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PĜ^^Greenbelt, Maryland 20771

`^SPg'^^SQF, cco

J

vw-rr--^'^4an.	 ^z_	 sx.J°hrm	 o—.,nc+

ur:k..3:aN'	 ..r	 ";.	 .:rµ:.z:.m._	 .,..-s ^Y:- :	 .b.t.• :._nri ..	 ,r .r ..^=1y.	 _ u.	 .^.u^	

.emu,

	

.	 u613'^c^LL'YX.w}x_sSC'tt:JU.^_sArc '^ir^...vl3sy{ak'x^a'u^^'d,bW ^— +a- .SE«e.F:..r^.. ,_	 .	 O



RADIO JUPITER AFTER VOYAGER: AN OVERVIEW OF THE PLANETARY
RADIO ASTRONOMY OBSERVATIONS

A. Boischot,
A. Lecachaux

Olmervatoire de Paris
Meudon, France

M. L. Kaiser
M. D. Desch

J. X. Alexander
Laboratoryfor r'.%traberresbrinl Physics

Planetary Magnetospheres Branch
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

J. W. Warwick
Radiophysies, Inc.
Boulder, CO 80301

SUB , HITTED TO	 Journal of Geophysical Researe'll



Abotract

We present an overview of Jupiter's low-frequency radio emission

morphology as observed by the Planetary Radio Astronomy (PRA) instrument

onboard the Voyager spacecraft. The PRA measurement capabilities and

limitations are summarized fallowing over two years of experience with the

instrument. As a direct consequence of the PRA spacecraft observations,

unprecedented in terms of their sensitivity and frequency coverage, at least

three previously—unrecognized emission iic^,ponents have been discovered:

broadband and narrow—band kilometric emission and the lesser-arc deonmetric

emission. Their roperties are reviewed here. In addition, the fundamental

structure of the d cameter— and heotaiieterwavelength emission, which is now

believed to be almost exclusively in the form of complex but repeating arc

structures in the frequency—time domain, is described here for the first time.

Dramatic changes in the emission morphology of some components as a function

of sun-Jupiter-4spaeecr,aft angle (local time) are described. Finally, the PRA

in situ measurements of the To plasma torus hot-to—cold electron density and

temperature ratios are summarized.

INTRODUCTION

The Voyager 1 and 2 (V1 and V2) Planetary Radio ,Astronomy (.PRA) instru-

ments detected radio bursts frorr. Jupiter very shortly after launch and will

likely continue to do so for at least another year. Thus, in a very real

sense the PRA instruments are remote sensors capable of making observations of

Jupiter from virtually any point in the solar system. Yet, the tremendous

increase in Jovian signal strength relative to terrestrial or solar inter-

ference combined :Hth the unique viewing geometry provided by the Voyagers

make the encounter data sets one of the most important obtained in the 25-

year history of the study of Jovian radio noise.

it is our intent in this paper to provide a brief review of the PRA

findings that have already been published And an introduction to new results

which appear in this issue. lie will also address a number of PRA- and

Jupiter-related topics which are important but which are either too 'brief to

be deserving of separate consideration or which have otherwise not appeared in
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previous PRA publications. We will begin by describing very simply the

operation of the instrumentation including a discussion of the actual

in-flight performance. We will then review the observations beginning with

the decameter (DAM) wavelength measurements. We will compare the DAM

observations made by PRA with those made by ground-based instruments, and we

will show several examples of the extraordinary are structures which are

evident in the frequency-time plane. Then, for purposes of completeness and

continuity with previous work, we will describe the PRA observations made at

hectometer (HOM) wavelengths even though we now believe this spectral region

to be just the low-frequency terminus of the DAM arcs. The newly-discovered

kilometer (KQM) wavelength emissions show that two distinct and widely

separated source regions vortr bate to this low-frequency portion of the

Jupiter spectrum. We describe these data and discuss the inferences that can

be made concerning their sov;oce Locations. Finally, we will review the in

situ measurements of electrostatic waves which were carried out during the

15-hr excursion through the To plasma torus by V1.

INSTRUMENTATION

A detailed description of the PRA instrumentation can be found in Lang

and Peltzer (1977) and Warwick et al. (1978). Here we summarize the
radiometer characteristics as they relate to the interpretation of the PRA

encounter data.

Both Voyager spacecraft carry identical radiometers consisting of two

orthogonal 10-meter monopoles coupled to a single receiver. At low

frequencies (< 3 MHz) the antenna is substantially shorter than one wavelength

and so, in principle, has the small radiation resistance and isotropic

reception pattern of a Hertzian dipole. At higher frequencies the pattern

undoubtedly becomes multilobed as the antenna elements begin to support more

complicated current distributions. In practice, this idealized behavior is

altered somewhat by the presence of the large conducting surfaces near the

monopoles, such as the 13-meter magnetometer boom and the 3.7-meter diameter
high-gain telemetry antenna. These bodies act as resonant parasitic elements

for some antenna-source geometries. As might be expected, the low-frequency

observations appear to have been affected the least, although we attribute the
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problem V1 had in determining polarization sense at low frequencies before 	 '.

encounter (see Desch and Kaiser, 1980) to the presence of these structures.

At higher frequencies t complete reversals in the polarization sense from one

frequency band to another sometimes appear which are clearly instrumental in

origin. The bands of frequencies most often affected are s 5 MHz and o 15 MHz

on both spacecraft where the effective length t,f the monopoles are odd

integral multiples of the wavelength. We have had to exercise caution in

separating instrumental polarization reversals from the true reversals which

are evident near these frequencies.

The PRA receiver functions as a stepped-frequency pol.arimeter in two

broad frequency bands whose channel bandwidths and separations are different.

The 1.2	 1320 kHz low.-frequency (LF) band cc^lsists of seventy 1.0-kHz wide

channels, each separated by 19.2 kHz. The 1.2 MHz - 40.5 MHz high-frequency

(HF) band consists of 128 channels, each of 200 kHz bandwidth. The separation

between channels in the HF band is 307.2 kHz. The receiver ordinarily steps

through the entire range from 1.2 kHz to 40.5 MHz in 6 see, requiring 30 cosec

per channel increment. In this mode, the signal in each channel is averaged

for 25 cosec before digitization. The normal PRA data display mode is in the

form of frequency-time dynamic spectra in which eight successive 6--sec scans

are averaged together at each frequency. Higher data rate modes exist but

results from these observations are preliminary and are not reported here..

The receiver dynamic range expressed logarithmically is 50 dB, and by

inserting attenuators in the receiver preamplifiers in anticipation of

particularly intense signals, a total effective dynamic range of 140 dB can be

achieved. During the V1 and V2 encounters, ghost images of strong s6-MHz

signals appeared on some dynamic spectra at 35 MHz and above. These ghost

Y	 images are for the most part easily identifiable by virtue of their mirror

image near 6 MHz and are not confused with actual high-frequency DAM.

Although the HF band should in principle be (200/1)1 /2 
c 14 times more

sensitive than the LF band in detecting a signal against a uniform background,

an extremely high level of noise in the HF band related to the high-speed

switching logic in various spacecraft electronic systems greatly reduced its

effective sensitivity. For this reason, the HF band observations of DAM were
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limited t the period around Jupiter encounter as noted later. The excellent

spacecraft noise rejection design employed in the LF band, on the other hand,

enabled detection of Jupiter emission near 1 iiiiz almost immediately after

launch. At V1 closest approach, detection threshold in the PRA LF band was

2x10'2 W 
m-2 

Hz" `1 . At 10 MHz in the HP band, where spacecraft noise was

greatest, the minimum detectable flux was approximately 3X10 -23 W M-2  Hz-1.
Toward the high-frequency end of the HP band, however, the detection

thresholds are comparable to those found in the LF band. Finally, despite the

fact that both V1 and V2 receivers were exposed fora considerable length of

time to the intense radiation levels of Jupiter^s magnetosphere and are

approaching their projected 4 -yr design lifetimes, no permanent failures have

developed and both receivers are performing to specification.

The PRA radiometer determines polarization basically through the use of

two orthogonal 10-meter monopoles independently coupled to a single receiver

through a 900 -quadrature hybrid and a switch. As such, the system measures

the left—hand (LH) and right-hand (RH) circularly polarized components of a

wave, not its linear components or the phase difference between the

components. This is equivalent to measuring only two of the four Stokes

parameters necessary to completely specify the wave polarization state. Thus

only the polarization sense of the wave, either LH or RH depending on which

signal is stronger, can be determined unambiguously from a single measurement.

In spite of its limitations, this determination alone is invaluable in

helping to specify source locations and emission modes and in distinguishing

one emission source from another. Comparison of our polarization sense

observations with ground—based measurements for the high—frequency Q 10 MHz)

sources has shown that the PRA sense measurements are quite reliable. At

lower frequencies, the polarization sense of previously undiscovered sources

has been specified for the first time.

Under certain circumstances, it is also possible to make more specific

quantitative stim&tes of the wave axial ratio (the ratio of the wave electric

field minor—to-major axis). The indicated axial ratio as measured by the PRA

instrument is a complex function of the degree of polarization of the wave,

C	 the wave tilt angle and the angle between the source direction and the normal

5



to the plane of our antennas. Fran a Statistical sample of indicated axial

ratio measurements and knowledge of the source direction, we can aet bounds on

both the true axial ratio and the degree of polarization.

OBSERVATIONS

We have separated the Jovian radio observations into four categories and

two of these categories have each been further divided into two subcategories.

Figure 1 delineates these categories and shows were they lie in frequency

space relative to tho PRA receiver channels. The highest frequency

ubservations, in the DAM range, shok" are" structures when displayed in the

frequency versus time plane. These arc structures divide into lesser and

greater arcs depending on their spectral characteristics. We have called the

extension of the arcs into the PRA low band HOM emission, although we do not

believe this is a separate radio component. However, the KOM range consists

of two clearly distinct components likely arising from widely separated source

locations. Finally, during the 15-hour period centered on V1 closest

approach, the PRA instrument became, in effect, a plasma wave receiver, and

electrostatic waves associated with the Io plasma torus (IPT) were recorded.

We provide here an overview of the PRA findings and refer the reader to

more detailed papers where applicable.

DAM. This description of the DAM observations is complementary to the

detailed statistical study presented by Alexander et al. (this issue), and

also utilizes the findings of Leblanc and Daigne (this issue) on are

morphology.

Many spectral characteristics of the DAM emission are known from ground—

based observations (see for example, Carr and Desch, 1976) and can be

summarized as follows:

The emission at frequencies above 20 MHz is very sporadic, with an

occurrence probability dependent upon the System III Central Meridian

Longitude (CML, see Seideltrfan and Devine, 1976) and Io phase coordinates of

the observer, where Io phase is the departure of Io from superior conjunction
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as seen by the observer. In particular the high frequency limit of the
emission varies considerably but never exceeds 39.5 MHz, Below 10 MH y; there

are very few spectral observations, but the histograms of occurrence

probability reveal strong change,p in 'she emission characteristics. In

particular the dependence on CML and on Io phase is different than at higher

frequencies. The shape of the DAM spectrum is very vepetitive for the some

observer position in CML and Io phase, even for observations one Jovian year

(12 years) apart (Alexander, 1974). The spectra show many kinds of fine

structures. Some of them have been studied in detail: the modulation lanes

(Riihimaa, 1976), the interplanetary scintillations (Douglas and Smith, 1967)

and the ionospheric scintillations. The modulation lanes and interplanetary

scintillations have characteristic times as short as a few seconds.

Ionospheric scintillations and burst groups (Douglas, 1964) have time scales

of minutes.

The Voyager measurements have produced several quite new results, mainly

due to the fact that the observed frequency range extends down to below 1 MHz,

and because, when the spacecraft are close to the planet, aside from the

vastly improved signal strength, the emission is not perturbed by inter-

planetai , v .scintillations or terrestrial ionospheric propag W on effects. The

most striking characteristic of the DAM spectra is that emission appears in

nested families of arcs (Warwick et al., 1979a) in the frequency-time plane.

This is very clear in Figure 2a. Often several families of arcs can be

observed simultaneously, in particular at frequencies lower than 20 MHz. This

contributes to the greater complexity of the occurrence probability and

polarization histograms compiled from ground-based observations at frequencies

below 2G MHz as compared to higher frequencies.

The arcs can be characterized by the frequency of their vertex (or

"nose"), the sense of curvature of the arcs (vertex early and vertex late),
their total extent in frequency ("lesser" arcs and "greater" arcs) and their

curvature. Several families of arcs, possible corresponding to different

sources of emission, can be recognized. This is studied in another paper

(Leblanc and Daigne, this issue]. We note here some general characteristics

of the arcs.
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- For a given longitude, two kinds of ;arcs are generally observed (often

simultaneously): one is limited to frequencies lower than 20 MHz (lesser are:.)

and the other can reach much higher frequencies, 30 to 40 MHz (greater arcs).

At a given frequency the average duration is of the order of 3 to 6

min, slightly larger for lesser than for greater arcs. This corresponds to a

2 to 4 deg"ee rotation of the planet.

The arcs are not periodic in time, but the delay between two consecu-

tive arcs has an average value of 3 to 6 min, similar to the are duration.

This value is also slightly larger for the lesser arcs.

The depth of the modulation by the are structure, measured on fixed

frequency plots like that in Figure 2b is variable but often larger than 20 dB.

- The emission along an are is generally relatively smooth without

variations faster than the six-second resolution of the PRA receiver.

^-	 that a1	 h a rcs
	 t	 -	

frequenc ies, 2g ^V Ai Uo probanblyn t^+ov all th
e
 aar va close aŝ u very 'Low ircyi.icneics^, ^, .e.

df/dt becomes small when f + 1.3 MHz, and some of them can be followed at

frequencies below 1.3 MHz into the PRA low band. The lesser arcs often are

also asymptotic (i.e., df/dt approaches zero) at an upper frequency between 10

and 20 MHz. N the other hand for greater arcs df/dt , 0 at their upper

frequency limit, " as if this limit were set by a phenomenon whose origin is

different from that of the arcs themselves.

Great arcs are nearly always RH polarized at frequencies > 20 MHz.

Lesser arcs exhibit a distinctive bimodal polarization pattern as a function

of CML. They are generally LB polarized below '1200 CML and are RH polarized
between 140

0
 and 3000 , These trends directly confirm earlier ground-based

polarization determinations (e.g., see the work of Kennedy, 1969).

- The relative intensity of the arcs of some of the different families

changes between the pre- and post-encounter periods but this is not

accompanied by a change in the arc shape,
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The different traditional "sources" identified from the ground-based

observations (see Carr and Desch, 1976) have very different characteristics

frrn one another in the PRI data, and, within one source, are strongly
dependent on the phase of Io and the CML. We shall only describe below the

"typical"$ spectrum for each of the sources and give sane examples.

Some examples of Source A or main source (190° < CML < 290 0) are given in

Figure 38-3t. The arcs are great, vertex late arcs, generally asymmetric
around th%:ir vertex. This vertex lies around 10 to 12 MHz for the Io-

controlled source. For a given CML, there is a change in are shape correlated

with the phase of Io. This change exists not only when comparing the

so-called Io-controlled events (Figure 3,1) with non-lo-controlled events

(Figure 30, but even at different Io phase values within the same

non-lo-controlled "source" $ (e.g., Figure 3h vs. Figure 31), The control

exhibited by Io on the are shape is certainly different than Io control of

occurrence probability (.Leblanc and Daigne, this issue). In particular, for

Io phase in the range 1000 to 200
0
 we observe closely spaced arcs with small.

curvature, Which can extend up tv 30 MHz ( Figure 3i) .

Some examples of Source B or early source (60° < CML < 190 0) are given on

Figure 3a-3f. The arcs are gre pit, vertex early arcs, often with an irregular

high frequency limit. The curvature is small and the vertex frequency is

around 20 MHz. The high frequency limit depends sensitively upon the exact

position of Io during the emission. The non-lo-B source does not appear very

different from Io-B, except by its intensity which is much less on the average

and by the absence of a distinct band of emission of the kind that often

bounds the upper frequency envelope of the Io-B spectrum.

Source Io-C or late source (290 0 < CML < 30°; 220
0
 < phase of Io < 2600)

corresponds to a few vertex late great arcs with a sh,drp upper frequency

limit. The are structure is not as well defined as for the other sources.

Sometimes below 22 MHz those great arcs are superposed on a very irregular

source of arcs modulated in intensity with frequency. The shape of this

source is very dependent on the position of Io. An example of Io-C is shown

in Figure 3i.

T_

. E
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	 Source Io-D or fourth source always appears at early longitudes when the

range of Io phase is between 900 and 1?Do . It corresponds to only one narrow

band of emission extending very slowly to an tapper frequency between 1 7( and 22

MHz as shown in Figures 3d.

4
r

The remarkable influence of the location of Io on the detailed appearance
C

of dynamic spectra of the lo-related DAM is illustrated in Figure 4. Here we
show a compilation of spectra for each or the four "sources" described above.

All of the spectra in a particular column are aligned in CML, and they are

l	 ordered according to the time at which the to phase reached the value

associated with the statistical "center" (i.e., point of maximum occurrence

`probability) of the source as defined in plots of occurrence probability on 	 a

the CML-Io phase plane. This special value of Io phase occurs before the CML

{	 of maximum occurrence probability for the ton panel, of each column in Figure 4

and after the CML of the occurrence probability peak for the bottom panel of

the same column. A simllar view of the effects of Io location on dynamic

A	 spectral features was presented by Dulk (1965) based on ground-based

observations, and the new Voyager data complement and extend those findings.

Notice in Figure 4 that sane major emission features tend to "follo w" Io.

When Io reaches a given phase angle at larger Jovian longitudes, the feature

also occurs at larger CML values, although the shift in feature CML is only

about half the shift in to longitude. For example, in the B source spectra

(left column of Figure 4b), the most intense emission at the highest

frequencies tends to occur later in time when Io reaches go o phase at later

:longitudes. A similar trend is evident; for the distinctive, narrow band of

emission that drifts from low to high frequencies in source D (right column of

Figure 4b) and for the last group of vertex late great arcs that extend from

1 .3 MHz up to > 30 MHz in most sours. A events (left column of Figure 4a).

A prototype of the PRA receiver has been operated at the Nancay Radio

Astronomy observatory throughout the Voyager encounter periods with a high

gain (25 dB) right-hand circularly polarized antenna array. Due to the

earth's ionospheric cut-off and to the presence of manmade interference, the

observations are generally limited to a minimum frequency of 10 MHz at night

and 20 MHz d ur'ng the day. The are structure is evident in ground spectra,

10
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but because of the low-frequency limit of the observations only the upper legs
of the ores are observed. Figure 6 shows a spectrum of the Io-B source
(compare kIskth Figure 4b) taken in Nancay with a spectrograph using higher time
and frequency resolution capability than PRA. The dominant features seen on

ground spectra are broadband (vertical) structures which correspond to the L

bursts [sae Carr and Desch, 19761. They are not observed on the Voyager
spectra, taken close to Jupiter and this is a confirmation that those
variations are due to interplanetary and/or terrestrial ionospheric
scintillations. On the other hand, the burst groups often described from

ground-based measurements are probably due in part to the observation of

successive arcs at a given frequency.

We must remark that even with the several orders of magnitude increased
sensitivity provided by the Voyagers no emission has been observed extending

above 39.5 MHz, and the relative occurrence probability for emission observed
at frequencies above A,35 Vhz is not larger than with less sensitive instru-

ments. This means that the HF limit of the emission is a real cut-off that is

very sharp and that is not set by the sensitivity of the observations.

As the are structures appear to be fundamental to a large fraction off'

Jupiter's emission morphology, several papers appearing in this issue

(Staelin; Goldstein and Thieman; Warwick; Boischot and Aubier; Pearce) are

devoted exclusively to deriving are forming mechanisms. Staelin (this issue)

also presents a general introduction to the type of mechanisms presently being

considered.

Another important property of the DAM emissions identified from the

Voyager measurements is a strong dependence on local time (or, more precisely,

observer-Jupiter-sun angle). The PRA data show the same concentrations of

great arc DAM activity at values of CML corresponding to the A and B sources

as are seen from the earth. However, the statistical analysis of Alexander et

al. (this issue) and the study of dynamic spectra by Leblanc and Daigne (this

issue) show that the relative levels of activity of the lo-independent

emissions reverse after Voyager closest approach. When observed from above

the dayside hemisphere the A source dominates at frequencies > 20 MHz, but as

seen from above the nighttime hemisphere after encounter, the B source

11
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dominates and the non-lo-A emissions are weak and rare shove 20 MHz.
Alexander et al, suggest that, in the context of certain source models, this
effect could be due to diurnal variations in the properties of the ionosphere

at the source.

HOM. The emission below 1.3 MHz, i.e., in the PRA low bond, has been

extensively studied by the two Voyagers. in this range the PRA experiment is

4	 practically free from interference and has very good sensitivity. Emission

below 1.3 MHz was observed immediately after launch when the spacecraft were
more than tE AU from Jupiter. ;t study of the HOM occurrence statistics as

observed. during the preencounter cruise mode has already been published

(Kaisor et a7., 1979). It shows that the emission appears in two sources

localized in CML near 1200 and 2100 , and is not controlled by lo. The dynamic

spectra have different shapes for the two sources (Lecacheux et al., 1980)

which change systematically with the sub-Voyager latitude ( Alexander et al,,
1979). These cruise observations refer only to the most intense emissions,

and a much more detailed stud y can be made when-the s pacecraft are closer to
Jupiter.

The PRA low band dynamic spectra of Figure 6 cover ten rotations of the
planet. The HOM emission is indicated along with the two newly discovered

kilometer wavelength components (bKOM and nKOM) which will be described in the
next section. The HOM emission, contrary to the bKOM, avoids the central

meridian longitude (CML) when the north dipole tip is kilted toward the

spacecraft. At other longitudes, the intensity in the HOM band decreases with

decreasing frequency as can be seen in the bottom panel of Figure 6. Some-

times, when the spacecraft is close to the planet the HOM emission can be

observed down to the lowest frequency of the PRA receiver, but the low

}

	

	 frequency cut off does not appear to be as sharp as for the kilometric

emissions. Drifting, features nre observed in the HOM range, the drift beirlq

more often toward low frequencies for CML < 1800 and toward high frequencies

for CML > 1800 . These drifting features are more easily studied on dynamic

spectra with better time resolution than it Figure 6 and can be interpreted as
`

	

	 the lower legs of arcs which have their vertexes in the DAM range. On the
other hand, there may be structures other than the arcs at frequencies below

1.3 MHz. 1'his was suggested by the cruise mode observations (Lecacheux et

12



al., 1980). When the spacecraft were far from the planet several clear
structures repetitive in CML were observed. More studies are required to

determine if those structures are different from the are structure, or if as

we now believe they are only superposed are structures. In addition, an

interprctation of the hectcmetric spectral structures observed during V11Is

path through the lo torus was attempted using a ray tracing method

(Lecacheux, this issue). In the limit of our knowledge of the electron

density distribution inside the Io torus, the observed HOM source could be

situated in the southern hemisphere in a wide range of longitudes, the

emission frequency being related to the local gyrofrequency.

The upper panel of Figure 6 shows the sense of polarization as a function

of time and observing frequency coded such that LH is black, RH is white, and

gray represents equal power in both channels (i.e., randomly or linearly

polarized). In the HOM band, the polarization pattern is very repeatable with

RH generally evident between CML 0
0
 and 90°. The RH emission is flanked by

LH emission centered at CML = 330° and 100 0 . This LH emission was the most

easily observed during the preencounter cruise period (Kaiser et al., 1979)

presumably due to its slightly higher intensity relative to the RH emission.

The HOM polarization pattern observed from the outbound trajectories of both

spacecraft is not as clear as the inbound pattern. There are some ranges of

CML where the polarization may even have reversed relative to that observed

before encounter. However, if the HOM band represents at least in part the

low-frequency extension of DAM arcs, then the relative changes after encounter

in the amplitude of the non-Io controlled arcs mentioned in the previous

section could easily account for the apparent polarization changes (Alexander

e•: al., this issue) .

KOM. At the low-frequency end of the PRA spectrum, two distinct new

radio components have been discovered. As shown in Figure 6, we have

designated them bKOM, and nKOM for broad- and narrow-band kilometer wavelength

emission, respectively. The bKOM emission was detected when the spacecraft

were approximately 2 AU from Jupiter, while the nKOM events were generally

recognized only on records taken inside 1/2 AU from Jupiter. The properf;ies

of bKOM have been described in considerable detail by Warwick et al.

(1979a,b), Scarf et al., (1979); Kurth et al., (1979), and Desch and Kaiser

r
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(1980). Sane of the nKOM properties were first descrP" d by Warwick et al.

(1979b), but the recognition of nKOM as a separate and distinct radio

f=	 component was presented by Kaiser and Desch (1980).

bKOM. The bKOM component, which is the more intense of the two, extends

upwards from a frequency close to the lower limit of the PRA receiver (20

kHz). During each rotation of the planet, the high frequency limit first

increases with time to reach a peak generally between a few hundreds of kHz
and 1 MHz, and then decreases, giving a tapered aspect as can be seen in all

four panels of 'Figure 7, as well as in Figure 6.

As observed during the portion of the Voyager trajectory before Jupiter

encounter, the peak frequency

2000 , i.e,., when the north ma

total duration lies between a

observing frequency, so it is

is generally reached when the CM L is around

gnetic pole is tilted toward the observer. The

few minutes to two or three hours depending on

sometimes observed during a 1000 rotation of the

planet. Other characteristics of the bKOM emission spectrum are:

— The low frequency limit is generally observed in the rat+r between 10

and 100 kHz. In Figure 7b, for instance, the emission is hardly; geen at 40

kHz and is completely absent at 20 kHz. Similar out—offs can be observed in

some cases up to 200 kHz but in other cases the emission extends down to 10

kHz or less (Scarf et al., 1979).

- The emission is highly variable in intensity. Very distinct fine

structures are seen which are generally narrow band and which drift in

frequency with time, either toward low or high frequencies. These time

structures can be seen on Figure 7a, b, and a. These drifting features are

reminiscent of the arcs which are often seen at higher frequencies, but the

relation between the two phencmena, if any, is not clear.

— The polarization sense, the average power, and even the appearance of

bKOM on dynamic spectra is a strong function of the observer t s local time. As

viewed from before encounter, i.e., from above the Jovian dayside, the bKOM

associated with CML	 2000 is LH polarized with a dynamic spectral shape like

that shown in Figure 6 and Figure 7a, b, and c. As Viewed from after
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encounter above the Jovian nightside, bKOM is RH polarized, the average power

level is less by a factor of ten relative to dayside events, and the dynamic

spectra often show a gap or "bite" with no emission detectable near CML

2000 , similar to the event shown in Figure 7d.

There appears to be a growing consensus as to the source location of

bKOM. Green and Gurnett (1980) have had success in reproducing features of

the overall bK%1 spectral envelope by ray tracing the magnetoionic ordinary

mode through the lo plasma torus from a source region which extends above

Jupiter's northern auroral ionosphere. In substantial agreement, Desch and

Kaiser (1980) further constrain this source to be fixed in local time in

Jupiter's dayside in order to explain the dramatic port-encounter polarization

and spectrum changes.

nKOM. The second type of emission observed at kilometric wavelengths,

nKOM, has a much narrower spectrum, covering generally not more than 3 or 4 of

the PRA channels, i.e., its total bandwidth is approximately 40 to 80 kHz.

The events appear intermittently persisting for some minutes to several hours.

During the period when it is observed, the emission has a nearly constant

frequency. Most of the time, this frequency is around 100 kHz with very sharp

low and high frequency cut-offs.

On fixed frequency records, the emission differa much from the bKOM

emission. It is much smoother, with very title fine structure, and varies

slowly with time as can be seen on Figure 8. The polarization of nKOM shows

no discernible variation with observer's local time. LH nKOM emission is

detected when Voyager is above Jupiter's northern magnetic hemisphere and RH

emission corresponds to the southern magnetic hemisphere.

Athout

pattern as a

(shaded) and

encounters.

passage and,

infrequently

is not shown

question the most remarkable property of nKOM is the occurrence

function of CML. Figures 9a and b show the occurrence of bKOM

nKOM (lines) versus CML for many rotations near the two

The bKOM always occurs near the CML = 200 0 north dipole tip

so, clearly recurs at the System III rotation rate. The

observed component of bKOM associated with the south dipole tip

In contrast, the nKOM emission does not repeat at the same CML

15



rotation rafter rotation, but clearly slips by a small amount. During the

V1 encounter period nKOM repeated at approximately 10 h 15m intervals while

during the V2 encounter at a 10 11 28m repetition rate. This lack of strict

adherence to the Jovian System III rotation period coupled with some

qualitative ray tracing arguments have prompted Kaiser and Desch (1980) to

sug$est that the nKOM source region is in the lo plasma torus near the

magnetic equatorial plane at 8-9 R d from the center of Jupiter. This is'in

direct contrast to the other JovJnr + radio components, all of which recur at
the System III rate and are th; t;,. r ;. to originate from low to moderate

altitudes above the Jovian ionozj4here.

lo Plasma Torus. Although the bulk of the PRA observations have been of

freely—propagating electromagnetic radiation, the V1 approach to within a

Jovicentric distance of 11.9 R  afforded us direct in situ measurement of the

upper hybrid resonance (UHR) and (n+1/2) gyroharmonic electrostatic waves

associated with the dense. Io plasma torus (IPT). Based on the observations of

the UHR lines, Warwick et al., (1979a) were able to construct a plasma density

contour map of the IPT whose 500 cm-3 contour extended from inside 5 R d to

nearly 8 R  in the equatorial plane and o v er 1 R 	 above and below the plane.

Extrapolations suggested a maximum electron density in the plane of above 3500

cm-3 near 5.6 R J . These measurements provided the first electron density

model of the IPT.

Birmingham et al. (this issue) enlarge substantially upon the preliminary

analysis of Warwick et al. They present a thorough description of the

observed electrostatic wave morphology and results of a detailed application

of plasma instability theory (Hubbard and Birmingham, 1978) to the wave

observations. A portion of the observations to which this theory is applied

Is shown in Figure 12. Here, the UHR and gyroharmonic waves present during

the outbound pass (s 6 R J to s 9 R J ) through the IPT are plotted. Each trace

is an intensity vs time plot at a particular frequency from 20 to 328 kHz.

The smooth, wavelike enhancements, particularly noti,cable at 40 and 59 kHz,

are (n + 1/2) g,yroharmonic waves, whereas the burscy signatures (of., 1800

SCET at 116 kHz) are identified as UHR emissions. Reference to the seven

sloping lines, which locate the electron gyrofrequency f  and its harmonics as

derived from the measured magnetic field values (Ness et al., 1979), shows

16
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that the UHR and (n+1/2) gyroharmonic emissions clearly occur between the

gyrofrequency harmonics. Birmingham et al. use this information and the

steadily evolving pattern of change in the location of the UHR line rela'.. ve

to the (n+1/2) gyroharmonic to estimate cold-to-hot temperature ratios (TC /TH)

for a two-component electron plasma throughout the torus. They find that

TC/TH varies smoothly from < 0.01 to 0.04 in moving outward from about 5 to 8

R d through the I PT. Birmingham et al. also revise the original contour model.

somewhat after reexamining the UHR morphology and assuming symmetry about the

centrifugal instead of the magnetic equatorial plane. Thus far, all of the

IPT temperature and density modeling derived from the PRA observations either

complements or reinforces measurements by other Voyager investigators (e.g.,

Bagenal et al., 1980; Strobel and Davis, 1980; Scudder and Sittler, this

issue).

SUMMARY

The stud y of the dynamic spectra of Jovian emissions observed by the PRA

experiment allows us to recognize at least three kinds of emission, with

certainly different origins.

The most striking characteristic DAM emission is that it always appears as

nested discrete arcs. Several families of arcs are observed simultaneously.

Their dynamic spectral shape, sense of curvature, and frequency extent are

repeatable functions of CM L and Io phase. The Io-related emissions generally

reach greater intensities and higher frequencies while the Io-independent

emissions tend to be weaker and more sporadic and to depend on observer's

local time. Nevertheless, the basic similarities in all the emissions suggest

that both the Io-related and the Io-independent sources share a common

radiation mechanism and/or a common range of source locations.

The HOM emission has sane characteristics different from those of DAM, but

other characteristics are similar to those of the DAM emission, in particular

the presence of arcs. There is no clear evidence that HOM is a phenomenon

really distinct from DAM or that it represents a different physical mechanism,

but more careful investigations of the Voyager spectra, particularly near the

1.3 MHz discontinuity of the receiver, are necessary to clear up this point.
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The bKOM emission is a highly irregular, very intense emission, observed

when the magnetic dipole tip is tilted toward she observer. The frequency

range, polarization sense, and local time'veriati,ons of bKOM suggest that the

emission is generated in the dayside auroral zone. The characteristic tapered

appearance may be caused by refraction in the to plasma torus.

The nKOM emission, is certainly a phenomenon different from the bKOM.

This is clear from the differences in their spectrum and from their different

occurrence patterns in CML. The statistical analysis of their occurrence

shows that the source likely originates in the outer part of the torus but the

mechanism of the emission is not known yet.

The To plasma torus has been modeled now in terms of its electron density

and ratio of cold-to-hot electron temperatures. These measurements will have

bearing on the general problem of ro t s interaction with the Jovian magneto-

sphere and lo t s internal structure.
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Figure Captions

Figure 1, The PRA frequency coverage and the relevant frequencies of the

various components in Jupiter's spectrum.

Figure 2. a) A dynamic spectral display of over two hours of Jovian activity

recorded on March 5, 1979 by Voyager 1. In this and subsequent figures,

increasing received power is indicated by increasing darkness. The system

III longitude and Io phase an gle are shown at the top of the figure. The

obvious change in spectral, appearance at 1.3 MHz simply reflects the

receiver bandwidth and channel spacing differences between the PRA low

band and high band. The so-called lesser arcs are centered near 10 MHz

and persist throughout the panel, wherease, the great arcs are seen only

between 23 and 00 hr above 15 MHz. b) Single frequency cuts ocross panel

a showing the intensity variations as a function of time.

Figure 3. A compilation of dynamic spectra from the PRA high frequenc y band

shown as a function of System III longitude. The corresponding Io phase

at the beginning of each panel is shown in the lower left corner of each

panel. Io phase increases approximately 490 across a panel.

Figure 4. A compilation of dynamic spectra of Io-related DAM events arranged

to shown the variation in spectral features as a function of to phase.

(a) A series of source A events (left column) and a series of source 0

events (right column) . (b) ,A series o); source H events (left column) and

a series ofsource D events (right column). All panels are aligned in GML

and the arrow at the top of each panel denotes the time at which the Io

phase was at the value corresponding to maximum occurrence probability for

the particular "source". The dates and spacecraft-Jupiter distance in

Jupiter radii (RJ ) are given for the mid-point of each Voyager-1 (VI) and

Voyager-2 (V2) spectrum.

Figure 5. A dynamic spectrum recorded by ground-based equipment in Nancay,

France on January 8, 1980. The spectrograph used has higher frequency acid

time resolution than the PRA receiver.
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Figure 6. Polarization (top panel) and total power (bottom panel) dynamic

spectrum showing t
y
pical examples of HOM, bKOM and nKOM emissions. The

spectrum spans 9-1/2 rotations of the planet and covers the frequency

range from 20 to 1320 kHz. The polarization sense convention is indicated

to the right of the top panel. Note that the bKOM events are uniformly

anticoincident with HOM and that both compnnents are looked in System III

longitude (topic marks). On the other hand, nKOM drifts in longitude.

Solar type III bursts are apparent at b 12 hr and 22 hr on May 29.

Figure 7. Dynamic spectra from the PRA low-frequency bond showing the general

appearance of bKOM. The top three panels, recorded during the

pro-encounter logs, show the occurrence concentration near longitude 2000.

The bottom panel, recorded after encounter, shows the often-observed "gap"

in the emission at this same longitude. Narrow-band drifting features can

also be seen, particularly in the top two panels.

Figure 8. Intensity versus time displays for several PRA low-frequency

channels recorded on May 27, 1979 by Voyager 2. The bKOM emission

centered at 01, 11, and 21 hr Is k,ursty in appearnace and extends across

the entire frequency range shown. The nKOM emission pt 05 and 16 hr has a

much smoother envelope and typically Is observed on only three channels.

Figure 9. The occurrence as a function of CHL of bKOM (shaded) and nKOM

(lines) during the V1 encounter period (a) and V2 encounter period (b).

Figure 10. Intensity-time tracings of gyroharmonic lines in the IPT recorded

at 17 discrete,frequency channels. Within each trace, identified by its

frequency in kHz, the vertical dimension is logarithmically pi,oportional

to intensity. The variation in time of the electron gyrofrequency and its

first six integral harmonies is shown superposed.
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