation [13] problem, because the y_{i} are not available. (Note $c_{i s}{ }^{\prime} c_{i m}$ for $s m m$). Due to the lack of a single-output ARMA form an output error formulation [7] [14] is also impossible. One temptation is to relate the form of (3-8) to that for output error estimation. The measurement of y and not y_{i} requires (3-9) for the prediction error and causes a combination of the y_{1} as in a parallel filter implementation, as noted in [15]. The difficulty of (3-6)-(3-9) In addition to this structural peculiarity noted in [15] is that the effective parameters in this y_{i} combiner are also now unknown, which leads to products of unknown parameters, as is apparent from (3-15). This product form will, be termed (as in [16]) a bilinear-in-the-parameters estimation problem, for which there is no known globally stable recursive solution.

Do not confuse the difficulty in establishing a multi-input, singleoutput ARMA model from (3-15) with an inability to do so in general. Clearly if a linear multi-input, multi-output ARMA form exists of the form

$$
\begin{equation*}
X(k)=\sum_{i=1}^{n}\left[A_{i} X(k-1)+B_{1} U(k-1)\right] \tag{3-17}
\end{equation*}
$$

then

$$
\begin{equation*}
X(z)=\left[z^{n} I-\sum_{i=1}^{n} A_{i} z^{n-1}\right]^{-1}\left[\sum_{i=1}^{n} B_{i} z^{n-i}\right] \cup(z) \tag{3-18}
\end{equation*}
$$

or

$$
\begin{equation*}
X\{z)\left\{\operatorname{det}\left(z^{n} I-\sum_{i=1}^{n} A_{1} z^{n-1}\right)\right\}=\left\{\operatorname{Adj}\left[z^{n} I-\sum_{i=1}^{n} A_{i} z^{n-1}\right\}\right\}\left[\sum_{i=1}^{n} B_{i} z^{n-1}\right] u(z) \tag{3-19}
\end{equation*}
$$

Taking the inverse $z-$-trannform yields

$$
\begin{equation*}
x(k)=\sum_{1=1}^{t} a_{1} x(k-1)+\sum_{i=1}^{t} \bar{z}_{1} v(k-i) \tag{3-20}
\end{equation*}
$$

where $t=(n) \cdot(d i m e n s i o n ~ o f ~ X)$. So, a degree change and loan of internal Information is required to une a model of the form of (3-20) if it is used in place of (3-17). That a coupled model, such as (3-17), exists will be the premise for the next two sections.

Returning to the computation of the prediction error $\ln (3-5)$ further emphasizes the bilinear-in-the-parametors form of the underlying parameter estimation problem. Using (3-13) and the similar form arising from (3-6)-(3-9), (3-5) becomes

$$
\begin{align*}
e\left(x_{q}, k\right)= & \sum_{i=1}^{N} \sum_{s=1}^{p}\left[c_{i s}-\hat{e}_{i s}(k)\right] f_{s}\left(x_{q}\right) y_{i}(k) \\
& +\sum_{1=1}^{N}\left[\sum_{s=1}^{p} \hat{c}_{1 s}(k) f_{s}\left(x_{q}\right)\right]\left[y_{1}(k)-\hat{y}_{1}(k)\right] . \tag{3-2.1}
\end{align*}
$$

Using (3-2) and (3-8) converts (3-21) to

$$
\begin{align*}
e\left(x_{q}, k\right)= & \sum_{i=1}^{N} \sum_{s=1}^{p}\left[c_{i s}-\hat{c}_{i s}(k)\right] f_{s}\left(x_{q}\right) y_{i}(k) \\
& +\sum_{i=1}^{N}\left[\sum_{s=1}^{p} \hat{c}_{i s}(k) f_{s}\left(x_{q}\right)\right]\left[\sum_{\ell=1}^{n}\left\{a_{i \ell}-\hat{a}_{i \ell}(k)\right\} \hat{y}_{i}(k-\ell)\right. \\
& \left.+\left[b_{i \ell}-\hat{b}_{i \ell}(k)\right] \hat{u}_{i}(k-\ell)\right] \\
& +\sum_{i=1}^{N}\left[\sum_{s=1}^{p} \hat{c}_{i s}(k) f_{s}\left(x_{q}\right)\right]\left[\sum_{i=1}^{n} a_{i \ell}\left\{y_{i}(k-l)-\hat{y}_{i}(k-\ell)\right\}\right. \\
& \left.+b_{i \ell}\left\{u_{i}(k-\ell)-\hat{u}_{i}(k-\ell)\right\}\right] \tag{3-22}
\end{align*}
$$

Then from (3-3), (3-4), (3-6), and (3-7), (3-22) becomes

$$
\begin{aligned}
& +\sum_{i=1}^{N} \sum_{\ell=1 .}^{n}\left[a_{i \ell}-\hat{a}_{1 \ell}(k)\right]\left[\sum_{s=1}^{p} \hat{c}_{i s}(k) f_{s}\left(x_{q}\right) \hat{y}_{i}(k-\ell)\right] \\
& +\sum_{i=1}^{N} \sum_{\ell=1}^{n}\left[b_{1 \ell}-\hat{b}_{1 \ell}(k)\right]\left[\sum_{s=1}^{p} \hat{c}_{1 s}(k) f_{s}\left(x_{q}\right) \hat{u}_{i}(k-\ell)\right] \\
& \left.+\sum_{1=1}^{N} \sum_{m=1}^{P}\left[c_{1 m}-\hat{c}_{1 m}(k)\right]\left[\sum_{i=1}^{n} \sum_{j=1}^{c} b_{i k} \sum_{s=1}^{P} c_{i s}(k) f_{s}\left(x_{q}\right)\right] f_{s}\left(x_{j}\right) u\left(x_{j}, k-k\right)\right]
\end{aligned}
$$

Due to (3-16) the last term in (3-23) is not a regression of e(x_{q}, ,) that could be moved to the left side of (3-23) as in an output error formulation [14]. Also $b_{i l}$ is unknown in the next to the last term (as in y_{1} in the first term) in (3-23) where it is needed to form the "input" to the $\tilde{c}_{i m}\left({ }^{\Delta} c_{i m}-\hat{c}_{i m}\right)$ segment of the weighted parameter error combination. This latter problem can be solved by approximating $b_{1 \ell}$ with $\hat{b}_{1 i \ell}$ (and y_{1} with \tilde{y}_{1}) as is done in [16] and [17] for a different bilinear-in-the-parameters estimation problem. Since $c_{i s}=c_{i m}$ for $s=m$ the two terms in \tilde{c} present a nontraditional problem.) This clearly limits any subsequent estimation scheme, based on this approximation, to local convergence. The structure of the last term in (3-23) is the more bothersome iesue. Assuming that $y_{i} \approx \hat{y}_{i}$ is an unacceptable method of Ignoring this last term. To assume that $a_{i \ell}$ is constant over 1 is also absurd (unless a breakdown similar
to (3-23) is achievable for the plant form in (3×20), which prasently seems possible only by losing the decoupled structure of (3-2)). Another improbable situation is that one set of constant prediction error smoothing coefficients would make each of the 1 forward dynamics in an output error identifier error system strictly positive real [18]. The form of (3-23) is enticingly close to a standard output error formulacion but the problem noted in (3-16) alleviated only by affective solution of (3-11) hinders further considerition of this distributed parameter system identification tachique.

The Justification for developing a aimultaneous efgenshape and amplitude dynamics estimator is apparent from [3], 14], and the preceding section, 1 .e. the recursive estimation of the $a_{i \ell}, b_{i \ell}, c_{i s}$, and $e_{i m}$ permits real-time solution of decoupled, scalar pole placement probloms. This contrasts with the large computational effort involved in solution of the pole placement problem for a coupled matrix ABMA description as would result from an arbitrary fixed choice for the "modal" shape "basis" c is. Coupling would result in (3-2), i.e. each modal output y_{i} would be dependent on past values of all modal outputs and modal inputs, not just its own as in (3-2). Note that "pulse" forms for the $c_{i s} f_{s}(x)$ products, for exanple, would result in a measured, input ($u\left(x_{j}, \cdot\right)$ - output ($y\left(x_{q}, \cdot\right)$) matrix ARMA description, thereby effectively bypassing the modal coordinate transformations. As this approach makes the centrol problem solution more involved, the parameter estimation problem becomes solvable. Such an approach is taken in the noxt two sectuns.

4. Simultaneous Multivariable Identification and Control

As an alternative to the modal decomposition representation for DPS, consider a coupled multi-input multi-output system description. In the time domain, this becomes a state space representation with multiple inputs and outputs and suitable state variables. The state space dimension will depend on the characteristic behavior of the system in the space and time dimensions and the modeling accuracy required. Since DPS require an infinite number of modes in their modal description, this corresponds to the need for an infinite dimensional state space for a correspondingly complete description. In practice, however, only a finite set of modes and therefore finite state space will be assumed for analysis. (See the appendix (sec. b) for a more detalled discussion of this modeling issue.) Even though a DPS is accurately modeled by a finite state space description, this dimension may be too large to manipulate in any reasonable real-time control application. The required additional reduction in aystem state dimension results in the reduced order concrol problem, and subsequent 111 effects caused by modeling inaccuracy spillover, etc. [12].

This discussion though, will be 1 imited to the use of simultaneous Identification and control (indirect adaptive control) on multivariable systems without considering these reduced-order modeling effects. The time domain approach of simultaneous parameter identification and state observation for use in state variable feedback, will be based on the parameterized scalar adaptive observer developed by G. Kreiselmeier [5][19]. The alternate approach to the indirect adaptive control problem will be based on the frequency domain representation of the multivariable system. This is commonly expressed by either a transfer function matrix or matrix fraction description relating plant inputs to plant outputs. Here, the

discussion will focua on the frequency domain veration of a luenberger observer and full state feedback to accomplish the desired closed loop control objective.
 4.1. Time Domain Approach

Multivariable extension of Kreisselmeier's adaptive observer [19] can be approached by first looking at the major steps in the development for single-input single-output systems. If the plant is known to be observable and of state dimension n, i.e.

$$
\begin{array}{lll}
\dot{x}=A x+b u & A: n \times n, & b: n \times 1, \quad x: n \times 1 \\
y=c^{T} x & c: n \times 1 & \tag{4-1}
\end{array}
$$

where (A, c) is observable, an n dimensional observer can be constructed to assymptotically estimate the plant states [20]

$$
\begin{equation*}
\dot{\dot{x}}=\mathrm{Fx}+\mathrm{g} \mathrm{y}+\mathrm{h} \mathrm{u} \quad \mathrm{~F}: \mathrm{n} \times n, \mathrm{~g}: \mathrm{n} \times 1, \mathrm{~h}: \mathrm{n} \times \mathrm{l} . \tag{4-2}
\end{equation*}
$$

For the state estimate error $\tilde{x}=x-\hat{x}$ to approach zero, it is required that

$$
\begin{equation*}
F=A-g c^{T} \quad \text { and } b=h \tag{4-3}
\end{equation*}
$$

where F has eigenvalues strictly in the left half complex plane. This observer has the structure in Fig. 4.1. The solution for the state estimator is

$$
\begin{equation*}
\hat{x}=e^{(A-g c) t} \hat{x}_{0}+\int_{0}^{t} e^{(A-g c)(t-\tau)}(g y+h u) d \tau \tag{4-4}
\end{equation*}
$$

However, if the parameters of the plant are unknown i.e. A, B, C are known only in dimension, then the observer parameters g and h must be estimated such tlat the state estimate \hat{x} does indeed converge to the plant state x. Kreisselmeier's estimation methods [19] rely on being able to separate the observer dynamics and the observer parameters g and h. For scalar input and output systems, this is easily accomplished by simply commuting terms in the integrand in (4-4)

Fig. 4.2 : Kreisselmeier's Scalar Parameterized Observer

Fig. 4.3 : Multivariable Parameterized Observer

$$
\begin{align*}
& \int_{0}^{t} e^{(A-g e)(t-r)}(g y+h u) d r \\
= & {\left[\int_{0}^{t} e^{(A-g c)(t-r)} y d r\right] g+\left[\int_{0}^{t} e^{(A-g c)(t-r)} u d \tau\right] h } \tag{4-5}
\end{align*}
$$

The system can now be represented by the structure in Pig. 4-2.
If this approach is now mor the multi-input multi-output case, the plant state description basels

$$
\begin{array}{lll}
\dot{x}=A x+b u & A: u \times n & B: n \times m, \quad u: m \times l, \quad x: n \times l \tag{4-6}\\
y=c x & C: p \times n, y: p x l
\end{array}
$$

where there are m inputs and p outputs. The system is still assumed observable. The observer is described by

$$
\begin{equation*}
\dot{\dot{x}}=F x+G y+H u \quad F: n \times n \quad G: n \times p, H: n x n \tag{4-7}
\end{equation*}
$$

with F having strictly left half plane elgenvalues and

$$
\begin{equation*}
F=A-G C, \quad B=H \tag{4-8}
\end{equation*}
$$

to cause assymptotic state observation. This system has the same structure as the sealar system shown in fig. 4-1, except that y and u are now vectors and g and h are now matrices. The solution for the state estimate \hat{x} (corresponding to (4-4)) is

$$
\begin{equation*}
\hat{x}=e^{(A-C C) t} \hat{x}_{0}+\int_{0}^{t} e^{(A-G C)(t-t)}(C y+H u) d t \tag{4-9}
\end{equation*}
$$

Notice that the outputs y and inputs u will not, in general, commute with G and H, respectively.

To separate the observer dynamics from the observer parameters contained in G and H, a unique solution to

$$
\begin{equation*}
G y=y^{*} G^{*} \quad \text { and } \quad H u=u^{*} H^{*} \tag{4-10}
\end{equation*}
$$

OR

$$
\begin{equation*}
e^{(A-G C) t} G=G * e^{(A-G C) *} t \tag{4-11}
\end{equation*}
$$

and $e^{(A-G C) t} H=H * e^{(A-G C) * t}$
must exist for some set of ($\cdot)^{*}$ quantilies. Notice that a unique solution
to equation (4-10) will not exist uniess G and y span equivalently dimensioned suhspaces, i.e. C and y are square, invertible matrices of the same dimension. The same is true for h and u. The only possibility is when y and u are scalars, which reduces the problem to the SISO case discussed earlier.

Equation (4-11) has similar restrictions. Here, however, if G and H are square, invertible, and of the same dimension as $e^{(A-C C) t}$, then unique solutions for G^{*} and H^{*} will exist. For convenience, let $e^{(A-G C) t}=\Phi(t)$, then

$$
\begin{array}{ll}
C^{*}=\Phi(t) C \phi^{-1}(t) & G: n \times n, \text { invertible } \\
H^{*}=\Phi(t) H \Phi^{-1}(t) & H: \text { nxn, invertible } \tag{4-12}
\end{array}
$$

The solution for the state estimate beromes

$$
\begin{equation*}
\hat{x}=\phi(t) \hat{x}_{0}+G * \int_{0}^{t} \phi(t)^{-1} y d \tau+H^{*} \int_{0}^{t} \phi(t)^{-1} u d \tau \tag{4-13}
\end{equation*}
$$

This system has the structure in Fig. 4.3, which is similar to Fig. 4. 2. The required restrictions for this result, however, are severe:
(i) The G^{*} and h^{*} estimates must be assymptotically invertible for $\hat{\mathbf{x}}$ to converge to \mathbf{x}.
(11) The number of inputs and outputs must be the same as the number of states.
(ili) The minimum number of states used to describe the system behavior must not be overestimated, or G^{*} and H^{*} will never be assymptotically invertible and the state observer may never converge to the true plant states. Also, a non-minimal state description implies that some states are either unobservable or uncontrollable or both. If an observed state is uncontrollable, the feedback law may require unbounded control inputs in an effort to effect such a state. This may drive the system out of the region of linear operation, and is clearly to be avoided.

The specialization of the plant model for flexible spacecraft may lessen the severity of the restriction in point (ii), since it may be poesible to add sensors and actuatorg to satisfy this point. Restrictions (i) and (iii) still remain, though, with their inherent numerical problems.

4.2. Frequency Domain Approach

Consider the plant having m tnputs, p outputs and a pxm proper transfer function matrix $T(z)$. Represent $T(z)$ in a left matrix fraction description (MFD), not necessarily minimal [8] (1.e. irreducible, relatively left prime [20])

$$
\begin{equation*}
I^{\prime}(z)=p^{-1}(z) L(z) \tag{4-14}
\end{equation*}
$$

where $P(z)$ and $L(z)$ are polynomial matrices. The elements of P and L are polynomials in z whose coefficients are unknown. The system output $y(z)$ and input $u(z)$ are then related by

$$
\begin{equation*}
y(z)=p^{-1}(z) L(z) u(z) \tag{4-15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{P}(z) \mathrm{y}(\mathrm{z})=\mathrm{L}(\mathrm{z}) \mathrm{u}(\mathrm{z}) \tag{4-16}
\end{equation*}
$$

Rewrite $P(z)$ and $L(z)$ as sums of products of constant coefficient matrices, p_{i} and L_{i}, and powers of z :

$$
\begin{equation*}
\left[\sum_{i=0}^{n} p_{1} z^{i}\right] y(z)=\left[\sum_{1=0}^{q} L_{1} z^{i}\right] u(z) \tag{4-17}
\end{equation*}
$$

where n is the largest power of z in $\mathrm{P}(\mathrm{z})$ and q is the largest power of z in $L(z)$, where $q \leq n$ due to the properness of $T(z)$. Now if $P(z)$ is row proper [8], P_{0} will be invertible and the natrix ARMA difference equation for $y(k)$ can be given by

$$
\begin{equation*}
y(k)=p_{0}^{-1}\left[-\sum_{i=1}^{n} p_{i} y(k-i)+\sum_{i=0}^{q} L_{i} u(k-n+q-i)\right] \tag{4-18}
\end{equation*}
$$

Based on this matrix ARMA, some estimation procedure, e.g. [7], can then
be used to estimate the ARMA coefficients, thereby providing the plant parameter estimates for the left MPD.

A curious quirk in multivariable systems not found in scalar systems is that an equivalent right matrix fraction description for $T(z)$

$$
\begin{equation*}
T(z)=R(z) Q^{-1}(z) \tag{4-19}
\end{equation*}
$$

does not lead, in general, to an ARMA difference equation for $y(k)$. Notice that the dual to equation (4-15)

$$
\begin{equation*}
y(z)=R(z) Q^{-1}(z) u(z) \tag{4-20}
\end{equation*}
$$

cannot be separated to a dual form of equation (4-16) since $R(2)$ is not square unless $p=m$ and even then not necessarily invertible. If such a special case holds, then a result similar to ($4-16$) is
$\operatorname{det}[Q(z)] \operatorname{adj}[R(z)] y(z)=\operatorname{det}[R(z)] \operatorname{adj}[Q(z)] u(z)$
If $Q(z)$ and $R(z)$ contalns only conmon unimodular [21] right factors ($Q(z)$ and $R(z)$ relatively right prime (r.r.p.) [8][21]) then the highest power of z on eacli side of ($4-21$) will be $\leq 2 n$. Here n is the order of the plant, being the pumber of shifts in a difference equation needed to describe the plant. Since an $n^{\text {th }}$ order system has the order of det $[Q(z)]$ equal to n $(Q(z), R(z)$ r.r.p.) or greater than $n(Q(z), R(z)$ not r.r.p. $)[8, p .173]$ and the order of adj $[R(z)]$ in z is one or greater, the minimum order on both sides of (4-21) is n. This minimum order of n occurs when $R(z)$ contains only constant elements in which case the system has no transmission zeros [8,p.189]. Thus, a minimal right MPD can result directly from a matrix ARMA difference equation only in the special case where $p m$ and $R(z)$ is unimodular. For any particular plant in an adaptive control structure, the system order n must also be known for an estimation procedure to eventually converge to a minimal right MFD for the plant. However, if $p \neq m$ then a right MFD can never result from a matrix ARMA difference
equation. Contrast this to the existence of the left NFD based on a matrix ARMA. A left MFD so derived, always oxists, although it will be minimal only if the orders n and q are known for the plant. Therefore, how the estimates of the plant parameters embodied in the left MFD are used in feedback control, as well as the role minimality plays in the control effort calculation will now be discussed.

Using the frequency domain representation of a Luenberger observer [8,p.238] provides full plant "state" information for feedback to provide arbitrary pole placement. This "transfer function compensation" schene has the structure found in Fig. 4.4. If $K(z)$ and $H(z)$ can be found to satisfy the well-known Bezout Identity [21]

$$
\begin{equation*}
K(z) Q(z)+H(z) R(z)=I \tag{4-22}
\end{equation*}
$$

then the partial state y can be recreated by meacurements of the plant inputs u and outputs y, i.e.

$$
\begin{equation*}
K(z) Q(z) v+H(z) R(z) v=v \tag{4-23}
\end{equation*}
$$

The new plant input is then

$$
\begin{equation*}
U=r-P(z) v \tag{4-24}
\end{equation*}
$$

and since

$$
\begin{align*}
& u=Q(z) v \tag{4-25}\\
& r=\{Q(z)+F(z)] v \tag{4-26}
\end{align*}
$$

and with

$$
\begin{align*}
& y=R(z) v \tag{4-27}\\
& y=R(z)[Q(z)+F(z)]^{-1} r \tag{4-28}
\end{align*}
$$

In which $F(z)$ is chosen such that

$$
\begin{equation*}
Q(z)+F(z)=P_{d}(z) \tag{4-29}
\end{equation*}
$$

where $p_{d}(z)$ Is the desired closed-loop denominator matrix. At each iteration of an adaptive control algorithmi $F(a)$ could be found, based on the

Fig. 4.4 : Frequency Domain Multivariable Pole Placement

Fig. 4.5 : Proper Frequency Domain Pole Placement Compensation
current estimate of the plant matrix $Q(2)$. to satisfy (4-29). Note however, that $Q(z)$ is the denominator natrix of a right MPD, and the estimation of the plant parameters procuces a left MFD. Noreover, the right MFD factors $Q(z)$ end $R(z)$ must be relatively right prime for (4-22) to be guaranteed a solution for $K(z)$ and $H(z)[21]$, A required step, chen, Will be to find a minimal right MFD from a (not necessarily minimal) left MFD at each iteration. That this can always be done (but is computationally invoived) will now be shown.

Following the procedure in [8][21]for obtaining a greatest common left divisor (g.c.1.d.) for the left MFD $\mathrm{P}^{-1}(z) \mathrm{L}(z)$, find a unimodular left multiplier $U(z)$ for the pair $P(z)$ and $L_{1}(g)$ to reduce the construction to lower left triangular form

$$
\begin{equation*}
[P(z), L(z)] \cup(z)=[M(z), \underline{0}] . \tag{4-30}
\end{equation*}
$$

The g.c.l.d. N(z) is lower triangular and has the same rank as that of $[P(z), L(z)]$, If $[P(z), L(z)]$ has Eull row rank m for all z, then $M(z)$ has rank m for all 2 , and is therefore unimodular. In this case, since a g.c.l.d. of the pair is unimodular, that pair is relatively left prime. If the pair $\{P(z), L(z)]$ has rank m for almost, but not all z, then $M(z)$ will have similar rank, and $M(z)$ will be invertible. In this case the pair is not r.1.p. but can be made so by eliminating the common nonunimodular factor $M(z)$. Multiplying both sides by $N^{-i}(z)$ ylelds

$$
\begin{equation*}
M^{-1}(z)\left[P(z), L_{1}(z)\right] U(z)=\left[I_{m}, \underline{Q}\right] \tag{4-31}
\end{equation*}
$$

or equivalently (I_{m} is an mim Identity matrix)

$$
\begin{equation*}
\left[P^{*}(z), L^{*}(z)\right] U(z)=\left[I_{m}, \underline{0}\right] \tag{4-32}
\end{equation*}
$$

where $\mathrm{p} *(z)$ and $L^{*}(z)$ are $x .1 . p$. factors of a left MFD for $T(z)$. Now a r. r, p. MFD for $T(z)$ can be obtained by partitioning $U(z)$ as

Since $U(x)$ is unimodular, $R(z)$ and $Q(z)$ are r.r.p. [22] and

$$
\begin{equation*}
P \star(z) R(z)-L^{\star}(z) Q(z)=0 \tag{4-34}
\end{equation*}
$$

giving

$$
\begin{equation*}
R(z) Q^{-1}(z)=p \star^{-1}(z) L \star(z)=T(z) \tag{4-35}
\end{equation*}
$$

making $K(z) Q^{-1}(z)$ a mininal. right MFD for $T(z)$. Now since $K *(z)$ and $H^{\star}(z)$ are also r, r.p., there exist $a(z)$ and $H(z)$ that gatisfy

$$
\begin{equation*}
H(z) K^{*}(z)+K(z) \| *(z)=I_{m} \tag{4-36}
\end{equation*}
$$

and if $K(z)$ and $H(z)$ are r.l.p. then

$$
\begin{equation*}
H(z) R(z)-K(z) Q(z)=0 \tag{4-37}
\end{equation*}
$$

resulting in the construction [21]

$$
\left[\begin{array}{ll}
\mathrm{P} *(z) & \mathrm{L} *(z) \tag{4-38}\\
H(z) & K(z)
\end{array}\right] \underbrace{\left[\begin{array}{ll}
K *(z) & R(z) \\
H *(z) & -Q(z)
\end{array}\right]}_{U(z)}\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{m}} & 0 \\
0 & I_{\mathrm{p}}
\end{array}\right]
$$

where $U(z)$ is unimodular, and therefore invertible, so the solution for $H(z)$ and $K(z)$ can be given by

$$
[H(z), K(z)]=\left[\begin{array}{ll}
\frac{0}{0} & \frac{2}{\underline{0}} \tag{4-39}\\
\underline{I_{p}}
\end{array}\right] U^{-1}(z) .
$$

This $H(z)$ and $K(z)$ are a set of polynomial matrices that satisfy equation (4-22) for the re-creation of the partial state v. It should be pointed out that the above procedure for finding these matrices, while always possible, is almost never a trivial matter. The key difficulty is in finding the unimodular matrix $U(z)$, which must be done at every iteration
of the adaptive algorithm on each now estimate of the $P(z)$ and $L(z)$ matrices.

After the required $H(z)$ and $K(z)$ matrices have been found, a problem stil1 exists in the implementation of the feedback control: $H(z), K(z)$, and $F(z)$ are polynomial matrices so that feedback paths are non-proper, hence the system is not realizable in real time applications. To overcome this difficulty, introduce a stable, invertible matrix $X(z)$ into (4-22) along with the feedback $P(z)$

$$
\begin{equation*}
X(z) F(z) K(z) Q(z)+X(z) F(z) H(z) R(z)=X(z) F(z) \tag{4-40}
\end{equation*}
$$

For any $X(z)$ and $F(z)$, the above calculated $H(z)$ and $K(z)$ are solutions to (4-40), and since the r.1.p. pair $\mathrm{p}^{*}(4)$ and $\mathrm{L}^{*}(\mathrm{z})$ form a left prime basis (22) for $Q(z)$ and $R(z)$, the reneral solution fur ($4-40$) is

$$
\begin{align*}
& {[X(z) F(z) K(z), \overline{X(z) F(z) G(z)}]} \\
& =X(z) F(z)[K(z), H(z)]+W(z)[p *(z), L *(z)] \tag{4-41}
\end{align*}
$$

where $W(z)$ is any polynomial matrix. In this solution, $X(z) F(z)[K(z), H(z)]$ is the particular solution and $W(z)[P *(z), L *(z)]$ is the homogeneous solution. Now choose $W(z)$ such that the general solution $\left.\overline{X(z) F(z) K(z)} \overline{X(z) F^{\prime}(z) H(z)}\right]$ has row degree 1 ess than $X(z)$ so that $X(z)^{-1} \overline{X(z) F(z) K(z)}$ and $X(z)^{-1} \overline{X(z) F(z) H(z)}$ are proper matrix fractions. The system now takes the form shown in Fig. 4-5. The selection of $W(z)$ depends on the particular choice of $X(z)$ and the $F(z), L(z)$ and $P(z)$ at each iteration of the adaptive algorithm and is not a trivial problem. For example, the procedure in [8] requires the inversion of an "eliminant matrix" to solve for the $\overline{X(z) F(z) K(z)}$ and $\overline{X(z) F(z) H(z)}$ (in their notation $K(s)$ and $H(s)$ respectively, which is
typically a $10 x 10$ matrix for $p m=3$. Note also that the matrix manipulations involved in any solution techinique are complicated by the polynomial form of the matrix elements, particularly if a machine-calculated solution is desired.

Minimality of the system MrD is important in two raspasts. The first is that the estimation procedure, used to provide the coefficients of the initial left MFD, may require that a minimal structure be known a priori for the plant estimation to converge to some meaningful charactarization of the plant [7]. This required a priorl information includes knowledge of the degree n of the plant and offective foreknowledge of the controllability or observability indices [8], as well as other structural Informarion [23]-[25], such as the relative system degree n-q which is related to high frequency behnvior. The socond renson for minimality occurs in the solution for the feedback dynamics based on some estimated plant MFD. Here, the general solution does not require the indtal left MFD estinate to be minimal, since the required mintmal right MFD is found in the course of the solution regardless of the minimality of the left MFD. However, the solution process is simplified If a minimal left mFD is availabie.

The key problems with this frequency domain approach are:
(i) Depending on the particular plant parameter estimation schemes and control effort calcuiation techntques used, minimal system descriptions may be required. (This is analogous to the result obtained in the discussion of time dumain indirect adaptive control.)
(id) The necessary calculations (left to right MFD conversion and compensator parameter calculation) are excessive for performance at each step in a real-time adaptive algorithm.

The next section will discuss direct adaptive control, which does not require explicit identification of the plant parameters, as a possible alternative to this scheme and its associated problems.

5. Diract Adaptive Multivariable Pole Placement

Consider the multi-input, multi-output plant described by the partial state description

$$
\begin{align*}
& \Lambda\left(q^{-1}\right) z(k)=u(k) \tag{5-1}\\
& B\left(q^{-1}\right) z(k)=y(k), \tag{5-2}
\end{align*}
$$

where the $n \times n$ polynomial matrix $A\left(q^{-1}\right)$ in the time delay operator q^{-1} is invertiole such that (5-1) and (5-2) results in the right matrix fraction description (MFD) [21, chpt.6]

$$
\begin{equation*}
y(k)=B\left(q^{-1}\right) A^{-1}\left(q^{-1}\right) u(k), \tag{5-3}
\end{equation*}
$$

where y and u are appropriately dimensioned output and input vectors. kote that a left MFD results fron a matrix ARMA model as shown in [7] and discussed in the preceding section. It turns out that left MFDs are best suited for parameter estimation and state observation but right MFDs are assuned for feedback control design. As shown in [8] and [9], in order to achieve pole placement via the control law

$$
\begin{equation*}
c\left(q^{-1}\right) \mathbf{u}(k)=r(k)+b\left(q^{-1}\right) y(k) \tag{5-4}
\end{equation*}
$$

where C and D are appropriately dimensioned polynomial matrices, C and D must be chosen to satisfy

$$
\begin{equation*}
F\left(q^{-1}\right)=C\left(q^{-1}\right) A\left(q^{-1}\right)-D\left(q^{-1}\right) B\left(q^{-1}\right), \tag{5-5}
\end{equation*}
$$

where $F\left(q^{-1}\right)$ is the desired denominator polynomial matrix. This is substantiated by substituting (5-1) and (5-2) into (5-4) for

$$
\begin{equation*}
C\left(q^{-1}\right) A\left(q^{-1}\right) z(k)=r(k)+D\left(q^{-1}\right) B\left(q^{-1}\right) z(k) \tag{5-6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[C\left(q^{-1}\right) A\left(q^{-1}\right)-D\left(q^{-1}\right) B\left(q^{-1}\right)\right] z(k)=r(k) \tag{5-7}
\end{equation*}
$$

Using (5-5) in (5-7) and assuming F is invertible yitelds

$$
\begin{equation*}
z(k)=F^{-1}\left(q^{-1}\right) r(k) \tag{5-8}
\end{equation*}
$$

Use of (5-2) in (5-8) results in the right NFD

$$
\begin{equation*}
y(k)=B\left(q^{-1}\right) F^{-1}\left(q^{-1}\right) r(k), \tag{5-9}
\end{equation*}
$$

which in comparison with (5-3) shows that the poles of (5-3) have been shifted but that the transmission zeros of (5-3) are unchanged if (5-3) and (5-9) are ininimal. A critical question is the a priori structulal information required to structure C and D and F such that a solution exists to (5-5).

Following the scalar discrete-time strategy [11] (based on the con-tinuous-time strategy in [10]) for adaptively parameteriaing (5-4) without a priorl specification of A and B in (5-3), a discrete-time multivariable, adaptive pole placer will he proposed. Use (5-5) to operate on z yielding

$$
\begin{equation*}
F\left(q^{-1}\right) z_{i}(k)=C\left(q^{-1}\right) A\left(q^{-1}\right)-D\left(q^{-1}\right) B\left(q^{-1}\right) z(k) \tag{5-10}
\end{equation*}
$$

If (5-3) is minimal, according to the Bezout identity [21,p.379] $\quad \mathbf{G}\left(q^{-1}\right)$ and $\mathrm{H}\left(\mathrm{q}^{-1}\right)$ exist such that

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{q}^{-1}\right) \mathrm{A}\left(\mathrm{q}^{-1}\right)+\mathrm{H}\left(\mathrm{q}^{-1}\right) \mathrm{B}\left(\mathrm{q}^{-1}\right)=\mathrm{I} \tag{5-11}
\end{equation*}
$$

Tnserting (5-11) into (5-10) yields

$$
\begin{gather*}
F\left(q^{-1}\right) G\left(q^{-1}\right) A\left(q^{-1}\right) z(k)+F\left(q^{-1}\right) M\left(q^{-1}\right) B\left(q^{-1}\right) z(k) \\
=G\left(q^{-1}\right) A\left(q^{-1}\right) z(k)-D\left(q^{-1}\right) B\left(q^{-1}\right) z(k) . \tag{5-12}
\end{gather*}
$$

Using (5-1) and (5-2) in (5-12) ytelds

$$
\begin{gather*}
F\left(q^{-1}\right) G\left(q^{-1}\right) u(k)+F\left(q^{-1}\right) H\left(q^{-1}\right) y(k) \\
=C\left(q^{-1}\right) u(k)-D\left(q^{-1}\right) y(k) \tag{5-13}
\end{gather*}
$$

Assuming that F and G (and 11) are interchangeable ylelds

$$
\begin{gather*}
G\left(q^{-1}\right)\left\{F\left(q^{-1}\right) u(k)\right\}+H\left(q^{-1}\right)\left\{F\left(q^{-1}\right) y(k)\right\} \\
-C\left(q^{-1}\right)\{u(k)\}+D\left(q^{-1}\right)\{y(k)\}=0 . \tag{5-14}
\end{gather*}
$$

As in [10] and [11], estimating G, H, C, and D results in

$$
\begin{aligned}
e(k)= & \tilde{G}\left(q^{-1}, k\right)\left\{F\left(q^{-1}\right) u(k)\right\}+\tilde{H}\left(q^{-1}, k\right)\left\{F\left(q^{-1}\right) y(k)\right\} \\
& -\tilde{c}\left(q^{-1}, k\right)\{u(k)\}+\tilde{D}\left(q^{-1}, k\right)\{y(k)\}
\end{aligned}
$$

$$
\begin{align*}
& =\hat{C}\left(q^{-1}, k\right)\{u(k)\}-\hat{D}\left(q^{-1}, k\right)\{y(k)\} \\
& \quad-\hat{G}\left(q^{-1}, k\right)\left\{F\left(q^{-1}\right) u(k)\right\}-\hat{\mathrm{H}}\left(q^{-1}, k\right)\left\{p\left(q^{-1}\right) y(k)\right\}, \tag{5-15}
\end{align*}
$$

where, e.g., $\overline{\mathrm{G}}=\mathrm{G}-\hat{\mathbf{G}}$. The error vector e in (5-15) is recognizable as an equation error formulation [13],[26], which suggests a recursive solution of the form

$$
\begin{equation*}
\theta(k+1)=\theta(k)+P(k) X(k) e(k) \tag{5-16}
\end{equation*}
$$

where

$$
\begin{align*}
& O(k)=\left[\hat{C}\left(q^{-1}, k\right) \hat{b}\left(q^{-1}, k\right) \hat{G}\left(q^{-1}, k\right) \hat{H}\left(q^{-1}, k\right)\right], \\
& X(k)=\left[\begin{array}{l}
u(k) \\
y(k) \\
F\left(q^{-1}\right) u(k) \\
F\left(q^{-1}\right) y(k)
\end{array}\right] \tag{5-18}
\end{align*}
$$

and P is a suitable chosen step-size matrix. Note that this recursion could be perforned line by line with each of the entries in the equation error vector e, which permits parallel processing thereby reducing the computation time per iteration, The number of terms in each of these parallel problems increases inearly with the degree of the system in (5-3) thereby requiring an increase in the order of the entries in (5-5).

As noted in [10] and [11] the stability problem even for the scalar case is unresolved. If the G and H of (5-11) are known exactly and not updated in (5-16) then, at least in the scalar case [10][11], stability can be assured by the technical device of [27] due the stably invertible transfer function from u (and y) to e. Comparling (5-5) and (5-11) reveals that foreknowledge of G and H is equivalent to foreknowledge of the solution to the decoupling, inverse control problem, which need not be internally stable. Clearly knowledge of this solution corresponds to knowledge of the plant parameters. However this encourages the expectation of local
stability if the G and H are approximately correct initially. In order to retain the similarity of growth rates of the input or output and the equation error, [10] suggests bounds on the \hat{G} and \hat{H}. How this is to be achieved with ifmited a priori plant information is uncertain; though a priori ranges for Λ and B may translate into acceptable G and H. Possibly as uncertainty in A and B increases the acceptable range for G and H narrows to the solution of (5-11).

Peculiar to the multivariable case is the structural information required for C and D to provide a solution to (5-5), especialily if F is selected in order to form (5-14) from (5-13). In the scalar case, this structural information is limited to plant order and buik delay (or relative degree). The extra complications in the nultivartable case, just for inverse or model-following control, require foreknowledge of the interactor matrix [23][24] or the Hermite form [25]. For this pole placement case, structural constraints may be different.

The one possibility of this direct adaptive implementation of pole placement, versus indirect schemes, is the seeming possibility of order overspecification in the scalar case [11]. This is not possible in the indirect case due to the uncontrollable pole-zero cancellation required in the identified model for zero identification error. This uncontrollability would result in a request for infinite controller gains leading to adaptive controller instability or requiring further logic for avoldance of this difficulty. As described in [11] e in the overspecified scalar version of (5-15) can be zero with the disappearance of some poles in the overall transfer function. This cancellation is stabie fide to the stability of F and therefore does not destabllize the adaptive controller. This possibility of overspecification in the scalar case raises the hope of overspecified

structural indices in the multivariable case, which could reduce the severity of the restrictions mentioned in the preceding paragraph.

6. Appendix: Separated Variable Modeling

Background

A plaumbility argument will be made for the discrete state space representation of a distributed parameter system as an approximation to the partial differential equation (P.D.E.) representation, subject to a limited number of sensor and actuator point locations on the system. The argument rests heavily on the validity of the separated variable solution technique for the P.D.E.. A solution mposed of a factor dependent only on time and a factor dependent only on the spatial variables can be obtained, provided that the system possesses at least cylindrical symmetry about the t-axis in the space spanned by the spatial coordinates and the t-coordinate. Only the class of systems for which this is the case will be considered here. Also, the system is assumed linear.

P.D.E. Representation and Solution

A linear in ${ }^{\text {th }}$ order P.D.E. in R^{K} can be represented in general by the equation

$$
\begin{align*}
& \sum_{i=0}^{I} \sum_{j=0}^{J} \sum_{k=1}^{K} \alpha_{1, j, k}(\underline{x}, t) \frac{\partial^{i+j}}{\partial x_{k}^{1} \partial t^{j}}[\underline{u}(\underline{x}, t)]=\underline{f}(\underline{x}, t) . \tag{6-1}\\
& I+J=N
\end{align*}
$$

In this equation $\underline{u}(x, t)$ is a vector of the out-of-equilibrium deflections of the system in the spatial coordinates indexed by k. \underline{u} is a function of the spatial position vector \underline{x} and time. $\underline{f}(\underline{x}, t)$ is a vector forcing function, also a function of the position vector x and time. The $\alpha_{i, j, k}(\underline{x}, t)$ terms are the coefficients of the various partial derivatives of \underline{u}. The solution of this equation for $\underline{\underline{u}}(\underline{x}, t)$ is required to satisfy the P.D.E. and be uniquely determined by the boundary and initial conditions on some domain Ω in x and t througiout which the P.D.E. representation is valid.

If the assumed separated vartable solution

$$
\begin{equation*}
\underline{u}(\underline{x}, t)=X(x) T(t) \tag{6-2}
\end{equation*}
$$

Is substituted into the P.D.E., an integrating factor can be found such that the equation can be arranged having sums of terms, each dependent only on \underline{x} or on t. Those terms that depend on \underline{x} alone sum to a constant that is the negative of the sum of the t-dependent terms. This separation constant then appears in the separate solut: ons for $X(x)$ and $T(t)$, and will be seen to play an important role in the connection between the spatial and temporal system solutions. Since the P.D.E. equation ts linear, the solution can be expressed as the sum of a part due to the natural response to inftial conditions (homogeneous solution) and a part due to the system forcing function (particular solution). The homogeneous solution $\underline{u}_{11}(\underline{x}, t)$ will be considered first.

The separate homogeneous equations for $X(x)$ and $T(t)$ take the general forms

$$
\begin{align*}
& \sum_{j=0}^{J} \beta_{j}(T(t), t) \frac{d^{j}}{d t^{j}}[T(t)]=0 \tag{6-3}\\
& \sum_{i=0}^{I} \sum_{k=1}^{K} \gamma_{1, k}(\underline{x}(\underline{x}), \underline{x}) \frac{\partial^{i}}{\partial x_{k}^{1}}[\underline{x}(\underline{x})]=0
\end{align*}
$$

where the separation constant σ is buried in the β_{j} and $\gamma_{i, k}$ coefficients. J is the order of the O.D.E. in time, and I is the order of the P.D.E. in space. Under certain conditions, the solutions to the above equations can be given by linear combinations of orthogonal eigenfunctions
$\psi(t) \notin \Phi(\underline{x})$

$$
\begin{align*}
& T(t)=\sum_{n=1}^{\infty} \Delta_{n} \psi_{n}(t) \tag{6-5}\\
& X(x)=\sum_{n=1}^{\infty} \Gamma_{n} \phi_{n}(x) \tag{6-6}
\end{align*}
$$

where the constants Δ_{n} depend on the initial conditions, and the constants \dot{I}_{n} are determined by boundary conditions. The eigenfunctions (modes) are indexed by n which,ialong with the separation constant σ, determines the frequency of the eigenfunctions. Thus the temporal mode frequencies $\omega_{n t}$ and spatial mode frequencies $\omega_{n x}$ are related by σ.

The total solution is then

$$
\begin{equation*}
\underline{u}_{H}(\underline{x}, t)=\underline{x}(x) T(t)=\sum_{n=1}^{\infty} \Delta_{n} \psi_{n}(t) \underline{Y}_{-1} \phi_{n}(x) . \tag{6-7}
\end{equation*}
$$

For any particular system represented on the region Ω by the above solution, the factors I_{n}, ψ_{n} and Φ_{n} are dependent on the physteal nature of the system, and the constants Δ_{n} depend on the initial conditions of the system. If the former factors are known, and the Δ_{n} can be sensed or estimated on some manner, then the entire status or state of the system is completely known In that the output at any time and position can be predicted.

In practice, the state of the system must be sensed by some finite collection of sensors, each of which has a limited aren of interaction with the system and has a 1 imited frequency response. Therefore, some spatial as well as temporal modes will not be sensed. The defiections, velocities, etc., must then be considered as approximations to the true ones at the sensor locations. Represent the approximate deflections as made available by physical sensors as a finite sum of the eigenfunctions, known constants, and constants to be estimated:

$$
\begin{equation*}
\hat{\underline{u}}_{H}(\underline{x}, t)=\sum_{n=1}^{L} \Delta_{n} \Psi_{n}(t) \underline{r}_{n} \phi_{n}(x) \tag{6-8}
\end{equation*}
$$

where the loweat frequency (spatial and temporal) modes are not necessarily the ones sensed, and therefore the index n no louger refers to consecutive mode frequencies. By sensing the \underline{u} at various points on the structure, it is desired that the unknown coefficients in the sum be estimated so that the syotem deflection at any time and at any point in space can be predicted. The next section discusses the estimation problem for the case of a single poini sensor.

State Estimation - Single Sensor
If the sensor is located at some point ${\underset{\sim}{x}}_{0}$ on the system, the sensed deflection at that point is represented by

$$
\begin{equation*}
\underline{u}_{n 1}\left(\underline{x}_{0}, t\right)=\underbrace{\sum_{n=1}^{1} \Delta_{n} \Phi_{n}\left(x_{0}\right) r_{-n} \cdot \phi_{n}(t)}_{\text {constants }} \underbrace{}_{\text {eigenfunctions }} \tag{6-9}
\end{equation*}
$$

This equation is a linear combination of L solutions of the $J^{\text {th }}$ order O.D.E. in time. Each solution to the $\mathrm{J}^{\text {th }}$ order O.D.E. can be represented by a linear combination of solutions of a coupled system of J first order O.D.E.s. These J solutions are represented by J state variables. The total representation for $\underline{\hat{u}}$ is then a linear combination of L sets of J state variables. Therefore the output $\underline{\hat{u}}$ can be considered a linear combination of $L \cdot J$ state variables. This can be represented by the following vectormatrix equation:

$$
\begin{align*}
& \underline{\dot{v}}(t)=A \underline{v}(t) ; \underline{v}\left(t_{0}\right)=\underline{v}_{0} \tag{6-10}\\
& \underline{\hat{u}}_{H}\left(\underline{x}_{0}, t\right)=\underline{c}^{T} \underline{v}(t)
\end{align*}
$$

where the \underline{y} is a vector of the state variables, A is a parameter matrix that contains the information about the natural response to initial conditions, and \underline{c} is a vector that determines how the state variables combine to form the output $\underline{\underline{\hat{U}}}$, Note that the $\underline{\underline{u}}$ vecto\% does not repreaent a vector of outpute but rather a single output on the system at a location specified by a position vector, The initial conditions are specified by the vector ${\underset{0}{0}}^{0}$. It is important to notice that the expression for $\underline{\underline{u}}$ in terms of the eigenfunctions $\psi_{n}(t)$ in equation ($6-9$) has been replaced by a aimilar sum of more elementary oigenfunctions in equation (6-10). These elementary functions are all solutions to a first order differential equation in time and they all have the form

$$
\begin{equation*}
\psi_{p}^{0}(t)=q_{0} \exp \left[r_{p}\left(t-t_{0}\right)\right] \cdot v_{s_{p}}=v_{p}(t) \tag{6-11}
\end{equation*}
$$

where the gero superscript denotes an elementary eigenfunction, the index p ranges from 1 to $L \cdot J$, and the q_{p} and r_{p} are constants determined by the physical properties of the system. The $\underline{\hat{u}}$ is then given by:

$$
\begin{equation*}
\hat{\underline{u}}_{H}\left(x_{0}, t\right)=\sum_{p=1}^{L \cdot J} c_{p} v_{p}(t) \tag{6-12}
\end{equation*}
$$

where the c_{p} are the elaments of the \underline{c} vector. If tho physical properties of the system are known by some estimation procedure on the sensor output $\hat{\underline{\hat{u}}}$, and the state variables are known at some time $t=t_{0}$ through some state observation procedure then the state at any time after $t=t_{0}$ can be found from equation ($6-11$) and the sensed deflection at any time after t_{0} can be obtained from equation ($6-12$). It should be pointed out here that some vibration modes may not be represented in the sensed deflection of
equation (6-9) even though their spatial and temporal frequencies as well as modal maplitudes are within the detectable region of the sensor. This is due to the possibility that the sensor may be located at a point where the deflection of the body due to some modes is always too small to detect no mater what the modes' amplitude at other points may be. In this case, the sensor is located ar a vibrational nodo of those particular spatial modes. Such modes are then unobsorvable in the sonsed deflection given by equation (6-9). It is important then that the sensor (or sensors) be located such that this observability problem does not affact those modes of interest in the system.

The discussion so far has centered on the deflection of the system due to initial conditions only (i.e. homogeneous response). The forced (particular) response involves the additional consideration of external disturbance forces and actuator forces applied for control purposes. These forces can be included in the system model by realizing that external forces add energy to each of the characteristic modes in space and time as determined by the system's physical properties. With respect to the eigenfunction expansion description of the system, the forces on the body as function of \underline{x} and time contribute toward spatial modal forces as functions of time as expressed by

$$
\begin{equation*}
\underline{E}(\underline{x}, t)=\sum_{n=1}^{\infty} \Lambda_{n}(t) \underline{\perp}_{n}(\underline{x}) \tag{6-13}
\end{equation*}
$$

where f is the collective force on the body and $A_{n}(t)$ are the time varying coefficients of the spatial mode shapes $\phi_{n}(x)$. Thus the force on the body is represented by a sum of modal forces. For each mode, the deflection resulting from a corresponding modal force depands on the physical nature of the system such as modal mass, modal damping, modal stiffness, etc.

Just as in the expression for the sensed system deflection given by equation (6-9), all physical actuators are 1 imited as to the apatial and temporal frequencies they can excite, so the sum in equation (6-13) is not infinite but limited to any Q excitable modes:

$$
\begin{equation*}
\underline{\underline{e}}(x, t)=\sum_{n=1}^{Q} \Lambda_{n}(t){\dot{d_{n}}}(x) . \tag{6-14}
\end{equation*}
$$

The modal force amplitudem effectively applied to the system are the Q functions of time $\Lambda_{n}(t)$. If these modal force amplitudes are introduced into the O.D.E. in time, equation (6-3), as a non-homogeneous term on the right hand side, the result is a $f^{\text {th }}$ order non-homogeneous differential equation. If the equation is linear, each solution can be represented, as before, by a linear combination of J first order non-homogeneous O.D.E. solutions. Using such a set of \mathbf{J} equations and corresponding state variables for each of the L solutions of equation ($6-3$) that can be sensed by the sensor, a non-homogeneous state space model of dimension L.J is obtained

$$
\begin{align*}
& \underline{\dot{v}}(t)=A \underline{v}(t)+B_{0} \hat{\underline{E}}(\underline{x}, t) \\
& \underline{\hat{u}}\left(\underline{x}_{0}, t\right)=\underline{c}^{T} \underline{v}(t) \tag{6-15}
\end{align*}
$$

where B is a matrix whose elements are spatial operators on $\hat{\mathbb{E}}(x, t)$ with respect to the elementary eigenfunctions instead of the original eigenfunctions as in equation ($6-13$). These elements depend on the locations of the sensors. The system now takes the form of a multi-input, single output state space model. Now the system state depends on initial conditions as well as the appiled forces. Here, a similar problem exists with the location of the actuators. Depending on the relative location of the sensors and actuators, some modes may be excited that have nodes
at the sonsor locations, and are therefore unohservabla. Also, some sansed modes may be imposible to control if tho actuators are located at those mode's zeros, or nodes. The result in the later case is uncontrollability - of those system vibrations. For chis discussion, it will be assumed chat there are no problems with observability and controllability in the system model.

Stete Estimation - Multiple Sensors

If more than one sensor is used to detect the system state, an equation similar to ($6-9$) can be written for each sensur, The constants premultiplying the modes in the sum for each nensor will depend on the location nccupied on the system by cach semsor, Since the same agenfunctions are comnon to all such sensor deflection representations, the same net of atate varlables can be used to deserjbe the nystem state at any location, where a differont linear comblnation of the state variables is used at each different location. The vect or of sensor measurements is given by

$$
\left[\begin{array}{c}
\underline{\hat{u}}\left(\underline{x}_{1}, t\right) \tag{6-16}\\
\underline{\hat{u}}\left(\underline{x}_{2}, t\right) \\
\vdots \\
\underline{\hat{u}}\left(x_{\lambda}, t\right)
\end{array}\right]=\underline{C} \underline{(t)}
$$

where C is a matrix whose ℓ rows $C^{\prime}{ }^{\prime}$ reflect tho particular Inear conbination of states at each sensor position.

These particular state variables, being solutions to a modal system representation, result in a block diagonal. A matrix in equation (6-15). Each block represents the solution for cach mode, which is ortho:onal to any other mode, and hence each block is an independent dynamic system of dimension J.

In more or leas their order of inportance and development, the assumptions and resulte of this appendix are

- The P.D.E. representation is linear.
- This P,D.E. is separable into apace and time components. Separate space and tine solutions provide that the algenfunction form in space does not depend on time and the form in time does not depend on the location in space whure measurements are taken.
- The solutions of the separate homogencous space and time equations can be represented as infinfte sums of orthugonal eigenfunctions.
- The frequencies of the space and time digenfunctions are related by the P.D.E. separation constant.
- The constants in the linear combinations of these eigenfunctions depend on boundary conditions (for the spatial equation) and on initial conditions (for the temporal equation).
- The infinite linear combinations of eigenfunctions must be considered finite for any reallable measurement or actuation due to plysical 1imitations.
- Sensor and actuator placement tis very lmportant with respect to conirollability and observability of system modes of vibration.
- A state space representation of the system for arbitrary combinatipns of actuators and sensors can be theoretically found if the 0.D.E. in time is linear.
- The order of the state space description depends on the order of the O.D.E. in time and on the number of modes sensable by the sensor.
- System forces do not alter the eigenfunction forms, but do effect the modal amp1itudes.
- Knowledge of the states in the state variable representation is
sufficient to characterize the state of the entire system within the accuracy of the sensor measurements.
- A reduced order model results when the number of states selected In the model are fewer than can spectify sensor-measurable modes.

II. Projections

The last three npproaches to adaptive control of multi-input, multioutput, truncated, linear modela of flexible structures discussed in the preceding aection (in subsections 3-5) will form the basis of our ongoing efforts. Our current emphasis is in reverse crder to the order of their: presentation, L.e. we Intend to Investigate, in the following priority
(1) Drect adaptive multivarlable pole alacement
(id) Simultaneous coupled multivariable system Identification and control via time or Erequency domain approaches
(ili) Simultaneous elgenshape and dynamic modal parameter estimation and decoupled modal control.

In order to interrelate these nppronches a modeling study is planned to develop algorithms for conversion from one model form to anothar, i.e. the decoupled modal, canonfeal state, and mitrix frict un descriptions of flexfble structures for vairous sanar acthator locations. Once a promising adaptive control candidate emorges it will ho investigated in a reduced ordor settlug appropriate to DPS or flexfble spacecraft control [12].

III. Refarencen

〔1〕C. R. Johnson, Jr., D. A. Lawrence, T. Taylor, and M. V. Malakoot1, "SImulated lumped-parameter system reduced-order adaptive control studias," VPI\&SU Dept, of Eiec. Eng. Tech. Report No.EE-8119, March 1981.
[2] F. E. Thau and R. C. Nontgomery, "Adaptive/learning control of large space siructurea: System Identification techniques," Yroc. 1980 Jt. Auto. Control Conf., San Francisco, CA, paper TPl-D, August 1980.
[3] C. R. Johnmon, Jr, and R. C. Montgonery, "A distributed system adaptive control etrategy," IEEE Trans, on Aerospace and Electr. Sys., vol. AES-15, no.5, pp.601-612, Soltember 1979.
[4] C. R. Johnson, Jr., "Adaptive modal control of large flexible spacecraft," Journal of Guidance and Control, vol.3, no.4, pp.369-375, July-August 1980.
[5] G. Krelaselmeier, "Adaptive control via adaptive observation and asymptotic feedback matrix synthesis," IEEE Trans, on Auto. Control, vol. AC-25, no.4. pp.717-722, August 1980.
[6] L. Dugard, I. D. Landau, and II. M. Silveira, "Adaptive state estimation using MRAS techiniques - Convergence analysis and evaluation," 11EE, Trins. on Auto. Contro1, vo1. AC-25, no.6, pp.1169-1182, Decomber 1980 .
[7] A. Gauthier and I. D. Landau, "On the recursive ldentification of multi-Anput, multi-output systems," Automatica, vol.14, no.6, pp, 609-61.4, November 1979.
[8] W. A. Wolovich, Linear Multivariable Systems. New York: SpringerVorlis. 1974.
[9] G. C. Goodwin and K. S. Sin, "Adaptive control of nonminimum phase systems," IEEE Trans, on Auto. Contro1, vol. AC-26, 1981.
[10] H. Elilott, "Direct adaptive pole placement with application to nonminimum phase systems," Colorado St. Untv. Tech. Report No. JA81-DILLENG-1, January 1981.
[11] C. R. Johnson, Jr. and H. Elilott, "On three similar (but different) approaches to direct adaptive pole placement," Proc. 15th Conf. on Info. Sclences and Sys., Baltimore, ND, March 1981.
[12] M. J. Yalas and G. R. Johnson, Jr., "Adaptive control of distributed parameter aystams: The ultimate reduced order problem," Proc. 18th IEEE Conf. on Dec. and Control, Ft. Lauderdale, FL, pp. 1013-1017, December 1979.
[13] J. M. Nendel, Discrete Technigues of Parameter Estimation: The Equation Error Formulation. New York: Marecl Dekker, 1973.
[14] C. R. Johnson, Jr., "A convergence proof for a hyperstable adaptive recursive ftitar," IEEE Trang, on Info. Thy., vol. IT-25, no.6. pp. 745-749, November 1979.
[15] C. R. Tolnson, Jr. and M. J, Balas, "Distributed paramater system coupled ARMA expansion identification and adaptive parallel IIR filtering: A unified problem geatement," Proc. 13th Asilomar Conf. on Clrcuits, Sye. and Computers, Paciflc Grove, CA, pp.219-225, November 1979.
[16] K. J. Aström, "Direct methods for nonminimum phase systems," Proc. 19th 1EEE Conf. on Dec. and Control, Albuquerque, MM, pp.611-615, December 1980.
[17] A. L. Hamm and C. R. Johnson, Jr., "Model raference adaptive contral using an ndfustable model," Proc. 12th Southeastern Symp. on Sys. Thy, Virginin Beach, VA, pp.269-273, May 1980.
[18] C. R. Johnson, Jr., "Another use of the Lin-Narendra error model: HARF," IEEE Trans. on Auto. Control, vol. AC-25, no.5, pp.985-988, October 1980.
[19] G. Kreisselmeler, "Adaptive abservers with exponential rate of convergence," IEEE Trans. on Auto. Cont., vol. $\Lambda(-22$, no. 1, pp.2-3, February 1977.
[20] D. (G. Luenberger, "An Introduction to observers," IEEE Trans. on Auto. Cont., vol. AC-16, no.6, pp.596-602, December 1971.
[21] T. Kallath, Linear Systems. Englewood Gliffs, NI: Prentice Hall, 1980.
[22] P. J. Antsaklis, "Some relations satisfied by prime polynomial matrices and their role in limear multivarlable system theory," IEEE Trans, on Auto. Control, vol. AC-24, no.4, pp.611-616, August 1979.
[23] H. E11lott and W, A. Wolovich, "A parameter adaptive control structure for linear multivariahle systems," Colorado St. Univ. Tech. Repor: No. NO79-DELENG-1R, January 1981.
[24] G. C. Goodwin and R. S. Long, "Generalization of results on atitivariable adaptive control, " IEEE Trans. on Auto. Control, vo1. AC-25, no.6, pp.1241-1245, December 1980.
[25] A. S. Morse, "Parameterizations for multivarlable adaptive control," Proc. 15th Conf. on Info. Scl. and Sys., Baltimore, ND, March 1981.
[26] C. R. Johnson, Jr., "Adaptive parameter matrix and output vector estimation via an equation crror formulation," IEEE Trans. on Sys., Man. and Cybernetics, vol. SMc-9, no.7, pp. 392-397, July 1979.
[27] G. C, Goodwin, P. J. Ramadge, and P. E. Caines, "Discrete time multivarlable adaptiye control," LEEF Trans, on Auto. Control, vol. AC-25, no.3, pp.449-456, June 1980,

IV. Recent Presentations

C. Richard Johnson, Jr. (Principal Investigator):
"Flexible Spacecraft and Reduced Order Adaptiva Control," NASA Langley Research Center (VA), April 25, 1980.
"Reduced Order Adaptive Controller Studies," 1980 Joint Automatic Control Conference (CA), August 13, 1980.
"Reduced Order Adaptive Regulation Strategies for the NASA Beam Control Experiment," Workshop on Structural Dynamics and Control of Large Space Structures (VA), October 30, 1980.
V. Recent Sponsored Publications
C. R. Johnson, Jr. and M. J. Balas, "Reduced order adaptive controller studies" (Invited paper), Proc. 1980 Jt. Aut. Control Conf., San Francisco, CA, paper WP2-D, August 1980.
C. R. Johnson, Jr., D. A. Lawrence, T. Taylor, and M. V. Malakooti, "Simulated lumped-parameter system reduced-order adaptive control studies," VPI\&SU Dept. of Elee. Eng. Tech Report No.EL-8119, Narch 1981.
VI. Cumulative List of Sponmored Journal and Conference Proceedinge Papers

1. M. J. Balas and C. R. Johneon, Jr., "Adaptive control of diatributed parametar syatema: The ultimate reduced order problem" (Invited paper), Proc. 18th IEEE Conf, on Dec. and Control, Ft, Lauderdale, FL, pp.10131017, December 1979.
2. C. R. Johnson, Jr., "On adaptive modal control of large flexible apacecraft," Journal of Guidance and Control, vol.3, no.4, pp.369-375, July-August 1980.
3. C. R. Johnson, Jr. and M. J. Balas, "Reduced order adaptive controller studles" (Invited paper), Proc. 1980 Jt. Auto. Control Conf., San Francisco, CA, paper WP2-D, August 1980.
4. M, J. Balas and E. R. Johnson, Jr., "Toward adaptive control of large space structures," in Applications of Adaptive Control, eds, K. S. Narendra and R. V. Monopoli. New York: Aendemic Press, pp.313-344, 1.980.
