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A SEMI-ANALYTIC APPROACH TO THE

SELF-INDUCED MOTION OF VORTEX SHEETS

SUMMARY

The rolling-up of the trailing vortex sheet produced by a wing
of finite span 1s calculated as a series expansion in time. For a
vorticity distribution corresponding to a wing with cusped tips,
the shape of the sheet 1s found by summing the series using Padé
approximants. The sheet remains analytic for some time but ultimately
develops an exponential spiral at the tips. The centroid of vorticity

1s conserved to high accuracy.

iv



1. Introduction

Within the context of the potential theory of fluid motion sur-
faces of velocity discontinuity may be characterized as vortex sheets.
Typically a shear layer in a real fluid 1is i1dealized by collapsing
the region of large velocity gradient onto a sheet across which the
magnitude and/or direction of the fluid velocity experiences a finite
Jump. The effects of viscosity are not considered; thus this concen-
trated vorticity cannot diffuse and the sheet will remain of zero
thickness for all time. The sheet can, however, deform and stretch
under the influence of its own induced velocity field. For example
the vortex tube surrounding the circular jet has been observed to
"roll up" into periodic spirals. Similar behavior has also been
observed in the two-dimensional analogue. Rosenhead (1931) intro-
duced a discrete vortex approximation to study the time evolution of
a sinusoidally perturbed two-dimensional vortex sheet across which
the velocity jumps discontinuously. The continuous sheet 1s replaced
by a line of point vortices whose strengths vary sinusoidally. The
induced velocity at a given point vortex, at any instant in time, 1is
given by the vector sum of the contributions from all the others. 1In
the initial stages of motion, at least, the rolling-up phenomenon 1is
clearly indicated in his results. Not all vortex sheets must deform,
however. Two-dimensional gravity waves may propagate without change
of form on the interface between two fluids of different constant
density. Within each fluid the motion 1is irrotational with a discon-

tinuity 1in speed across the interface. The search for a wave of con-



stant form may be thought of as the determination of that particular
vortex sheet configuration which preserves i1ts "initial" shape.

A particular vortex sheet whose evolution has been a topic of
extensive study is that left in the wake of a lifting surface or wing.
The span-wise distribution of vorticity in the sheet 1s produced by
the shedding of vortex lines as the lift varies along the wing from
centerline to tip. A classical two-dimensional problem is obtained
by considering the self-induced motion in a plane so far behind the
wing that the bound vorticity produces negligible effect (the
"Trefftz-plane"). Thus Westwater (1936) computed the two-dimensional
motion of a sheet of finite span, that 1is initially flat, waith the
variation of vorticaty produced by a wing on which the lift varaies
elliptically. Following Rosenhead, he used the discrete vortex
approximation using 10 point vortices of the same strength distrai-
buted along a semi-span. Each vortex is placed initially at the cen-
troid of vorticity of the segment of the distribution 1t replaces.

His results suggest an orderly rolling-up pattern starting at the edges.
Earlier, Kaden (1931) found an analytic expression for the form of

the sheet in the neighborhood of the edge. He considered a semi-
infinite sheet of vorticity produced by the parabolic lift variation
that approximates the elliptic variation at the edge. Because there

1s no characterisitc length in the field, Kaden was able to extract

a simple saimilarity solution for the shape that, in polar coordinates,

is a spiral whose form is given approximately by



where t 1s taime. This 1s a tightly-wound spiral of infinite length,
a typical dimension of which grows as t2/3 . Kaden's results confirm
a sti1ll earlier prediction of Prandtl (1927) that vortex sheets behind
wings will roll up towards their tips. Because Kaden's similarity
solution suggests that the spiral i1s always completely wound up, even
at t = O+ , the sheet, while sensibly flat at t = 0, is, in fact,
higher singular at the tap.

With the advent of automatic computing, it became possible to
pursue the discrete-vortex or "multi-vortex" approximation in much
greater detail. Takami (1964) and others were unable to reproduce
Westwater's smooth roll-up results. Chaotic motion was observed near
the tips even at the early stages of motion. Presumably the smooth
patterns obtained by Westwater were due to fortuitous inaccuracy in
his time-integration scheme. Even more disconcerting was the effect
of increasing the number of discrete vortices. Rather than improve
the results, the choatic motion was amplified. When two discrete
vortices moved "too close" they induced i1nacceptibly large velocities
upon each other. Takam:i also considered other distributions of
vorticity including the one produced by a wing with cusped tips (3/2-
power loading). In this case, the strength of the sheet goes to zero
at the tips and smoother behavior might be expected. On the contrary,
his results for this case 1indicate that the region of disorderly
motion 1s not confined to the vicinity of the tips but extends over
much of the sheet.

A serious criticism of the multi-vortex approximation was made
by Birkhoff & Fisher (1959). They assert that the self-induced

motion of an array of point vortices will ultimately produce randomness



of position and hence that no true rolling-up 1s possible. Perhaps
motivated by this objection, several authors have modified the numer-
ical problem through the introduction of various smoothing techniques.
Thus Chorin & Bernard (1973), for example, introduce an arbitrary
maximum on the permissible induced velocity and claim that this pro-
cedure reproduces some of the features of viscosity.

A significant step foward was made by Fink and Soh (1974, 1978).
After carefully comparing the multi-vortex model with the original
Cauchy principal-value integral, they concluded that the former in-
volves the neglect of initially-small logarithmic terms. This error
becomes amplified as the sheet moves and ultimately leads to the
observed chaotic motions. Their improvement 1s simply to rediscretize
at each time step. In a number of applications, including the rolling-
up of a trailing vortex sheet, their results remain smooth for much
longer periods of time than had been previously reported.

In addition to 1ts inherent mathematical interest, the problem
of trailing vortex-sheet roll-up 1is of significant practical importance.
Spreiter & Sacks (1951) show that for heavily-loaded low-aspect-
ratio wings, the sheet may become essentially rolled up into two
vortex cores within a chord length of the wing trailing edge. Thas
effect must be considered in a valid analysis of plane tail perfor-
mance in these cases. Additional interest followed the introduction
of wide-bodied transport planes with heavily loaded wings of high
aspect ratio in the early 1970's. Strong vortex cores left by the
passage of these large aircraft in the vicinity of airports have
been i1mplicated as a contributing factor to accidents involving

smaller aircraft.



In the present work we seek to solve for the self-induced motion
of a finite two-dimensional vortex sheet without introducing any dis-
cretization at all. The position of the vortex sheet 1s calculated
as a power series in time with coefficients that are analytic func-
tions of a curve parameter. Thus the procedure 1s restricted to
those 1:i1ft distributions that produce sheets whose motion 1is analytic
in time initially.

In 82 we show that for a particular class of vorticity distri-
butions K(xo), the coefficients 1in the series will be polynomial
functions of X the curve parameter. For this class an algorithm
to find the coefficients, suitable for machine computation, 1s worked
out in detail. We pay particular attention to the case of 3/2-power

2. 3/2
11ft distribution, 1.e. (1 - xo) in dimensionless units. The
corresponding vorticity K(xo) = 3xo /i_:_;g 1s the most singular

distribution 1in the class for which the Holder condition [see e.g.

Muskhelishvili (1958)]
a
]K(xo)l<Alxo-1| , 0<A<®, 0<ac<l

1s satisfied at the edge(s) of the sheet. The Holder condition, which
1s stronger than continuty but weaker than differentiability, 1s suf-
ficient to ensure existence of the Cauchy principal-value integrals
from which the series coefficients are calculated.

Results of the algorithm developed in 82 are presented in §3.
The series for the sheet coordinates 1is computed to 0(t42) for the

3/2-power laift case. The series have a finite radius of convergence;

convergence fails first at the tips for a dimensionless value of time



of about 0.39. Using Padé approximants highly accurate sheet profiles
are computed and are compared with the numerical work of Takami and

Fink & Soh. The limiting singularity 1s associated with the instan-
taneous appearance of a loosely-wound spiral of finite length. Unlike

Kaden's power-low spiral, the local solution here 1is

-k6

Once the spiral appears at the tip the analytic solution can no
longer be used. One may conjecture, however, that, as time proceeds,
vorticity 1s drawn into the vortex core until, ultimately, it 1is all
concentrated there.

A useful check on the series solution is provided by the invar-
1ance of the horizontal coordinate of the vorticity centroid. Two
separate checks can be formulated: one relating to a weighted sum
of the series coefficients at any order and, secondly, a global check
involving numerical integration of the Padé-summed series results.
Both suggest that the present results are effectively exact until the
critical time 1s reached.

Finally we compute the series solution that 1s associated with
a slightly-perturbed elliptic 1lift variation. This "solution” 1s com-
pletely analytic and does not include the singularity at the tip at
t =0 . Thus 1t 1s incomplete, does not conserve the position of the
centroid, but i1t may be useful as an "outer" solution for purposes of

matching.



2. Mathematical Formulation

The velocity field induced at time t, by a vortex sheet with
n
concentrated vorticity distribution K(s,t) where s 1is arc length,

1s given by

v
o) mu - iy e - A [ Kt
q(Z:t) u iv P P— Z(S,t) (1)

c
in the usual complex notation. The induced velocity at points on
the sheet 1s also given by this expression 1f the Cauchy principal
value of the integral 1is taken. % 1s, in fact, equal to the differ-
ence 1n the tangential components of velocity across the sheet.
Assuming that, at the initial instant of time, the sheet lies on
the x-axis between -b and b we introduce the line parameter xoe[—b,b]
and the "Lagrangian" vorticaity dastribution K(xo) defined by

dx

ny = K _(2_
K(s,t) = (xo)ds

Since the fluid 1s assumed to be inviscid, the time-dependence
1s only found in the sheet-stretching factor dxo/ds. Equation (1)

becomes, for points on the sheet,

b
_ 1 K(§)ag
ulxgrt) = avix ,t) = - op f z(x_,t) - z(E,£) ° (2)
-b

The lift distraibution 1s taken to be bilaterally symmetric; hence

K(xo) 1s antisymmetric and we introduce the circulation about half

the vortex sheet

T = j- K(xo)dxo . (3)



The problem may be made dimensionless be selecting b as reference

2
length and b /I' as reference time. Separately equating real and

imaginary parts of (2) and recognizing that u(xo,t) = g%-x(xo,t) and
v(xo,t) = ggy(xo,t), we obtain the coupled system of nonlinear integro-

differential equations

1 x(®lyx,t) - y(E,t)] ag

) _ 1
B_tX(XO’t) = - '2? 2 (4a)
R
-1

and

a_ t) _ i_ fl K(E) [x(xolt) - x(grt)] dE (4b)

e N¥,rt) = o 2

R
-1
where
2 2 2
R = [X(xo,t) - x(E,8))° + [Y(xo,t) - y(E,t)] . (4c)

We shall now seek solutions of (4) which may be developed as power

series 1n time that are uniformly convergent for xoe[—l,l]. Clearly

1f such solutions exist they must be of the form

[oe)
2
x(x_,£) = x_+ z A (x )t t , (5a)
=1
2 21+1
y(xo,t) =z Bl(xo)t . (5b)
i=0



If we further assume that the vorticity is of the form

K(E) = (6)

N
£ 23
l’l - EZ z cjg
3=0

1t can be shown that the coefficients Al and Bl w1ll be polynomial
functions of their arguments. The dimensionless form of equation (3)

requires that

N
2.4.6..-23
+ = .
S Z % <3-5-7---(23+'1)> 1
J=1

The form (6) includes the elliptic lift distribution and the

3/2-power distribution produced by a cusped wing planform as special
cases. It does not include the distributions characteristic of rectan-
gular or lenticular planforms; indeed, no series development 1in time,
starting from an initially flat sheet, 1s possible for these later
cases.

When (5) and (6) are substituted in (4) and the coefficients of
the various series in t are collected, the Cauchy integrations can

be performed using the family of "airfoil integrals"”

1 £" &
F = r, n=1, 2,. . . . . (7)
n _jlf /1 - g2 (x_ = &)

The expressions for .ﬂg(xo) may be found recursively according to the

scheme



F =X ‘¢ﬁ—l (n even) (8)

- _ 1.3'5...(1']."2)
Fn =X 4 1 T 2°4¢6%*+ (n~-1) (n odd).

It 1s i1mportant to note that d?n(xo) are defined only on the open
interval (-1, 1).

The series expansion procedure will now be described in detail.
Several intermediate variables will be introduced both for computa-

tional convenience and also to reduce the problem to one that 1is

only quadratically nonlinear. We define Ao = X and let

C =Aa,(x) - Al(i), (9)
and

D, = B;(x)) - B (&). (10)

From equation (4c),

o0}
2
RZ = Z o (11)
k
k=0
where
k k
E, = z CC, . + 2 D_D_, - (12)
1=0 1=1
Let

(13)

yi(x ,t - y(§,t) >
(o) _ 25 th23+1

2
R

10



and

2
Gt I (14)

x(xo,t) - x(E,t) _2
R? B
3=0

After equating coefficients of like powers of +t, we obtain, from

(13) and (14) respectively,

1

EF =D —z EF o (15)
k=1
1

EG =C - Z EG (16)

=1

for all positive integers 1. The summations are i1dentically zero
when 1 = 0. Finally we differentiate equations (5) with respect to

t and substitute into (4a) and (4b) to obtain

1
—at@ s A, = f <(E)F, & (17a)
-1
2M(21 + 1) B = flx(t:)cl & (17b)
-1

for 1 > 0.

Equations 9, 10, 12, and 15-17 form a complete system for the
successive determination of the coefficients A,...,G. If K (§) 1s of
the form (6), Ai and Bl will be polynomials in X and Cl, Dl, El,

- - £ i 3 . The 4
(xO E)Fl and (xo g)Gl are polyncmials in x, and g e degree

11



of these polynomials, for each 1, will increase, in general, with
increasing N. If, for example, N = 1 in equation (6) it can be

established by induction that a sufficient form 1s given by

i
- 23+1
Ai (xo) = z ocljxo ’ (18a)
3=0
1+1
= 23
Bi(xo) = z 61] X ’ (18b)
j=0
2k
- 2 t
Ek = (xo £) z Ekt(xo)E . (18c)
t=0
2i+1
_ 1 s
Fl "= -5 z Fls(xo)g ’ (18d)
o)
s=0
and
21
G = —t z G, _(x)E° (18e)
1 (x - &) 15 %o !
(o)
s=0
where
k
_ 2p-t (18f)
Bre = Z Betp %o ’
=[E_1~]
P12
1+1
- 23-1-s
Fils™ z F1sj *o ' (189)
j=1+[s/2]

12



and

1
2_
G = :Z ¢ . x37% . (18h)

Here [ ] denotes the integer-part function. Substituting (18a), (18b)

and (18f) into (12) and using 1dentities of the form
23-1
23 23 _ _ - 2j-1-r ,r
X, g = (Xo £€) ji X E
r=0

to eliminate the explicit dependence on the intermediate variables

Cl and Dl we obtain, after some manipulation,

k Man[p,1]

E = o o . .
ktp 25 13 k-1,p-j Yth
1=0 Jj=Max[0,p+1-k]

(19)
)id Minl|p,1]
* :S ES B1-1,3 Bk-l,p-3+l Yth
1=1 3j=HMax{l,p+i-k-1]

The new functions introduced in (19) are defined by

Y 1 + Min[t,2p-t,23,2p-23]

tpJ

and Ytpj

Min[t+1,2p-t+1,27,2p~-23+2].

Summations in (19) are taken to be identically zero when the lower

iimit exceeds the upper.
Expressions for the triply-subscripted elements FiSj and Gl

s]

may be obtained from (15) and (16) as

13



1+1

25 ]<flSj - Blj> sz"l'S

j=l+[5/2
1 Min[2k, sl k i-k+1
= - 2p+2m-1-s
Z z zt+l z s—t Ekthl-k,S—t,me
k=1 t=Max[0,s+2k-21-1] =I}§—J m=l+[—§—1
(s =0, 1, . . . 21 + 1) (20)
and
1
G - a 23-s
= [3+l] 18J 3 ©°
=12

2p+2m-s
E
kthi-k,s-t,mxo

-2 2 2y 2

k=1 t=Max[o,s*2k-21] p F%?ﬂ HF=FZ:§tl}

1 Min[2k, sl k i~k

(s=0,1, . . . 21). (21)

Note that the last subscrapt in FlsJ and Glsj on the left-
hand side of (20) and (21) 1is given implicitly or computed from the
exponents of xo 1n the quadruple sums. While explicit expressions
similar to those obtained for Ektp in (19) are possible in pranciple,
the present procedure 1s at least as efficient computaticonally and
avoids a great deal of laborious analysis.

The system of equations for the coefficients 1s complete once
the reduced form of equations (17) 1s obtained. For the special case
of 3/2-power wing loading, e, = ¢y = 3, the i1nduced velocities are

continuous at the edges of the sheet and equations (17) can be written

14



in a relatively simple form. The relevant family of Cauchy integrals

1S
. 1 fl En /l_gz .
=2 S g
n T x =&
_1 o

which are related to the original family according to

=1 -
In T <‘¢n Jn+2> .

In can be computed recursively as

- L2 _1
Il = XO - /2 ’
In = onn—l (n even) ,

— - l'3-5-..(n_2)
In xOIn—l 204G (n+l) (n Odd) ’

from equation (8).
They are even or odd polynomials i1n x , of the form
o
[n+l]
2

I = z g x PHi-ep (22)
n p “o
p

=0

where Kp are determined by

15



Equations (17) now become

1+1 21+1 1+l 1+ [5/2]
20+1 _ 3 2(3-p)+1
z %+1,2 %o T 4(a+1) z z z %oFisy %o
2=0 s=0 3J=1+ [s/z] p=0
and
1+1 21 1 1+[S/2]
25 B x2% = = KG, xRt
1270 2(21+1) st p is] ‘o
2=0 s=0 3= ———1 p=0
2
Starting with alO =1 and 1 = 0, the five coefficient equa-

tions are solved in the order (19), (21), (24), (20), (23). The index
1 1is then incremented by one and the next order of calculation 1s

performed.

16
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3. Discussion of Results

The special case corresponding to the 3/2-power lift distribu-
tion has been computed to 0(t42) using an optimized F@PRTRAN compiler
on the Stanford IBM 370. Execution time for a solution of order
t2N was found to be proportional to N5 which 1s consistent with
the number of nested summations in the algorithm of the last section.
For 2N = 42, the computation required 2.2 sec of CPU time. Double-
pPrecision (l6-place) arithmetic was used and all coefficients are
accurate to at least 4 places even at the highest order. Extended
pPrecision would be necessary however for a solution of still higher
order.

7
Though 0(t ) the coefficients in the double series for x and

y can be recognized as rational numbers:

S 9 2 2 135 135 2 27 4 4
xo+xo<8—zxo)t _xo<128- 32 xo-'-_8_xo>t

8343 31509 2 4131 4 8l 6 \.6 8
- + - 2= ,
Xo<5120 2560 ‘o | 160 Yo _ 5 Xo>t +0(t)

3 2 9 9 4 3
34)e- (534

_(81_81 2 81 4+567X6>t5

x(x ,t)
o

(25a)

> w

y(xo,t)

256 128 %o ~ 32 *o T 160 "o
(25b)

7047 243 2 73629 4 + 7533 X6 _ 90639 X8 7
14336 112 o 17920 o 320 o 4480 "o

+ 0(t9) .

17



The coefficients in (25) through O(t4) agree with those calculated
by Professor M. D. Van Dyke as reported by Takami (1964).

For a given value of t, the coordinates of a point (x,y) lying
on the vortex sheet can be found by summing the series 1in equations
(5a) and (5b). Since only a finite number of terms in these series
are known, their sum, for each value of X+ can be approximated by
considering the convergence of the sequence of "diagonal Padé
approximants" formed from such series. Padé approximants are ratios
of polynomirals with coefficients so chosen so that, when expanded
for small argument, the power series expansions of these ratios
agree with the original series to appropriate order. Diagonal
approximants have the additional property that the order of the
numerator and denominator are equal. Thus 1f the power series for

a function f(€) 1s known through O(€2N),

_ 2N 2N+1
f(e)—ao+ale+...+a2Ne + 0(e )

we can, in general, form an approximant, denoted by [N/N]f, so that

2N+
£(e) = IN/N)JE + 0(e°NFY),
where N
b +bl€ + . . . +bN€
[N/N]f = N ’
+ + . . .+
1 Cle CNE
and the bJ and cJ are determined uniquely from ao,. .- ,a2N for

given N. The sequence of approximants so formed will usually con-
verge much faster than the original series and can converge to the

analytic continuation of the series 1f € 1lies outside the radius

18



of convergence. A number of examples of the use of this technique
in the solution of fluid mechanics problems can be found in Cabannes
(1976) .

Figure 1 shows two configurations of the vortex sheet drawn for
t2 = .05 and .15. These have been computed as [10/10] approximants
to the t2-ser1es for x(xo,t) and y(xo,t)/t. Also shown in the
figure is the induced velocity profile at t=0 in arbaitrary units.
For t2 = .05, the sequence of diagonal approximants converged to
14-decimal places for all xo in [0,1}. Even the [3/3] approximants
constructed from only seven terms in each series in (5) agree to
7-decimal places with the converged results. For t2 = .15, on the
other hand, 5-place convergence was obtained for Xo < 0.998. We
w1ll show below that a singularity has appeared in the t2—ser1es
to destroy convergence for xo slightly greater than this value.
Notice that the sheet has curved back for t2 = .15; the value of
the parameter xo where the tangent to the sheet 1s vertical is
about 0.975.

In Figure 2 we compare the results of the present method with
the multi-vortex results of Takami (1964) and the numerical results
of Fink and Soh (1974). Both authors have produced solutions for
t2 = .16. Takami's results exhibit the partial disorder character-
1stic of the simple multi-vortex representation. Fink and Soh have
computed a smooth shape for the sheet that 1s i1n general agreement
with the [10/10] approximant solution except near the tip of the

sheet. Their relatively coarse point spacing 1s, apparently, unable

to resolve the details 1in this region. In fact, the sheet exhibits

19



a singularity at xo % 0.997 for this value of t2. Convergence of
the diagonal approximants failed for X > .990 and we have only
drawn the sheet up to this point.

For a bilaterally symmetric vortex sheet it can be shown that
the horaizontal position of the centroid of vorticaity, which in our
parametric notation is defined by

1
X = f x(xo,t)K(xo)dxo (26)

0

1s an invariant of the motion. We have

1
dx _ 9x
I Bt(xo't)K(xo)dxo . (27)

Using equation (4a), the right side of (27) can be written as

1 1 [Y(X B - Y(Elt)]
1 Q
- z—ﬂf < (x ) dx f K (&) = ag
0 -1
1.1 [yix ,t) - y(&,t)]

N °
-- L j [IERIG! > aE ax_ (28)

0 0

1.1 K(XO)K(E) y(x_.t) - y(&,t)1 dg dx

- 2 2
Ofof [x(xo,t) + x(§,t)]17 + [y(xo,t) - y(&,t)]

20



where we have used the symmetry requirements k(-§) = -k(&), y(-&,t) =
v(E,t), x(~E,t) = -x(§,t) to obtain the last integral. Each integral
on the right of (28) i1s invariant under the interchange of the dummy
arquments xo and & and hence 1s equal to zero.

The fact that dx/d4dt 1s zero can be used 1n two different ways

to check our solution. Substituting expansion (5a) in (27) we obtain

1mmediately
1
[A.(X)K(x)dx=0,1=l,2,... .
i7o o o
0
l —
+
With A, = 25 a xZJ ! and K = 3x /l—x2  the 1ntegrations can
i 1j ‘o o o
3=0

be performed to yield a check on the sums of the coefficients at each

order in 1:

1
25 o k =0, 1
1] 3

1=0

I
=
~
N
-
.
.
.

where

_ 1°3+50¢-(23+1)
3 204°6°+°(23+4)

Performing this check numerically on ulj produces a result for
each 1 that 1s at least 16 orders of magnitude less than the largest
coefficients in the sum. Thus the solution satisfies the consistency
relation at each order; we also have an estimate for the round-off

error in the coefficients.
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The invariance of X can also be used to check the Padé-summed
results for x(xo,t). Using 160 equally spaced values of xo on
. . 2
[0,1] and Simpson's rule to integrate (26) numerically for t = .14

produced a result which differed by only 0.02 per cent from the correct

value X 3r/16.
For the 3/2-power 1lift distribution that we have treated, the
vortex sheet is an analytic curve for Ixo] <1 1in the initial

stages of motion. A singularity, that i1is always present on the

analytic continuation of the sheet, 1i.e. lxo] > 1, moves inward as

2

2
time progresses and arrives at xo =1 when t =t .
. 2
The nature of the singularity and the corresponding value of t_
can be estimated by use of a graphical procedure due to Domb &

Sykes (1957). They note that if
n o
f(e) = 2 ae =x(,-€ ,0#0,1, ... (29a)

then

a/a__. = €, [1- (1+a)/n] (29b)

which follows from the binomial expansion. Thus, for these special
cases, 1f we plot the ratios an/an—l versus 1/n , the points will
be on a straight line. In general the unknown function £ can be
thought of as the sum of a number of singularities; if the one closest
to the origin of €& 1s of the above type, then the "Domb-Sykes plot"

will ultimately tend towards a straight line as 1/n becomes small.

values of €, and o appropriate to this singularity can be found
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from the inclination and intercept of this straight line. When only
a finite number of ratios are know, estimates of €, and Q@ can
st1ll be made 1f the plotted points tend towards a straight-line
asymptote. It has not generally been recognized that (29) 1is

st1ll valid for complex values of an, in which case the asymptote
will be a straight line in (l/n,é?e{an/an_l},d7m {an/an_l})-space.

At the tip of the sheet, xo = 1, the coefficients in the t2—
series for x and y 1n equations (5) have been used to construct
the ratios An(l)/An_l(l) and Bn(l)/Bn_l(l). They are given in Table I.
While each set of ratios appears to tend towards a limit, a careful
examination reveals that these limits, 1f they exist, are somewhat
different. Because of the intimate coupling between the two series
implied by the governing equations (4a, b), this difference in the
limits 1s unacceptible. That 1s, for a given value of Xo' the series
for x cannot converge for certain values of t2 while the series
for vy, which 1s derived from 1t, diverges for these values. A more
consistent interpretation is obtained by considering the complex
series for the quantity

x(1,t) + 2 y(1,t)/t = z [An(l) + 1Bn(l)]t2n = z Cn(l)t:Zn . (30)

n=o n=o
The real and imaginary parts of the ratio Cn(l)/Cn_l(l) are
given 1in Table II and are also plotted in Figure 3. The abscissa has
been taken 35 1/{(n + 5/4), the shift in n, related to the local
behavior of a regular function which multiplies the singular one near
1s determined so as to minimize the curvature in the real-ratio

2
te
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plot. The straight line shown in the figure has the equation

1 5/2
= — + —t
Fe 1€ /C, 6.7286 | T n+ 52

This line provaides a virtually perfect fit to the ratios for n > 7.
The points corresponding to the small imaginary part of the ratios

édo not lie on a straight line. They can be fitted to a smooth curve,
however, which plausibly can be extrapolated to the origin. Near

the critical value tf = 0.14862 + 1 0.0, the left side of (30) varies

locally 1like

> 3/2-.0671

ol
* N

R (£9) + ry(t?) |1 - (31)
The 1maginary part of the exponent 1is estimated from the slope of the
curve faitting JTm{Cn/Cn_l} at the origin. Consequently, 1its value
connot be considered as accurate as Re{o} = 3/2 . Because of the
shift in the horazontal axis in Figure 3, the regular function R

probably behaves locally as t-5/2. The regular functions Rl and R2

2

could be estimated by comparing the model equation (31) with the
original series but this has not been attempted.

From the model function (31) the local behavior of the vortex
sheet, specifically the trajectory of the sheet tip, may be deduced.

Iet

Z = Rel(e_eo) +

{y1,8) - y(1,£)]) ]
t

-2 [x(l,t) - x(L,t) +1

3/2
t 2 t 2
1 - = exp y- .067i &n |1 -[— (32)
t t
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where A and 60 are real constants, representing the dilatation
and rotation necessary to match the local behavior to the "outer"

solution. Equation (32) represents a spiral of the form

2

(6 - 60) = - .0671 in R /3

or
—22.4(6-60)
R=e¢e . (33)
Unlike Kaden's (1931) similarity solution for the tip region of
2/

the vortex sheet shed by an elliptically-loaded wing, R = k/6 3 ’

which 1s a tightly-round sparal of infinite length, (33) represents
a loosely-wound spiral whose length, as € varies from 60 to
infinity, 1s finite. The numerical constant in (33) shows that in
one revolution the spiral radius decreases by about 60 orders of
magnitude!

Taking the time derivative of (31) reveals that the velocity
components remain finite as t > t* at the sheet tip. Since the
sheet 1s continuous for all t f_t* , the spiral in (33) can also
represent the spacial form of the sheet in the neighborhood of the
tip at t = t* . Because of the exponential character of the spiral
and 1ts very loose winding, 1t 1s not surprising that the roll-up
cannot be observed in the sheet configurations in Figures 1 and 2.

As mentioned above, the radius of convergence of the series 1in

2
time varies with X, The procedure used to predict t, for X, = 1

was also employed for X, = 0.999 and 1.001 to yield the first-order

variation

e

t, (x) .14862 - 2.88(x - 1)
o (o}
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near xo = 1. For significantly smaller values of xo, the ratio-
plot procedure did not give accurate results, presumably due to the
complexity of the pattern of singularities. It 1is clear, however,
that the radius of convergence increases as ]xo[ 1s reduced. For
values of t2 greater than .14862, the series solution cannot predict
the evolution of the vortex sheet because the vorticity distribution
1s no longer analytic on it. One may conjecture however that the
vorticity between the critical value of X, and X, = 1 becomes con-
centrated at the center of the spiral. The amount of vorticity at this
point will increase with time; 1f, ultimately, all the vorticity be-
comes concentrated there, this point must lie at the centroid location;,
X = 3m/16, and will move downward with the constant speed predicted
for a counter-rotating vortex pair.

As the sheet deforms from 1its initially flat configuration,
vorticity 1s convected outward towards the tips. The vortex intensity

1s given by

N

K(s,t) = K(xo)/(dS/dxo) (34)
which varies as the sheet 1s stretched. Since

ds 2 ox 2 dy

+ —
dx ax ax !
o o]
the stretching may be computed using Padé sums for the series
2 2
2 Al (x )t and tz B/ (x )t n . Figure 4 shows dx/dx plotted
n o n n O o

versus X, for t2 = 0, 0.05 and 0.148. Combining these results

"
with K(xo) gives K(s,t) according to (34). It 1s plotted versus
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X in Figure 5. Note that % 1s a double-valued function of x near
the tip for t2 = (0.148 Dbecause the sheet has bent back towards the
center.

We shall now consider formal power series solutions for vortex
sheets whose vorticity dastributions differ slightly from that pro-
duced by elliptic loading. For strictly elliptic loading, the air-
foi1l integral (7) predicts constant downwash velocity on the open
interval xoe(-l, 1). To the extent that we restrict consideration
here to analytic sheet configurations, the "formal" series solution

1s saimply

x(xo,t) = X '

(o}

(35)
t .

N

Y(Xolt) ==

This "solution" 1s incomplete, however. As xo > l+ , for example,
infinite upwash results. Because the induced velocities are not con-
tinuous at the tips, the vortex sheet will not be analytic there.
Because the discontinuity 1s infinite, moreover, the vertical induced
velocity at t = 0 must include, at leading order, a singularity of
the nature of a Dirac 0-function there. This infinite velocity,
directed at right angles to the tangent to the sheet, causes the tip
to roll up intantaneously into the similarity form predicted by Kaden.
The solution (35) 1s valid however at sufficient distance from the
tips for sufficiently small time. It is, in essence, an "outer solu-
tion" which must be joined in some way to Kaden's description of the,

initially small, vortex core.
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Similar "outer" solutions can be produced by the present method
for slightly perturbed elliptic distributions. Usaing the algorithm

described in §2, we consider the two distributions

15x x2 >
K,(x ) =—— |1 - — (36a)
170 1411:;5 ( 10
and
15x x2
K. (x ) = (l + — . (36b)

270 16 E:;g-\ 10

The series method generates the terms forced by these vorticity dis-
tributions using the integrals (7); the resulting solution is, of
course, incomplete but fills the same role as does (35) for the pure
elliptic case.

Figure 6 shows the shape of the sheet, computed by the Padé
method, at a later time, for each distribution in (36). In both cases,
the time series possess finite radii of convergence; again conver-
gence fails first at the tips. The horizontal location of the cen-

troid 1s not 1invariant for these incomplete solutions.
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TABLE I: Ratios of Coefficients from Equations (5) for X, = 1

n A (L)/A (1) B (1)/B _; (1)
1 -1.125 -1.125
2 .1875 .825
3 5.025 3.5601
4 2.6980 3.4615
5 3.6734 4.0983
6 3.9945 4.4265
7 4.3389 4.7077
8 4.5869 4.9226
9 4.7915 5.0976
10 4.9584 5.2414
11 5.0979 5.3620
12 5.2161 5.4646
13 5.3176 5.5528
14 5.4055 5.6295
15 5.4826 5.6968
16 5.5505 5.7563
17 5.6110 5.8093
18 5.6650 5.8569
19 5.7137 5.8997
20 5.7577 5.9386
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TABLE II:

Ratios of Complex Coefficients Cn(l)/Cn_l(l) from Equation (30)

10

11

12

13

14

15

16

17

18

19

20

ae{cn(l)/cn_lu)}

-1.125

.4170

3.6833

3.3434

4.0558

4.3911

4.6827

4.9031

5.0820

5.2286

5.3513

5.4554

5.5448

5.6225

5.6906

5.7508

5.8044

5.8524

5.8957

5.9349
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Jm{cn /e, (1)]

0.0
.3060

-.4066
.2761
.1275
.1185
.0927
.0786
.0673
.0588
.0522
.0468
.0425
.0388
.0358
.0331
.0308
.0289
.0271

.0256
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2
Figure 1. The vortex sheet configuration for 2 values of t ;

K{(x ) = 3x ¥l - x2 .
o o) o}
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+0.2

-0.2

Figure 2. Comparison of present results with Takami, —-=°*--°-,

and Fank & Soh, o o o; t2 = .16, K(xo) = 3xon—x§
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Figure 3. Domb-Sykes plots for the series z Cn(l)t2

n=0
in equation (30).
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0.5

ds/dx0

Figure 4. Vortex-stretching parameter for 3 values of time;

K(x ) = 3x v1 - %2
o o e}

36



K (Xy) /78" (%)

2.0

-
it
@)

0.05

0.148

t2: 0148

0.05]| o

Figure 5.

0.5

Variation of vortex sheet strength for 3 values of time;

K(x ) = 3x V1 - x2 .
(o] O o]
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K= K1(X0), t=2.8
1.5
K =Ky(X,),t=3.0
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Figure 6. Sheet configurations from "incomplete" solution for

perturbed elliptic distributions.
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