
I 

l 
I 
! 

. I 
I 
! 

1111111111111111111111111111111111111111111111111111111111111111 I 

3 1176 00167 3590 

JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS 

NI\S/\ 
National Aeronautics and 
Space Administration 

Ames Research Center 

NASA-CR-166182 
19810012486 

JIAA TR - 32 

Stanford University 

~,.~ -t ~ .. - ... -.~ ...... -,........,.,"- ....... --. - ... ~., 

".4;1, \," ... ' __ ... :. :: .... _ .. , r: A --' :.., " l ' -=.a 

A SEMI-ANALYTIC APPROACH TO THE 
SELF-INDUCED MOTION OF VORTEX SHEETS 

Leonard W. Schwartz 

r ; '\ f 

MAY 1980 
I , Ir 

111111111111111111111111111111111111111111111 
NF02471 

I 
~ , 

The work here presented has been supported by the 
National Aeronautics and Space Administration under Contract 

NASA NCC 2-55 

https://ntrs.nasa.gov/search.jsp?R=19810012486 2020-03-21T13:14:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42861206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JIAA TR - 32 

A SEMI-ANALYTIC APPROACH TO THE 

SELF-INDUCED MOTION OF VORTEX SHEETS 

LEONARD W, SCHWARTZ 

MAY 1980 

The work here presented has been supported by the 
Nat10nal Aeronaut1cs and Space Adm1n1strat10n under Contract 

NASA NCC 2-55 

11 



TABLE OF CONTENTS 

SUMMARY 

1. 

2. 

3. 

Introduct~on 

Mathemat~cal Formulation 

D~scussion of Results 

REFERENCES 

TABLE I 

TABLE II 

F~gure 1 

F~gure 2 

Figure 3 

Figure 4 

F~gure 5 

F~gure 6 

iii 

1 

7 

17 

29 

31 

32 

33 

34 

35 

36 

37 

38 



A SEMI-ANALYTIC APPROACH TO THE 

SELF-INDUCED MOTION OF VORTEX SHEETS 

SUMMARY 

The roll~ng-up of the tra1l~ng vortex sheet produced by a w1ng 

of f~n~te span ~s calculated as a ser~es expans~on ~n time. For a 

vort~c1ty d1str1but1on correspond1ng to a w1ng w1th cusped t1ps, 

the shape of the sheet ~s found by summ~ng the ser~es us~ng Pade 

approximants. The sheet rema~ns analyt~c for some t~me but ult~mately 

develops an exponent~al sp~ral at the t~ps. The centro~d of vort~c~ty 

~s conserved to h~gh accuracy. 

1V 



1. Introduct1on 

W1th1n the context of the potent1al theory of fluid mot10n sur

faces of veloc1ty d1scont1nu1ty may be character1zed as vortex sheets. 

Typ1cally a shear layer 1n a real flu1d 1S 1deal1zed by collaps1ng 

the region of large veloc1ty gradient onto a sheet across Wh1Ch the 

magnitude and/or d1rect10n of the fluid veloc1ty exper1ences a finite 

Jump. The effects of V1SCOS1ty are not cons1dered; thus th1S concen

trated vort1c1ty cannot d1ffuse and the sheet w111 rema1n of zero 

th1ckness for all t1me. The sheet can, however, deform and stretch 

under the 1nfluence of its own induced veloc1ty f1eld. For example 

the vortex tube surround1ng the c1rcular Jet has been observed to 

"roll up" 1nto per10d1c sp1rals. Slm11ar behav10r has also been 

observed 1n the two-d1mens10nal analogue. Rosenhead (1931) 1ntro

duced a discrete vortex approx1mat1on to study the t1me evolut10n of 

a slnuso1dally perturbed two-d1mens10nal vortex sheet across wh1ch 

the veloc1ty Jumps d1scont1nuously. The cont1nuous sheet 1S replaced 

by a 11ne of p01nt vort1ces whose strengths vary slnuso1dally. The 

1nduced veloc1ty at a glven point vortex, at any 1nstant 1n t1me, 1S 

glven by the vector sum of the contribut10ns from all the others. In 

the in1tial stages of mot10n, at least, the roll1ng-up phenomenon 1S 

clearly 1ndicated 1n h1S results. Not all vortex sheets must deform, 

however. Two-d1mens1onal grav1ty waves may propagate w1thout change 

of form on the 1nterface between two flu1ds of different constant 

dens1ty. W1th1n each flu1d the mot1on 1S 1rrotat1onal w1th a d1scon

t1nu1ty 1n speed across the 1nterface. The search for a wave of con-
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stant form may be thought of as the determ~nation of that part~cular 

vortex sheet confl.guration whl.ch preserves l.ts "l.nl.tl.al" shape. 

A part~cular vortex sheet whose evolution has been a top~c of 

extens~ve study l.S that left l.n the wake of a lift~ng surface or wing. 

The span-w~se d~str~bution of vort~city ~n the sheet ~s produced by 

the sheddl.ng of vortex l~nes as the l~ft varl.es along the Wl.ng from 

centerll.ne to tip. A classical two-dimensional problem is obta~ned 

by consl.der~ng the self-l.nduced motl.on 1n a plane so far behl.nd the 

w1ng that the bound vort1city produces negll.gible effect (the 

"Trefftz-plane"). Thus Westwater (1936) computed the two-d1mens1onal 

mot1on of a sheet of fl.n1te span, that 1S 1nl.tl.ally flat, w1th the 

var1at1on of vort1c1ty produced by a w1ng on whl.ch the lift var1es 

ell~ptl.cally. Follow~ng Rosenhead, he used the dl.screte vortex 

approxl.matl.on uS1ng 10 point vort1ces of the same strength d1str1-

buted along a semi-span. Each vortex 1S placed in~tially at the cen-

tro1d of vortl.city of the segment of the d1stribut~on l.t replaces. 

H1S results suggest an orderly roll~ng-up pattern start1ng at the edges. 

Earlier, Kaden (1931) found an analytic expreSS10n for the form of 

the sheet in the neighborhood of the edge. He cons1dered a sem~-

l.nf1n1te sheet of vort1c1ty produced by the parabol1c 11ft var1ation 

that approx1mates the elliptic variation at the edge. Because there 

1S no character1sitc length in the f1eld, Kaden was able to extract 

a slmple slmilarity Solut1on for the shape that, 1n polar coordl.nates, 

is a spiral whose form is given approximately by 

r = 

2 

[ ~~] /3 
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where t 1S t1me. Th1S 1S a tightly-wound sp1ral of inf1nite length, 

a typ1cal dimension of which grows as t
2

/ 3 
Kaden's results conf1rm 

a st111 earl1er pred1ct1on of Prandtl (1927) that vortex sheets beh1nd 

w1ngs w111 roll up towards the1r t1pS. Because Kaden's sim1lar1 ty 

Solut1on suggests that the sp1ral 1S always completely wound up, even 

+ 
at t = 0 , the sheet, wh1le sensibly flat at t = 0, is, 1n fact, 

h1gher singular at the t1p. 

W1th the advent of automat1c comput1ng, it became poss1ble to 

pursue the d1screte-vortex or "mult1-vortex" approx1mation 1n much 

greater deta11. Takam1 (1964) and others were unable to reproduce 

Westwater's smooth roll-up results. Chaotic mot10n was observed near 

the t1PS even at the early stages of mot10n. Presumably the smooth 

patterns obta1ned by Westwater were due to fortu1tous 1naccuracy 1n 

h1S t1me-1ntegration scheme. Even more d1sconcert1ng was the effect 

of 1ncreas1ng the number of discrete vortices. Rather than 1mprove 

the results, the choat1c mot1on was ampl1f1ed. When two d1screte 

vort1ces moved "too close" they 1nduced 1nacceptibly large veloc1ties 

upon each other. Takam1 also cons1dered other d1strlbut1ons of 

vort1c1ty 1ncludlng the one produced by a wlng w1th cusped t1PS (3/2-

power loadlng). In th1S case, the strength of the sheet goes to zero 

at the t1PS and smoother behavior m1ght be expected. On the contrary, 

hlS results for th1S case lnd1cate that the regl0n of d1sorderly 

mot1on 1S not conflned to the vlc1nlty of the tlPS but extends over 

much of the sheet. 

A ser10US crlt1c1sm of the multi-vortex approxlmat1on was made 

by Birkhoff & Flsher (l959). They assert that the self-lnduced 

motlon of an array of pOlnt vortlces wl11 ultimately produce randomness 
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of posit~on and hence that no true rolling-up ~s poss~ble. Perhaps 

motivated by th~s obJection, several authors have mod~f~ed the numer

ical problem through the ~ntroduction of var~ous smoothing techn~ques. 

Thus Chor~n & Bernard (1973), for example, introduce an arb~trary 

max~mum on the permiss~ble induced veloc~ty and claim that this pro

cedure reproduces some of the features of viscosity. 

A sign~f~cant step foward was made by F~nk and Soh (1974, 1978). 

After carefully comparing the mult~-vortex model with the or~g~nal 

Cauchy principal-value integral, they concluded that the former ~n

volves the neglect of in~tially-small logar~thmic terms. Th~s error 

becomes ampl~f~ed as the sheet moves and ult~mately leads to the 

observed chaot~c mot~ons. Their ~mprovement ~s simply to rediscretize 

at each t~me step. In a number of appl~cat~ons, ~nclud~ng the roll~ng

up of a tra~l~ng vortex sheet, the~r results rema~n smooth for much 

longer per~ods of t~me than had been prev~ously reported. 

In add~t~on to ~ts ~nherent mathemat~cal ~nterest, the problem 

of tra~l~ng vortex-sheet roll-up ~s of s~gn~f~cant pract~cal ~mportance. 

Spre~ter & Sacks (1951) show that for heav~ly-loaded low-aspect

ratio w~ngs, the sheet may become essent~ally rolled up ~nto two 

vortex cores w~thin a chord length of the w~ng trailing edge. Th~s 

effect must be cons~dered ~n a val~d analys~s of plane tail perfor

mance in these cases. Addit~onal interest followed the ~ntroduct~on 

of wide-bod~ed transport planes w~th heav~ly loaded wings of h~gh 

aspect rat~o ~n the early 1970's. Strong vortex cores left by the 

passage of these large aircraft in the vicinity of a~rports have 

been ~mpl~cated as a contributing factor to acc~dents ~nvolving 

smaller aircraft. 
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In the present work we seek to solve for the self-lnduced motion 

of a flnlte two-dlmensl0nal vortex sheet wlthout lntroduclng any dlS-

cretlzatlon at all. The poslt1on of the vortex sheet lS calculated 

as a power serles in time wlth coefflclents that are analytlc func-

tlons of a curve parameter. Thus the procedure lS restrlcted to 

those 11ft dlstr1but10ns that produce sheets whose motl0n lS analytlc 

In §2 we show that for a partlcular class of vortlclty dlstrl-

butl0ns K(x), the coefficlents In the series wl11 be polynom1al 
o 

functlons of x the curve parameter. For thlS class an algorlthm 
o 

to flnd the coefficlents, sU1table for machlne computatlon, lS worked 

out In detal1. We pay partlcular attentlon to the case of 3/2-power 
3/ 

11ft dlstrlbutl0n, 1.e. (1 - x
2

) 2 In dlmenslonless unlts. The 
o 

correspondlng vorticity K(X ) = 3x 11 - x 2 
000 

lS the most slngular 

dlstrlbut10n In the class for which the Holder condlt1on [see e.g. 

Muskhel1shvl1l (1958)] 

o < a < 1 

lS sat1sfled at the edge(s) of the sheet. The Holder condltl0n, WhlCh 

lS stronger than contlnuty but weaker than dlfferentlabl1lty, lS suf-

flc1ent to ensure eXlstence of the Cauchy prlnc1pal-value lntegrals 

from wh1ch the serles coeff1c1ents are calculated. 

Results of the algorithm developed 1n 92 are presented 1n 93. 

The ser1es for the sheet coord1nates lS computed to O(t
42

) for the 

3/2-power 11ft case. The serles have a flnite radlus of convergence; 

convergence fails f1rst at the tlPS for a dlmensl0nless value of tlme 
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of about 0.39. US1ng Pade approximants h1ghly accurate sheet prof1les 

are computed and aroe compared w1th the numer1cal work of Takam1 and 

F1nk & Soh. The l1m1ting s1ngular1ty 1S associated with the 1nstan

taneous appearance of a loosely-wound sp1ral of f1n1te length. Un11ke 

Kaden's power-low sp1ral, the local solut1on here 1S 

-k8 
r = Ke 

Once the spiral appears at the tip the analytic solution can no 

longer be used. One may conJecture, however, that, as t1me proceeds, 

vort1c1ty 1S drawn 1nto the vortex core until, ultimately, it 1S all 

concentrated there. 

A useful check on the series solut10n is prov1ded by the invar-

1ance of the hor1zontal coordinate of the vort1c1ty centro1d. Two 

separate checks can be formulated: one relat1ng to a we1ghted Sum 

of the ser1es coeff1c1ents at any order and, secondly, a global check 

1nvolv1ng numer1cal 1ntegrat10n of the Pade-summed ser1es results. 

Both suggest that the present results are effect1vely exact unt1l the 

cr1t1cal t1me 1S reached. 

F1nally we compute the series solut1on that 1S assoc1ated w1th 

a sl1ghtly-perturbed ell1pt1c 11ft var1at1on. Th1s "solut10n" 1S com

pletely analyt1c and does not include the s1ngular1ty at the t1P at 

t = o. Thus 1t 1S incomplete, does not conserve the pos1t10n of the 

centro1d, but 1t may be useful as an "outer" solut10n for purposes of 

matching. 

6 



2. Mathemat1cal Formulat1on 

The veloc1ty f1eld 1nduced at t1me t, by a vortex sheet w1th 

'V 
concentrated vort1c1ty d1str1but1on K(S,t) where s 1S arc length, 

1S g1ven by 

q(z,t) u - iv 2irr f 
c 

'V 
K(s,t)ds 

z - z(s,t) 

1n the usual complex notat1on. The 1nduced velocity at points on 

(1) 

the sheet 1S also g1ven by th1s expression 1f the Cauchy pr1nc1pal 

'V 
value of the integral 1S taken. K 1S, in fact, equal to the differ-

ence 1n the tangent1al components of veloc1ty across the sheet. 

Assum1ng that, at the 1n1t1al 1nstant of t1me, the sheet 11es on 

the x-axis between -b and b we 1ntroduce the line parameter x e[-b,b] 
o 

and the "Lagrang1an" vort1c1ty d1stribut10n K(X ) def1ned by 
o 

'V 
K (s, t) 

dx 
K(x )~ 

o ds 

S1nce the fluid 1S assumed to be inv1sc1d, the t1me-dependence 

1S only found 1n the sheet-stretch1ng factor dx Ids. Equat10n (1) 
o 

becomes, for p01nts on the sheet, 

u(x ,t) - 1V(X ,t) 
o 0 

1 

2rr f 
-b 

b 
K(t;)dt; 

z(x ,t) - z(t;,t) 
o 

(2) 

The lift d1str1but10n 1S taken to be b11aterally symmetr1c; hence 

K(X ) 1S ant1symmetr1c and we 1ntroduce the c1rculat1on about half 
o 

the vortex sheet 

K(X )dx 
o 0 

(3) 
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The problem may be made d1mensionless be selecting b as reference 

length and b
2/r as reference time. Separately equating real and 

1mag1nary parts of (2) and recogn1z1ng that 
d 

u(x ,t) = ~ x(x ,t) and 
o ot 0 

d 
v(xo,t) = dtY(XO,t), we obta1n the coupled system of nonl1near 1ntegro-

d1fferent1al equat10ns 

and 

where 

2 
R 

1 
27f 

K(E) [y(x ,t) - y(t:,t)] dt: 
o 

K(t:) [x(x ,t) - x(Ct)] 
___ --=-0 ______ d~ 

R2 

2 2 
[x(x ,t) - x(Ct)] + [y(x ,t) - y(l;,t)] . 

o 0 

(4a) 

(4b) 

(4c) 

We shall now seek solut10ns of (4) which may be developed as power 

ser1es In tlme that are uniformly convergent for x e[-l,l]. Clearly 
o 

1f such solut10ns eX1st they must be of the form 

00 

x(x ,t) = x + ~ 
o 0 L. 

00 

y(xo,t) = I 
i=O 

21+1 
B (x )t 

1 0 

8 
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If we further assume that the vort1city is of the form 

K(~) h _ ~2 

N 

c ~2j 
J 

(6) 

lt can be shown that the coeff1c1ents A and B wlll be polynomlal 
l. 1 

funct10ns of the1r arguments. The d1mensionless form of equat10n (3) 

requ1res that 

c 
J 

1 

The form (6) 1ncludes the ell1ptl.C 11ft d1str1butl.on and the 

3/2-power d1strl.but10n produced by a cusped wl.ng planform as specl.al 

cases. It does not l.nclude the dl.strl.butl.ons characterl.st1c of rectan-

gular or lenticular planforms; 1ndeed, no ser1es development 1n t1me, 

start1ng from an 1nl.t1ally flat sheet, lS poss1ble for these later 

cases. 

~en (5) and (6) are subst1tuted in (4) and the coeffic1ents of 

the varlOUS ser1es l.n t are collected, the Cauchy 1ntegratlons can 

be performed uS1ng the fam1ly of "a1rfol.l 1ntegrals" 

d = n 
Jl 
J II 

-1 

~n d~ 

~2 (x - E;) 
o 

n = 1, 2, •.... (7) 

The express10ns for d (x ) may be found recurs1vely accord1ng to the 
n 0 

scheme 
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9 1 
-7T 

9 n 
x 9 n- 1 0 

(n even) (8) 

9 n 
9 - 7T 

1"3"5""" (n-2) 
(n odd). x 

2"4"6""" (n-l) 0 n-l 

It ~s ~mportant to note that 9 (x ) are def~ned only on the open 
n 0 

~nterval (-1, 1). 

The ser~es expans~on procedure w~ll now be descr~bed ~n deta~l. 

Several ~ntermediate var~ables w~ll be introduced both for computa-

t~onal conven~ence and also to reduce the problem to one that ~s 

only quadratically nonlinear. We def~ne A 
o 

C A. (x ) - A~ (s), 
~ ~ 0 

and 

D. B. (x ) - B (s). 
~ ~ 0 ~ 

From equatlon (4c) , 

ex> 

2 2 2k 
R Ekt 

k=O 

where 

k k 

Ek = I c c +2 D D 
~ k-~ ~-l k-~ 

~=O ~=l 

Let 

y(x ,t - y(!;,t) ex> 

0 2 2J+l 
2 

F t 
J R 

J=O 

10 

x 
o 

and let 

(9) 

(10) 

(ll) 

(12) 

(13) 



and 

x(x ,t) - x(Ct) 
o 

00 

=~ (14) 

J=O 

After equat1ng coeff1c1ents of l1ke powers of t, we obta1n, from 

(13) and (14) respectively, 

1 

E F D -) E F 
o 1 1 ~ k 1-k 

(15) 

k=l 

1 

E G = c -I E
k

G
1

_
k o 1 1 

(16) 

k=l 

for all pos1t1ve 1ntegers 1. The surnrnat10ns are 1dent1cally zero 

when 1 = O. F1nally we d1fferent1ate equat10ns (5) w1th respect to 

t and subst1tute into (4a) and (4b) to obtain 

- 47T(1 + 1) A 
1+1 

for 1 > O. 

27T(21 + 1) B 
1 

(17a) 

(17b) 

Equat10ns 9, 10, 12, and 15-17 form a complete system for the 

success1ve determ1nat10n of the coeff1c1ents A, .•• ,G. If K(S) 1S of 

the form (6), A. and B w111 be polynom1als 1n x and C , D , E , 
1 1 0 1 1 1 

(x - s)F and (x - ~)G are polynom1als in x and S. The degree 
o 1 0 1 0 

11 



of these polynom1als, for each 1, w1ll increase, 1n general, w1th 

1ncreas1ng N. If, for example, N = 1 1n equat10n (6) 1t can be 

establ1shed by induct10n that a suffic1ent form 15 given by 

and 

where 

i 

A. (x ) = ~ 
1 0 L 

2J+l a. .x 
1J 0 

J=O 

1+1 

B. (x ) = I 8
1J 

2J x 
1 0 0 

j=O 

2k 

Ek (x 
0 

_ ~)2 2: Ekt(Xo)~ 
t 

t=O 

2i+l 
1 2: F (x )~s F = 

~) 1 (x lS 0 
0 

s=O 

21 

G 
1 L G (x )~s 

1 (x - ~) lS 0 
0 

s=O 

k 

Ekt 2: E 
2p-t 

x 
ktp 0 

p=[t;l] 

1+1 

F 2: F 
2J-1-5 

15j 
X 

15 0 
j=l+ [5/2] 

12 

(18a) 

(18b) 

(18c) 

(18d) 

(18e) 

(18f) 

(18g) 



and 

G 
l.S 

l. 

G . 
l.sJ 

2J-s x 
o 

(18h) 

Here [ ] denotes the integer-part functl.on. Substituting (18a), (18b) 

and (18f) l.nto (12) and uSl.ng l.dentl.tl.es of the form 

X
2J _ ~2J __ ~ 

s (x - s) o 0 

r=O 

x2j - l - r sr 
o 

to el~m~nate the expl~cit dependence on the ~ntermed~ate var~ables 

C and D we obtal.n, after some manipulatl.on, 
l. l. 

E 
ktp 

k 11:Ln [p, l.] 

L L 
l.=0 j=Max[O,p+l.-k] 

1: Ml.nLp,l.] 

+ I I 
l.=l J=Hax[l,p+l.-k-l] 

a ak . Y . 
l.J -l.,P-J tPJ 

The new functl.ons l.ntroduced l.n (19) are defl.ned by 

1 + Ml.n[t,2p-t,2J,2p-2J] 

and Ml.n[t+l,2p-t+l,2J,2p-2j+2]. 

(19) 

Summations in (19) are taken to be l.dentically zero when the lower 

ll.ml.t exceeds the upper. 

Expressions for the triply-subscripted elements F. and G 
l.sJ l.sJ 

may be obtal.ned from (15) and (16) as 

13 



and 

12.:+
1 

( ) 2J-l-s F - 13 • X 
1SJ ~J 0 

J=1+[sh] 

~ Min[2k,s] i-k+l 

-2: L 
k=l t=Max[0,s+2k-21-1] 

(s 0, 1, • • • 2~ + 1) 

(
G - a. ) 
~sJ ~J 

1 M~n[2k,s] i-k 

- L L 
k=l t=Max[o,s+2k-2~] 

(s 0, 1, . . . 21). 

F and 
1SJ 

Note that the last subscr~pt in G 
1SJ 

2p+2m-l-s 
E F X 
ktp 1-k,s-t,m 0 

(20) 

E G 2p+2m-s 
ktp i-k,s-t,mXo 

(21) 

on the 1eft-

hand s~de of (20) and (21) ~s g~ven 1mplic~t1y or computed from the 

exponents of x 1n the quadruple sums. Wh~le exp11c1t expressions 
o 

s1m11ar to those obta~ned for 1n (19) are poss1ble in pr1nc1ple, 

the present procedure 1S at least as eff1c1ent computat10nally and 

avo1ds a great deal of labor1ous analys1s. 

The system of equat10ns for the coeff1c1ents 1S complete once 

the reduced form of equat~ons (17) 1S obta1ned. For the spec1al case 

of 3/2-power wing load1ng, Co = -c
l 

= 3, the 1nduced veloc1t~es are 

cont1nuous at the edges of the sheet and equat10ns (17) can be written 

14 



1n a relatively simple form. The relevant fam1ly of Cauchy 1ntegrals 

1S 

I 
n 

~nh-t,;2 
x _~ d~ n = 1, 2, ... 

o 

wh1ch are related to the or1g1nal fam1ly accord1ng to 

I can be computed recurs1vely as 
n 

from 

where 

I 
n 

I 
n 

equat10n 

x I 
o n-l 

x I 
o n-l 

(8) • 

(n even) 

1°305000 (n-2) 
20406000(n+l) 

They are even or odd polynom1als 1n 

K p 

[n;l] 

I L K x 
n+1-2p 

n p 
p=O 

are determ1ned 

K 1 
o 

K 
p+l 

2p-l 
--K 
2p+2 p 

0 

by 

p = 0, 1 ... 

15 

(n odd) 

x , of the form 
0 

(22) 



Equat~ons (17) now become 

~+1 2~+1 ~+1 1+ [s/2] 

2 2~+1 3 )' 2 2 2(]-p)+l a 
~+l,~ 

x 4 (l.+1) K F. x (23) 
0 p l.S] 0 ~ 

J=1+ [s/2] ~=O s=O p=O 

and 

l.+1 2l. l. 1+[s/2] 

'L S x2~ 3 L J~5;lJ ~o K G. 
2(J-p)+2 

(24) = x 
l.~ 0 2 (2l.+1) p l.sJ 0 

~=O s=O 

Startl.ng wl.th a
10 

= 1 and l. = 0, the fl.ve coeffl.cl.ent equa-

tl.ons are solved in the order (19), (21), (24), (20), (23). The l.ndex 

l. is then l.ncremented by one and the next order of ca1cu1atl.on l.S 

performed. 
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3. D1SCUSSlon of Results 

The speclal case correspondlng to the 3/2-power lift dlstribu

tlon has been computed to 0(t
42

) uSlng an optlmized F¢RTRAN complIer 

on the Stanford IBM 370. Executlon tlme for a Solutlon of order 

t
2N 

was found to be proportlonal to N
5 

which lS conslstent wlth 

the number of nested summations In the algorlthm of the last sectlon. 

For 2N = 42, the computatlon requlred 2.2 sec of CPU tlme. Double-

precislon (16-place) arlthmetlc was used and all coefflclents are 

accurate to at least 4 places even at the hlghest order. Extended 

preclslon would be necessary however for a Solutlon of stlll hlgher 

order. 

7 
Though O(t) the coefflclents In the double serles for x and 

y can be recognlzed as ratlonal numbers: 

x (x ,t) 
o 

y (x ,t) 
o 

x + x (~- ~ x2) t
2 

00840 

(
8343 31509 2 + 4131 4 81 6) t6 8) 

+ xo 5120 - 2560 Xo 160 Xo - 5"" Xo + 0 (t , 

-( t -% x ~) t + (:2 -~ x: ) t 3 

(
81 81 2 81 4 567 6 ) 5 
256 - 128 Xo - 32 Xo + 160 Xo t 

(
7047 243 2 73629 4 7533 6 _ 90639 8) t 7 

+ 14336 - 112 Xo - 17920 Xo + 320 Xo 4480 Xo 

9 
+ OCt ) • 
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The coeff1c1ents in (2S) through O(t
4

) agree with those calculated 

by Professor M. D. Van Dyke as reported by Takam1 (1964). 

For a given value of t, the coord1nates of a p01nt (x,y) lY1ng 

on the vortex sheet can be found by summ1ng the ser1es 1n equat10ns 

(Sa) and (Sb). Since only a f1nite number of terms 1n these ser1es 

are known, the1r sum, for each value of X , can be approx1mated by 
o 

cons1dering the convergence of the sequence of "d1agonal Pade 

approX1mants" formed from such ser1es. Pade approx1mants are rat10s 

of polynom1als w1th coeff1c1ents so chosen so that, when expanded 

for small argument, the power series expanS10ns of these rat10s 

agree with the or1ginal series to appropriate order. D1agonal 

approX1mants have the add1tional property that the order of the 

numerator and denominator are equal. Thus 1f the power ser1es for 

a funct10n feE:) lS known through O(E:
2N

), 

we can, in general, form an approx1mant, denoted by [N/N]f, so that 

feE:) 

where 

[N/N]f 

2N+l 
[N/N] f + 0 (E: ) , 

N 
b + b E: + . • . + bNE: 

o 1 
N 

1 + CIE: + ••• + CNE: 

and the b
J 

and c
J 

are determ1ned un1quely from a o '···' a 2N for 

glven N. The sequence of approx1mants so formed w1ll usually con-

verge much faster than the or1g1nal series and can converge to the 

analyt1c cont1nuat10n of the ser1es 1f E: 11es outs1de the rad1us 

18 



of convergence. A number of examples of the use of th1S techn1que 

1n the Solut1on of flu1d mechan1CS problems can be found 1n Cabannes 

(1976). 

Flgure 1 shows two conf1gurat10ns of the vortex sheet drawn for 

t
2 

.05 and .15. These have been computed as [10/10] approx1mants 

2 
to the t -serles for x(x ,t) and y(x ,t)/t. Also shown in the 

o 0 

f1gure is the 1nduced veloc1ty profile at t=O 1n arb1trary units. 

For t
2 

.05, the sequence of d1agonal approx1mants converged to 

l4-dec1mal places for all x 1n [0,1]. Even the [3/3] approx1mants 
o 

constructed from only seven terms 1n each ser1es ln (5) agree to 

7-deC1mal places wlth the converged results. For t
2 

= .15, on the 

other hand, 5-place convergence was obta1ned for x < 0.998. We 
o 

2 
w1ll show below that a singularlty has appeared 1n the t -serles 

to destroy convergence for x 
o 

Sllghtly greater than th1S value. 

Not1ce that the sheet has curved back for 
2 

t = .15; the value of 

the parameter 

about 0.975. 

x where the tangent to the sheet 1S vert1cal 1S 
o 

In F1gure 2 we compare the results of the present method w1th 

the mult1-vortex results of Takam1 (1964) and the numer1cal results 

of F1nk and Soh (1974). Both authors have produced Solut10ns for 

2 
t = .16. Takam1's results exh1b1t the partial d1sorder character-

1St1c of the slmple mult1-vortex representat10n. F1nk and Soh have 

computed a smooth shape for the sheet that 1S 1n general agreement 

w1th the [10/10] approximant solution except near the t1P of the 

sheet. The1r relat1vely coarse p01nt spac1ng 1S, apparently, unable 

to resolve the deta11s 1n th1S region. In fact, the sheet exh1b1ts 

19 



a s1ngular1ty at x ::: 0.997 
o 

for th1s value of 
2 

t . Convergence of 

the d1agonal approx1rnants failed for 

drawn the sheet up to th1s p01nt. 

x > .990 
o 

and we have only 

For a b11aterally symmetric vortex sheet it can be shown that 

the hor1zontal pos1t1on of the centro1d of vort1c1ty, wh1ch 1n our 

parametric notation is defined by 

x(x ,t)K(X )dx 
o 0 0 

1S an 1nvariant of the rnot10n. We have 

US1ng equat10n (4a), the r1ght s1de of (27) can be wr1tten as 

2~ J 
o 

= 

1 1 

-J J 
o 0 

1 1 
K (x

o
) dX

o 
f K (t;) 

[y(x ,t) - y(Ct)] 
o 

--'------- dt; 
R2 

-1 

[y(x ,t) - y(Ct)] 
o 

K(Xo)K(~) 2 
R 

000 

d~ dx 
o 

K(X )K(~) [y(x ,t) - y(Ct)] d~ dx } 

2 2 
[x(x ,t) + x(~,t)] + [y(x ,t) - y(Ct)] 

o 0 

20 

( 26) 

(27) 

(28) 



where we have used the symmetry requirements K(-~) = -K(~), y(-~,t) = 

y(~,t), x(-~,t) = -x(~,t) to obta1n the last 1ntegral. Each integral 

on the right of (28) 1S 1nvariant under the 1nterchange of the dummy 

arguments x and ~ and hence 1S equal to zero. 
o 

The fact that dX/dt 1S zero can be used 1n two different ways 

to check our solution. Substitut1ng expanS10n (Sa) 1n (27) we obta1n 

1mmed1ately 

A. (x )K(x ) dx = 0 , 
1 0 0 0 

1 = 1, 2, ... 

o 

W1th a 
1J 

2J+1 x 
o 

and K 3x h_x2 
o 0 

, the 1ntegrat10ns can 

be performed to Y1eld a check on the sums of the coeff1cients at each 

order 1n 1: 

where 

1 

k 
J 

a k 
1J J 

0, 1 = 1, 2, • . . 

1·3·5··· (2J+l) 
2·4·6··· (2J+4) 

Perform1ng th1S check numer1cally on a . 
1J 

produces a result for 

each 1 that 1S at least 16 orders of magn1tude less than the largest 

coeff1c1ents 1n the sum. Thus the Solut1on sat1sfies the cons1stency 

relat10n at each order; we also have an est1mate for the round-off 

error 1n the coeff1c1ents. 
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The ~nvar~ance of X can also be used to check the Pade-summed 

results for x(x ,t). 
o 

Us~ng 160 equally spaced values of x on 
o 

[0,1] and Simpson's rule to ~ntegrate (26) numerically for t 2 = 14 . 
produced a result wh~ch d~ffered by only 0.02 per cent from the correct 

value X 37T/16. 

For the 3/2-power l~ft d~str~but~on that we have treated, the 

vortex sheet is an analyt~c curve for Ix I < 1 ~n the ~n~tial 
o -

stages of mot~on. A s~ngular~ty, that ~s always present on the 

analyt~c continuat~on of the sheet, ~.e. Ix I > I, moves 
o 

~nward as 

t~me progresses and arr~ves at x = 1 
o 

2 2 
when t = t* • 

The nature of the singular~ty and the correspond~ng value of 

can be est~mated by use of a graph~cal procedure due to Domb & 

Sykes (1957). They note that ~f 

00 

feE:) 

n=o 

then 

a/a
n

_
1 

= 

n 
a E: 

n 
(29a) 

(29b) 

wh~ch follows from the b~nom~al expans~on. Thus, for these speclal 

cases, ~f we plot the ratlos a /a 1 versus n n-
l/n , the pOlnts w~ll 

be on a stra~ght line. In general the unknown funct~on f can be 

thought of as the sum of a number of s~ngularlt~es; if the one closest 

to the or~g~n of E: ~s of the above type, then the "Domb-Sykes plot" 

will ult~mately tend towards a stra~ght Ilne as l/n becomes small. 

Values of E:* and a appropr~ate to th~s s~ngularlty can be found 
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from the incllnation and intercept of this straight 11ne. When only 

a finlte number of ratios are know, estimates of €* and a can 

stl11 be made lf the plotted points tend towards a stralght-llne 

asymptote. It has not generally been recognlzed that (29) lS 

stl11 valld for complex values of an' In whlch case the asymptote 

wl11 be a stralght 11ne In (l/n,.~e{a /a l},J1m {a /a l})-space. 
n n- n n-

At the tlP of the sheet, x 
o 

2 
1, the coefflclents In the t -

serles for x and y In equatl0ns (5) have been used to construct 

the ratios A (l)/A 1(1) and B (l)/B 1(1). They are glven In Table I. 
n n- n n-

Whl1e each set of ratios appears to tend towards a limlt, a careful 

exarnlnatl0n reveals that these limlts, lf they eXlst, are somewhat 

dlfferent. Because of the intlmate coupllng between the two serles 

implled by the governlng equatl0ns (4a, b), thlS difference In the 

11mlts lS unacceptlble. That lS, for a glven value of x , the serI.es 
o 

for x cannot converge for certain values of t
2 

while the serles 

for y, WhlCh lS derlved from lt, dlverges for these values. A more 

conslstent lnterpretatlon lS obtalned by conslderlng the complex 

serles for the quantlty 

x(l,t) + 1 y(l,t)/t 

n=o 

2n I [A (1) + lB (1)] t -
n n 

n=o 

C (1)t
2n 

n 

The real and lmaginary parts of the ratlo Cn(l)/C
n

_
l 

(1) are 

glven In Table II and are also plotted In Flgure 3. The abSClssa has 

been taken as lien + 5/4); the shlft In n, related to the local 

behavior of a regular function WhlCh multiplies the slngular one near 

2 
t* lS deterrnlned so as to mlnlmize the curvature In the real-ratlo 

23 
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plot. The stra1ght 11ne shown 1n the f1gure has the equat10n 

[ 
+ 5/2 J 1 n + 5/4 

Th1S 11ne prov1des a v1rtually perfect f1t to the rat10s for n > 7. 

The p01nts correspond1ng to the small 1mag1nary part of the rat10s 

do not 11e on a straight 11ne. They can be f1tted to a smooth curve, 

however, Wh1Ch plaus1bly can be extrapolated to the origin. Near 

the cr1t1cal value 
2 

t* = 0.14862 + i 0.0, the left slde of (30) var1es 

locally 11ke 

l 
t2 ] 3/2-.0671 

1 - 2 
t* 

(31) 

The 1mag1nary part of the exponent lS est1mated from the slope of the 

curve f1tt1ng J1m{C /C I} at the or1g1n. 
n n-

Consequently, 1ts value 

connot be cons1dered as accurate as ~e{a} 3/2. Because of the 

Sh1ft 1n the hor1zontal aX1S in F1gure 3, the regular funct10n R2 

probably behaves locally as 
-5/2 

t . The regular funct10ns Rl and R2 

could be est1mated by compar1ng the model equation (31) w1th the 

or1g1nal ser1es but th1S has not been attempted. 

From the model funct10n (31) the local behav10r of the vortex 

sheet, specifically the trajectory of the sheet t1P, may be deduced. 

Let 

{y(l,t) 
* 

Re1 (8-8 o ) 
A [X(l,t) -

* - y(l,t )} ] Z = x(l,t ) + 1 
* 

t 

1 _ (tt. Y 3/2 exp {- .067i ~n [1 t. Y]} (32) 
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where A and 8 are real constants, represent1ng the d1latat1on 
o 

and rotat1on necessary to match the local behavl.or to the "outer" 

solut10n. Equation (32) represents a sp1ral of the form 

or 

(8 - 8 ) 
213 

= - .0671. .R.n R 

R = e 

o 

-22.4(8-8 ) 
o 

(33 ) 

Un11ke Kaden's (1931) s1m1lar1ty solut10n for the tip reg10n of 

2/3 
the vortex sheet shed by an el11ptically-loaded wing, R = K/8 

whl.ch 1S a tl.ghtly-round sp1ral of 1nf1n1te length, (33) represents 

a loosely-wound sp1ral whose length, as 8 var1es from 8 to 
o 

1nf1n1ty, 1S f1n1te. The numer1cal constant 1n (33) shows that 1n 

one revolution the spiral radl.us decreases by about 60 orders of 

magnl.tude! 

Tak1ng the t1me der1vat1ve of (31) reveals that the velocl.ty 

* components rema1n f1n1te as t + t at the sheet t1p. Since the 

sheet 1S continuous for all t < t* , the sp1ral l.n (33) can also 

represent the spac1al form of the sheet 1n the ne1ghborhood of the 

* t1P at t = t Because of the exponent1al character of the sp1ral 

and 1tS very loose w1nd1ng, 1t 1S not surpr1s1ng that the roll-up 

cannot be observed 1n the sheet conf1gurat1ons 1n F1gures 1 and 2. 

As mentioned above, the rad1us of convergence of the ser1es 1n 

t1me var1es w1th x. 
o 

was also employed for 

The procedure used to pred1ct x = 1 
o 

x = 0.999 and 1.001 to yield the f1rst-order 
o 

t
2 

(x ) ~ .14862 - 2.88(x - 1) * 0 0 
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near x = 1. 
o 

For s1gn1ficantly smaller values of x , the rat1o
o 

plot procedure d1d not g1ve accurate results, presumably due to the 

complex1ty of the pattern of s1ngular1t1es. It 1S clear, however, 

that the radius of convergence 1ncreases as Ix I 1S reduced. For 
o 

values of t
2 

greater than .14862, the ser1es solut10n cannot pred1ct 

the evolution of the vortex sheet because the vort1city d1str1but1on 

1S no longer analyt1c on it. One may conJecture however that the 

vort1c1ty between the crit1cal value of x 
o 

and x = 1 
o 

becomes con-

centrated at the center of the spiral. The amount of vort1c1ty at th1s 

p01nt w111 1ncrease with t1me; 1f, ultimately, all the vort1c1ty be-

comes concentrated there, this p01nt must 11e at the centro1d locat10n, 

x = 3TI/16, and w111 move downward w1th the constant speed pred1cted 

for a counter-rotat1ng vortex pa1r. 

As the sheet deforms from 1tS 1n1t1ally flat conf1gurat1on, 

vortic1ty 1S convected outward towards the tips. The vortex 1ntens1ty 

1S g1ven by 

'V 
K(S,t) = K(X )/(ds/dx ) 

o 0 

wh1ch var1es as the sheet 1S stretched. S1nce 

the stretch1ng may be computed uS1ng Pade sums for the ser1es 

L A' (x )t
2 

and tL B' (x )t
2n

. F1gure 4 shows dx/dx plotted 
nOn n 0 0 

n 2 
versus x for t = 0, 0.05 and 0.148. Comb1n1ng these results 

o 

(34) 

'V 
w1th K(x) g1ves K(S,t) accord1ng to (34). It 1S plotted versus 

o 
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'V 
X in F1gure 5. Note that K 1S a double-valued funct10n of x near 

the t1P for t
2 

0.148 because the sheet has bent back towards the 

center. 

We shall now cons1der formal power ser1es solut10ns for vortex 

sheets whose vort1city d1str1but10ns differ s11ghtly from that pro-

duced by el11pt1c 10ad1ng. For str1ctly el11pt1c 10ad1ng, the a1r-

f011 1ntegral (7) pred1cts constant downwash veloc1ty on the open 

interval x e(-l, 1). To the extent that we restr1ct cons1deration 
o 

here to analyt1c sheet conf1gurat10ns, the "formal" ser1es solut10n 

1S sl.mply 

x(x ,t) x 
o 0 

Thl.S "solut10n" l.S 1ncomplete, however. 

(35) 

+ As x + 1 , for example, 
o 

1nf1n1te upwash results. Because the 1nduced velocitl.es are not con-

tl.nuous at the tl.PS, the vortex sheet w111 not be analytic there. 

Because the discont1nuity l.S l.nf1n1te, moreover, the vert1cal 1nduced 

velocl.ty at t = 0 must include, at leadl.ng order, a s1ngular1ty of 

the nature of a D1rac o-functl.on there. Thl.s l.nfl.nl.te velocl.ty, 

d1rected at rl.ght angles to the tangent to the sheet, causes the tl.P 

to roll up l.ntantaneously l.nto the sim1lar1ty form predl.cted by Kaden. 

The solut10n (35) 1S valid however at suffl.cl.ent dl.stance from the 

tl.pS for suffl.ciently small time. It is, in essence, an "outer solu-

tl.on" whl.ch must be Joined l.n some way to Kaden's descrl.ptl.on of the, 

l.nl.tl.ally small, vortex core. 
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Sl.ml.lar "outer" solutl.ons can be produced by the present method 

for sll.ghtly perturbed elll.ptl.c dl.stributl.ons. USl.ng the algorl.thm 

descrl.bed l.n §2, we consl.der the two dl.stributions 

15x ( 
2 ) Kl (xo ) 14~ 1 

x 
10 

0 

(36a) 

and 

15x (1 2 ) K2 (xo ) 
x 

+ 10 
16h-x~ \ 

(36b) 

The serl.es method generates the terms forced by these vortl.cl.ty dl.s-

trl.butl.ons USl.ng the l.ntegrals (7); the resultl.ng solutl.on l.S, of 

course, l.ncomplete but fl.lls the same role as does (35) for the pure 

elll.ptl.c case. 

Fl.gure 6 shows the shape of the sheet, computed by the Pade 

method, at a later time, for each distribution l.n (36). In both cases, 

the tl.me serles possess finite radii of convergence; again conver-

gence fal.ls fl.rst at the tl.ps. The horl.zontal location of the cen-

trol.d l.S not l.nvarl.ant for these l.ncomplete solutl.ons. 
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TABLE I: 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Rat~os of Coefficients from Equat~ons (5) for 

A (l)/A 1 (1) n n- B (1)/B 1 (1) n n-

-1.125 -1.125 

.1875 .825 

5.025 3.5601 

2.6980 3.4615 

3.6734 4.0983 

3.9945 4.4265 

4.3389 4.7077 

4.5869 4.9226 

4.7915 5.0976 

4.9584 5.2414 

5.0979 5.3620 

5.2161 5.4646 

5.3176 5.5528 

5.4055 5.6295 

5.4826 5.6968 

5.5505 5.7563 

5.6110 5.8093 

5.6650 5.8569 

5.7137 5.8997 

5.7577 5.9386 

31 

x = 1 
o 



TABLE II: Rat10s of Complex Coeff1c1ents C
n

(l)/C
n

_
1 

(1) from Equat10n (30) 

n ~e{Cn(l)/Cn_l (1)} dm{Cn (1)/Cn _1 (1)} 

1 -1.125 0.0 

2 .4170 .3060 

3 3.6833 -.4066 

4 3.3434 .2761 

5 4.0558 .1275 

6 4.3911 .1185 

7 4.6827 .0927 

8 4.9031 .0786 

9 5.0820 .0673 

10 5.2286 .0588 

11 5.3513 .0522 

12 5.4554 .0468 

13 5.5448 .0425 

14 5.6225 .0388 

15 5.6906 .0358 

16 5.7508 .0331 

17 5.8044 .0308 

18 5.8524 .0289 

19 5.8957 .027l 

20 5.9349 .0256 
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Flgure 2. Comparlson of present results wlth Takaml, --"--"

and Flnk & Soh, 0 0 0; t
2 

.16, K(x) 3x ~ 
o 0 0 
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Flgure 3. Domb-Sykes plots for the series ~ C
n

(1)t
2n 

n=O 
In equatl0n (30). 
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Flgure 4. Vortex-stretchlng parameter for 3 values of tlme; 

K(x) 3x /1 x 2 
000 

36 

1 



2.0 

..-... 
0 x 

"'--' ... 
(/) 

" ..-... 1.0 
0 

x 
"'--" 

~ 

0
0 

t 2 
= 0.148 

0.05 

0.5 
x 

Flgure 5. Varlation of vortex sheet strength for 3 values of tlme; 

K(X ) = 3x 11 - x2 
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Flgure 6. Sheet conflguratlons from "lncomplete" solutlon for 

perturbed elllptlc dlstrlbutlons. 
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