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SUMMARY

A parametric study of postbuckled through-width delaminations in laminated
coupons was performed. A finite element analysis was developed to analyze
the coupons as a combination of linear and geometrically nonlinear components.
Because most of the coupon configuration studied behaves linearly, the mixed
linear and noniinear analysis greatly reduced computational costs. The analysis
was verified by comparing numerical with exact solutions for simple hypothetical
problems. In addition, measured laterzl deflections of postbuckled through-
width delaminations in laminated coupons were compared with predicted deflec-
tions. In the parametric study, stress distributions and strain-energy
release rates were calculated for various delamination lengths, delamination
depths, applied loads, and lateral deflections. Also, a small number of coupons
with through-width delaminations were fatigue tested to obtain delamination
growth data. Calculated strain-energy release rates were compared with the
observed growth rates to determine the relative importance of the Mode I and

Mode II components of energy release. GI was shown to dominate the growth

process.
+*"ENCLATURE
A area
a hair-length of delamination
cijkl material stiffness coefficients
E],E2 Young's modulus in X] and Xo directions
G]2 shear modulus
G Mode I strain-energy release rate



Mode II strain-energy release rate

moment of inertia

element linear stiffness ceoefficients

element large displacement stiffness coefficients

element tangential stiffness coefficients

element geometric stiffness coefficients
length of column

polynomial interpolation function for node 8
applied load cycles

applied load

applied load in X direction at node A
thickness of buckled region

strain energy

displacement in X; direction

displacement in x.; direction at node ¢©

i

width of specimen

potential energy of external loads
axial projection of buckled column
rectangular Cartesian coordinates
lateral deflection of buckled column
lateral deflection

specified lYateral deflection

Kronecker delte

stain components
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Vo Poisson's ratio

I total potential energy
°1j stress components
wa residual force in x = direction at node \

Range of indices:

Lowercase Latin indices 1, 2

Lowercase Greek indices 1, number of nodes per element

INTRODUCTION

Local buckling of delaminated plies in composite laminates can precipitate
rapid delamination growth and structural collapse. To assess the criticality
of a delamination, an analysis is needed to predict the rate of instability-
related delamination growth. The logical evolution of a comprehensive analysis
starts with a thorough understanding of instability-related deimaination
growth in simple configurations. One of the simplest configurations is a
through-width delamination in a laminated coupon subjected to compression
loads (fig. 1).

Accordingly, the objective of this paper was to investigate instability-
related growth of a through-width delamination in a laminated coupon. The
investigation involved both analysis and experiments. In the analytical effort
an efficient, geometrically-nonlinear finite element stress analysis was
developed. The analysis was verified by comparing numerical with exact
solutions for simple problems. In addition, measured lateral deflections of
postbuckled through-width delaminations in laminated coupons were compared with
predicted deflections. The analysis was used to perform a parametric study of

postbuckled through-width delaminations. Lateral deflections, stress
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distributions, and strain-energy release rates were calculated for various
delamination lengths, delamination depths, and applied loads. A small number
of specimens with through-width delaminations were fatique tested to obtain
delamination growth data. These specimens consisted of unidirectional graphite/
epoxy bonded to aluminum. Observed delamination growth rates were qualitatively
correlated with calculated strain-energy release rates to determine the relative

importance of the Mode I and Mode II components of energy release.

ANALYSIS
A two-din:nsional finite element analysis was developed to study post-
buckling of through-width delaminations in a laminated coupon (fig. 1). The
analysis accounts for geometric nonlinearity, which is caused by the large
rotation in the buckled region. Development of the analysis is outlined in

the following paragraphs.

Development of Governing Equations
The governing nonlinear equations for individual elements can be derived
using the principle of minimum total potential energy. The total potential
energy, I, is given by equation (1) (ref. 1).

- - N -
“‘”'”‘zf"ifij dA - W (1)

Geometric nonlinearity is included by using the nonlinear strain-displacement

relations, (ref. 2) in equation (1).

ol TR du_. 3u
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The displacements ¥ and Yy within an element are approximated with

interpolation functions, that is
= 36
My N My (3)

Using equations (1), (2), and (3) to calculate and minimize 1 with respect

to u? yields

w[oijgc—;ldA-P: (4)
Un

Equations (4) are the set of governing nonlinear equations for the element.
The equations for all elements are assembled to form a system of governing
equations. If a region behaves linearly, equations (4) simplify to linear
equations.

The assembled nonlinear governing equations are solved iteratively using
the Newton-Raphson method (ref. 1). To wiplement this method, the asser :ed
tangential stiffness matrix is needed. The assembled tangential stiffness
matrix is obtained by combining the individual element stiffness matrices.
The element tangential stiffness matrix is obtained from equation (4) by

partial differentiation as follows:

9€
ax
(Kydpn = ¥ _35 /01'3' —_lxi dA (5)
aum Bun



Performing the differentiation and simplifying results in

(Kp)om = (KISM e (k)M + (k) (6)
where
T J€E; -
oA ex ke “Tij
(Ko)un * XU "fcijkz I dA
M Bun
and

A )
8x _ aN~ N
(Kgdpn = wf ST ax; g dA

8 86X eA . .
(Ko)mn' (KL)mn, and (Ko)mn are the linear, large displacement, and geometric

stiffness matrices, respectively.

The elements used in the analysis were four-node, isoparametric quadri-
laterals. To improve the performance of the elements in modeling bending
deformation, a reduced numerical integration scheme (ref. 3) was used to
evaluate the element stiff, °ss matrices. Details of the reduced integration
scheme are given in appendix A.

In postbuckling analysis of a through-width delamination in a laminated
coupon, the assemvled tangential stiffness matrix may become singular. This
problem arises because the buckled region has a small lateral stiffness
(fig. 2(a)). The calculated stiffness is a function of the current displace-
ments and stresses. Because the actual lateral stiffness is so small, errors

in the estimate of displacements and stresses significantly affect theestimate

6
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of the lateral stiffness. In fact, during the iterative solution of the govern-
ing nonlinear equations, the current estimate of the displacements and stresses
may be such that the buckled region has no lateral stiffness. The result is

a singular stiffness matrix.

To avoid a singular tangential stiffness matrix during the iterative
solution, an incremental displacement procedure (ref. 5) was used. This
procedure involves modifying the original model (fig. 2(a)) by specifying the
peak lateral displacement, &, (fig. 2(b)). This modified model is equivalent
to the original if the support reaction (R) is equal to zero. Beciuse R is
a nonlinear function of the applied load (P), an iterative solution is required
to determine the magnitude of P. The correct P 1is that which corresponds
to a zero support reaction. The initial estimate of P, which need not be
very accurate, is part of the input data. Hence, the unknowns consist of
nodal displacements and the magnitude of the applied load. The load-deflection

relationship was determined by examining a range of §.

Computer Implementation

The computer program was designed to perform analysis by substructures
(ref. 6). Besides reducing computer memory requirements, substructuring
facilities analysis of a structure as a combination of linear and nonlinear
components. For the configuration studied in this paper (fig. 1), linear
analysis is appropriate for all regions except the buckled region. By sub-
structuring into linear and nonlinear regions, expensive iterative solution
techniques are needed for only a fraction of the equations.

A disadvantage of substructuring is the additional bookkeeping

required. However, the substructuring scheme used herein minimizes this



additional bookkeeping, yet is simple to implement. This scheme is described
below.

As an example of the substructuring technique, consider figure 3. The
rectangular region is shown divided into two substructures. The first has
43 nodas; the second has 36 nodes. After assembling the stiffness matrix and
load vector for substructure 1, Gaussian elimination is used to eliminate nodes
1 to 42. The reduced stiffness matrix and ioad vector remain. The remaining
nodes can be considered the constitutive rides for a “"super element." The
nodes for the super element (originally numbered 43 to 48) are given new
numbers (as input data) that depend on the numbering scheme in substructure 2.
In this example, the new constitutive nodes would be 36-35-34-33-32-31. The
next step is to assemble the stiffness matrix and load vector for substructure 2.
To account for the interaction between substructures 1 and 2, the stiffness
matrix and load vector for the "super element" are added to the assembled
stiffness matrix and load vector, respectively, for the elements within
substructure 2.

In analyzing the laminated coupon, the reduced stiffness matrix and load
vector for the linear region was calculated once and retained in memory. Each
time the tangential stiffness ma.rix and load vector for the nonlinear region
were assembled, the interaction with the linear region was accounted for by
adding the reduced stiffness matrix and load vector from the linear region.

In the current study, this procedure reduced the number of equations solved
iteratively from 1626 to 182.
The computer program was verified by analyzing two problems with exact

solutions. Details are given in appendix B.
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Finite Element Models

The laminated coupon which was used in the experimental portion of this
study consisted of graphite/epoxy bonded to 2024-T3 aluminum. This con-
figuration was selected to simplify fabrication of specimens used in the
experimental part of the study.

A typical finite element mesh for the test coupon is shown in figure 4.
Because of symmetry only half of the coupon was modeled. The adhesive was
not included in the analytical model. The model contained four substructures
with a total of 813 nodes and 740 four-node isoparametric elements. This
particular mesh is for the case 2a =25mm, t = 0.76 mm. Similar meshes
were used for other delamination lengths (2a) and depths (t). In general the
mesh around the crack tip (i.e., delamination front) remained unchanged.
However, for a delamination depth of 0.25 mm (0.01 in.) the mesh at the crack
tip was slightly more refined than that shown in the figure.

Boundary conditions are indicated in figure 4. Because of symmetry, o
is zero along the line X; = -a. At X] T -3, X, = 6 mm, My is set to zero
to prevent rigid body motion. At Xy =2 X, = 6 mm, Hy is set to zero.

Because the rotations are small in substructure 1 to 3, this region was

assumed to behave linearly. Substructure 4 was assumed to behave nonlinearly.

Material Properties
Engineering material properties for the graphite/epoxy and aluminum werec

assumed to be

Aluminum: E, = E, = 67 GPa (9.7 x 108 ps1)
6, = 25 GPa (3.6 108 ps1)
v]2 = 0.33
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Graphite/Epoxy:  E; = 140 GPa (20 x 10° PsI)

E, = 14 GPa (2.0 x 10° PsI)

G,, = 5.9 GPa (0.85 x 10° PsI)
= 0.021

12
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The relationships between these engineering constants and the stiffness
coefficients Cijkl may be found in reference 7. Plane stress conditions

were assumed for the analysis.

EXPERIMENTAL PROCEDURE

The specimen configuration is shown in figure 5. Four-ply unidirectional
graphite/epoxy was bonded to 2024-T3 AL with EA934 adhesive. The adhesive was
cured at room temperature. To simulate a delamination, teflon tape was used
to prevent bonding in the central part Jof the specimen.

Some of the specimens were loaded statically so that lateral deflections
could be measured. Lateral deflections were measured with a micrometer. Five
fatigue specimens were tested under constant-amplitude, load-controlled,
sinusoidal, axial loading. The loading was compression-compression with a
load ratio (R) of 20 and a frequency of 10 Hz. A scale was positioned next
to the specimen and was viewed with a hand-held telescope to measure delamina-

tion lengths.

RESULTS AND DISCUSSION
Instability-related delamination growth was studied analytically and
experimentally. The analytical study of stress distributions and strain
energy release ratrs is discussed first. Then comparisons are drawn between

analytical results and observed experimental behaviors.

10
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Parametric Analysis

Figures 6 and 7 show stress distributions near the delamination f-ont in
a laminate with 2a = 38 mm and t = 0.51 mm. The averaging technique: usea
in calculating these stresses is illustrated in the sketches below. Slightly
different techniques were used for the distributions through the thickness and
along the interface. Through the thickness, point stresses within the same
element were averaged. Along the interface, point stresses in elements on
both sides of the interface were 2veraged. Stresses were evaluated at the

Gaussian quadrature points for both cases. Figure 6 shows the interlaminar

P
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I!d," + Point stresses used
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L""\) __'_tl \i___.i/ \:___i_' \j—_‘|
X2 ' \
— —_—

Through the thickness Along interface

normal (022) and shear (012) stress distributions through the thickness of the
specimen (x] = 0.0051 mm) for tnree different loads. The stresses are plotted

to different scales because the peak values are quite different. Both the

1
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Py and 912 distributions exhibit very steep gradients near the crack tip,
suggesting a singularity. As the “»ad increases from P = 7.68 KN to 31.7 KN,
the shape of the 2 distribut..  remains essentially the same, only the
amplitude changes. In contrast, the 99 distritution changes shape dramati-
cally from P = 15.7 KN to P = 31.7 KN.

Figure 7 shows the interlaminar stress distributions along the interface
between the graphite/epoxy and the aluminum (x? = 0.51 nm) for the three
different 10ads. As in the through-the-thickness distributions, the shear
stress oy, distributions for the three cases have very similar shape. The
normal stress oy distributions along the interface do not exhibit any
dramatic change like that shown in figure 6. However, neither Opp OT
9y in figure 6 or 7 vary linearly with applied 1oad or lateral deflection.

Because of the apparent singularity at the crack tip, the magnitude of the
calculated stresses at the crack tip have little meaning. Use of a more
refined mesh would recult in higher calculated values. In contrast, calculated
strain-energy release rates represent the product of nodal forces and dis-
placements near the crack tip and are much less sensitive to mesn refinement.
Also, for the same level of accuracy, a cruder mesh suffices for the energy
calculation, whicn is based on the product of forces and displacements, than
for the stress calculation, which is based on derivatives of displacement.
Furthermore, there is no need to use any singular stress element formulation
to obtain the strain energy release rates (ref. G). Hence, strain-energy
release rates are convenient to use to characterize delamination growth. For
tris reason, the remainder of this parametric study concentrates on how

various parameters affect strain-energy release rates. The technique for

12
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calculating strain-energy release rates is described in reference 10 and
briefly in appendix B.

Figure 8 through 10 show the relat  nship between delamination length,
applied load, lateral deflection, and Mode I and Mode II strain-energy release
rates (GI and GII’ respectively). Lateral deflections are examined because
intuitively one might expect the severity of the interlaminar stresses to be
related to the degree of postbuckling deflections.

Figure 8 illustrates the nonlinear relationships between load, delmaination

length (2a), and GI’ G, first increases then decreases with increasing

I
load. If the system were linear, GI would have increased monotonically in
proportion to the square of the load. The shorter delaminations have the larger
values of peak GI‘ However, the longer delaminations show a nonzero GI at
lower Tloads.

Figure 9 shows the relationship between lateral deflections, delamination
length, and GI‘ Contrary to intuition, GI does not increase monotonically
with lateral deflection. In fact, GI is zero at a lateral deflection of
approximately 1.5 mm. Furthermore, the maximum values of GI for all the
delamination lengths occurs 2t a & of approximately 0.76 mm.

The trends shown in figures 8 and 9 can be explained by considering the
load transfer near the crack tip. After the delaminated region buckles, an
increase in applied load (and lateral deflection) causes essentially no
change in the load carried by the buckled region (region C in the sketch).
However, the load carried by region A continues to increase with increased
load. Hence, load must be transferred from A to D. The eccentricity in the

load path causes a moment which tends to close the crack tip. Simultaneously,

the lateral deflection causes a moment which tends to open the crack tip. The

13
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interaction of these processes causes GI to first increase then decrease
with increasing load and lateral deflection.

Figure 10 shows the effect of delamination length and load on GII‘
Results are shown only for loads less than that reauired to close the crack
tip in the direction normal to the crack surfaces. The current analysis is not
valid for higher loads, since no provision is made to keep the crack surfaces
from overlapping. The figure shows that GII increases monotonically with
load. The curves for the different delamination lengths seem to be coalescing
at the higher load levels. Because lateral deflection also increases mono-
tically with load, GII increases monotonically with lateral deflection.

Recall that GI did not increase monotcnically with load. Hence, the
ratio GI:GII varies with load. For a linear system this ratio would have
been indeyandent of the load. Note alsc that for the cases examined, GII is
in general much larger than GI'

Figures 11 and 12 show that GI and GII are very sensitive to the
depth (t) of the delamination. The trends are similar to those in figures 8

and 10 (in which delamination length was varied), except the peak values of

4
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GI increase as t increases. Intuition suggests that GI is related to the
bending stiffness of the buckled region. Hence, the results are not surprising

3

since the bending stiffness varies directly as t~ and inversely as (2a)2.

Comparison of Analytical and Experimental Results

The only direct comparison of analytical results and experiments was for
lateral deflections. As shown in figure 13, the analysis reflects the actual
behavior of the specimen.

Figure 14 shows delamination growth rates for various delamination lengths
at maximum compressive loads of 17.8 KN and 26.7 KN (4000 1bs and 6000 1bs),
respectively). Three specimens were tested at 17.8 KN énd four were tested
at 26.7 KN. (Note that specimens 2 and 3 were tested at both load levels.)
There is considerable scatter in the data. However, one obvious trend is the
rapid slowing of delamination growth as the delamination lengthens.

Figure 15 illustrates how GI’ GII’ and delamination growth rate vary as
a delaminatior grows. The GI and GII curves were derived from the curves
in figures 8 and 10, respectively. The growth data are from figure 11(a).
Note that both GI and the growtn rate first increase then decrease with
delamination extension; GII increases monotonically and does not reflect
the change in growth rate. Although GII is numerically much larger than GI’
delamination growth appears to be dominated by the Mode I compoment of stress.

CONCLUDING REMARKS

A parametric analytical study of instability-related delamination growth
in laminated coupons was performed using a specially designed finite-element
program. The analysis was designed to analyze coupons as a combination of

linear and nonlinear regions. The program was verified by analyzing two

15
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problems with exact solutions. In addition, comparison of measured and
predicted lateral deflections of postbuckled through-width delaminations showed
the analysis reflected actual specimen behavior. A small number of specimens
were fatigue tested to obtain delmaination growth data. Calculated strain-
energy release rates were qualitatively correlated with the observed growth
rates to determine the relative importance of the Mode I and Mode II components
of strain-energy release rates.

Load transfer near the delamination was very complex. Interliaminar
stresses were not a simple function of applied load or lateral deflection.

Very steep gradients in the calculated stresses at the delamination front
suggested the presence of a stress singularity. Hence, the peak values of
interlaminar stresses have little meaning, since they depend on mesh refinement.
In contrast, strain-energy-release rates are much less sensitive than the
calculated stresses to mesh refinement. Consequently, strain-energy-release
rates (rather than stresscs) were examined for various delamination lengths,
delamination depths, and loads.

Calculated strain-energy-release rates for Mode I and Mode II crack
extension (GI and GII’ respectively) were very sensitive to delamination
length, delamination depth, and load level. GI increased with increasing
load and lateral deflection initially, but then decreased. GII increased
monotonically with increasing load. If the structure had responded linearly,
GI would have increased monotonically with the square of the load, and the
ratio GI/GII w.uld have remained constant. For any arbitrary lateral
deflection, GI was greater for the shorter and deeper delamination. For an
arbitrary remote load, GI was not necessarily greater or smaller for the

shorter and deeper delaminations.

16
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Qualitative correlation of calculated Gl ond GII values with observed
delamination growth rates showed that delamination growth is dominated by
GI, rven though GII may be numerically much larger. Because GI is not a
siwy e function of delamination length, delamination depth, applied load, or
latoral deflection, predicting growth rates from a limited delamination growth
dats base is expected to be difficult. Furthermore, these predictions will

likely be susceptible to large errors.

17
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APPENDIX A

REDUCED NUMERICAL INTEGRATION

Many two-dimensional finite elements are inadequate in modeling pure
bending deforma _ions. The poor performance is due to the inability of these
elements to represent pure bending deformations. In pure bending, the shear
strain €12 is zero. However, when displacements corresponding to pure
bending are prescribed at the nodes, these elements develop nonzero shear
strain (refs. 3 and 4). This shear strain, called parasitic shear, causes the
element to be excessively stiff.

Selective reduced integration of terms related to shear distortion can
dramatically improve the performance of two-dimensional elements which exhibit
parasitic shear (refs 3 and 4). In the finite element program developed for
the current study, full integration refcrs to four-point Gauss integration;
reduced integration refers to single point integration at the element
centroid. Selective reduced integration for lirear analysis is discussed
in references 3 and 4. For nonlinear analysis, reduced integration schemes
are also needed for the large displacement matrix (KL), the goometric stiffness
matrix (Ko), and the residual vector (y). Terms which should be calculated
using reduced integration are identified below.

Expressions for stiffness matrices and the residual vector are given

by equations (A1) through (A3).

o€ J€; .

oA oA ke %5y
(Ko)mn ¥ (KL)mn td,rcijkz 3 8 3 A dA (A1)

m  °n
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A 2]
Bx oN” N
(Ko)mn t 6mnoij axi X, dA (A2)

T
w2=tfoij~%1dA-P: (A3)

du

n

In equations (A1) and (A3) the partial derivatives of shear strains are
evaluated at the reduced integration points. In equations (A2) and (A3) the
shear stress is the current shear stress at the element centroid. To be
confident in choosing the remaining shear-related terms in equation (A2), the
derivation of the geometric stiffness matrix must be examined. The geometric

stiffness matrix is one component of the tangential stiffness matrix, KT’

where
e -

(KT)GA = ¢ O fc” -a-—‘fl dA (A4)
u

When the differentiation is performed, one of the terms is

9€; &
t/oi.——?—g —) dn (AS)
’ My, aun
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This term, when expanded and simplified, becomes the right hand side of

equation (A2). The products of derivatives, aN*/axi aNG/axj, are derived

a [ 4
fror t.e term —5 "XJ' . Comparison of indices shows that the product of
T I
m n

derivatives is a shear related term if i # j. Hence, in equation (A2) all

products in which i # j are calculated by reduced integration.

20



APPENDIX B

VERIFICATION OF ANALYSIS

Two problems with exact solutions were analyzed to verify the finite
element analysis. The first problem involved large deflection of a column.
This problem was used to check the modeling of geometric nonlinearity. The
second problem studied involved a double cantilever beam. This configuration
was used to check the strain-snergy release rate calcualtion.

A schematic of the large-deflection column problem is shown in figure Bl.
The solution, given in reference 8, is in terms of complete elliptic integrals.
A truncated series representation for the integrals was used to derive the

following relationships

n2E11 0 2
P = + (B1)
xa =3 4 - 3p (82)
4 + 02
408
Yo = (83)
where
o = sin a/f2
P = load in column

21
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projection of deformed column on x axis

Xa

Ya Tateral deflection

Shear effects were ignored because of a large length/thickness ratio

(2/t = 50). In the finite element analysis, particular values of lateral

deflection (ya) were specified. Corresponding values of Xa and P

were calculated by the analysis. Material properties used in the analysis

were
E, = 140 GPa (20 x 108 ps1)
E, =14 GPa (2.0 x 108 »s1)
6, = 5.9 GPa (0.85 x 10% ps1)
vy = 0.021

Dimensions are shown on the finite element mesh used (fig. B2). This mesh

was the same as one of the meshes used in the main text. Substructures 1 and 2

here correspond to substructures 3 and 4 in the main text. Linear analysis

was used for substructure 1 and nonlinear analysis for substructure 2.
Calculated loads and axial shortening for three values of lateral

deflections are listed in the following table.

22
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EXACT FINITE ELEMENT
Yal? (2 - x)/%  [(2 - x)/%copm | P/Pa || (2 - %72 | PrPy
0. 005 1.54x107° 9.77x107° 1.0C 9.82x10™° | 1.00
.05 1.54x1073 1.62x1073 1.00 1.62x103 | 1.01
.10 6.16x10"> 6.24x10"3 1.00 6.27x103 | 1.01

. n2E, 1

P_ = Euler buckling load =
e 422

For small lateral deflections the axial shortening is primarily due to axial
strain. The column labeled [(& - xa)/fL]CORR has the value of [(2 - xa)/z]
corrected for the average axial strain (which is P/AE). The finite element and
exact solutions agree very well for both the loads and the axial shortening.

To check the strain energy release rate calculation, the double cantilever
beam configuration in figure B3 was analyzed. Loading was in the form of
specified lateral displacement, &. A crack closure technique similar to that
reported in reference 9 was used to calculate strain energy release rates.

The forces transmitted through the node at the crack tip and the relative
displacements of the two nodes on the crack boundary closest the crack tip
node were used to calculate the energy required to close the crack. If an
element is considered to behave nonlinearly, these nodal forces must be cal-

culated from equation (B4)

23
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Pr = t.[u” -af-}l dA (B4)

Oy

If an element is considered to behave linearly, the nodal forces are
calculated from the linear stiffness matrix and nodal displacements. For
all the results reported in this paper, the elements around the crack tip
were assumed to behave linearly. The finite element mesh and material
properties were the same as used for the column. Because of symmetry only
half of the double cantilever beam was modeled. Linear analysis was used
for substructure 1 and nonlinear analysis for substructure 2. For this
problem, the difference between linear and nonlinear analysis of substructure 2
is negligible except for large lateral displacements.

For the double cantilever beam, GII = 0 because of symmetry. For
small lateral displacements, the closed form expression for GI can be shown

to be

(85)

For the case & = 0.25 mm, equation (B5) yields a value of 2.10 joules/mz.
The finite element solution yielded GI = 2.12 jou]es/mz, which agrees

very well with the exact value.
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