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Summary 

ON THE PRESSURE FIELD OF 

NONLINEAR STANDING WATER WAVES 

The pressure field produced by two-dimensional nonlinear time-and 

space-periodic standing waves has been calculated as a series expansion 

in the wave height. The high-order series is summed by the use of Pade 

approximants. Calculations include the pressure variation at great 

depth, which is considered to be a likely cause of microseismic activity, 

and the pressure distribution on a vertical barrier or breakwater. 
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Figure Captions 

1. Time variation of pressure at infinite depth, £ = 0.6 

- - - leading-order theory 

2. Surface profiles versus time, £ = 0.6 • 

3. Magnitude of pressure variation at infinite depth; 

- - - leading-order theory 

4. Pressure distribution vertically below a crest and a trough, 

t = 0, £ = 0.55 • 
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1. Introduction 

Standing waves characterize the sloshing ("seiching") of water in 

closed basins. They also arise, in effect, from the reflection of a 

wave train from a wall or coast and, in the open ocean, from the inter­

action of progressive wave trains. 

For a two-dimensional progressive wave, the pressure field pro­

duced by the surface motion attenuates exponentially with depth. At 

depths of the order of a wavelength or greater, the difference between 

the progressive wave pressure field and the hydrostatic pressure is 

negligible. Plane time and space periodic standing waves arise from 

the interaction of two identical progressive wave trains moving in 

opposite directions. A remarkable feature of this interaction is the 

development of a time-varying component of pressure that acts upon 

the whole fluid simultaneously and is thus unattenuated with depth. In 

deep water, therefore, it is the dominant non-hydrostatic component. 

If £ is the dimensionless amplitude of the surface wave, this pressure 

component is of order £2 Because of the customary use of linear 

theory, this effect was long overlooked. It was apparently first rec­

ognized by Miche in 1944. 

In a classical paper, Longuet-Higgins (1950) proposed a theory of 

the origin of microseisms based on this second-order pressure effect. 

He shows that the interference between groups of waves of the same fre­

quency and travelling in opposite directions, arising from storms at 

sea, can produce ground movement of the observed frequency and order-
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of-magnitude. It is remarkable that the frequency of this oscillatory 

pressure is twice that of the waves which produce it. 

In a recent paper, Schwartz & Whitney (1980), hereafter referred 

to as SW, compute surface profiles and amplitude dispersion effects 

for nonlinear standing waves in deep water. The technique involves the 

calculation of these quantities as high-order series in the wave ampli-

tude where the very substantial arithmetic manipulations are delegated 

to the computer. The calculations are greatly simplified by the intro-

duction of a time-dependent conformal transformation that is used to 

map the moving fluid onto a fixed region in the tranformed plane. The 

series is computed to 0(£25) and is summed by Pade approximants. The 

results are effectively exact except, perhaps, for waves within a few 

percent of the highest. A previous series computed by Penney and Price 

(1952), carried by hand to fifth-order, was found to be defective in 

the sense that their solution would force an unacceptable secular term 

at 
6 

0(£ ). 

In this paper we use the series results from SW to compute the 

pressures on the sea bottom and a vertical breakwater produced by these 

standing waves. Because the unattenuated bottom effect is second-order 

in the amplitude and hence only significant for waves of moderate or 

greater steepness, a correct nonlinear solution is of particular imp or-

tance here. It is shown that the simple leading-order theory used by 

Longuet-Higgins may overpredict the pressure variation for very steep 

waves by as much as 40 per cent. The variation of bottom pressure with 

time is also calculated for a steep wave; this pressure "signature" 

differs somewhat from a sinusoid. Finally we present the distribution 
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of pressures vertically below a crest and a trough at the instant of 

time when the surface displacement is a maximum. This may be inter­

preted as the variation of wave pressure upon a breakwater caused by 

normal incidence and reflection of a progressive wave train. The amp­

litude is chosen here so as to reproduce a similar calculation by 

Penney & Price. The present results differ from theirs in certain 

significant respects, however. 
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2. Mathematical Formulation and Results 

The pressure p within an incompressible fluid moving irrotation-

ally is given by the Bernoulli equation 

E.= 
p 

1 
- cp - - ww - gy t 2 . (1) 

where cP is the velocity potential, w is the complex (conjugate) 

velocity u - iv, g the acceleration of gravity and p is the density. 

On the free surface the pressure is a constant which may, without loss 

of generality, be taken to be zero. 

A "pure" standing wave that is periodic in both space and time is 

characterized by a frequency wand a wave number k. Using 11k 

and llw as units of length and time respectively, equation (1) may 

be written in dimensionless form as 

'V 
P ¢'V+-ww -y 1 ('V 1 'V 'V) 'V 

S t 2 

where the dimensionless pressure is given by 

'V 
P 

kp 
pg 

and the frequency parameter is 2 
S = gklw • 

(2) 

In sw the calculation of standing waves in deep water is con-

siderably simplified by mapping the moving fluid region in the physical, 

'V 'V 'V 
or z = x + iy, plane into a fixed region in the s = ~ + in plane. 

The image of the fluid region occupies the half-plane n < o. The 

required conformal map 
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z 
'V 

I'; + iZ (I';, t) (3) 

is determined as part of the solution. Z is an analytic function of 

its argument that, because of the symmetry and periodicity requirements, 

is given by the infinite series 

IX' 

Z(l;;, ~) = I 
p=o 

a e-ipl'; 
p 

(4) 

where the coefficients a are functions of time. Each a is cal-
p p 

culated as a power series in s, the (dimensionless)semi-amplitude of 

the wave at those instants of time when the water is at rest. The veloc-

ity potential is calculated as 

'V 'V 'V 'V 
~ = Re {F[l;;(z, t), t]} (5 ) 

where F ~ + i~ , the complex potential in the transformed plane, 

has the representation 

co 

F(l;;, ~) = L 
p=o 

'V • 
c (t)e-~Pl'; 

p 
(6) 

Each c is also calculated as a power series in s with coeffi­p 

cients that are Fourier polynomials in time. Both F and Z are 0(£); 

thus for S = 0, (3) is merely an identity mapping •. 

The velocity field induced by periodic standing wave motion decays 

exponentially with depth. As was first shown by Miche (1944), the po-

tential, on the other hand, contains an unattenuated component that is 

order 
2 

£ At great depths, therefore, this is the dominant contribu-
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tion. From (2), the nonhydrostatic portion of the pressure as n -+ - 00 

is given by 

'V 
.Hm p -

n-+-oo 

'V 

PI 

'V 
o/V c' (t) 

t 0 = - S = - --S- (7) 

The solution presented in S~'l was calculated to 25 
O(e: ) by dele-

gating the coefficient arithmetic to a computer. The first few coeffi-

cients may be recognized as rational numbers from repetition in their 

decimal expansions. Through O(e:6 ) , the series for 
'V 

PI is 

'V 

PI 

2 
e: 
2 

'V e: 4 
'V 'V 

cos2t + 81 (3cos2t + cos4t) 

_ e:
6 

(46177 
4 39424 

'V 'V 27 'V) 8 cos2t + cos4t + 512 cos6t + O(e: ) 

(8) 

where the expansion for S(e:) given in SW has also been used. Notice 

'V 
that Pl(t) varies with twice the frequency of the surface displacement. 

Longuet-Higgins (1950), who computed the first term in (8), presents a 

simple physical explanation for the frequency doubling. For finite 

depth, however large, the center of gravity of the fluid region is dis-

placed as the surface undulates. By symmetry the centroid moves through 

two complete cycles during each period of the surface wave. The pres-

sure on the bottom, which supplies the necessary motive force, must 

therefore fluctuate in a similar manner with twice the frequency of 

the waves. 

In Figure 1 we show the time variation of pressure at infinite 

depth for a fairly steep wave. In the figure e: = 0.6 , about 10 per 
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cent short of the limiting wave that in SW is estimated to have a 

steepness of about 0.66. The pressure was computed as a Pade approximant 

formed from 12 terms in the series in (8). Pade approximants are -ration-

al fractions formed from a finite number of terms in a given power 

series. The results in the figure are drawn from the [6/6] approximant 

which has six terms in both the numerator and denominator. In general, 

the sequence of approximants formed from increasing numbers of terms 

in the series expansion of a function will converge much faster than 

the sequence of partial sums and will usually converge to the analytic 

continuation of the function when the argument lies outside of the radius 

of convergence. A somewhat more complete description of the procedure 

is given in SW general theory of Pade approximants may be found in 

Baker (1975). The convergence of the sequence of approximants to the 

series (8) suggests that the data in the figure are accurate to at 

~ 
least one part in 103 Note that p is an even function of wt with 

period TI. In Figure 2 we display the corresponding undulations of 

the free surface for this values of £ as wt varies between 0 and 

TI/2. For 
IT 
2 

< wt < TI , the profiles are left-right reflections of 

those shown. 

~ 
In general PI achieves its maximum value at wt = IT/2 and its 

minimum at t = o. Figure 3 shows the magnitude of the pressure var-

'V ~ 
iation, PI (TI/2) - PI (0) , plotted versus £2 for amplitudes ranging 

from infinitesimal up to the limiting wave. The pressure difference 

dips slightly as the limiting value of 
2 

£ is approached. We note 

that similar behavior was observed in the variation of the parameter 

S presented in SW. 
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In both Figures 1 and 3, the leading-order result, computed from 

the first term in (8), is shown for comparison. For very steep waves 

the simple theory overestimates the pressure by as much as 40 per cent. 

This is in stark contrast to the frequency calculation, for example, 

where the linear theory result, Ul = ./gk is never in error by more 

than 5 per cent. 

Another application of the results presented in SW is the compu-

tation of the pressure on a breakwater due to wave action. Two-dimensional 

periodic standing waves will result from the normal incidence of a 

periodic progressive wave train upon a vertical barrier. We will be 

concerned here only with those instants of time when there is a crest or 

a trough at the breakwater. Thus, at t = 0" the surface achieves its 

maximum displacement and the fluid is instantaneously at rest. The 

Bernoulli equation assumes the simplified form 

'V 
P = 

~ 
S 

n - Re{Z} . (9) 

'V 
The image of the free surface is n = 0; there p is zero. Substi-

tuting.expansions (4) and (6) in (9) and evaluating on n 0, we obtain 

immediately 

'V 
c' (t) + S a = a 

p p 

for p = 0, 1, 2, Hence ~ + SZ = a and the pressure is 

given simply by 

'V 
P = - n . 
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At these instants of time, therefore, the contours of constant n are 

the isobars in the physical plane. 

In order to plot pressure versus depth, it is necessary to cal-

culate the vertical displacement corresponding to a given value of n • 

We take the imaginary part of (3) with ~ = 0 and ~ = TI to compute 

the ordinates beneath a crest and a trough respectively and obtain 

00 

y(~ 0) = n + L a epn 
p 

p=o 

and 
00 

y (~ = TI) = n + L a (-I)P epn 
p 

p=o 

In SW it is shown that the coefficienta a have expansions of the 
p 

form 

where 

Here [ 

become 

00 

ap = L 
n=o 

a. €:p+2n 
pn 

[2n
2
+p ] 

a. -'a. '" pn - ~ pnt cos(p + 2n - 2t)t 

t=O 

'" is the integer-part function. For t = 0 , these equations 

00 

y ( ~ )- n + L 
J:=l 

k 
(±€:) hk 

9 
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" 

,# 

'. 

where 

[k/2] 

hk I 
t=o 

(k-2t)n 
e 

[k/2] 

L 
m=o 

Clk_ 2t, t', m 

A table of coefficients Cl (0) may be found in SW. pn 

(lOb) 

The series in (lOa) involves both odd and even powers of £ from 

the 25th-order solution developed in SW, Pade approximants through 

[12/12] may be forned. We use these approximants to sum the series 

for £ = 0.55 and present the resulting pressure profiles in Figure 4. 

The sequence of approximants converged to at least one part in 104 • 

As the depth increases, the two profiles merge asymptotically. 

The asymptote is not the hydrostatic pressure variation for the reasons 

discussed in detail above. Penney and Price (1952) present a figure 

equivalent to Figure 4 for their parameter A 0.5 corresponding to 

about the same value of wave height. Their profiles are drawn so as 

to be asymptotic to the hydrostatic pressure. They were, apparently, 

uhaware of Miche's (1944) result and appear to have lost the second-

order unattenuated pressure variation. In addition, the pressure dis-

tribution beneath the crest which they present differs appreciably from 

the one in Figure 4 near the still-water level; the difference being 

about 25% at y = O. 

To our knowledge, no experimental measurements of standing wave 

pressures have yet been made. In light of the significant applications 

of the theory in both geophysics and coastal engineering, it would seem 

10 
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to be a most worthwhile exercise. Reasonably periodic standing waves 

have been produced in laboratory wave tanks by several investigators • 

The pressure variation on the walls and bottom of these tanks could be 

obtained with little additional difficulty. 
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Figure 1. Time variation of pressure at infinite depth, E = 0.6 - - - leading-order theory. 
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