31176001673590
JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS

National Aeronautics and Space Admınıstration

Ames Research Center

Stanford University

A SEMI-ANALYTIC APPROACH TO THE SELF-INDUCED MOTION OF VORTEX SHEETS

Leonard W. Schwartz

A SEMI-ANALYTIC APPROACH TO THE SELF-INDUCED MOTION OF VORTEX SHEETS

LEONARD W, SCHWARTZ

MAY 1980

The work here presented has been supported by the National Aeronautics and Space Adminıstration under Contract NASA NCC 2-55

TABLE OF CONTENTS

SUMMARY 1V

1. Introduction 1
2. Mathematıcal Formulation 7
3. Discussion of Results 17
REFERENCES 29
TABLE I 31
TABLE II 32
Figure 1 33
Figure 2 34
Figure 3 35
Figure 4 36
Figure 5 37
Figure 6 38

A SEMI-ANALYTIC APPROACH TO THE SELF-INDUCED MOTION OF VORTEX SHEETS

SUMMARY

Abstract

The rolling-up of the tralling vortex sheet produced by a wing of finite span is calculated as a series expansion in time. For a vorticity distribution corresponding to a wing with cusped tips, the shape of the sheet is found by summing the series using Padé approximants. The sheet remans analytic for some time but ultimately develops an exponential spıral at the tıps. The centrold of vortacıty is conserved to hıgh accuracy.

1. Introduction

Within the context of the potential theory of fluid motion surfaces of velocity discontinuity may be characterızed as vortex sheets. Typıcally a shear layer in a real fluid is ıdealızed by collapsing the region of large velocity gradient onto a sheet across which the magnitude and/or dırectıon of the fluid velocıty experıences a finite Jump. The effects of viscosity are not considered; thus this concentrated vorticlty cannot diffuse and the sheet will remaln of zero thlckness for all time. The sheet can, however, deform and stretch under the influence of its own induced velocity field. For example the vortex tube surrounding the curcular jet has been observed to "roll up" into perıodic spırals. Simılar behavior has also been observed in the two-dimensional analogue. Rosenhead (1931) introduced a discrete vortex approximation to study the tame evolution of a sinusoldally perturbed two-dımensional vortex sheet across which the velocity Jumps discontinuously. The continuous sheet is replaced by a line of point vortices whose strengths vary sinusoldally. The induced velocity at a given point vortex, at any instant in time, is glven by the vector sum of the contributions from all the others. In the inıtial stages of motion, at least, the rolling-up phenomenon is clearly indicated in his results. Not all vortex sheets must deform, however. Two-dımensional gravity waves may propagate without change of form on the interface between two flulds of different constant density. Wıthin each fluid the motion is urrotational with a discontinulty in speed across the interface. The search for a wave of con-
stant form may be thought of as the determınation of that partlcular vortex sheet configuration which preserves ıts "ınıtıal" shape.

A partlcular vortex sheet whose evolution has been a toplc of extensive study is that left in the wake of a lifting surface or wing. The span-wase distrabution of vortlcity in the sheet is produced by the shedding of vortex lines as the lift varies along the wing from centerlıne to tip. A classical two-dimensional problem is obtained by considering the self-induced motion in a plane so far behind the wing that the bound vortlcity produces negligible effect (the "Trefftz-plane"). Thus Westwater (1936) computed the two-dimensional motion of a sheet of finite span, that is inıtially flat, with the varıation of vorticity produced by a wing on which the lift varies ellıptically. Following Rosenhead, he used the discrete vortex approximation using 10 point vortices of the same strength distributed along a semi-span. Each vortex 1 s placed inıtially at the centrold of vortlcity of the segment of the distribution it replaces. His results suggest an orderly rolling-up pattern starting at the edges. Earlier, Kaden (1931) found an analytic expression for the form of the sheet in the neighborhood of the edge. He consldered a semiinfinite sheet of vorticlty produced by the parabolic lift varlation that approximates the elliptic variation at the edge. Because there is no characterısitc length in the fıeld, Kaden was able to extract a simple similarity solution for the shape that, in polar coordinates, is a spiral whose form is given approximately by

$$
r=\left[\frac{\kappa t}{\pi \theta}\right]^{2 / 3}
$$

where t is time. This is a tightly-wound spiral of infinite length, a typıcal dimension of which grows as $t^{2 / 3}$. Kaden's results confirm a stıll earlier prediction of Prandtl (1927) that vortex sheets behind wıngs wall roll up towards theır tıps. Because Kaden's simılarıty solution suggests that the spiral is always completely wound up, even at $t=0^{+}$, the sheet, while sensibly flat at $t=0$, is, in fact, hlgher singular at the tip.

With the advent of automatic computing, it became possible to pursue the discrete-vortex or "multi-vortex" approximation in much greater detall. Takamı (1964) and others were unable to reproduce Westwater's smooth roll-up results. Chaotic motion was observed near the tips even at the early stages of motion. Presumably the smooth patterns obtained by Westwater were due to fortuitous inaccuracy in his time-integration scheme. Even more dısconcerting was the effect of increasing the number of discrete vortices. Rather than improve the results, the choatic motion was amplified. When two discrete vortıces moved "too close" they induced inacceptibly large velocities upon each other. Takami also considered other distributions of vorticity including the one produced by a wing with cusped tips (3/2power loading). In this case, the strength of the sheet goes to zero at the tips and smoother behavior might be expected. On the contrary, his results for this case indicate that the region of disorderly motion $1 s$ not confined to the vicinıty of the tips but extends over much of the sheet.

A serıous criticism of the multi-vortex approximation was made by Birkhoff \& Fisher (1959). They assert that the self-ınduced motion of an array of point vortıces will ultimately produce randomness
of position and hence that no true rolling-up $1 s$ possible. Perhaps motivated by this objection, several authors have modified the numerical problem through the introduction of varıous smoothing techniques. Thus Chorin \& Bernard (1973), for example, introduce an arbitrary maxımum on the permissible induced veloclty and claim that this procedure reproduces some of the features of viscosity.

A signıfıcant step foward was made by Fink and Soh (1974, 1978). After carefully comparing the multı-vortex model with the orıganal Cauchy principal-value integral, they concluded that the former involves the neglect of inıtially-small logarıthmic terms. Thas error becomes amplifled as the sheet moves and ultimately leads to the observed chaotic motions. Their improvement is simply to rediscretize at each time step. In a number of applications, including the rollingup of a trailing vortex sheet, their results remain smooth for much longer periods of time than had been previously reported.

In addition to its inherent mathematical interest, the problem of trailing vortex-sheet roll-up 1 s of signıficant practical importance. Sprelter \& Sacks (1951) show that for heavıly-loaded low-aspectratio wings, the sheet may become essentially rolled up into two vortex cores within a chord length of the wing trailing edge. This effect must be considered in a valıd analysis of plane tail performance in these cases. Additional interest followed the introduction of wide-bodied transport planes with heavily loaded wings of high aspect ratio in the early $1970^{\prime} s$. Strong vortex cores left by the passage of these large aircraft in the vicinity of alrports have been implicated as a contributing factor to accidents involving smaller aircraft.

In the present work we seek to solve for the self-induced motion of a finite two-dimensional vortex sheet without introducing any discretization at all. The position of the vortex sheet is calculated as a power serıes in time with coefficlents that are analytic functions of a curve parameter. Thus the procedure is restricted to those lift distributions that produce sheets whose motion is analytic in time inıtially.

In $\S 2$ we show that for a partıcular class of vortıcıty dıstrıbutıons $K\left(x_{0}\right)$, the coefficlents in the series will be polynomal functions of x_{0} the curve parameter. For this class an algorithm to find the coefficlents, suıtable for machıne computation, is worked out in detall. We pay partıcular attention to the case of $3 / 2$-power lift distribution, l.e. $\left(1-x_{0}^{2}\right)^{3 / 2}$ in dimensionless units. The corresponding vorticity $K\left(x_{0}\right)=3 x_{0} \sqrt{l-x_{0}^{2}}$ is the most singular distribution in the class for which the Hölder condition [see e.g. Muskhelıshvilı (1958)]

$$
\left|K\left(x_{0}\right)\right|<A\left|x_{0}-1\right|^{\alpha}, \quad 0<A<\infty, \quad 0<\alpha<1
$$

is satisfied at the edge(s) of the sheet. The Hölder condition, which $1 s$ stronger than contınuty but weaker than dıfferentiabilıty, is sufficlent to ensure existence of the Cauchy principal-value integrals from which the series coefficients are calculated.

Results of the algorithm developed in $\$ 2$ are presented in $\$ 3$. The serles for the sheet coordinates is computed to $0\left(t^{42}\right)$ for the 3/2-power lift case. The series have a finite radius of convergence; convergence fails first at the tips for a dımensionless value of time
of about 0.39. Usıng Padé approximants hıghly accurate sheet profiles are computed and axe compared with the numerical work of Takami and Fink \& Soh. The limıting singularıty is associated with the instantaneous appearance of a loosely-wound spıral of finite length. Unlike Kaden's power-low spıral, the local solution here is

$$
r=k e^{-k \theta}
$$

Once the spiral appears at the tip the analytic solution can no longer be used. One may conjecture, however, that, as time proceeds, vorticlty is drawn into the vortex core until, ultimately, it is all concentrated there.

A useful check on the series solution is provided by the invarlance of the horızontal coordinate of the vorticity centrold. Two separate checks can be formulated: one relating to a welghted sum of the series coefficlents at any order and, secondly, a global check involving numerical integration of the Padé-summed series results. Both suggest that the present results are effectively exact untll the critical time is reached.

Finally we compute the series solution that is assoclated with a slıghtly-perturbed elliptic lift variation. This "solution" is completely analytic and does not include the sıngularıty at the tip at $t=0$. Thus it is incomplete, does not conserve the position of the centrold, but it may be useful as an "outer" solution for purposes of matching.

2. Mathematical Formulation

The velocity field induced at time t, by a vortex sheet with concentrated vorticity distribution $\tilde{\mathcal{K}}(s, t)$ where s is arc length, ls given by

$$
\begin{equation*}
\bar{q}(z, t)=u-i v=-\frac{i}{2 \pi} \int_{c} \frac{\tilde{K}(s, t) d s}{z-z(s, t)} \tag{1}
\end{equation*}
$$

In the usual complex notation. The induced velocity at points on the sheet is also given by this expression if the Cauchy principal value of the integral $1 s$ taken. $\tilde{\kappa}$ is, in fact, equal to the difference in the tangential components of velocity across the sheet. Assuming that, at the inıtıal instant of time, the sheet lies on the x-axis between $-b$ and b we introduce the line parameter $x_{0} \in[-b, b]$ and the "Lagrangıan" vorticaty distribution $K\left(x_{0}\right)$ defined by

$$
\tilde{K}(s, t)=K\left(x_{o}\right) \frac{d x_{o}}{d s}
$$

Slnce the fluid is assumed to be inviscld, the time-dependence is only found in the sheet-stretching factor $d x_{o} / d s$. Equation (l) becomes, for points on the sheet,

$$
\begin{equation*}
u\left(x_{0}, t\right)-\operatorname{lv}\left(x_{0}, t\right)=-\frac{1}{2 \pi} \oint_{-b}^{b} \frac{k(\xi) d \xi}{z\left(x_{0}, t\right)-z(\xi, t)} \tag{2}
\end{equation*}
$$

The lift dıstrıbution is taken to be bılaterally symmetric; hence $K\left(x_{0}\right)$ is antisymmetric and we introduce the circulation about half the vortex sheet

$$
\begin{equation*}
\Gamma=\int_{0}^{b} \kappa\left(x_{0}\right) d x_{0} \tag{3}
\end{equation*}
$$

The problem may be made dimensionless be selecting b as reference length and b^{2} / Γ as reference time. Separately equating real and imaginary parts of (2) and recognizing that $u\left(x_{0}, t\right)=\frac{\partial}{\partial t} x\left(x_{0}, t\right)$ and $v\left(x_{0}, t\right)=\frac{\partial}{\partial t} y\left(x_{0}, t\right)$, we obtain the coupled system of nonlinear integrodifferential equations

$$
\begin{equation*}
\frac{\partial}{\partial t} x\left(x_{0}, t\right)=-\frac{1}{2 \pi} \oint_{-1}^{1} \frac{K(\xi)\left[y\left(x_{0}, t\right)-y(\xi, t)\right] d \xi}{R^{2}} \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t} y\left(x_{0}, t\right)=\frac{1}{2 \pi} \oint_{-1}^{1} \frac{K(\xi)\left[x\left(x_{0}, t\right)-x(\xi, t)\right]}{R^{2}} d \xi \tag{4b}
\end{equation*}
$$

where

$$
\begin{equation*}
R^{2}=\left[x\left(x_{0}, t\right)-x(\xi, t)\right]^{2}+\left[y\left(x_{0}, t\right)-y(\xi, t)\right]^{2} \tag{4c}
\end{equation*}
$$

We shall now seek solutions of (4) which may be developed as power serıes in time that are uniformly convergent for $x_{0} \in[-1,1]$. Clearly If such solutions exlst they must be of the form

$$
\begin{align*}
& x\left(x_{0}, t\right)=x_{0}+\sum_{1=1}^{\infty} A_{1}\left(x_{0}\right) t^{21} \tag{5a}\\
& y\left(x_{0}, t\right)=\sum_{i=0}^{\infty} B_{1}\left(x_{0}\right) t^{21+1} \tag{5b}
\end{align*}
$$

If we further assume that the vorticity is of the form

$$
\begin{equation*}
K(\xi)=\frac{\xi}{\sqrt{1-\xi^{2}}} \sum_{j=0}^{N} c_{j} \xi^{2 j} \tag{6}
\end{equation*}
$$

It can be shown that the coefficients A_{1} and B_{1} will be polynomial functions of their arguments. The dimensionless form of equation (3) requires that

$$
c_{0}+\sum_{\jmath=1}^{N} c_{\jmath}\left(\frac{2 \cdot 4 \cdot 6 \cdot \cdots 2 \jmath}{3 \cdot 5 \cdot 7 \cdot \cdots(2 \jmath+1)}\right)=1 .
$$

The form (6) includes the elliptic lift distribution and the 3/2-power distribution produced by a cusped wing planform as special cases. It does not include the distrıbutions characteristic of rectangular or lenticular planforms; indeed, no serıes development in time, starting from an inltially flat sheet, is possıble for these later cases.

When (5) and (6) are substituted in (4) and the coefficients of the various series in t are collected, the Cauchy integrations can be performed using the famıly of "alrfoll integrals"

$$
\begin{equation*}
\mathscr{I}_{\mathrm{n}}=\oint_{-1}^{1} \frac{\xi^{n} \mathrm{~d} \xi}{\sqrt{1-\xi^{2}}\left(x_{0}-\xi\right)} \quad, \quad n=1,2, \ldots . \tag{7}
\end{equation*}
$$

The expressions for $\mathscr{I}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)$ may be found recursively according to the scheme

$$
\begin{align*}
& \mathscr{I}_{1}=-\pi \\
& \mathscr{I}_{\mathrm{n}}=x_{0} \mathscr{I}_{\mathrm{n}-1} \quad \text { (n even) } \tag{8}\\
& \mathscr{I}_{\mathrm{n}}=x_{0} \mathscr{I}_{\mathrm{n}-1}-\pi \frac{1 \cdot 3 \cdot 5 \cdots(\mathrm{n}-2)}{2 \cdot 4 \cdot 6 \cdots(\mathrm{n}-1)} \quad \text { (n odd). } .
\end{align*}
$$

It is important to note that $\mathscr{I}_{n}\left(x_{0}\right)$ are defined only on the open interval (-1, 1).

The serıes expansion procedure will now be described in detall. Several intermediate varıables will be introduced both for computational convenience and also to reduce the problem to one that is only quadratically nonlinear. We define $A_{0} \equiv x_{0}$ and let

$$
\begin{equation*}
C_{1}=A_{i}\left(x_{0}\right)-A_{1}(\xi) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i}=B_{i}\left(x_{0}\right)-B_{1}(\xi) . \tag{10}
\end{equation*}
$$

From equation (4c),

$$
\begin{equation*}
R^{2}=\sum_{k=0}^{\infty} E_{k} t^{2 k} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{k}=\sum_{1=0}^{k} C_{1} C_{k-1}+\sum_{1=1}^{k} D_{1-1} D_{k-1} \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{y\left(x_{o}, t-y(\xi, t)\right.}{R^{2}}=\sum_{J=0}^{\infty} F_{J} t^{2 J+l} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x\left(x_{0}, t\right)-x(\xi, t)}{R^{2}}=\sum_{J=0}^{\infty} G_{J} t^{2 J} \tag{14}
\end{equation*}
$$

After equating coefficlents of like powers of t, we obtaln, from (13) and (14) respectively,

$$
\begin{align*}
& \mathrm{E}_{\mathrm{O} 1} \mathrm{~F}_{1} \mathrm{D}_{1}-\sum_{\mathrm{k}=1}^{1} \mathrm{E}_{\mathrm{k}} \mathrm{~F}_{1-\mathrm{k}} \tag{15}\\
& \mathrm{E}_{0} \mathrm{G}_{1}=\mathrm{C}_{1}-\sum_{\mathrm{k}=1}^{1} \mathrm{E}_{\mathrm{k}} \mathrm{G}_{1-k} \tag{16}
\end{align*}
$$

for all positive integers 1. The summations are identically zero when $1=0$. Finally we differentiate equations (5) with respect to t and substitute into (4a) and (4b) to obtain

$$
\begin{align*}
-4 \pi(1+1) A_{1+1} & =\oint_{-1}^{1} k(\xi) F_{i} d \xi, \tag{17a}\\
2 \pi(21+1) B_{1} & =\oint_{-1}^{1} K(\xi) G_{1} d \xi, \tag{17b}
\end{align*}
$$

for $\quad \geq 0$.
Equations 9, 10, 12, and 15-17 form a complete system for the successive determination of the coefficients A, \ldots, G. If $K(\xi)$ is of the form (6), A_{i} and B_{1} will be polynomials in X_{0} and C_{1}, D_{1}, E_{1}, $\left(x_{0}-\xi\right) F_{1}$ and $\left(x_{0}-\xi\right) G_{1}$ are polynomıals in x_{0} and ξ. The degree
of these polynomials, for each 1, will increase, in general, with increasing N. If, for example, $N=1$ in equation (6) it can be established by induction that a sufficlent form $1 s$ given by

$$
\begin{align*}
& A_{i}\left(x_{0}\right)=\sum_{j=0}^{i} \alpha_{1 j} x_{0}^{2 J+1}, \tag{18a}\\
& B_{i}\left(x_{0}\right)=\sum_{j=0}^{1+1} \beta_{1 j} x_{o}^{2 J}, \tag{18b}\\
& E_{k}=\left(x_{0}-\xi\right)^{2} \sum_{t=0}^{2 k} E_{k t}\left(x_{0}\right) \xi^{t}, \tag{18c}\\
& F_{1}=\frac{1}{\left(x_{0}-\xi\right)} \sum_{s=0}^{2 i+1} F_{1 s}\left(x_{0}\right) \xi^{s}, \tag{18d}
\end{align*}
$$

and

$$
\begin{equation*}
G_{1}=\frac{1}{\left(x_{0}-\xi\right)} \sum_{s=0}^{21} G_{1 S}\left(x_{0}\right) \xi^{s} \tag{18e}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{k t}=\sum_{p=\left[\frac{t+1}{2}\right]}^{k} E_{k t p} x_{o}^{2 p-t}, \tag{18f}\\
& F_{1 s}=\sum_{j=1+[s / 2]}^{1+1} F_{1 s j} x_{0}^{2]-1-s},
\end{align*}
$$

and

$$
\begin{equation*}
G_{1 s}=\sum_{j=\left[\frac{s+1}{2}\right]}^{1} G_{1 s j} x_{0}^{2 j-s} \tag{18h}
\end{equation*}
$$

Here [] denotes the integer-part function. Substituting (18a), (18b) and (18f) into (12) and using identities of the form

$$
x_{0}^{2 J}-\xi^{2 J}=\left(x_{0}-\xi\right) \sum_{r=0}^{2 J-1} x_{o}^{2 j-1-r} \xi^{r}
$$

to elımınate the explıcit dependence on the intermedıate varıables C_{1} and D_{1} we obtain, after some manipulation,

$$
\begin{align*}
E_{k t p} & =\sum_{1=0}^{k} \sum_{j=\operatorname{Max}[0, p+1-k]}^{M_{11 n}[p, 1]} \alpha_{1]} \alpha_{k-1, p-j} \gamma_{t p j} \\
& +\sum_{1=1}^{k} \sum_{j=1 \operatorname{Hax}[1, p+1-k-1]}^{M_{1 n}[p, 1]} \beta_{1-1, j} \beta_{k-1, p-j+1} \bar{\gamma}_{t p]} \tag{19}
\end{align*}
$$

The new functions introduced in (19) are defined by

$$
\left.\left.\gamma_{t p]}=1+M_{1 n}[t, 2 p-t, 2], 2 p-2\right]\right]
$$

and

$$
\left.\bar{\gamma}_{t p J}=\operatorname{Mın}[t+1,2 p-t+1,2], 2 p-2 j+2\right] .
$$

Summations in (19) are taken to be 1dentically zero when the lower lımıt exceeds the upper.

Expressions for the triply-subscripted elements $F_{i s j}$ and $G_{1 s j}$ may be obtained from (15) and (16) as

$$
\begin{align*}
& \sum_{j=1+[s / 2]}^{1+1}\left(F_{1 s]}-\beta_{1 j}\right) x_{0}^{2 j-1-s} \\
& =-\sum_{k=1}^{1} \sum_{t=M a x[0, s+2 k-21-1]}^{\operatorname{Min}[2 k, s]} \sum_{p=\left[\frac{t+1}{2}\right]}^{k} \sum_{m=1+\left[\frac{s-t}{2}\right]}^{i-k+1} E_{k t p} F_{1-k, s-t, m} x_{0}^{2 p+2 m-1-s} \\
& (s=0,1, . .21+1) \tag{20}
\end{align*}
$$

and

$$
\begin{gather*}
\sum_{j=\left[\frac{j+1}{2}\right]}^{1}\left(G_{1 s]}-\alpha_{1]}\right) x_{0}^{2 J-s} \\
=-\sum_{k=1}^{1} \sum_{t=\operatorname{Max}[0, s+2 k-21]}^{M 1 n[2 k, s]} \sum_{p=\left[\frac{t+1}{2}\right]}^{\sum_{m=\left[\frac{s-t+1}{2}\right]}^{i-k} E_{k t p} G_{i-k, s-t, m} x_{o}^{2 p+2 m-s}} \\
(s=0,1, . . .21) . \tag{21}
\end{gather*}
$$

Note that the last subscript in $F_{1 S J}$ and $G_{1 S J}$ on the lefthand side of (20) and (21) is given implicitly or computed from the exponents of x_{0} in the quadruple sums. While explicit expressions sımılar to those obtained for $E_{k t p}$ in (19) are possible in princıple, the present procedure is at least as efficient computationally and avolds a great deal of laborıous analysıs.

The system of equations for the coefficients is complete once the reduced form of equations (17) is obtained. For the special case of $3 / 2$-power wing loading, $c_{0}=-c_{1}=3$, the induced velocities are contınuous at the edges of the sheet and equations (17) can be written
in a relatively simple form. The relevant famıly of Cauchy untegrals 15

$$
I_{n}=\frac{1}{\pi} \oint_{-1}^{1} \frac{\xi^{n} \sqrt{1-\xi^{2}}}{x_{0}-\xi} d \xi \quad, \quad n=1,2, \ldots .
$$

which are related to the orıginal famıly according to

$$
I_{\mathrm{n}}=\frac{1}{\pi}\left(\mathscr{I}_{\mathrm{n}}-\mathscr{F}_{\mathrm{n}+2}\right)
$$

I_{n} can be computed recursively as

$$
\begin{aligned}
& I_{1}=x_{0}^{2}-1 / 2, \\
& I_{n}=x_{0} I_{n-1} \quad(n \text { even }), \\
& I_{n}=x_{0} I_{n-1}-\frac{1 \cdot 3 \cdot 5 \cdots(n-2)}{2 \cdot 4 \cdot 6 \cdots(n+1)} \quad \text { (n odd) },
\end{aligned}
$$

from equation (8).
They are even or odd polynomials in x_{o}, of the form

$$
I_{n}=\sum_{p=0}^{\left[\frac{n+1}{2}\right]} K_{p} x_{o}^{n+1-2 p}
$$

where K_{p} are determined by

$$
\begin{aligned}
& K_{o}=1 \\
& K_{p+1}=\frac{2 p-1}{2 p+2} K_{p} \quad p=0,1, \ldots
\end{aligned}
$$

Equations (17) now become

$$
\begin{equation*}
\sum_{\ell=0}^{1+1} \alpha_{1+1, \ell} x_{0}^{2 \ell+1}=-\frac{3}{4(1+1)} \sum_{s=0}^{21+1} \sum_{j=1+[s / 2]}^{1+1} \sum_{p=0}^{1+[s / 2]} k_{p} F_{i s j} x_{0}^{2(\jmath-p)+1} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\ell=0}^{1+1} \beta_{1 \ell} x_{0}^{2 \ell}=\frac{3}{2(21+1)} \sum_{s=0}^{21} \sum_{J=\left[\frac{s+1}{2}\right]}^{1} \sum_{p=0}^{1+[s / 2]} K_{p} G_{i s j} x_{0}^{2(J-p)+2} \tag{24}
\end{equation*}
$$

Starting with $\alpha_{10}=1$ and $1=0$, the five coefficient equatıons are solved in the order (19), (21), (24), (20), (23). The index 1 is then incremented by one and the next order of calculation is performed.

3. Discussion of Results

The special case corresponding to the $3 / 2$-power lift distribution has been computed to $0\left(t^{42}\right)$ using an optimized FøRTRAN compıler on the Stanford IBM 370. Execution time for a solution of order $t^{2 N}$ was found to be proportional to N^{5} which is consistent with the number of nested summations in the algorithm of the last section. For $2 \mathrm{~N}=42$, the computation required 2.2 sec of CPU time. Doubleprecision (16-place) arıthmetic was used and all coefficients are accurate to at least 4 places even at the hıghest order. Extended preclsion would be necessary however for a solution of still higher order.

Though $O\left(t^{7}\right)$ the coefficlents in the double series for x and y can be recognized as rational numbers:

$$
\begin{align*}
x_{0}\left(x_{0}, t\right) & =x_{0}+x_{0}\left(\frac{9}{8}-\frac{9}{4} x_{0}^{2}\right) t^{2}-x_{0}\left(\frac{135}{128}-\frac{135}{32} x_{0}^{2}+\frac{27}{8} x_{0}^{4}\right) t^{4} \tag{25a}\\
& +x_{0}\left(\frac{8343}{5120}-\frac{31509}{2560} x_{0}^{2}+\frac{4131}{160} x_{0}^{4}-\frac{81}{5} x_{0}^{6}\right) t^{6}+0\left(t^{8}\right), \\
y\left(x_{0}, t\right) & =-\left(\frac{3}{4}-\frac{3}{2} x_{0}^{2}\right) t+\left(\frac{9}{32}-\frac{9}{8} x_{0}^{4}\right) t^{3} \\
& -\left(\frac{81}{256}-\frac{81}{128} x_{0}^{2}-\frac{81}{32} x_{0}^{4}+\frac{567}{160} x_{0}^{6}\right) t^{5} \tag{25b}\\
& +\left(\frac{7047}{14336}-\frac{243}{112} x_{0}^{2}-\frac{73629}{17920} x_{0}^{4}+\frac{7533}{320} x_{o}^{6}-\frac{90639}{4480} x_{0}^{8}\right) t^{7} \\
& +0\left(t^{9}\right) .
\end{align*}
$$

The coefficlents in (25) through $O\left(t^{4}\right)$ agree with those calculated by Professor M. D. Van Dyke as reported by Takamı (1964).

For a given value of t, the coordınates of a point (x, y) lyang on the vortex sheet can be found by summing the series in equations (5a) and (5b). Since only a finite number of terms in these series are known, their sum, for each value of x_{0}, can be approxımated by considering the convergence of the sequence of "diagonal Pade approximants" formed from such serıes. Padé approximants are ratıos of polynomıals with coefficients so chosen so that, when expanded for small argument, the power series expansions of these ratios agree with the orıginal series to appropriate order. Diagonal approximants have the additional property that the order of the numerator and denominator are equal. Thus if the power series for a function $f(\varepsilon)$ is known through $O\left(\varepsilon^{2 N}\right)$,

$$
f(\varepsilon)=a_{0}+a_{1} \varepsilon+\cdots+a_{2 N} \varepsilon^{2 N}+o\left(\varepsilon^{2 N+1}\right)
$$

we can, in general, form an approxımant, denoted by $[\mathrm{N} / \mathrm{N}] \mathrm{f}$, so that

$$
\mathrm{f}(\varepsilon)=[\mathrm{N} / \mathrm{N}] \mathrm{f}+0\left(\varepsilon^{2 \mathrm{~N}+\mathrm{l}}\right)
$$

where

$$
[N / N] f=\frac{b_{0}+b_{1} \varepsilon+\cdots+b_{N} \varepsilon^{N}}{1+c_{1} \varepsilon+\ldots+c_{N} \varepsilon^{N}},
$$

and the b_{J} and c_{J} are determıned unıquely from $a_{0}, \ldots, a_{2 N}$ for given N. The sequence of approxımants so formed will usually converge much faster than the orıganal series and can converge to the analytic continuation of the series if ε lies outside the radius
of convergence. A number of examples of the use of this technıque in the solution of fluld mechanics problems can be found in Cabannes (1976).

Figure 1 shows two configurations of the vortex sheet drawn for $t^{2}=.05$ and .15. These have been computed as [10/10] approximants to the t^{2}-serles for $x\left(x_{0}, t\right)$ and $y\left(x_{0}, t\right) / t$. Also shown in the figure is the induced velocity profile at $t=0$ in arbitrary units. For $t^{2}=.05$, the sequence of diagonal approximants converged to 14-decımal places for all x_{0} in $[0,1]$. Even the $[3 / 3]$ approximants constructed from only seven terms in each series in (5) agree to 7-decımal places with the converged results. For $t^{2}=.15$, on the other hand, 5-place convergence was obtained for $x_{0} \leq 0.998$. We will show below that a singularity has appeared in the t^{2}-series to destroy convergence for x_{o} slightly greater than this value. Notace that the sheet has curved back for $t^{2}=.15$; the value of the parameter x_{0} where the tangent to the sheet is vertical is about 0.975.

In Figure 2 we compare the results of the present method with the multr-vortex results of Takamı (1964) and the numerıcal results of Fink and Soh (1974). Both authors have produced solutions for $t^{2}=.16$. Takamı's results exhibıt the partial dısorder character1stıc of the simple multı-vortex representation. Fink and Soh have computed a smooth shape for the sheet that is in general agreement with the [10/10] approximant solution except near the tip of the sheet. Their relatively coarse point spacing is, apparently, unable to resolve the detalls in this region. In fact, the sheet exhibıts
a singularity at $x_{0} \approx 0.997$ for this value of t^{2}. Convergence of the dlagonal approximants failed for $x_{0}>.990$ and we have only drawn the sheet up to this polnt.

For a bilaterally symmetric vortex sheet it can be shown that the horizontal position of the centrold of vorticity, which in our parametric notation is defined by

$$
\begin{equation*}
x=\int_{0}^{1} x\left(x_{0}, t\right) k\left(x_{0}\right) d x_{0} \tag{26}
\end{equation*}
$$

is an invariant of the motion. We have

$$
\begin{equation*}
\frac{d x}{d t}=\int_{0}^{1} \frac{\partial x}{\partial t}\left(x_{0}, t\right) k\left(x_{0}\right) d x_{0} \tag{27}
\end{equation*}
$$

Using equation (4a), the raght side of (27) can be written as

$$
\begin{align*}
&-\frac{1}{2 \pi} \int_{0}^{1} k\left(x_{0}\right) d x_{0} \oint_{-1}^{1} k(\xi) \frac{\left[y\left(x_{0}, t\right)-y(\xi, t)\right]}{R^{2}} d \xi \\
&=-\frac{1}{2 \pi}\left\{\int_{0}^{1} \oint_{0}^{1} k\left(x_{0}\right) \kappa(\xi) \frac{\left[y\left(x_{0}, t\right)-y(\xi, t)\right]}{R^{2}} d \xi d x_{0}\right. \tag{28}\\
&\left.-\int_{0}^{1} \int_{0}^{1} \frac{k\left(x_{0}\right) \kappa(\xi)\left[y\left(x_{0}, t\right)-y(\xi, t)\right] d \xi d x_{0}}{\left[x\left(x_{0}, t\right)+x(\xi, t)\right]^{2}+\left[y\left(x_{0}, t\right)-y(\xi, t)\right]^{2}}\right\}
\end{align*}
$$

where we have used the symmetry requirements $K(-\xi)=-K(\xi), y(-\xi, t)=$ $y(\xi, t), x(-\xi, t)=-x(\xi, t)$ to obtain the last integral. Each integral on the right of (28) is invariant under the interchange of the dummy arguments x_{0} and ξ and hence $1 s$ equal to zero.

The fact that $d x / d t$ is zero can be used in two different ways to check our solution. Substituting expansion (5a) in (27) we obtain ımmedlately

$$
\int_{0}^{1} A_{i}\left(x_{0}\right) k\left(x_{0}\right) d x_{0}=0, \quad 1=1,2, \ldots
$$

With $A_{i}=\sum_{j=0}^{1} \alpha_{1 \jmath} x_{o}^{2 \jmath+1}$ and $K=3 x_{o} \sqrt{1-x_{0}^{2}}$, the integrations can be performed to yleld a check on the sums of the coefficients at each order in $1:$

$$
\sum_{j=0}^{1} \alpha_{1 j} k_{j}=0,1=1,2, \ldots
$$

where

$$
k_{\jmath}=\frac{1 \cdot 3 \cdot 5 \cdots(2 \jmath+1)}{2 \cdot 4 \cdot 6 \cdots(2 \jmath+4)}
$$

Performing this check numerlcally on $\alpha_{1 j}$ produces a result for each 1 that $1 s$ at least 16 orders of magnitude less than the largest coefficlents in the sum. Thus the solution satısfies the conslstency relation at each order; we also have an estimate for the round-off error in the coefficients.

The invarlance of X can also be used to check the padé-summed results for $x\left(x_{0}, t\right)$. Using 160 equally spaced values of x_{0} on [0,1] and Simpson's rule to integrate (26) numerically for $t^{2}=.14$ produced a result which differed by only 0.02 per cent from the correct value $\mathrm{X}=3 \pi / 16$.

For the 3/2-power lift distribution that we have treated, the vortex sheet is an analytıc curve for $\left|x_{0}\right| \leq 1$ in the inltial stages of motion. A sıngularıty, that is always present on the analytic continuation of the sheet, l.e. $\left|x_{0}\right|>1$, moves inward as tıme progresses and arrives at $x_{0}=1$ when $t^{2}=t_{*}^{2}$.

The nature of the singularıty and the corresponding value of t_{*}^{2} can be estimated by use of a graphıcal procedure due to Domb \& Sykes (1957). They note that $\mathbf{1 f}$

$$
\begin{equation*}
f(\varepsilon)=\sum_{n=0}^{\infty} a_{n} \varepsilon^{n}=k\left(\varepsilon_{*}-\varepsilon\right)^{\alpha}, \alpha \neq 0,1, \ldots \tag{29a}
\end{equation*}
$$

then

$$
\begin{equation*}
a / a_{n-1}=\varepsilon_{*}^{-1}[1-(1+\alpha) / n] \tag{29b}
\end{equation*}
$$

which follows from the bınomıal expansion. Thus, for these special cases, $1 f$ we plot the ratios a_{n} / a_{n-1} versus $1 / n$, the polnts will be on a stralght line. In general the unknown function f can be thought of as the sum of a number of singularlties; if the one closest to the origan of ε is of the above type, then the "Domb-Sykes plot" will ultımately tend towards a stralght line as $1 / n$ becomes small. Values of ε_{*} and α appropriate to this singularity can be found
from the inclanation and intercept of this straight line. When only a finlte number of ratios are know, estimates of ε_{*} and α can stıll be made if the plotted points tend towards a straight-line asymptote. It has not generally been recognized that (29) is stıll valıd for complex values of a_{n}, in which case the asymptote will be a stralght line in $\left(1 / n, \mathscr{R} \in\left\{a_{n} / a_{n-1}\right\}, \mathscr{F}_{m}\left\{a_{n} / a_{n-1}\right\}\right)$-space. At the $t i p$ of the sheet, $x_{o}=1$, the coefficients in the t^{2} serles for x and y in equations (5) have been used to construct the ratios $A_{n}(1) / A_{n-1}(1)$ and $B_{n}(1) / B_{n-1}(1)$. They are given in Table I. While each set of ratios appears to tend towards a limıt, a careful examination reveals that these limits, if they exist, are somewhat different. Because of the intimate coupling between the two series implied by the governing equations (4a, b), this difference in the limats is unacceptible. That 15 , for a given value of x_{0}, the series for x cannot converge for certain values of t^{2} while the series for y, which is derived from $1 t$, diverges for these values. A more consistent interpretation is obtained by considering the complex series for the quantity

$$
\begin{equation*}
x(1, t)+1 y(1, t) / t=\sum_{n=0}\left[A_{n}(1)+1 B_{n}(1)\right] t^{2 n} \equiv \sum_{n=0} c_{n}(1) t^{2 n} \tag{30}
\end{equation*}
$$

The real and imaginary parts of the ratio $C_{n}(1) / C_{n-1}(1)$ are glven in Table II and are also plotted in Figure 3. The abscissa has been taken as $1 /(n+5 / 4)$; the shift in n, related to the local behavior of a regular function which multiplies the singular one near t_{*}^{2} is determined so as to minimize the curvature in the real-ratio
plot. The stralght line shown in the flgure has the equation

$$
\mathscr{R e}\left\{c_{n} / C_{n-1}\right\}=\frac{1}{6.7286}\left[1+\frac{5 / 2}{n+5 / 4}\right]
$$

This line provides a virtually perfect fit to the ratios for $n \geq 7$. The points corresponding to the small imaginary part of the ratios do not lie on a straight line. They can be fitted to a smooth curve, however, whlch plausıbly can be extrapolated to the origin. Near the critical value $t_{*}^{2}=0.14862+i 0.0$, the left side of (30) varles locally lıke

$$
\begin{equation*}
R_{1}\left(t^{2}\right)+R_{2}\left(t^{2}\right)\left[1-\frac{t^{2}}{t_{*}^{2}}\right]^{3 / 2-.0671} \tag{31}
\end{equation*}
$$

The imaginary part of the exponent is estimated from the slope of the curve fitting $\mathscr{I}_{m}\left\{c_{n} / C_{n-1}\right\}$ at the origin. Consequently, its value connot be considered as accurate as \mathscr{R} e $\{\alpha\}=3 / 2$. Because of the shift in the horizontal axis in Figure 3 , the regular function R_{2} probably behaves locally as $t^{-5 / 2}$. The regular functions R_{1} and R_{2} could be estimated by comparing the model equation (31) with the original series but this has not been attempted.

From the model function (31) the local behavior of the vortex sheet, specifically the trajectory of the sheet tip, may be deduced. Let

$$
\begin{align*}
z & =\operatorname{Re}^{1\left(\theta-\theta_{0}\right)}=A\left[x(1, t)-x\left(1, t^{*}\right)+1 \frac{\left\{y(1, t)-y\left(1, t^{*}\right)\right\}}{t^{*}}\right] \\
& =1-\left(\frac{t}{t^{*}}\right)^{2} \exp \left\{-.067 i \ln \left[1-\left(\frac{t}{t^{*}}\right)^{2}\right]\right\} \tag{32}
\end{align*}
$$

where A and θ_{0} are real constants, representing the dilatation and rotation necessary to match the local behavior to the "outer" solution. Equation (32) represents a spiral of the form

$$
\left(\theta-\theta_{0}\right)=-.0671 \ln R^{2 / 3}
$$

or

$$
\begin{equation*}
R=e^{-22.4\left(\theta-\theta_{0}\right)} \tag{33}
\end{equation*}
$$

Unlıke Kaden's (1931) sımılarıty solution for the tip region of the vortex sheet shed by an elliptically-loaded wing, $R=k / \theta^{2 / 3}$, which is a tightly-round spiral of infinite length, (33) represents a loosely-wound spiral whose length, as θ varıes from θ_{0} to infinity, is finite. The numerical constant in (33) shows that in one revolution the spiral radlus decreases by about 60 orders of magnitude:

Taking the time derıvatıve of (31) reveals that the velocity components remain finlte as $t \rightarrow t^{*}$ at the sheet tip. Since the sheet is continuous for all $t \leq t^{*}$, the spiral in (33) can also represent the spacial form of the sheet in the neighborhood of the tıp at $t=t^{*}$. Because of the exponential character of the spiral and its very loose winding, it is not surprising that the roll-up cannot be observed in the sheet configurations in Figures 1 and 2.

As mentioned above, the radius of convergence of the series in time varies with x_{0}. The procedure used to predict t_{*}^{2} for $x_{0}=1$ was also employed for $x_{0}=0.999$ and 1.001 to yield the first-order varıation

$$
t_{*}^{2}\left(x_{0}\right) \xlongequal{\cong} .14862-2.88\left(x_{0}-1\right)
$$

near $x_{0}=1$. For significantly smaller values of x_{0}, the ratioplot procedure did not glve accurate results, presumably due to the complexity of the pattern of singularities. It is clear, however, that the radius of convergence increases as $\left|x_{0}\right|$ is reduced. For values of t^{2} greater than . 14862 , the series solution cannot predict the evolution of the vortex sheet because the vorticity distribution is no longer analytic on it. One may conjecture however that the vortlaty between the critıcal value of x_{0} and $x_{0}=1$ becomes concentrated at the center of the spiral. The amount of vortlcity at this polnt wall increase with time; $1 f$, ultimately, all the vortlcıty becomes concentrated there, this point must lie at the centrold location, $X=3 \pi / 16$, and will move downward with the constant speed predicted for a counter-rotating vortex pair.

As the sheet deforms from its inltially flat configuration, vorticlty is convected outward towards the tips. The vortex intensity is glven by

$$
\begin{equation*}
\tilde{K}(s, t)=K\left(x_{0}\right) /\left(d s / d x_{0}\right) \tag{34}
\end{equation*}
$$

which varies as the sheet is stretched. Since

$$
\left(\frac{d s}{d x_{0}}\right)^{2}=\left(\frac{\partial x_{0}}{\partial x_{0}}\right)^{2}+\left(\frac{\partial y}{\partial x_{o}}\right)^{2}
$$

the stretching may be computed using Pade sums for the serles $\sum_{n} A_{n}^{\prime}\left(x_{0}\right) t^{2}$ and $t \sum_{n} B_{n}^{\prime}\left(x_{0}\right) t^{2 n}$. Figure 4 shows $d x / d x_{o}$ plotted versus x_{0} for $t^{2}=0,0.05$ and 0.148 . Combining these results wath $K\left(x_{0}\right)$ gives $\tilde{K}(s, t)$ according to (34). It is plotted versus
x in Figure 5. Note that \tilde{K} is a double-valued function of x near the tip for $t^{2}=0.148$ because the sheet has bent back towards the center.

We shall now consider formal power series solutions for vortex sheets whose vortıcity distrabutions differ slightly from that produced by ellıptıc loading. For strıctly ellıptic loading, the aırfoll integral (7) predıcts constant downwash velocity on the open interval $x_{0} \in(-1,1)$. To the extent that we restrict consideration here to analytıc sheet configurations, the "formal" series solution 1 s simply

$$
\begin{align*}
& x\left(x_{0}, t\right)=x_{0} \\
& y\left(x_{0}, t\right)=-\frac{1}{2} t \tag{35}
\end{align*}
$$

This "solution" is incomplete, however. As $x_{0} \rightarrow 1^{+}$, for example, infinıte upwash results. Because the induced velocities are not contınuous at the tips, the vortex sheet will not be analytic there. Because the discontinuity is infinite, moreover, the vertical induced velocity at $t=0$ must include, at leading order, a singularıty of the nature of a Dirac δ-function there. This infinite velocity, directed at right angles to the tangent to the sheet, causes the tip to roll up intantaneously into the simılarıty form predıcted by Kaden. The solution (35) is valid however at sufflclent distance from the tlps for sufficiently small time. It is, in essence, an "outer solution" which must be joined in some way to Kaden's description of the, inıtıally small, vortex core.

Similar "outer" solutions can be produced by the present method for slightly perturbed elliptic distributions. Using the algorithm described in 52, we consıder the two distributions

$$
\begin{equation*}
\kappa_{1}\left(x_{0}\right)=\frac{15 x}{14 \sqrt{1-x_{0}^{2}}}\left(1-\frac{x^{2}}{10}\right) \tag{36a}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{2}\left(x_{0}\right)=\frac{15 x}{16 \sqrt{1-x_{0}^{2}}}\left(1+\frac{x^{2}}{10}\right) \tag{36b}
\end{equation*}
$$

The serles method generates the terms forced by these vorticity distributions using the integrals (7); the resulting solution is, of course, incomplete but fills the same role as does (35) for the pure elliptic case.

Figure 6 shows the shape of the sheet, computed by the Padé method, at a later time, for each distribution in (36). In both cases, the time serles possess finite radii of convergence; again convergence falls first at the tips. The horizontal location of the centrold is not invariant for these incomplete solutions.

REFERENCES

Birkhoff, G. \& Fisher, J., 1959, Do vortex sheets roll up? Rend. Circ. Mat. Palermo, Sec 2, 8, 77-90.
Cabannes, H. (ed.), 1976, Padé approximants method and its applicatıon to mechanics. Berlin: Springer.

Chorin, A. J. \& Bernard, P. S., 1973, Discretization of a vortex sheet with an example of roll-up. J. Comp. Phys. 13, 423-429.

Domb, C. \& Sykes, M. F., 1957, On the susceptıbılity of a ferromagnetic above the curie point. Proc. Royal Soc. London A, 240, 214-228.

Fink, P. T. \& Soh, W. K., 1974, Calculation of vortex sheets in unsteady flow and applications in ship hydrodynamics. Proceedings of the 10th Symposium on Naval Hydrodyn., 463-489, u. s. Office of Naval Research

Fink, P. T. \& Soh, W. K., 1978, A new approach to roll-up calculatıons of vortex sheets. Proc. Royal Soc. London A, 362, 195-209.
Kaden, H., 1931, Aufwıcklung einer ustabılen unstetıgkeıts fläche. Ingen. Arch., 2, 140-168.

Muskhelıshvilı, N. I., 1959, Singular integral equations. WoltersNoordhoff Publishıng, Gronıngen.

Prandtl, L. \& Betz, A., 1927, Vier Abhandlungen zur hydro-und aerodynamik, Gottıngen.

Rosenhead, L., 1931, The formation of vortaces from a surface of discontinulty. Proc. Royat Soc. London A, 134, 170-192.

Spreıter, J. R. \& Sacks, A. H., 1951, The rolling-up of the trailing vortex sheet and its effect on the downwash behind wings. J. Aero. Sci. 18, 21-32.

Takamı, H., 1964, A numerıcal experıment with discrete-vortex approximation, with reference to the rolling-up of a vortex sheet. AFOSR 64-1536 (SUDAER 202) Department of Aeronautics and Astronautics, Stanford Unıversity.

Westwater, F. L., 1935, The rolling-up of the surface of discontinuity behind an aerofoll of finıte span. Aeronautics Research Council Reports and Memoranda, No. 1692.

TABLE I: Ratıos of Coefficients from Equatıons (5) for $x_{0}=1$

n	$A_{n}(1) / A_{n-1}(1)$	$B_{n}(1) / B_{n-1}(1)$
1	-1. 125	-1. 125
2	. 1875	. 825
3	5.025	3.5601
4	2.6980	3.4615
5	3.6734	4.0983
6	3.9945	4.4265
7	4.3389	4.7077
8	4.5869	4.9226
9	4.7915	5.0976
10	4.9584	5.2414
11	5.0979	5.3620
12	5.2161	5.4646
13	5.3176	5.5528
14	5.4055	5.6295
15	5.4826	5.6968
16	5.5505	5.7563
17	5.6110	5.8093
18	5.6650	5.8569
19	5.7137	5.8997
20	5.7577	5.9386

TABLE II: Ratıos of Complex Coefficients $C_{n}(1) / C_{n-1}(1)$ from Equation (30)

n	$\mathscr{R} e\left\{C_{n}(1) / C_{n-1}(1)\right\}$	$\mathscr{I}_{\mathrm{m}}\left\{C_{n}(1) / C_{n-1}(1)\right\}$
1	-1.125	0.0
2	. 4170	. 3060
3	3.6833	-. 4066
4	3.3434	. 2761
5	4.0558	. 1275
6	4.3911	. 1185
7	4.6827	. 0927
8	4.9031	. 0786
9	5.0820	. 0673
10	5.2286	. 0588
11	5.3513	. 0522
12	5.4554	. 0468
13	5.5448	. 0425
14	5.6225	. 0388
15	5.6906	. 0358
16	5.7508	. 0331
17	5.8044	. 0308
18	5.8524	. 0289
19	5.8957	. 0271
20	5.9349	. 0256

Figure 1. The vortex sheet configuration for 2 values of t^{2};

$$
K\left(x_{0}\right)=3 x_{0} \sqrt{1-x_{0}^{2}} .
$$

Figure 2. Comparison of present results with Takamı, --•--•-, and Fink \& Soh, o o o; $t^{2}=.16, K\left(x_{0}\right)=3 x_{0} \sqrt{1-x_{0}^{2}}$.

Figure 3. Domb-Sykes plots for the series $\sum_{n=0}^{\infty} C_{n}(1) t^{2 n}$ in equation (30).

Figure 4. Vortex-stretching parameter for 3 values of time; $K\left(x_{0}\right)=3 x_{0} \sqrt{1-x_{0}^{2}}$.

Figure 5. Varıation of vortex sheet strength for 3 values of time; $K\left(x_{0}\right)=3 x_{0} \sqrt{1-x_{0}^{2}}$.

Figure 6. Sheet configurations from "incomplete" solution for perturbed elliptic distrıbutions.

End of Document

