FOR REFERENCE

נוססם נכוד המשה ובוגאז כז כי דשם

期目した日本

NASA-TM-81656 19810012549

NASA Technical Memorandum 81656

Exhaust Emission Survey of An F100 Afterburning Turbofan Engine at Simulated Altitude Flight Conditions

John E. Moss, Jr. and Richard R. Cullom Lewis Research Center Cleveland, Ohio

March 1981

Trade names or manufacturer's names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

EXHAUST EMISSION SURVEY OF AN F100 AFTERBURNING TURBOFAN ENGINE

AT SIMULATED ALTITUDE FLIGHT CONDITIONS

John E. Moss, Jr. and Richard R. Cullom

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

Emissions of carbon monoxide (CO), total oxides of nitrogen (NO_x), unburned hydrocarbons (HC), and carbon dioxide (CO₂) from an F100(1), afterburning, two-spool turbofan engine at simulated flight conditions are reported herein. Test conditions included simulated flight at Mach 0.8 for altitudes of 9.14 and 12.19 km (30 000 and (40 000 ft) and at Mach 1.4 at 12.19 km (40 000 ft). For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. These measurements were made by traversing a single-point gas-sample probe across the horizontal diameter of the exhaust nozzle.

The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high CO were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions.

The local NO_X concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Emissions of CO₂ were proportional to local fuel-air ratio for all conditions.

INTRODUCTION

Testing of an F100 (1), afterburning, two-spool turbofan engine was conducted in an altitude facility to determine the oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide emissions at simulated flight conditions.

Emission tests were run at Mach 0.8 at altitudes of 9.14 and 12.19 km (30 000 and 40 000 ft) and at Mach 1.4 at 12.19 km (40 000 ft). For each simulated flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning.

This investigation was conducted in the Propulsion Systems Laboratory at the NASA Lewis Research Center. Other exhaust emissions surveys previously reported on afterburning turbojet and turbofan engines can be found in references 1 to 6. The results of the present study augment the available literature on altitude emissions for afterburning turbofan engines.

N81- 21078#

E-67;

APPARATUS

Engine

The F100 (1), two-spool turbofan used in this investigation is shown in figure 1(a). The F100 is a 111 kN (25 000 lbf) thrust class; high overall pressure ratio (23:1); low bypass ratio (0.71:1) engine. This engine has a mixed-flow afterburner with V-gutter, flame-holders, and fuel-spray rings. The exhaust nozzle is a convergent-divergent, variable area, balance-beam type. The divergent-nozzle flaps on the test engine are free-floating. A more complete description of the engine appears in reference 7. The engine instrumentation locations are shown in figure 1(b).

Installation

The engine was installed in the altitude test chamber in a conventional direct-connect mode (fig. 1(a)). Conditioned air, required to simulate the selected flight conditions, was provided by the facility. Also, the engine exhaust pressure level required to simulate flight conditions was main-tained. Engine exhaust gases were captured by a water-cooled collector to prevent their recirculation in the test chamber. These tests were run using JP-4 fuel (MIL-T-56246).

Gas Sampling System

A single-point, traversing, water-cooled, gas-sample probe was used in this study. The probe and its traversing mechanism are shown mounted behind the engine in figure 2(a). The traversing mechanism was capable of translating the probe ± 60 cm horizontally and ± 20 cm vertically from the engine centerline. A photograph and a schematic of the sensor area of the probe are shown in figures 2(b) and (c). The gas-sampling probe has an inside diameter of 0.72 cm (0.28 in.) and extended 1.9 cm (0.75 in.) forward of the probe support. The gas sample line was water-cooled for a distance of 8 cm (3.2 in.) from the probe tip. From this point the sample line inside diameter was 0.82 cm (0.32 in.) and was water-cooled an additional 30 cm (12 in.).

A total-pressure probe was mounted 2.5 cm (1.0 in.) above the sample probe, and three unshielded iridium/iridium-rhodium thermocouples were mounted 2.5 cm (1.0 in.) and 5.0 cm (2.0 in.) below and 5.0 cm (2.0 in.) above the gas-sample probe.

A schematic of the gas analysis system is shown in figure 3(a). Approximately 10 m of 0.95-cm stainless-steel line was used to transport the sample to the analyzers. To prevent condensation of water and to minimize adsorption-desorption effects of hydrocarbon compounds, the line was heated with steam at 428 K. Four heated metal bellows pumps were used to supply sufficient gas sample pressure (17 N/cm^2) to operate the analytical instruments. The gas sample line residence time was less than 2 seconds for all test conditions.

Gas Analysis Instrumentation

Four commercially available instruments, along with associated peripheral equipment necessary for sample conditioning and instrument calibration are comprised in the exhaust-gas analysis system (fig. 3(b)). The hydrocarbon (HC) content of the exhaust gas was measured on a wet basis using a flame ionization detector type instrument (Beckman Instruments model 402 hydrocarbon analyzer). Both carbon monoxide (CO) and carbon dioxide (CO₂) were measured dry, using analyzers of the nondispersive infrared (NDIR) type (Beckman Instruments model 315B). The concentration of the oxides of nitrogen (NO_X) was measured on a dry basis using a chemiluminescence analyzer (Thermo Electron Corporation Model 10A). This instrument includes a thermal converter to reduce NO₂ to NO. The exhaust gas constituents that were measured on a dry basis (CO, CO₂ and NO_X) were corrected for inlet'air humidity and water vapor from combustion, and are reported herein on a wet basis.

The exhaust emission data measured by the analytical instruments were recorded and processed by an on-line facility computer. This computer was also used to control the traverse of the gas-sample probe and to determine the nozzle-exit diameter.

TEST CONDITIONS AND PROCEDURES

Exhaust-emission surveys were conducted at simulated altitude conditions of 9.14 and 12.19 km (30 000 and 40 000 ft) at Mach 0.8 and at 12.19 km (40 000 ft) at Mach 1.4. These test conditions were representative of typical subsonic and supersonic aircraft operating points. This choice of conditions gives a variation in altitude at a constant subsonic Mach number and a variation in simulated Mach number at a constant altitude. The test points and nominal inlet conditions are presented in table I. Conditioned air was supplied to the plenum at the desired pressure and temperature. The test chamber was maintained at the pressure required for true simulation of the selected altitude condition. This pressure resulted in the nozzle being choked for all survey data presented.

Simulated Mach number	Simul altit	-	Metered fuel-air ratio	Engi inle press	t	in	ustor let rature	Prin combu	istor	Aftert mixed	inlet	mixed	burner inlet
number	m	ft	14110	N/cm ²	psia	K	*R	N/cm ²	sure psia	press N/cm ²	psia	K K	*R
0.8 1.4 1.4 1.4	9 140 9 140 12 190	30 000 30 000 40 000	0.0124 .0603 .0125 .0337 .0620 .0111 .0307 .0549	4.57 4.54 2.83 2.80 2.81 5.95 5.91 5.95	6.62 6.59 4.10 4.07 4.08 8.63 8.63 8.63	752 752 728 727 729 795 793 793	1354 1354 1311 1309 1313 1432 1427 1427	117 115 75 75 77 119 114 119	169 167 109 109 111 173 165 172	13.6 13.7 8.7 8.6 8.8 13.8 13.6 14.0	19.67 19.92 12.57 12.46 12.74 20.02 19.65 20.35	736 744 725 726 734 729 723 737	1325 1340 1305 1307 1322 1313 1302 1327

TABLE I. - TEST CONDITIONS

Emissions surveys were made at two or three power settings at each simulated flight condition. Power levels included intermediate (maximum power, nonafterburning), partial afterburning (afterburning zones 1, 2, and 3) and maximum afterburning (all five zones of afterburning). Gas sampling surveys were made slightly downstream of the nozzle-exit plane. For the nominal maximum afterburning condition the nozzle was near wide open, and the axial distance from the nozzle lip downstream to the survey plane was 5.6 cm (2.2 in.). At the partial afterburning power level the nozzle area decreased from maximum, and the axial distance from the nozzle lip to the survey plane was 6.4 cm (2.5 in.). At intermediate power the nozzle was near its minimum area, and the distance from nozzle lip to survey plane was 8.8 cm (3.5 in.).

3

The exhaust-nozzle diameter was obtained using the survey rake in conjunction with two nozzle-mounted air jets. Aft-facing high-pressure air jets were mounted on two diametrically opposite divergent nozzle leaves coinciding with the horizontal survey diameter. Just before a gas-sample survey a continuous traverse was made, and the position of the air jets marking the nozzle-exit diameter were noted as pressure spikes sensed by the total-pressure probe of the survey rake.

Surveys were made across the horizontal diameter of the exhaust nozzle. Twenty-one data points were recorded for afterburning to delineate the steep gradients in the emission profile. This resulted in a nominal spacing of 4.8 cm (1.9 in.) for maximum afterburning and 4.3 cm (1.7 in.) for partial afterburning. A 21-data-point traverse required approximately 30 minutes to complete. Eleven data points were recorded for nonafterburning as the gradients in the emission profiles were less steep. The nominal data point spacing at intermediate power was 6.6 cm (2.6 in.).

RESULTS AND DISCUSSION

Profile Data

Selected exhaust profile data are shown in figures 4 to 11. A complete tabulation of the experimental data obtained in this investigation is included in appendix A. This appendix also contains the average data (mass weighted and area integrated). Concentrations of CO, CO_2 , and NO_x are given as parts per million by volume (ppmv), and the HC concentrations are given as parts per million carbon by volume (ppmCv). The horizontal axes in the figures are the radial distances from the centerline nondimensionalized by the measured nozzle-exit radius R_8 for each test. This radius varies with flight condition and engine power level.

Exhaust total temperature. - The total-temperature distribution across the nozzle at each power level is shown in figure 4. At intermediate power the temperature distribution is nearly uniform across the exhaust plane. For partial afterburning the temperature profile shows twin regions of high temperature. The low temperature in the center region indicates that there was very little combustion in the wake behind the center body. For maximum afterburning the temperature profile is nearly flat at high-temperature levels, indicating radially uniform combustion. The temperature profiles were not affected significantly by Mach number and altitudes.

<u>Fuel-air ratio</u>. - The local fuel-air ratio calculated from the gassample measurements (FAREMISS) using the relationship in reference 8 are shown in figure 5. The similarity of the fuel-air ratio and the temperature profiles and the increase in the average temperature with increasing power level is expected, since increasing the fuel-air ratio should increase the temperature for all fuel air-ratios less than stoichiometric.

<u>Carbon monoxide</u>. - The variations of the carbon monoxide (CO) emissions with power level for each flight condition are shown in figure 6. Carbon monoxide emissions were less than 500 ppmv at all radii for intermediate power (nonafterburning), and at radii less than a $0.5R_8$ in afterburning. Downstream of the ring flame holders, a slight increase in CO concentration is apparent at partial afterburning for Mach 0.8 at 12.19 km, but at maximum afterburning, twin regions of high CO concentrations in the wakes of the ring flame holder were present with peak CO concentrations in excess of 11 000 ppmv for all flight conditions. Since the local fuel-air ratios were approaching stoichiometric in these regions, these high CO levels represent an approach to equilibrium CO, rather than combustion inefficiency. Examination of these profiles shows that concentrations were highest at Mach O.8 at 9.14 km and lowest at Mach 1.4 at 12.19 km.

<u>Hydrocarbons</u>. - Measured hydrocarbon emissions (fig. 7) were zero at all radii for nonafterburning conditions and at all radii less than 0.6Rg for maximum afterburning. For afterburning, regions of HC emissions representing inefficient combustion are present out board of the CO peaks. At radii greater than 0.6Rg for afterburning power levels, HC concentrations varied widely, with peak values in excess of 4000 ppmCv for all flight conditions.

Oxides of nitrogen. – The variations of the oxides of nitrogen (NO_X) emissions (concentrations) with power level at each flight condition are shown in figure 8. For Mach 0.8 at 9.14 km the peak NO_X emissions were higher at maximum afterburning than at intermediate power. For Mach 0.8 at 12.19 km, the peak NO_x emissions were about the same for all power levels, with local maxima near $R/R_8 = 0.6$ for afterburning and in the center region at intermediate power. For Mach 1.4 at 12.19 km, the NO_x emissions decreased from intermediate power to partial afterburning at almost all radial locations. For this flight condition the maximum NO_x concentrations were observed at maximum afterburning. The same data as in figure 8 are shown grouped by power level in figure 9. For all power levels NO_x concentrations are consistently highest at the Mach 1.4 at 12.19-km condition, and lowest at the Mach 0.8 at 12.19 km condition, as might be expected since these are the conditions with, respectively, the highest and lowest combustor and afterburner inlet temperatures and pressures (see table I). Although the inlet conditions at the Mach 0.8 at 9.14 km test point are quite similar to those at Mach 1.4 at 12.19 km, note that the combustorinlet temperature is slightly less at Mach 0.8 at 9.14 km and that peak NO₂ concentrations at this condition are less than at Mach 1.4 at 12.19 km for both intermediate power and maximum afterburning (no comparison can be made at partial afterburning). Note in the maximum afterburning curves that there appears to be a deficiency of NO_x in regions of very high CO, which is consistent with the results in reference 6.

<u>Carbon dioxide</u>. - The variations of CO_2 emissions with flight conditions at each power level are shown in figure 10. The CO_2 emission profiles are similar, as expected, to the fuel-air ratio profiles (fig. 5) and show little variations with Mach number and altitude. The CO_2 distributions are radially uniform at intermediate power, but at partial afterburning the CO_2 profiles have twin regions of high emissions.

Exhaust total pressure. - For all flight conditions the measured exhaust total pressure Pt_8 at intermediate power was greater than the total pressure for afterburning conditions (fig. 11), as a result of pressure loss due to combustion in afterburning. All of the profiles show a low-pressure region at the centerline of the exhaust nozzle, in the wake of the engine centerbody.

Correlations with Local Fuel-Air Ratio

As discussed previously, the measured values of CO, HC, and CO₂ at each radial location (figs. 6, 7, and 10) were used to calculate emissions based local fuel-air ratios (FAREMISS; see fig. 5). Mass weighted and area integrated values are compared with the metered fuel-air ratios (FAABT) in figure 12.

Figures 13 to 16 show the emissions data plotted against the local fuelair ratio for all flight conditions and power levels tested. Carbon monoxide emissions (fig. 13) were low for local fuel-air ratios (FAREMISS) less than 0.047, but increased sharply for local fuel-air ratios greater than this value.

Carbon dioxide emissions increased linearly with increased values of local fuel-air ratios (fig. 14) except for deviations at high fuel-air ratios in regions of high CO_2 .

Hydrocarbon emissions were essentially zero for all intermediate power conditions and showed considerable scatter in afterburning (fig. 15). No correlation between the HC emission and local fuel-air ratio (FAREMISS) was apparent.

The oxides of nitrogen emissions increased linearly with FAREMISS at intermediate power conditions (no afterburning), but variations with local fuel-air in afterburning were small ($\sim \pm 100$ ppmv) for each flight condition (fig. 16).

The effects of flight speed and altitude (i.e., combustor and afterburner inlet temperature and pressure) on NO_X emissions are most apparent at intermediate and maximum afterburning power, with maximum NO_X observed at Mach 1.4 at 12.19 km and minimum values recorded at Mach 0.8 at 12.19 km (see table I). The concentrations of NO_X at Mach 0.8 at 9.14 km were less than at Mach 1.4 at 12.19 km, for both intermediate power and maximum afterburning as mentioned previously.

The combustion efficiencies calculated from gas sample data with and without afterburning are shown in table II. The local concentration data $(CO, CO_2, HC, and NO_x)$ were mass weighted and area integrated to obtain average concentrations. These average concentrations were used to calculate combustion efficiencies. For the test conditions reported the efficiencies did not vary with changes in simulated flight conditions.

Simulated Mach	Alti	tude	Combustion efficiency	Aftert mixed	-	Power level
number	km	ft	erriciency	press		
				N/cm ²	psia	
0.8	9.14 9.14 12.19	30 000 30 000 40 000	99 97 99 98 97 99 98 98 98	13.6 13.7 8.7 8.6 8.8 13.8 13.6 14.0	19.67 19.92 12.57 12.46 12.74 20.02 19.65 20.35	Intermediate Maximum afterburning Intermediate Partial afterburning Maximum afterburning Intermediate Partial afterburning Maximum afterburning

TABLE II. - COMBUSTION EFFICIENCY (WITH AND WITHOUT AFTERBURNING)

SUMMARY OF RESULTS

Gaseous emissions for an F100 (1), afterburning, two-spool turbofan engine were measured at simulated flight conditions. For each flight condition detailed concentration profile measurements were made for two or three engine power levels from intermediate (nonafterburning) through maximum afterburning. These measurements were made on the horizontal diameter at the engine exhaust-nozzle exit, using a single-point traversing sample probe. The data showed the emissions vary with flight speed, altitude, power level, and radial position across the nozzle. The principle results of this investigation are as follows:

1. Carbon monoxide emissions were low for intermediate power (nonafterburning) but increased with afterburning primarily due to the appearance of high carbon monoxide regions downstream of the flame holder.

2. Oxides of nitrogen emission increased with increasing flight speed at constant altitude and decreased with increasing altitude at constant speed.

3. The variations of the oxides of nitrogen emissions with power level were different for the several flight conditions, but in all cases the maximum concentrations occurred at maximum afterburning.

4. Measured hydrocarbon emissions were zero at all nonafterburning conditions. In afterburning hydrocarbon concentrations were low in the center half of the nozzle, but varied widely in outboard regions.

5. Total temperature, local fuel-air ratio, and carbon dioxide distributions showed little variation with Mach number and altitude.

6. The exhaust temperature profiles are nearly uniform for maximum afterburning, which indicated uniform combustion.

7

APPENDIX - Experimental Data

The engine inlet conditions and the exhaust profile data for all flight conditions and power levels are given in tables III to V in this appendix.

REFERENCES

- 1. Diehl, Larry A.: Preliminary Investigation of Gaseous Emissions from Jet Engine Afterburners. NASA TM X-2323, 1971.
- Palcza, J. Lawrence: Study of Altitude and Mach Number Effects on Exhaust Gas Emissions of an Afterburning Turbofan Engine. NAPTC-ATD-212, Naval Air Propulsion Test Center, 1971. (AD-741249, FAA-RD-72-31.)
- 3. Diehl, Larry A.: Measurement of Gaseous Emissions from an Afterburning Turbojet Engine at Simulated Altitude Conditions. NASA TM X-2726, 1973.
- 4. German, R. C.; High, M. D.; and Robinson, C. E.: Measurement of Exhaust Emissions from a J85-GE-5B Engine at Simulated High-Atlitude Supersonic Free-Stream Flight Conditions. ARO-PWT-TR-73-49, ARO, Inc., 1973. (AD-764-717, AEDC-TR-73-103, FAA RD-73-92.)
- 5. Davidson, D. L.; and Domal, A. F.: Emission Measurements of a J93 Turbojet Engine. ARO-ETF-TR-73-46, ARO, Inc., 1973. (AD-766648, AEDC-TR-73-132.)
- 6. Holdeman, James D.: Exhaust Emission Calibration of Two J-58 Afterburning Turbojet Engines at Simulated High-Atltitude, Supersonic Flight Conditions, NASA TN D-8173, 1976.
- 7. Pratt a Whitney JTF22 (F100). Jane's All the World's Aircraft 1979-80. Franklin Watts Inc., 1979, pp. 757-758.
- Procedure for the Continuous Sampling and Measurement of Gaseous Emissions from Aircraft Turbine Engines. Aerospace Recommended Practice 1256, Oct. 1971, SAE.

TABLE III. - ENGINE INLET TEST CONDITIONS AND EXHAUST PROFILE DATA

FOR MACH 0.8 AT 9.14 KILOMETERS (30 000 ft)

(a) Intermediate (nonafterburning power; engine inlet temperature, 257 K; engine inlet pressure, 4.57 N/cm²; metered fuel-air ratio, 0.0124; exhaust nozzle radius, 31.75 cm

Radial	E,	haust-gas	concentrat	ton	Gas sample fuel air	Exha		Exhaust total
distance from	Carbon	Carbon	Hydro-	Oxides of	ratio,	temperature		pressure,
centerline, R/Rg	monoxide, ppmv	dioxide, ppmv	ppmCv	nitrogen, ppmv	faremiss	ĸ	R	N/cm ²
-0.998 798 600 398 197 0. .224 .416 .604 .799	317 218 370 405 423 393 476 487 492 492	13 091 21 081 37 386 41 735 40 758 40 070 40 926 40 441 29 701 14 704	0	51 91 172 197 192 189 192 192 134 60	0.006 .0095 .0168 .0187 .0183 .0180 .0184 .0182 .0135 .0068	546 680 837 901 910 905 912 895 801 631	982 1224 1507 1622 1638 1030 1641 1611 1442 1136	11.75 11.68 11.87 12.15 12.95 10.45 13.04 12.38 11.85 11.55
1.014 Average	461	4 364	<u> </u>	15	.0021	476	856 1253	10.69

(b) Maximum afterburning power; engine inlet temperature, 463 K; engine inlet pressure, 4.54 k/cm²; metered fuel-air ratio, 0.0603; exhaust nozzle radius, 45.95 cm

Avenage	4 781	101 948	962	115	0.0466	1809	3256	1
. 990	1 765	37 622	4380	32	.0198	1234	2222	9,97
. 892	476	101 640	5	82	.0442	1951	3513	10.67
.790	14 063	103 700	1272	1	.0516	1980	3564	10.70
. 697	14 870	100 760	1941	2	.0512	1911	3440	10.78
. 591	3 838	126 380	. 7	244	.0557	1944	3500	10.75
.490	107	118 510	I ₩	245	.0509	1884	3392	10.56
. 390	210	108 670		222	.0470	1768	3182	10.37
.299	208	109 290	l t	222	.0472	1749	3149	10.12
.191	74	112 990		226	.0487	1793	3228	8.94
.091	85	113 860		226	.0490	1755	3159	8.97
0.	63	112 850		224	.0486	1747	3145	8.97
108	87	114 540		228	.0493			8.93
204	47	115 890		232	.0498	1793	3227	9.93
298	207					1810	3259	
409		113 750	Ϋ́	235	.0490	1804	3248	10.19
	207	115 160		246	.0488	1824	3285	10.44
510	26	114 930		263	.0494	1836	3305	10.56
607	1 270	125 420	19	256	.0542	1900	3421	10.61
-,708	15 070	99 179	4277	1 7	.0519	1886	3396	10.48
809	15 640	97 026	4234		.0513	1946	3504	10.33
908	351	102 790	5	54	.0446	1925	3466	10.51
-1.002	1 070	1 32 061	753	5	0.0152	1156	2081	8.66

.

TABLE IV. - ENGINE INLET TEST CONDITIONS AND EXHAUST PROFILE DATA

FOR MACH 0.8 AT 12.19 KILOMETERS (40 000 ft)

(a) Intermediate (nonafterburning power; angine inlat temperature, 244 K; angine inlat pressure, 2.83 N/cm²; metered fuel-air ratio, 0.0125; exhaust nozzle radius, 31.85 cm

Radial distance	E,	haust-gas	concentral	tion	Gas sample		aust	Exhaust
from centerline.	Carbon monoxide.	Carbon dioxide.	Hydro- carbons.	Oxides of nitrogen,	fuel air ratio, faremiss	total temperature		total pressure,
R/Rg	ppntv	ppmv	ppmCv	ppmv	14160122	ĸ	R	N/cm ²
-1.008 809 61 405 197 0. .197 .389 .593 .790 .978	207 293 356 367 360 385 356 401 356 378 370	10 609 17 838 32 124 37 219 38 103 36 962 37 280 37 280 37 242 27 949 13 479 11 266	0 	30 52 102 126 130 123 125 120 90 39 32	0.0048 .0081 .0145 .0168 .0171 .0166 .0168 .0168 .0127 .0062 .0052	504 627 775 851 860 854 859 846 671 535 458	908 1129 1395 1531 1548 1538 1546 1523 1208 964 825	9.65 8.34 8.59 8.68 9.18 7.57 9.19 8.90 8.58 8.38 8.40
Average	325	22 467	0	71	0.0102	633	1140	

(b) Partial afterburning power; engine inlet temperature, 244 K; engine inlet pressure, 2.80 N/m²; metered fuel-air ratio, 0.0337; exhaust nozzle radius, 40.45 cm

Average	870	21 634 61 063	4797 800	6 68	0.0276	864	1555 2451	7.61
.900	1 731 660	36 594	584	8	.0174	1311	2359	7.57
.806	1 823	71 646	12	19	.032	1687	3037	7.54
.701	903	108 070	11	114	.047	1827	3289	7.72
.606	737	89 903	87	124	.0395	1623	2922	7.65
. 509	310	66 337	395	113	.0295	1341	2414	7.81
.403	99	51 894	340	91	.0232	963 1096	1734 1973	7.70
.300	207	44 886	856	1 17	.0191	922	1659	7.69
.209	208	41 856	763	66	.0172	912	1642	7.47
.099	216	37 996	312 328	58	.0162	903	1625	6.99
093	255	38 959	203	67	.0176	913	1643	7.55
198 093	250	41 526	139	86	.0187	917	1650	7.66
292	214	43 505	155	90	.0195	967	1740	7,67
392	0	49 383	116	93	.0220	1106	1990	7.76
492	82	60 315	48	117	.0267	1270	2286	7.59
597	485	83 062	44	127	.0365	1565	2817	7.59
702	931	99 658	250	107	.0437	1780	3205	7.55
789	1 497	77 012	2185	41	.0356	1745	3142	7.61
896	1 516	39 029	3209	14	.0197	1383	2490	7.31
-0.999	733	24 771	1058	10	0.0120	895	1611	

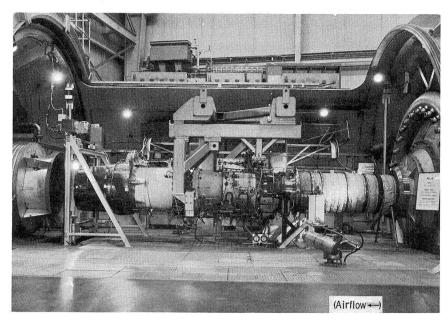
(c) Maximum afterburning power; engine inlet temperature, 244 K; engine inlet pressure, 2.81 N/cm², metered fuel-air ratio, 0.0620; exhaust nozzle radius, 46.4 cm

.600 .712 .801 .898 1.002 Average	1 750 12 500 9 662 1 554 1 496 4 237	117 010 94 963 105 720 86 407 25 909 92 378	942 272 185 4699 722	151 99 82 25 6 84	.0510 .0472 .0500 .0384 .0147	1843 1834 1881 1763 1047	3317 3301 3386 3173 1885 3082	7.89 7.89 7.89 7.89 7.78 7.48
-0.998 902 797 698 599 499 394 302 098 0. .103 .205 .296 .399 .500	563 14 660 13 079 910 162 252 513 605 659 678 684 525 362 184 269	21 069 98 476 86 616 91 738 110 020 97 908 105 160 107 030 106 630 95 926 102 600 99 805 101 740 97 723 96 279 103 070	0 5 3791 3389 0 4 2 0	3 37 59 89 140 134 140 127 120 97 104 110 112 109 112 127	0.0097 .0463 .0475 .0478 .0478 .0476 .0456 .0463 .0419 .0447 .0447 .0442 .0442 .0442 .0442	1186 1837 1833 1815 1791 1716 1743 1765 1771 1745 1728 1741 1747 1693 1693 1693	2135 3307 3300 3267 3224 3089 3137 3178 3189 3142 3110 3135 3145 3045 3027 3164	7.02 7.69 7.66 7.72 7.81 7.83 7.75 7.62 7.25 7.25 7.25 7.26 7.48 7.68 7.78 7.88

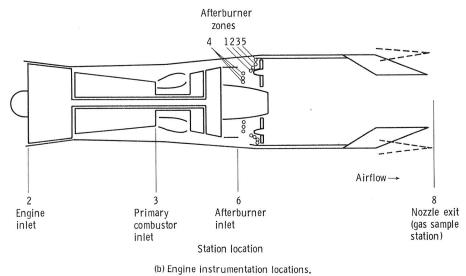
N

TABLE V. - ENGINE INLET TEST CONDITIONS AND EXHAUST PROFILE DATA FOR MACH 1.4 AT 12.19 KILOMETERS (40 000 ft)

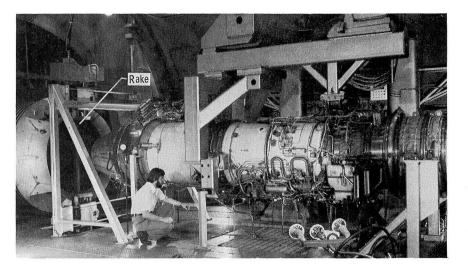
Radial	Ex	Exhaust-gas concentration					ust al	Exhaust total
distance from	Carbon	Carbon	Hydro-	Oxides of	fuel air ratio,	temperature		pressure,
R/Rg	monoxide, ppmv	dioxide, ppmv	carbons, ppmCv	nitrogen, ppmv	fareniss	ĸ	R	N/cm²
-0.594 396 196 0. .200 .399 .600 .794 1.099	6 10 12 9 3 9 12 0 0	40 600 44 001 43 003 42 448 43 118 42 717 30 407 11 105 5 622	o V	204 229 226 224 231 228 154 46 20	0.0181 .0196 .0191 .0189 .0192 .0190 .0136 .0053 .0027	813 872 919 916 919 876 756 548 386	1464 1569 1655 1649 1655 1576 1361 986 695	11.63 11.65 11.65 8.57 11.69 11.49 11.65 11.63 5.94
Average	3.0	20 257	0	103	0.0091	501	902	

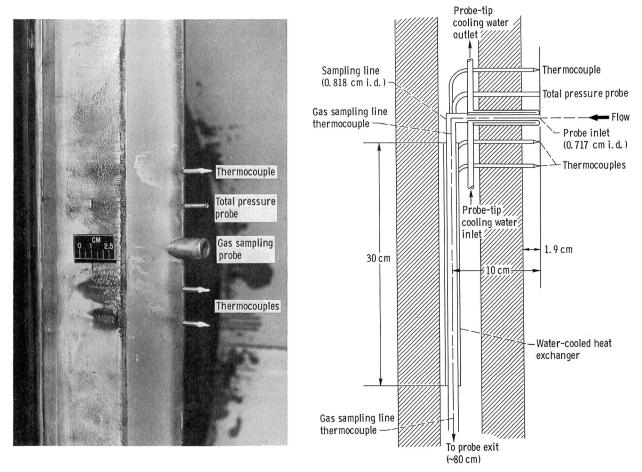

(a) Intermediate (nonafterburning power; engine inlet temperature, 303 K; engine inlet

(b) Partial afterburning power; engine inlet temperature, 301 K; engine inlet pressure, 5.94 N/cm²; metered fuel-air ratio, 0.0307; exhaust nozzle radius, 45.1 cm

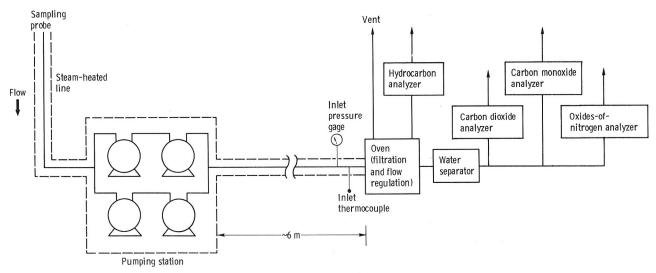

-0.998	2 304	18 687	4156	2	0.0115	853	1535	8.87
699	1 ° ° '	38 511	3587	3	.0219	1193	2147	9.43
- 799	1 1	85 279	132	21	.0384	1676	3017	9,46
		113 580	8	166	.0496	1832	3298	9,83
598		86 505	i i	182	.0382	1624	2923	9.87
498	491	64 361	20	183	.0286	1364	2455	10.00
400	234	53 042	23	190	.0236	938	1689	10.02
298	125	46 378	18	200	.0207	996	1793	9,88
199	102	43 562	16	202	.0194	928	1671	8.44
089	122	42 546	24	190	.0190	687	1597	8.37
0.	150	42 635	40	178	.0190	885	1594	8.37
.099	227	43 249	68	163	.0194	900	1621	8.39
203	447	45 021	149	134	.0203	944	1700	8.69
297	0	48 518	248	107	.0220	1002	1805	9.79
400	Ĭ	55 005	263	128	.0250	1410	2538	9.99
. 500		71 062	52	157	.0318	1434	2582	10.07
.608		96 960	6	166	.0427	1742	3137	10.07
.700		105 970	1 7	95	.0464	1868	3362	10.05
.800	1 1/	54 901	1654	5	0275	1468	2642	9.87
								1
1.002	0	9 587	3607	2	.0130	561	1010	8.82
Average	52.61	61 847	1001	93.5	0.0295	1296	2332	1

(c) Maximum afterburning power; engine inlet temperature, 301 K; engine inlet pressure, 5.95 N/cm²; metered fuel-air ratio, 0.0549; exhaust nozzle radius, 51.2 cm


-1.00	1 163	28 470	1690	22	0.0141	1086	1955	9.38
904	494	85 316	8	68	.0374	1787	3217	9.94
805	8 268	121 890	40	124	.0558	2013	3623	10.37
707	11 615	115 230	145	4	.0547	1983	3570	10.66
601	641	128 520	Ó	366	.0552	1963	3533	10.74
501	81	117 200	i i	357	.0504	1868	3363	10.67
409	ii	112 320		336	.0484	1816	3270	10.50
307	3	109 670		320	.0473	1788	3218	10.19
-,205	44	109 320	i	311	.0471	1759	3166	9.34
106	12	107 710		305	.0465	1767	3181	9.44
0.	1 1	106 830	1	302	.0461	1716	3089	9.50
.093	30	108 880		305	.0470	1708	3075	9,51
.192	24	108 350	1 1	309	.0467	1708	3074	9.39
.293	207	106 440	i	307	.0460	1726	3107	10.05
.394	1 °',	110 620		321	.0477	1799	3239	10.29
.497	229	122 170	1 1	352	.0524	1921	3459	10.51
.597	2 175	130 720	1 1	350	.0567	1970	3547	10.57
.696	11 131	116 370	104	8	.0548	1954	3518	10.62
.801	623	117 780		130	.0508	1946	3503	10.30
.891	2 040	60 814	1218	50	.0284	1541	2774 -	9.88
.999	874	18 896	4458	17	.0111	803	1445	9.32
	°''			ļ			+	
Average	3 086	100 832	273	165	0.0445	1754	3157	


(a) Installed in altitude test chamber.

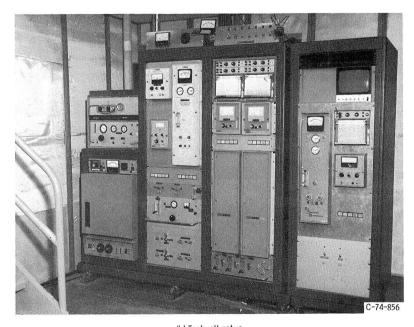
(a) Installation.

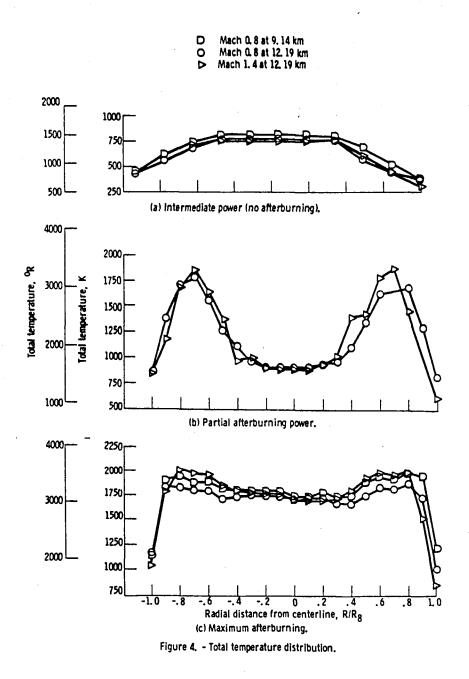


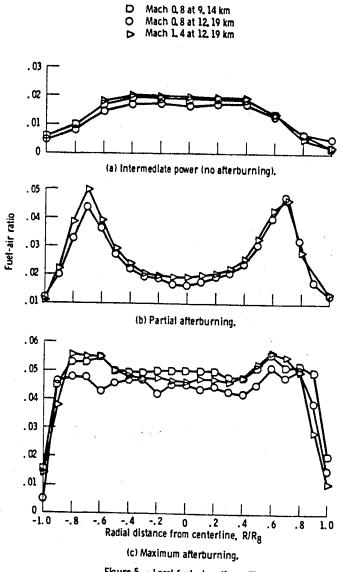
(b) Detail of sensor area.

(c) Schematic of gas sample probe.

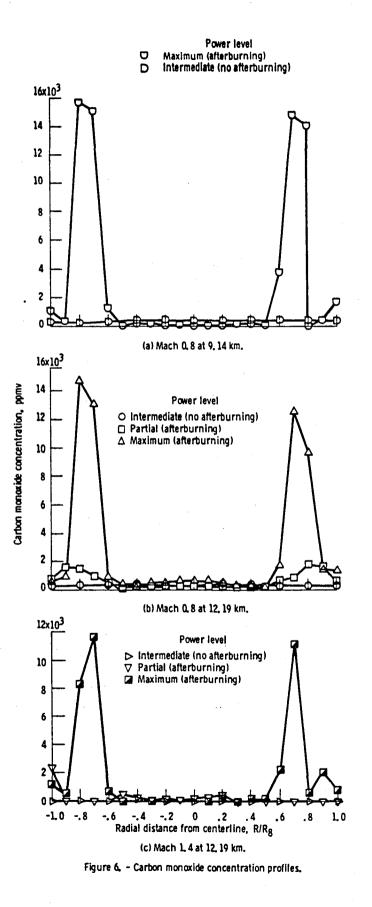
.


Figure 2. - Probe and traversing mechanism.


×


-

(a) Flow schematic.


(b) Test cell setup. Figure 3. – Console-gas analysis system.

D

Figure 5. - Local fuel-air ratio profile.

.

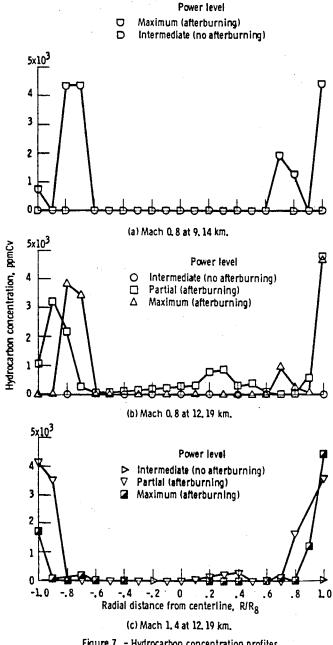


Figure 7. - Hydrocarbon concentration profiles.

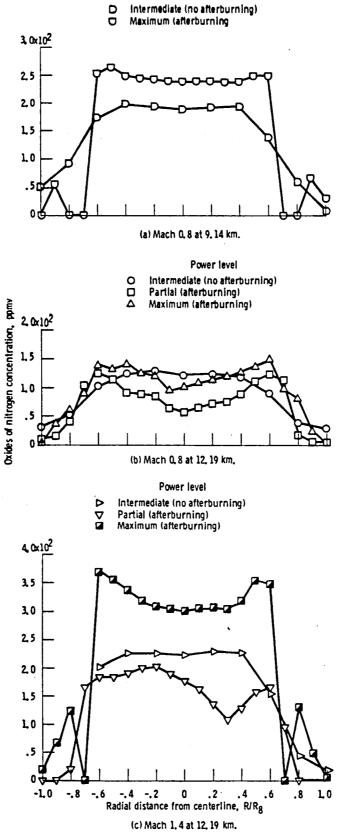
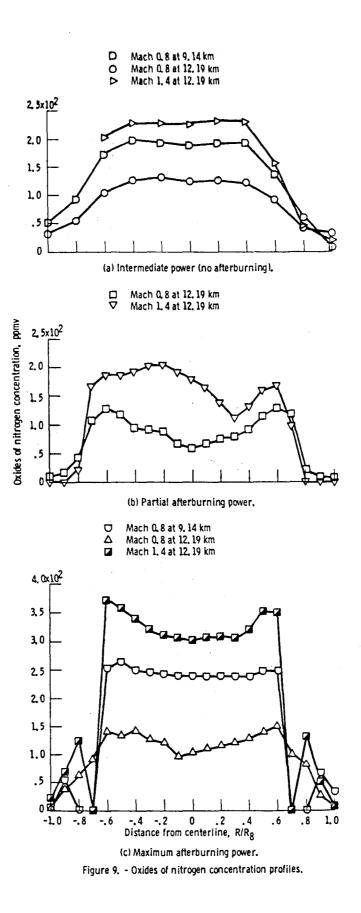



Figure 8. - Oxides of nitrogen concentration profiles.

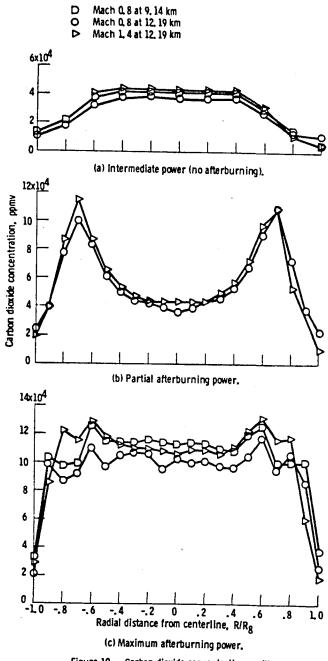
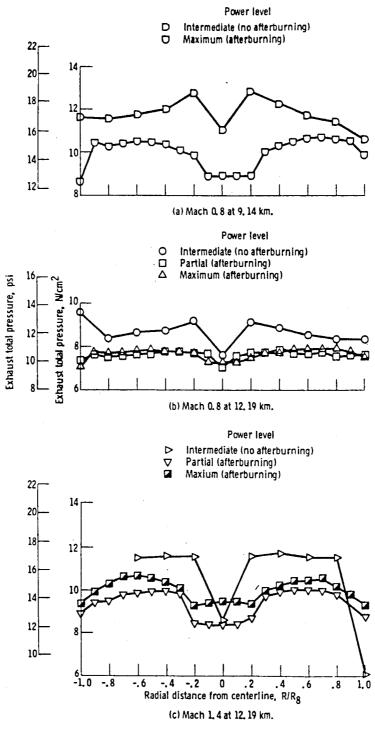
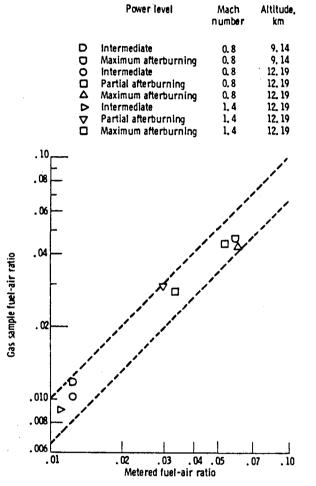
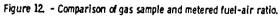
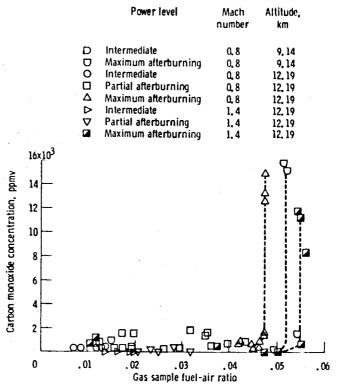
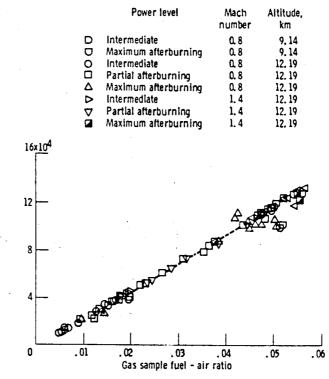
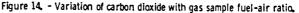


Figure 10. - Carbon dioxide concentration profiles.



Figure 11. - Exhaust total-pressure concentration profiles.



Carbon dioxide concentration, ppmv

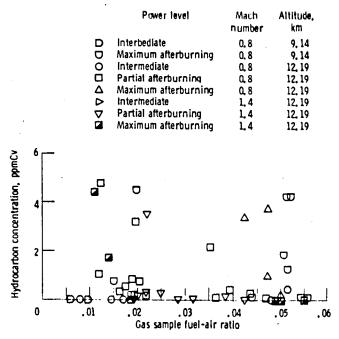


Figure 15. - Variation of hydrocarbon with gas sample fuel-air ratio,

	Power level	Mach number	Aititude, km
	Intermediate Maximum afterbyrning Intermediate Partial afterburning Maximum afterburning Intermediate Partial afterburning Maximum afterburning	0.8 0.8 0.8 0.8 1.4 1.4 1.4	9. 14 9. 14 12. 19 12. 19 12. 19 12. 19 12. 19 12. 19 12. 19
•		(7)	a a °a

6x10²

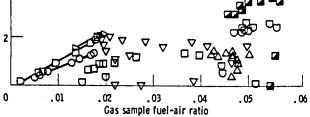


Figure 16. - Variation of oxides of nitrogen with gas sample fuel-air ratio.

• •

1. Report No. NASA TM-81656	2. Government Access	ion No.	3. Recipient's Catalog	No.			
4. Title and Subtitle EXHAUST EMISSI	ION SUBVEY OF	AN E100	5. Report Date				
AFTERBURNING TURBOFAN H		1	March 1981				
			6. Performing Organiz	ation Code			
ALTITUDE FLIGHT CONDITIO	NS		505-32-62				
7. Author(s)			8. Performing Organiza	ation Report No.			
John E. Moss, Jr. and Richard	R. Cullom		E-673				
			10. Work Unit No.				
9. Performing Organization Name and Address National Aeronautics and Space	Administration	11. Contract or Grant No.					
	Aummistration						
Lewis Research Center							
Cleveland, Ohio 44135		13. Type of Report and Period Covered					
12. Sponsoring Agency Name and Address			Technical Me	morandum			
National Aeronautics and Space	Administration		14. Sponsoring Agency				
Washington, D.C. 20546			ra. Sponsoring Agency	Code			
15. Supplementary Notes		<u></u>					
1							
16. Abstract	Abstract						
Emissions of carbon monoxide,	nitrogen, unburned	hydrocarbons, a	and carbon				
dioxide from an F100, afterbur	ning, two-spool	turbofan engine at s	simulated flight	conditions are			
reported herein. Test condition	ons included simu	lated flight at Mach	0.8 for altitude	es of 9.14 and			
12.19 km and Mach 1.4 at 12.1							
made for two or three power le		•					
afterburning. The data showed		-	÷.	-			
radial position across the nozz							
-				-			
(nonafterburning) and partial af			-				
the flame holder at maximum a							
of the simulated flight condition		A					
level increased with increasing	; flight Mach num	iber at constant alti	tude, and decre	ased with in-			
creasing altitude at constant M	ach number. Ca	rbon dioxide emiss	ions were propo	rtional to			
local fuel-air ratio for all cond	litions.						
17. Key Words (Suggested by Author(s))		18. Distribution Statement					
Exhaust gases; Afterburning, 1	F100 engines;	Unclassified - 1	unlimited				
Turbofan engine; Air pollution	; Combustion	STAR Category	07				
products							
_							
19. Security Classif. (of this report)	20. Security Classif, (c	this page	21 No 4 D	22. Price*			
			21. No. of Pages	22. Price			
Unclassified	uncla	ssified	1	1			

 * For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 Postage and Fees Paid National Aeronautics and Space Administration NASA-451

•

Ī

ASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

NV2V

POSTMASTER:

.