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SUMMARY 

A parametric study o f  postbuckled through-width delaminations i n  laminated 

coupons was performed. A f i n i t e  element analysis was dewloped t o  analyze 

the coupons as a combination of ltnear and geometrically nonlinear components. 

Because most o f  the coupon configurat ion studied behaves 1 inear l y  , the m i  xed 

1 inear and nonl i near analysis great ly reduced computational costs. The anal y s i  s 

was ver i f i ed  by comparing numerical w i th  exact solut ions for  simple hypothetical 

problems. I n  addition, measured later21 deflect ions o f  postbuckled through- 

width delaminations i n  laminated coupons were compared w i th  predicted deflec- 

tions. I n  the parametric study, stress d is t r ibut ions and strain-energy 

re1 ease rates were calculated f o r  various delamination lengths, delamination 

depths, applied loads, and la te ra l  deflections. Also, a small number o f  coupons 

with through-width delaminations were fat igue tested t o  obtain delamination 

growth data. Calculated strain-energy release rates were compared wi th  the 

observed growth rates t o  determine the re l a t i ve  inlportance o f  the Mode I and 

Mode 11 components of energy release. GI was shown t o  dominate the growth 

process. 

', "'ENCLATURE 

A area 

a ha;f-length of delamination 

'i j k l  materihl stiffness coef f ic ients 

El .E2 Young's modulus i n  xl and x2  direct ions 

G1 2 shear modttl us 

G~ Mode I strain-energy release ra te  



Mode I 1  straln-energy release r a t e  

moment o f  i n e r t i a  

element l i near  s t i f fness  coef f ic ients  

element 1 arge displacement s t i f fness  coef f ic ients  

element tangential st i f fness coefficients 

element geometric s t i f fness coef f ic ients  

length o f  co lum 

polynomial in terpo la t ion function f o r  node 0 

appl ied load cycles 

applied load 

applied load i n  xn d i rec t ion a t  node A 

thickness of buckled region 

s t r a i n  energy 

displacement i n  xi d i rec t ion 

displacement i n  xi d i rec t ion a t  node a 

width o f  specimen 

potential  energy o f  external loads 

axia l  project ion o f  buckled column 

rectangular Cartesian coordinates 

la te ra l  def lect ion o f  buckled column 

la te ra l  def lect ion 

specified latera; def lect ion 

Kronecker del t s  

s ta in  components 



v~ l  Poisson's r a t i o  

n t o t a l  potent is1 energy 

(I 
i j 

stress components 

0; res idual  fo rce  i n  xn d i r e c t i o n  a t  node A 

Range o f  indices: 

Lowercase L a t i n  ind ices 1, 2 

Lowercase Greek i ndi  ces 1 , number of nodes per element 

I NTRODUCT 1 ON 

Local buck1 i n g  o f  delaminated p l  ies  i n  composite laminates can p r e c i p i t a t e  

rap id  delamination growth and s t ruc tu ra l  co l  1 apse. To assess the  c r i t i c a l  i ty 

o f  a delamination, an analys is  i s  needed t o  p red i c t  the r a t e  o f  i n s t a b i l i t y -  

re la ted  delamination growth. The l o g i c a l  evo lu t ion  o f  a comprehensive analys is  

s t a r t s  w i t h  a thorough understanding of i ns tab i  1 i ty- re la ted  delmaination 

growth i n  simple conf igurat ions. One o f  the simplest conf igurat ions i s  a 

through-wi dth delamination i n  a 1 aminated coupon subjected t o  compression 

loads ( f i g .  1). 

Accordingly, the ob jec t ive  o f  t h i s  paper was t o  inves t iga te  i n s t a b i l i t y -  

re la ted  growth o f  a through-width delamination i n  a laminated coupon. The 

inves t iga t ion  involved both analysis and experiments. I n  the ana ly t i ca l  e f f o r t  

an e f f i c i e n t ,  geometrical ly-nonl inear  f i n i t e  element stress analys is  was 

developed. The analysis was v e r i f i e d  by comparing numerical w i t h  exact 

so lut ions f o r  simple problems. I n  addi t ion,  measured l a t e r a l  dn f lec t ions  o f  

postbuckl ed through-width del ami nations i n  laminated coupons were compared w i t h  

predicted def lect ians.  The analys is  was used t o  perform a parametric study o f  

postbuckled through-width delaminations. Latera l  def lect ions,  s t ress 



dis t r ibut ions , and strain-energy release rates were calculated f o r  various 

delamination lengths, delamination depths, and appl ied loads. A small number 

o f  specimens wi th through-width delaminat io~s were fat igue tested t o  obtain 

delamination growth data. These specimens consisted o f  unid i rect ional  graphite/ 

epoxy bonded t o  a1 umi nun. Observed del ami na.Li on growth rates were qua1 i t a t i  vely 

correlated wi th  calculated strain-energy release rates t o  determine the re l a t i ve  

importance of the Mode I and Mode I1 components o f  energy release. 

ANALYSIS 

A two-din~.!nsi onal f i n i t e  element analysis was developed t o  study post- 

buckling o f  through-width delaminations i n  a laminated coupon ( f ig .  1 ). The 

analysis accounts for geometric nonl ineari ty, which i s  caused by the large 

ro ta t  ian i n  the buckled region. Development o f  the analysis i s  out l ined i n  

the fol lowing paragraphs. 

Devel opinent of Governing Equations 

The governing nonl i near equations f o r  indiv idual  elements can be derived 

using the pr inc ip le  o f  minimum t o t a l  potent ia l  energy. The t o t a l  potent ia l  

energy, n ,  i s  given by equation (1) ( re f .  1). 

Geometric nonl inear i ty  i s  included by using the nonlinear strain-displacement 

relat ions, ( re f .  2) i n  equation ( I ) .  



The displacements v1 and 9 wi th in  an element a n  approximated w i th  

interpolat ion functions, tha t  i s  

Using equations ( I ) ,  (2 ) .  and (3) t o  calculate and minimize ll wi th  respect 

t o  p y ie lds  

Equations (4)  are the set  o f  governing nonlinear equations f o r  the element. 

The equations f o r  a1 1 elements are assembled t o  form a system o f  governing 

equations. I f  a region behaves l inear ly ,  equations (4 )  s impl i fy  t o  l i nea r  

equa t i oils. 

The assembled nonlinear governing equations are solved i t e r a t i v e l y  using 

the Newton-Raphson method ( re f .  1 ) . To l~i~plement t h i s  method, the asser !ed 

tangential s t i f fness matr ix i s  needed. The assembled tangential s t i f fness  

matrix i s  cbtained by combining the indiv idual  element st i f fness matrices. 

The element tangential s t i f fness matrix i s  obtained from equation ( 4 )  by 

par t ia l  d i f fe ren t ia t ion  as follows: 



Performing the d i f f e r e n t i a t i o n  and simp1 i f y i n g  r e s u l t s  i n  

where 

and 

8A 8A *' are the 1 inear, la rge  displacement, and geometric K O  (KLIn,. and 

s t i f f ness  matrices, respect ive ly .  

The elements used i n  the analysis were fodr-node, isoparametric quadri- 

l a te ra l s .  To improve the performance o f  the elements i n  nlodel i n g  bending 

deformation, a reduced numerical i n teg ra t i on  scheme ( r e f .  3) was used t o  

evaluate the element s t i f f ,  >ss matrices. Deta i l s  o f  t he  reduced i n teg ra t i on  

scheme are given i n  dppendix A. 

I n  postbuckl i n g  analysis of a through-width delamination i n  a laminated 

coupon, the assemuled tangential  s t i f f n e s s  matr ix  may become s ingular .  This 

problem ar ises because the buckled region has a small l a t e r a l  s t i f fness  

( f i g .  ? (a) ) .  The cajculated s t i f f n e s s  i s  a func t ion  o f  the cur ren t  displace- 

ments and stresses. Because the actual l a t e r a l  s t i f f n e s s  i s  so small, e r ro rs  

i n  the estimate of displacements and stresses s i g n i f i c a n t l y  a f f e c t  the estimate 

6 



o f  the l a t e r a l  s t i f f ness .  I n  fact ,  dur ing the  i t e r a t i v e  so lu t i on  o f  the  govern- 

i n g  nonl inear equations, the cur ren t  estimate o f  the displacements and stresses 

may be such t h a t  the buckled region has no l a t e r a l  s t i f f ness .  The r e s u l t  i s  

a s ingu lar  s t i f f n e s s  matrix. 

To avoid a s ingu lar  tangent ia l  s t i f f n e s s  mat r ix  dur ing the i t e r a t i v e  

solut ion, an incremental displacement procedure ( ref .  5)  was used, This  

procedure involves modifying the o r i g i n a l  model ( f i g .  2(a)) by spec i fy ing  the 
- 

peak l a t e r a l  displacement, 6, ( f i g .  2(b)) .  This modified model i s  equivalent 

t o  the o r i g i n a l  i f  the support reac t ion  (R) i s  equal t o  zero. Becwse R i s  

a nonl inear func t ion  o f  the appl i e d  load ( P )  , an i t e r a t i v e  so lu t i on  i s  requi red 

t o  determine the magnitude o f  P. The cor rec t  P i s  t h a t  which corresponds 

to  a zero support react ion. The i n i t i a l  est imate of P, which need not  be 

very accurate, i s  pa r t  o f  the input  data. Hence, the  unknowns consis t  o f  

nodal displacements and the magnitude o f  the appl ied load. The load-def lect ion 

re la t ionsh i  y was determined by examining a range o f  x. 

Computer Implementation 

The computert program was designed t o  perform analys is  by substructures 

( re f .  6). Besides reducing computer memory requirements , substructur i  ng 

f a c i l i t i e s  analysis o f  a s t ruc ture  as a combination of 1 inear and nonl inear 

components. For the conf igurat ion studied i n  t h i s  paper ( f i g .  I ) ,  l i n e a r  

analysis i s  appropriate f o r  a l l  regions except the buckled region. By sub- 

s t ruc tu r i ng  i n t o  1 inear  and nonl inear regions, expensive i t e r a t i v e  so lu t i on  
4 

techniques are needed f o r  only  a f r a c t i o n  o f  the equations. 

A disadvantage o f  substructur ing i s  the add i t iona l  bookkeeping 

required. However, the substructur ing scheme used herein minimizes t h i s  



add i t iona l  bookkeeping, yet I s  simple t o  implement. This scheme i s  described 

below. 

As an example o f  the substructur ing technique, consider f i g u r e  3. The 

rectangular region i s  shown div ided i n t o  two substructures- The f i r s t  has 

40 nodes; tne second has 36 nodes. A f t e r  assembling the s t i f f n e s s  mat r ix  and 

load vector f o r  substructure 1, Gaussian e l im ina t ion  i s  used t o  e l im ina te  nodes 

? t o  42. The reduced s t i f f n e s s  mat r ix  and .load vector remain. The remaining 

nodes can be considered the c o n s t i t u t i v e  wdes for  a "super element." The 

nodes fo r  the super clement ( o r i g i n a l l y  numbered 43 t o  48) are given new 

numbers (as input  data) t h a t  depend on the numbering scheme i n  substructure 2. 

I n  t h i s  example, the new c o n s t i t u t i v e  nodes would be 36-35-34-33-32-31. The 

next step i s  t o  assemble the s t i f f ness  mat r ix  and load vector for  substructure 2. 

To account f o r  the i n te rac t i on  between substructures 1 and 2, the s t i f f n e s s  

matr ix  and load vector f o r  the "super element" are added t o  the assembled 

s t i f f n e s s  matr ix  and load vector, respect ive ly ,  f o r  the elements w i t h i n  

substructure 2 .  

I n  analyzing the laminated coupon, the reduced s t i f f n e s s  mat r ix  and load 

vector f o r  the 1 inear region was calculated once and reta ined i n  memory. Each 

time the tangential  s t i f fness  mabl.ix and load vector f o r  the nonl inear region 

were assembled, the i n te rac t i on  w i t h  the l i n e a r  region was accounted f o r  by 

adding the reduced s t i f f n e s s  matr ix  and load vector from the 1 inear region. 

I n  the current  study, t h i s  procedure reduced the number o f  equations solved 

i t e r a t i v e l y  from 1626 t o  182. 

The computer program was v e r i f i e d  by analyzing two problems w i t h  exact 

solut ions. Deta i l s  are given i n  appendix B. 



F in i t e  Element Model s 

The laminated coupon which was used i n  the experimental por t ion o f  t h i s  

study consisted o f  graphi te/epoxy bonded t o  2024-T3 a1 urninunl. This con- 

f i gu ra t ion  was selected t o  s impl i fy  fabr ica t ion o f  specimens used i n  the 

experimental par t  o f  the study. 

A typ ica l  f i n i t e  elenent mesh for  the t e s t  coupon i s  shown i n  f i gu re  4. 

Because o f  symnetry only hal f  o f  the coupon was modeled. The adhesive was 

not included i n  the ana ly t ica l  model. The model contained four substructures 

wi th  a t o t a l  o f  813 nodes and 740 four-node isopararnetric elements. This 

par t icu lar  mesh i s  f o r  the case 2a = 25 mn, t = 0.76 mn, Simi lar  meshes 

were used f o r  other delamination lengths (2a) and depths ( t ) .  I n  general the 

mesh around t h t  crack t i p  ( i  .e. , delamination f ront)  remained unchanged. 

However, f o r  a delamination depth of 0.25 m (0.01 in . )  the mesh a t  the crack 

t i p  was s l i g h t l y  more ref ined than that  shown i n  the f igure. 

Boundary conditions are indicated i n  f igure 4. Because o f  synmetry, ul 

i s  zero a l ~ n g  the l i n e  xl = -a. A t  xl = -a, x2 = 6 mm, p2 i s  set  t o  zero 

t o  prevent r i g i d  body motion. A t  xl = a, x2 = 6 n, p2 i s  set t o  zero. 

Because the rotat ions are small i n  substructure 1 t o  3, t h i s  region was 

assumed t o  behave l inear ly .  Substructure 4 was assumed t o  behave nonl inearly. 

Materi a1 Properties 

Engineering material propert ies f o r  the graphi te/epoxy and a1 uminum were 

assumed t o  be 

A1 umi num : El = E2 = 67 GPa (9.7 x l o 6  PSI) 

G12  = 25 GPa (3.6 x l o6  PSI) 

v12 = 0.33 



Graphi te/Epoxy : El = 140 GPa (20 x l o6  PSI) 

E2 = 14 GPa (2.0 x lo6 PSI) 

G1 2 = 5.9 GPa (0.85 x lo6  PSI) 

v*, = 0.021 

The re1 a t  ionshi ps between these engi neeri  ng constants and the  s t J  f fness 

coe f f i c i en ts  Ci jke may be found i n  reference 7. Plane st ress condi t ions 

were assumed f o r  the analysj  s. 

EXPERIMENTAL PROCEDURE 

The specimen conf igurat ion i s  shown i n  f i g u r e  5. Four-ply un id i rec t i ona l  

graphitelepoxy was bonded t o  2024-T3 AL w i t h  EA934 adhesive. The adhesive was 

cured a t  room temperature, To simulate a delamination, t e f l o n  tape was used 

t o  prevent bonding i n  the cent ra l  p a r t  ~f the specimen. 

Some o f  the specimens were loaded s t a t i c a l l y  so t h a t  l a t e r a l  de f lec t ions  

could be measured. Latera l  de f lec t ions  were measured w i t h  a micrometer. Five 

fat igue specimens were tested under constant-amp1 i tude, load-control  led, 

sinusoidal , ax ia l  loading. The loading was compression-compression w i t h  a 

load r a t i o  ( R )  of 20 and a frequency of 10 Hz. A scale was posi t ioned next 

t o  the specimen and was viewed w i t h  a hand-held telescope t o  measure delamina- 

t i o n  lengths. 

RESULTS AND DISCUSSION 

I n s t a b i l i t y - r e l a t e d  delamination growth was studied a n a l y t i c a l l y  and 

experimentally. The ana ly t i ca l  study of s t ress d i s t r i b u t i o n s  and s t r a i n  

energy release ra tcs  i s  discussed f i r s t .  Then comparisons are drawn between 

ana ly t i ca l  resu l t s  and observed experimental behaviors. 



Parametric Analysis 

Figures 6 and 7 show st ress d i s t r i b u t i o n s  near the delamination f ront  i n  

a laminate w i t h  ?a = 38 mn and t = 0.51 mn. The averaging technique; used 

i n  ca lcu la t ing  these stresses i s  i l l u s t r a t e d  i n  the sketches below. S l i g h t l y  

d i f f e r e n t  techniques were used f o r  the d i s t r i b u t i o n s  through the thickness and 

along the in ter face.  Through the  thickness, po in t  stresses w i t h i n  the same 

element were averaged. Along the  in te r face ,  po in t  stresses i n  elements o : ,~  

both sides o f  the i n te r face  were dveraged. Stresses were evaluated a t  the 

Gaussiiin quadrature points  f o r  both cases. Figure 6 shows the in te r laminar  
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uZ2 and u12 d i s t r i b u t i o n s  e x h i b i t  very steep grad ients  near t he  crack t i p ,  

suggesting a  s i n g u l a r i t y .  As t he  '?ad increases from P = 7.68 KN t o  31.7 KN, 

the shape of the  c12 d i s t r i b u c ~ :  remains e s s e n t i a l l y  t he  same, on l y  the  

amp1 i tude changes. I n  cont rast ,  the  d i s t r i t u t i o n  changes shape dramati- 

c a l l y  from P = 15.7 KN t o  P = 31.7 KN. 

Figure 7  shows the i n te r l am ina r  s t r ess  d i s t r i b u t i o n s  along the  i n t e r f a c e  

between the graphi te lepoxy and t i l e  aluminum (x? = 0.51 m) f o r  the  th ree  

d i f f e r e n t  loads. As i n  the through-the-thickness d i r t r i  but ions,  the  shear 

s t ress  u12 d i s t r i b u t i o n s  f o r  the th ree  cases have very s i m i l a r  shape. The 

normal s t ress  oZ2 d i s t r i b u t i o n s  along the i n t e r f a c e  do no t  e x h i b i t  any 

dramatic change l i k e  t h a t  shown i n  f i g u r e  6. However, ne i t he r  uZ2 nor  

u12 
i n  f i g u r e  6 o r  7  vary l i n e a r l y  w i t h  app l ied  load o r  l a t e r a l  de f l ec t i on .  

Because o f  the apparent s i n g u l a r i t y  a t  the crack t i p ,  t he  magnitude o f  the  

ca lcu la ted  stresses a t  the  crack t i p  have l i t t l e  meaning. Use o f  a  m r e  

re f i ned  mesh would r e r u l t  i n  h igher  ca lcu la ted  values. I n  cont rast ,  ca l cu la ted  

strain-energy re lease r a t e s  represent the product o f  nodal forces and d i s -  

placements near the crack t i p  and are much l e s s  s e n s i t i v e  t o  mesh refinement. 

Also, f o r  the same l e v e l  of accuracy, a  cruder mesh s u f f i c e s  f o r  the  energy 

ca lcu la t ion ,  vh icn  i s  based on t he  product o f  forces and displacements, than 

f o r  the s t ress  ca lcu la t ion ,  which i s  based on de r i va t i ves  o f  displacement. 

Furthermore, there i s  no need t o  use any s i ngu la r  s t ress  element fo rmu la t ion  

t o  ob ta in  the s t r a i n  energy re lease ra tes  ( r e f .  L). Hence, strain-energy 

release ra tes  are convenient t o  use t o  charac te r i ze  delaminat ion growth. For 

t c i s  reason, the remainder of t h i s  parametr ic study concentrates on how 

var ious parameters a f fec t  s t ra in-energy release ra tes.  The technique f o r  



ca lcu la t ing  strain-energy release rates i s  described i n  reference 10 and 

b r i e f l y  i n  appendix B. 

Figure 8 through 10 show the re la t 'msh i  p between delamination length, 

app l ied  load, l a t e r a l  def lect ion,  and Mode I and Mode I I strain-energy release 

rates (GI and GII , respect ive ly) .  Latera l  de f lec t ions  are examined because 

i n t u i t i v e l y  one might expect the seve r i t y  of the in te r laminar  stresses t o  be 

re la ted  t o  the degree o f  postbuckl i n g  def lect ions.  

Figure 8 i l l u s t r a t e s  the nonl inear re la t ionsh ips  between load, delmaination 

1 ength (2a) , and GI. GI f i r s t  increases then decreases w i  t k  increac i ng 

1 oad. I f  the  system were 1 inear, GI would have increased mno ton i ca l  l y  i n  

proport ion t o  the square of the load. The shor ter  delaminations have the l a r g e r  

values o f  peak GI. However, the longer delaminations show a nonzero GI a t  

1 ower 1 oads. 

Figure 9 shows the re la t ionsh ip  between l a t e r a l  def lect ions,  delamination 

length, and GI. Contrary t o  i n t u i t i o n ,  GI does no t  increase monotonically 

w i th  l a t e r a l  deflection. I n  fact, GI i s  zero a t  a l a t e r a l  de f l ec t i on  o f  

approximately 1.5 n. Furthermore, the maximum values o f  GI f o r  a1 1 the 

delamination lengths occurs zt a 6 o f  approximately 0.76 mm. 

The trends shown i n  f igures 8 and 9 can be explained by considering the 

load t rans fer  near the crack t i p .  A f t e r  the delaminated region buckles, an 

increase i n  appl i e d  load (and latera: de f l ec t i on )  causes essen t i a l l y  no 

change i n  the load car r ied  by the buckled region ( region C i n  the sketch). 

However, the load c a ~ r i e d  by region A continues t o  increase w i t h  increased 

load. Hence, load must be t rans fer rsd  from A t o  D. The e c c e n t r i c i t y  i n  the 

load path causes a moment which tends t o  close the crack t i p .  Simultaneously, 

the l a t e r a l  def lect ion causes a moment which tends t o  open the crack t i p .  The 



i n te rac t i on  o f  these processes causes GI t o  f i r s t  increase then decrease 

w i th  increasing load and l a t e r a l  def lect ion.  

Figure 10 shows the e f f e c t  of delamination length and load on GII. 

Results are shown on ly  f o r  loads less  than t h a t  required t o  c lose the crack 

t i p  i n  the d i r e c t i o n  normal t o  the crack surfaces. The cur ren t  analys is  i s  n o t  

v a l i d  f o r  higher loads, since no prov is ion  i s  made t o  keep the crack surfaces 

from overlapping. The f i g u r e  shows t h a t  GI I increases monotonically w i t h  

load, The curves f o r  the d i f f e r e n t  delamination lengths seem t o  be coalescing 

a t  the higher load levels .  Secause l a t e r a l  de f l ec t i on  a lso increases mono- 

t i c a l  l y  w i t h  load, GI1 increases mnoton ica l  l y  w i t h  l a t e r a l  def lect ion.  

Recall t ha t  GI d i d  no t  increase m o ~ ~ o t c n i c a l l y  w i t h  load. Hence, the 

r a t i o  GI :GII var ies w i th  load. For a l i n e a r  system t h i s  r a t i o  would have 

been indey-ndent o f  the load. Note a l so  tha t  f o r  the cases examined, GII i s  

i n  general much la rger  than GI. 

Figures 11 and 12 show tha t  GI and GI1 are very sens i t i ve  t o  the 

depth ( t )  o f  the delamination. The trends are s im i l a r  t o  those i n  f igures  8 

and 10 ( i n  which delamination length was varied),  except the peak values o f  



GI increase as t increases. I n t u i t i o n  suggests t h a t  GI i s  r e l a t e d  t o  the 

bending s t i f f n e s s  o f  the  buckled region. Hence, the  r e s u l t s  a re  n o t  su rp r i s i ng  

2 since the bending s t i f f n e s s  var ies d i r e c t l y  as t3 and inverse ly  as (2a) . 
Comparison of Ana ly t i ca l  and Experimental Results 

The only  d i r e c t  comparison o f  ana ly t i ca l  r e s u l t s  and experiments was f o r  

l a t e r a l  def lect ions.  As shown i n  f i gu re  13, the analys is  r e f l e c t s  the  actual  

behavior o f  the specimen. 

Figure 14 shows delamination growth ra tes  f o r  various delamination 1 engths 

a t  maximum compressive loads of 17.8 KN and 26.7 KN (4000 l b s  and 6000 lbs ) ,  

respect ive ly) .  Three specimens were tested a t  17.8 KN and four  were tested 

a t  26.7 KN. (Note t h a t  specimens 2 and 3 were tested a t  both load leve ls . )  

There i s  considerable sca t te r  i n  the data. However, one obvious t rend i s  the  

rap id  slowing o f  delamination growth as the delamination lengthens. 

Figure 15 i l l u s t r a t e s  how GI, GII, and delamination growth r a t e  vary as 

a delaminatior grows. The GI and GII curves were derived from the curves 

i n  f igures 8 and 10, respect ive ly .  The growth data are from f i g u r e  11 (a).  

Note tha t  both GI and the growtn r a t e  f i r s t  increase then decrease w i t h  

delamination extension; GII increases monotonically and does no t  r e f l e c t  

the change i n  growth rate.  Althougtl GII i s  nu f ie r ica l l y  much l a rge r  than GI, 

delamination growth appears t o  be dominated by the Mode I compoment o f  stress. 

CONCLUDING REMARKS 

A parametric ana ly t i ca l  study o f  i n s t a b i l i t y - r e l a t e d  delamination growth 

i n  laminated coupons was performed using a spec ia l l y  designed f in i te-e lement  

program. The analysis was designed t o  analyze coupons as a combination o f  

1 inear and nonl inear regions. The program was v e r i f i e d  by analyzing two 



problems w i t h  exact solut ions. In addit ion, comparison o f  measured and 

predicted l a t e r a l  de f lec t ions  o f  postbuckled through-width delaminations showed 

the analysis re f l ec ted  actual  specimen behavior. A small number o f  specimens 

were fa t igue tested t o  ob ta in  delmaination growth data. Calculated s t r a i n -  

energy release rates were qua1 1 t a t i v e l y  cor re la ted  w i t h  the  observed growth 

rates t o  determine the r e l a t i v e  importance o f  the Mode I and Mode I 1  components 

o f  strain-energy re1 ease rates. 

Load transfer near the delamination was very complex. I n t e r  l aminar 

stresses were not  a simple func t ion  o f  appl ied load o r  l a t e r a l  de f lec t ion .  

Very steep gradients i n  the calculated stresses a t  the delamination f r o n t  

suggested the presence o f  a s t ress s ingu la r i t y .  Hence, the  peak values o f  

in ter laminar  stresses have 1 i t t l e  meaning, s ince they depend on mesh refinement. 

I n  contrast,  strain-energy-release rates are much less sens i t i ve  than the  

calculated stresses t o  mesh refinement. Consequently, s t r a i  n-energy-re1 ease 

rates ( ra ther  than stresses) were examined f o r  various delamination lengths, 

delamination depths, and loads. 

Calculated strain-energy-release rates f o r  Mode I and Mode I 1  crack 

extension (GI and GII , respect ive ly)  were very sens i t i ve  t o  delamination 

length, delamination depth, and load leve l .  GI increased w i t h  increasing 

load and l a t e r a l  de f l ec t i on  i n i t i a l  l y ,  but  then decreased. GII increased 

mnoton ica l  l y  w i th  increasing load. I f  the s t ruc ture  had responded 1 inear ly ,  

GI would have increased monotonically w i th  the square o f  the load, and the 

r a t i o  G1/GII W. u l d  have remained constant. For any a r b i t r a r y  l a t e r a l  

def lect ion,  GI was greater f o r  the shor ter  and deeper delamination. For a!? 

a r b i t r a r y  remote load, GI was not  necessari ly greater o r  smaller f o r  the 

shorter and deeper del ami nations. 



Cjua l i ta t i v~  correlat ion o f  calculated GI ond GI1 values wi th  observed 

del m ina t ion  growth rates showed that  delamination growth i s  dominated by 

GI, pven though GII may be numerically much larger. Because GI i s  not a 

siy e function o f  delamination length, delamination depth, applied load, o r  

l a t  ~ r a l  deflection, predict ing growth rates from a 1 i m i  ted delamination growth 

Jat.t base i s  expected t o  be d i f f i c u l t .  Furthermore, these predict ions w i l l  

1 i kely be susceptible t o  large errors. 
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REDUCED NUMERICAL INTEGRATION 

Many two-dimensional f i n i t e  elements are inadequate i n  modeling pure 

bending deform -ions. The poor performance i s  due t o  the i n a b i l i t y  o f  these 

elements t o  represent pure bending deformations. I n  pure bending, the shear 

s t r a i n  tzI2 i s  zero. However, when displacements corresponding t o  pure 

bending are prescribed a t  the nodes, these elements develop nonzero shear 

s t ra in  (refs, 3 aqd 4). This shear stra in,  ca l led paras i t ic  shear, causes the 

element to  be excessively s t i f f .  

Selective reduced integrat ion of terms related t o  shear d i s t o r t i on  can 

dramatical 1y improve the performance of two-dimensional elements which exh ib i t  

parasi t ic  shear (refs 3 and 4). I n  the f i n i t e  element program developed f o r  

the current study, f u l l  in tegrat ion re fc rs  t o  four-point Gauss integrat ion;  

reduced integrat ion refers t o  sing1 e point integrat ion a t  the e l  emen* 

centroid. Selective reduced integrat ion f o r  l inear  analysis i s  aiscussed 

i n  references 3 and 4. For nonlinear analysis, reduced integrat ion schemes 

are also needed for the large displacement matr ix  (KL!, :kc jc?optr ic  s t i f fness  

matrix (Ka) ,  and the residual vector ($). Terms which should be calculated 

using reduced integrat ion are i den t i f i ed  below. 

Expressions for s t i f fness matrices and the residual vector are given 

by equations (A1 ) through (A3j. 
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I n  equations (A l )  and (A3) the p a r t i a l  der iva t ives  of shear s t ra ins  are 

evaluated a t  the reduced i n teg ra t i on  points.  I n  equations (A2) and (A3) the 

shear stress i s  the current  shear s t ress a t  the element centroid. To be 

confident i n  choosing the remaining shear-related terms i n  equation ( A ? ) ,  the 
- 

der iva t ion  of the geometric s t i f f n e s s  mat r ix  must be examined.  he geonletric 

s t i f fness  matr ix  i s  one component o f  the tangent ia l  s t i f f n e s s  matr ix,  KT, 

where 

When the d i f f e r e n t i a t i o n  i s  performed, one o f  the terms i s  
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This  term, when expanded and simpl i f ied,  becomes the r i g h t  hand side o f  

A 8 equation ( A 2 ) .  The products of der ivat ives,  i3N /axi aN /ax , are derived 
j 

fro. t l , e  term % (2) . Comparison of indices shows t h a t  the product o f  

a%, 

derivdtives i s  a  shear r e l a t e d  term if i # j. Hence, i n  equation (A2 )  a l l  

products i n  which i # j are calculated by reduced integrat ion.  



VERIFICATION Oc ANALYSIS 

Two problems w i t h  exact so lu t ions  were analyzed t o  v e r i f y  the f i n i t e  

element analysis. The f i r s t  problem involved l a rge  de f l ec t i on  o f  a column. 

This problem was used t o  check the modeling o f  geometric non l i nea r i t y .  The 

second problem studied involved a double cant i  1 ever beam. This conf igurat ion 

was used t o  check the strain-onergy release r a t e  ca lcua l t ion .  

A schematic o f  the large-def lect ion column problem i s  shown i n  f i g u r e  B1. 

The solut ion,  given i n  reference 8, i s  i n  terms o f  complete e l l i p t i c  in tegra ls .  

A truncated series representat ion f o r  the i n teg ra l s  was used t o  der ive  the 

fo l low ing re la t ionsh ips  

where 

p = s i n  a12 

P = load i n  column 
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'a = p r o j e c t i o n  o f  deformed column on x a x i s  

v = l a t e r a l  de f lec t ion  - a  

Shedr ef fects were ignored because o f  a l a rge  length/ th ickness r a t i o  

(alt = 50). I n  t he  f i n i t e  element analys is ,  p a r t i c u l a r  values o f  l a t e r a l  

d e f l e c t i o n  (ya)  were spec i f ied .  Corresponding values o f  x, and P 

were ca lcu la ted  by the  analys is .  Mate r ia l  p roper t ies  used i n  the ana lys is  

were 

El = 140 GPa (20 x l o 6  PSI) 

E2 = 14 GPa (2.0 x l o 6  ?SI) 

G12 = 5.9 GPa (0.85 x l o 6  PSI) 

Dimensions are shown on the  f i n i t e  element mesh used ( f i g .  B2). Th is  mesh 

was the  same as one of t he  meshes used i n  the main t e x t .  Substructures 1 and 2 

here correspond t o  substructures 3 and 4 i n  the main t e x t .  L inear  analys is  

was used f o r  subst ructure 1 and nonl inear  ana lys is  f o r  subst ructure 2. 

Calculated loads and ax ia l  shor ten ing f o r  t h ree  values o f  l a t e r a l  

de f l ec t i ons  are l i s t e d  i n  the f o l l ow ing  tab le .  
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* 2  n ElI 
Pe = Eu le r  buck l i ng  load  = - 

4a2 

For small l a t e r a l  de f lec t ions  t h e  a x i a l  shor ten ing i s  p r i m a r i l y  due t o  a x i a l  

s t r a i n .  The column labe led  [ ( a  - xa ) /~ ]CORR has t h e  value o f  [ ( a  - xa)/a]  

co r rec ted  f o r  the  average a x i a l  s t r a i n  (which i s  PIAE). The f i n i t e  element and 

exact so l u t i ons  agree very we l l  f o r  both t he  loads and the  a x i a l  shortening. 

To check t he  s t r a i n  energy re lease r a t e  ca l cu l a t i on ,  t he  double c a n t i l e v e r  

beam con f i gu ra t i on  i n  f i g u r e  83 was analyzed. Loading was i n  the  form o f  

spec i f i ed  l a t e r a l  displacement, 6. A crack c losure  technique s i m i l a r  t o  t h a t  

repor ted i n  re ference 9 was used t o  c a l c u l a t e  s t r a i n  energy re lease ra tes .  

The forces t ransmi t ted  through t he  node a t  t he  crack t i p  and t he  r e l a t i v e  

displacements o f  t he  two nodes on t he  crack boundary c l oses t  t he  crack t i p  

node were used t o  ca l cu l a te  the  energy requ i red  t o  c lose  t he  crack. I f  an 

element i s  considered t o  behave non l inear l y ,  these nodal forces must be c a l -  

cu la ted from equat ion ( 8 4 )  

yale 

0.005 

.05 

.10 
i 

+ 
F I N I T E  ELEMENT 

( e  - x a ) / ~  

9 . 8 2 ~ 1 0 ' ~  
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EXACT 
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1  .OO 

1.01 
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PI P; 
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1.00 
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I f  an element i s  considered t o  behave l i n e a r l y ,  the nodal forces are 

calculated from the 1 inear s t1  f fness ma t r i x  and nodal displacements. For 

a l l  the resu l t s  reported In t h i s  paper, the  elements around the crack t i p  

were assumed t o  behave 1 i near ly .  The f i n i t e  element mesh and mater ia l  

propert ies were the same as used f o r  the column. Because o f  symnetry on ly  

h a l f  o f  the double cant i lever  beam was modeled. Linear analysis was used 

f o r  substructure 1 and nonl inear analysis f o r  substructure 2. For t h i s  

problem, the difference between 1 incar  and nonl i nes r  analysis o f  substructure 2 

i s  negl i g i  b1 e except f o r  1 arge l a t e r a l  displacements. 

For the double cant i lever  beam, G I I  = 0 because o f  symmetry. For 

small l a t e r a l  displacements, the closed form expression for  G I  can be shown 

2 For the case 6 = 0.25 mn, equation (05) y i e l d s  a value o f  2.10 joules/m . 
The f i n i t e  element so lu t ion  y ie lded GI = 2.12 joules/m2, which agrees 

very wel l  w i t h  the exact value. 
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