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A RAPID PERTURBATION PROCEDURE FOR DETERMINING
NONLINEAR FLOW SOLUTIONS: APPLICATION TO
TRANSONIC TURBOMACHINERY FLOWS

Stephen S. Stahara, James P.*Elliott,
and John R. Spreiter

Nielsen Engineering & Research, Inc.
Mountain View, CA

SUMMARY

An investigation was conducted to develop perturbation
procedures and associated computational codes for determining
nonlinear flow solutions, with the objective of establishing a
method for minimizing computational reguirements associated with
parametric studies of transonic flows in turbomachines. The
theoretical analysis involved the development of a rapid method
for calculating first-order changes in nonlinear flow sclutions
due to variations of an arbitrary geometrical or flow parameter.

The procedure developed and evaluated, referred to as the
direct correction method, was found to be capable of determining
highly accurate approximations to families of strongly nonlinear
solutions which are either continuous or discontinuous, and
which represent variations in some arbitrary parameter. The
method consists of defining a unit perturbation by employing two
nonlinear solutions which differ from one another by a ncminal
change in some geometric or flow parameter, and then using that
unit perturbation to predict a family of related nonlinear
solutions over a range of parameter variation. Coordinate
straining is used in determining the unit perturbation to
account for the movement of discontinuities and maxima of high-
gradient regions due to the perturbation. While simultaneous
multiple-parameter perturbations can be treated by the method,
the theoretical development and results presented in this
initial study are for the single-parameter perturbation problem.

Although the procedure is generally applicable, the results
reported here have been directed toward nonlinear aerodynamic
applications. Attention is focused in particular on transonic

*
Stanford University, Dept. of Applied Mechanics, Stanford,
CA; Consultant, Nielsen Engineering & Research, Inc.

A
%




flows which are strongly supercritical and exhibit large surface
shock movement over the parametric range studied; and on sub-
sonic flows which display large pressure variations in the
stagnation and peak suction pressure regions. Flows past both
isclated airfoils and compressor cascades involving a wide
variety of flow and geometry parameter changes are reported.
Comparisons with the corresponding 'exact' nonlinear solutions
indicate a remarkable accuracy and range of validity of such a
procedure. Computational time of the method, beyond the deter-
mination of the base soclutions, is trivial.



1. INTRODUCTION

Given the remarkable growth in capability of advanced
computational methods for the determination of a spectrum of
nonlinear phenomena in such diverse disciplines as fluid
dynamics, structures, and nuclear physics to name just a few -

a capability which has already made many difficult calculations
routine and which is certain to improve in the future - it is
apparent that a need exists for complementary methods capable of
alleviating, at least in part, the usage limitations imposed on
these methods by their run times. The need becomes particularly
compelling when large numbers of related cases are required as
in parametric or design studies. Techniques such as direct
acceleration procedures provide an important means of reducing
computer time by improving computational efficiency of the
solution algorithm, but these and similar methods, which enhance
the solution algorithm itself, represent only a partial answer.
What is most desirable is a means to minimize the actual number
of separate calculations required in a particular application by
extending, over some parametric range, the usefulness of each
individual solution determined by these computationally expensive
procedures.

Consequently, the basic motivation underlying this study is
to extend the usefulness of such numerical solutions computed for
specific turbomachinery configurations and flow conditions with
a view toward reducing the computational requirements now neces-
sary. The nature of the present investigation is both explor-
atory and developmental in the sense that aspects of the
procedure such as validity, range of application, and economy
will be investigated, and a computational code embodying all the
results of the study will be developed.

Two fundamental methods for accomplishing such a pertur-
bation procedure are available: a classical approach involving
posing and solving linear perturbation equations; and a direct
correction method employing two or more nonlinear base solutions.
In this report, both of these methods are discussed; and an
evaluation of the latter method, based on a large number of
different applications, is made.

A crucial aspect of such perturbation methods is their
ability to accurately treat regions where either discontinuities
or high gradients exist. For the results presented here coordi-
nate straining is introduced as a means of accounting properly
for the displacement of discontinuities due to an arbitrary
change in some solution parameter. This is shown to result
in highly accurate perturbation predictions in the vicinity of
the discontinuity. That idea has also been extended to improve
pPredictions in the vicinity of other high-gradient regions.



Although the procedures developed are generally applicable,
the specific results reported here are for aerodynamic appli-
cations. Since one of the primary objectives of this study was
to provide a definitive proof-of-concept of such a perturbation
method, a large variety of perturbation results based on
transonic small-disturbance and full potential solutions were
studied and are presented for nonlinear subsonic and transonic
flows past both isolated airfoils and compressor cascades. In
order to enable a critical evaluation of the range of validity
and accuracy of the straining procedure, emphasis was placed on
transonic flows which are strongly supercritical and exhibit
large surface shock movement over the parametric range studied;
and on subsonic flows which display large pressure variations in
the stagnation and peak suction pressure regions.
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2. ANALYSIS

2.1 Perturbation Concept and Methods

The basic hypothesis underlying the present procedure is
that a range of solutions in the vicinity of a previously deter-
mined or base solution can be calculated to first-order accuracy
in the incremental change of the varied parameter by determining
a linearized unit perturbation solution Q_defined according to
the relation p

Q =
%pproximate solution for '
conditions differing from

those of the base solution
by an amount characterized

by €
9 + e-{Qp}
r — .\ = = . = N
Base solution Linearized perturbation ‘
for some flow solution for a unit
quantity Q change of ¢ (1)

The effectiveness of such a method, of course, depends
upon the ability of the relationship defined by equation (1)
to remain accurate over a range e of practical significance, and
the fact that the unit perturbation QOp need be determined only
once. [The significance of the unit perturbation Q_ is obvious.
It represents the local rate of change of the basePflow solution
Q  with respect to the particular quantity, say g, perturbed;
tRat is Q, = (39/3p) .

Two generic methods exist for determining Qp, each differing
in philosophy and having its own particular strengths and weak-
nesses. We refer to these methods simply as the linear pertur-
bation equation method and the direct correction method.

The linear perturbation equation method represents the
classical approach for performing a perturbation analysis and
proceeds by establishing and solving a linear differential
equation for the perturbation. Although in the present applica-
tion, we confine out interest solely to the first-order term, the
complete procedure represents a rational approximation scheme
capable of continuation to any order. The method proceeds by
expanding the dependent variables in an ascending power series
in the incremental change € of the varied parameter, inserting
that representation into the full governing equations and then
assembling the result into a corresponding series of linear
equations in ascending orders in €. Higher-order solutions



in general depend on both base flow plus lower-order solutions.
Determination of the appropriate boundary conditions is done in
a similar fashion.

The power of the linear perturbation equation method is that
it requires the calculation of only one nonlinear base solution.
With that information, any number of individual perturbations
can then be calculated, subject to the particular governing
linear partial differential equations and boundary conditions
which apply. The disadvantages are that each perturbation
problem must be posed individually, including differential
equations and boundary conditions. Furthermore, it may be
necessary to simplify the governing equations and boundary
conditions to a point where they can be solved rapidly relative
to rerunning the base flow procedure. Moreover, the perturbation
solutions themselves may be gquite sensitive to the base flow
solutions which usually enter into the perturbation problem
through the differential equation and sometimes through the
boundary conditions as well.

The fundamental limitation of the method is the restriction
of the range over which the perturbation procedure remains valid
to a linear one, Since this characteristic depends upon the
local behavior of the base flow with respect to the varied
parameter, no general statement regarding range of validity is
possible. Typical behavior for a given class of flows must be
ascertained by checks with the base flow procedure. Initially
unknown at the outset of an application with this technique,
then, are the accuracy requirements imposed on the base solution
by the perturbation procedure and the range of parameter vari-
ation over which the linear assumption is valid.

For the alternative method, the perturbation solution per
unit change of the varied parameter, Qp, is determined simply
by differencing two nonlinear base flow solutions removed from
one another by some nominal change of a particular flow or
geometrical gquantity. A unit perturbation solution is then
obtained by dividing that result by the change in the perturbed
guantity. Related solutions are determined by multiplying the
unit perturbation by the desired parameter change and adding
that result to the base flow solution. This simple procedure,
however, only works directly for continuous flows for which the
perturbation change does not alter the solution domain. For
those perturbations which change the flow domain, coordinate
stretching (usually obvious) is necessary to insure proper
definition of the unit perturbation solution. Similarly, for
discontinuous flows, coordinate straining is necessary to account
for movement of discontinuities due to the perturbation solution.

The attractiveness of the correction method is that it is

not restricted to a linear wvariation range but rather replaces
the nonlinear variation between two base solutions with a linear
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fit. This de-emphasizes the dependence and sensitivity inherent.
in the linear perturbation equation method on the local rate of
change of the base flow solution with respect to the varied
quantity. . For many applications, particularly at transonic
speeds, the flow is highly sensitive, and the linear range of
parameter variation can be sufficiently small to be of no _
practical use. . Furthermore, other than the approximation of a
linear fit between two nonlinear base solutions, the direct
correction method is not restricted by further approximations
with respect to the governing differential equations and boundary
conditions. Rather, it retains the full character of the
original methods used to calculate the base flow solutions. Most
importantly, no perturbation differential equations have to be
posed and solved, only algebraic ones. In fact, it isn't even
necessary to know the exact form of the perturbation equation,
only that it can be obtained by some systematic procedure and
that the perturbations thus defined will behave in some 'generally
appropriate' fashion so as to permit a logical perturbation
analysis. For situations involving perturbations of physical
parameters, such as reported here, the governing perturbation
equations are usually transparent, or at least readily derivable.
Finally, in applying this method it isn't necessary to work with
primitive variables; rather the procedure can be applied directly
to the final guantity desired.

The primary disadvantage of this method is that two base
solutions are required for each parameter perturbation considered.
Furthermore, both flows must be topologically similar, i.e.,
discontinuities or other characteristic features must be present
in both base solutions used to establish the unit perturbation.

2.2 Previous Applications

Detailed studies of the linear perturbation equation method
to sensitive transonic flows, with a view toward testing the
method as an effective tool for reducing computational require-
ments, have not been done. The primary reason is that such
studies quickly become overwhelming. Each perturbation problem
must be posed individually, subject to its own particular
governing equations and boundary conditions; and then a separate
computational code for the perturbation established. Generally,
the governing equations and boundary conditions of the perturba-
tion, even though they are linear, are more involved than those
for the base solution. Additionally, the computational and
convergence characteristics can pose similar or additional
problems from those of the base flow procedure.

In an attempt to examine some of these problems for
transonic applications in at least a preliminary fashion, an
application of the linear perturbation equation method to



transonic turbomachinery flows was made in reference 1. The
conclusions obtained from that study were that reasonable results
could be anticipated from the method for blade geometry changes,
such as blade thickness and angle of attack. Less satisfactory
results were obtained for perturbation changes in overall
guantities, such as blade spacing and free-stream Mach number,

a result that could be anticipated a priori since such perturba-
tions alter the basic character of the flow more rapidly. The
most significant conclusion of that study was the demonstration
of the primary limitation of the linear perturbation equation
method. That is, for sensitive flows such as occur in transonic
situations, the basic linear variation assumption fundamental

to the technique is sufficiently restrictive that the permissible
range of parameter variation becomes so small as to be of limited
practical use. Some preliminary applications of the direct
correction method, however, displayed a significantly wider

range of perturbation solution validity, in particular for
strongly supercritical flows when coordinate straining was
employed to account for shock movement.

2.3 Coordinate Straining

The concept of employing coordinate straining to remove
nonuniformities from perturbation solutions of nonlinear
problems is well established and originally suggested by
Lighthill (ref. 2) three decades ago. The basic idea of the
technique is that a straightforward perturbation solution may
possess the appropriate form, but not guite at the appropriate
location. The procedure is to strain slightly the coordinates
by expanding them as well as the dependent variables in an
asymptotic series. It is often unnecessary to actually solve
for the straining. It can generally be established by inspection.
The final uniformly valid solution is then found in implicit
form, with the strained coordinate appearing as a parameter.

In the original applications of the method (ref. 3), it was
applied in the 'classical' sense; that is, series expansions of
the dependent and independent variables in ascending powers in
some small parameter were inserted into the full governing
equation and boundary conditions, and the individual terms of
the series determined. An ingenious variation in the application
of the method was made by Pritulo (ref. 4) who demonstrated that
if a perturbation solution in unstrained coordinates has been
determined and found to be nonuniform, the coordinate straining
required to render that solution uniformily wvalid can be found
by employing straining directly in the known non-uniform solution,
and then solving algebraic rather than differential equations.

The idea of introducing strained coordinates a posteriori has
since been applied to a variety of different problems (see ref. 3),
and forms the basis of the current applications.



The fundamental idea underlying coordinate straining as it
relates to the application of perturbation methods to super-
critical transonic flows is illustrated geometrically in figure 1.
In the upper plot on the left, two typical transonic pressure
distributions are shown for a highly supercritical flow about
a nonlifting symmetric profile. The distributions can be
regarded as related nonlinear flow solutions separated by a
nominal change in some geometric or flow parameter. The shaded
area between the solutions represents the perturbation result
that would be obtained by directly differencing the two solutions.
We observe that the perturbation so obtained is small everywhere
except in the region between the two shock waves, where it is
fully as large as the base solutions themselves. This clearly
invalidates the perturbation technique in that region and most
probably somewhat ahead and behind it as well. The key idea of
a procedure for correcting this, pointed out by Nixon (refs. 5,6},
is first to strain the coordinates of one of the two solutions
in such a fashion that the shock waves align, as shown in the
upper plot on the right of figure 1, and then determine the unit
perturbation. Equivalently, this can be considered as maintaining
the shock wave location invariant during the perturbation process,
and assures that the unit perturbation remains small both at and
in the vicinity of the shock wave. Obviously, shock points are
only one of a number of characteristic high-gradient locations
such as stagnation points, maximum suction pressure points, etc.,
in which the accuracy of the perturbation solution can degrade
rapidly. The plots in the lower left part of the figure 1 indi-
cate such a situation and display typical transonic pressure
distributions which contain multiple shocks and high-gradient
regions. Simultaneously straining at all these locations, as
indicated in the lower right plot, serves to minimize the unit
perturbation over the entire domain considered, and provides the
key to maximizing the range of validity of the perturbation
method.

2.4 Theoretical Formulation for
Single-Parameter Perturbations

In order to provide the theoretical essentials of the
correction method, consider the formulation of the procedure at
the level of the full potential equation, as most of the results
presented here are based on that level. We denote the operator
L acting on the velocity potential ¢ as that which results in
the two-dimensional full potential eguation for ¢, i.e.

L[{®] =0 (2)
If we now expand the potential in terms of zero- and higher-

order components in order to account for the variation of
some arbitrary geometrical or flow parameter g



¢ = @é + e@l + ...
: . (3)

g, + Ag

Il

q

and then insert this into the governing equation (2), expand

the result, order the equations into zero- and first-order
components, and make the obvious choice of expansion parameter

€ = Ag, we obtain the following governing equations for the zero-
and first—-order components

L[@O] =0

3

Ll[®l] + 3 L[@O] = 0
Here L; is a linear operator whose coefficients depend on zero-
order quantities and 3L[® _ 1/3g represents a 'forcing'term due to
the perturbation. Actual forms of Lj and the 'forcing' term are
provided in reference 1 for a variety of flow and geometry para-
meter perturbations of a two-~dimensional turbomachine, and in
reference 7 for profile shape perturbations of an isolated
airfoil. An important point regarding equation (4) for the
first-order perturbation ®; is that the equation represents a
unit perturbation independent of the actual value of the pertur-
bation gquantity €.

(4)

Appropriate account of the movement of discontinuities and
maxima of high—-gradient regions due to the perturbation is now
accomplished by the introduction of strained coordinates (s,t)
in the form

X = s + exl(s,t)
(5)
y =t + eyl(s,t)

where

N
xl(s,t) = Z Gxix .(S,t)

(6)

2

vy (s,t)

Il
Il t~

6yiyl_(s,t)
1

and €d6xji, €8y; represents individual displacements of the N
strained points, and x3j4 (s,t), yli(s,t) are straining functions
associated with each of the N strained points. Introducing the
strained coordinate equations (5) and (6) into the expansion formu-
lation leaves the zero-order result in equation (4) unchanged,

but results in a change of the following form for the perturbation

10
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Lyleg] + 1yle,] + 55 Lol = 0 (7)

Here the operators are understood to be expressed in terms of the
strained (s,t) coordinates, and the additional operator L. arises
specifically from displacement of the strained points. In
references 6 and 7, specific expressions for L; are provided

for selected perturbations involving transonic small-disturbance
and full potential equation formulations. The primary point,
however, with regard to perturbation equation (7) expressed in
strained coordinates is that it remains valid as before for a
unit perturbation and independent of €.

In employing the correction method, equation (7) for the
unit perturbation is solved by taking the difference between
two solutions obtained by the full nonlinear procedure after
appropriately straining the coordinates. If we designate the
two solutions for some arbitrary flow quantity Q as base Qg and
calibration Qn, respectively, of the varied parameter, we have
for the predicted flow at some new parameter value g (ref. 8)

€

Q(x,y) = Qg(s,t) + 5 [Q, (x,¥)-Q_(s,t)] (8)
where
X =5 + 5%, (s,t)
7 =t + eoyl(s,t)
x = s + gL [x-s]

(9)

In the following section, applications of the correction procedure
are made to predict surface properties. Also provided are the
particular forms of the straining functions equation (6) for

those applications.

11



2.5 Current Applications: Surface Pressures

For the current applications, we have employed coordinate
straining with the correction method to predict surface pressure
distributions for a wide variety of single-parameter geometrical
flow perturbations of isolated airfoils and cascades. In that
instance where flow properties are required along some contour,
the solutions can be represented by

Q(x;e) ~ QO(S) + €Ql(s) + e
) (10)
X ~ 8 + exl(S) + ...

where X is the independent variable measuring distance along the
contour or a convenient projection of that distance, s is the
strained coordinate, and € a small parameter representing the
change in some flow or geometrical variable which we wish to
vary.

In order to determine the first-order corrections Qi (s),
we require a base and calibration solution in which the calibra-
tion solution is determined by varying an arbitrary parameter g
by some nominal amount from the base flow value.

In this way, the first-order correction Qj(s) can be
determined as
Q (X) -0 _(s)
Q, (s) = —= = (11)
9c ~ 9

where Q is the calibration solution corresponding to changing
the parameter g to a new value gds, X is the strained coordi-

nate pertaining to the Q. calibration solution, and g¢ - 4o
represents the change in the g parameter from its base flow
value. If we now desire to keep invariant during the perturba-
tion process a total of N points corresponding to discontinuities
or high-gradient maxima, we can represent the solution by:

Q{x;e) = Qo(s) + sQl(S) (12)

where

Q,(s) = (13)

12
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X = s + 1£1 ec(dxz)'xli(s) (14)
? c

X = s + e (8x;)*x, (s) (15)
i=1 "L

€. = 9. " 9, (16)

€ =g - g4 (17)

ec(Gxi) = (x‘i*'—x‘i’) (18)

o, _ € )
e(éxi) = EZ (xl Xi) (19)

Here ec(éxg) given in equation (18) represents the displacement
of the ith invariant point in the calibration solution from its
base flow location due to the selected change e in the g
parameter given by equation (16), € (8x§) given iIn equation (19)
represents the predicted dispiacement of the ith invariant point
from its base flow location due to the desired change &€ in the g
parameter given by equation (17), and ¥71.(s) is a unit-order
straining function having the property tﬁat

l1 k=1

%, (xﬁ) = (20)
i

0 k # i

which assures alignment of the ith invariant point between the
base and calibration solutions.

In addition to the single condition equation (20) on the
straining function, it may be convenient or necessary to impose
additional conditions at other locations along the contour. For
example, it is usually necessary to hold invariant the end points
along the contour, as well as to require that the straining wvanish
in a particular fashion in those locations. All of these condi-
tions, however, do not serve to determine the straining uniquely.
The nonuniqueness of the straining, nevertheless, can often be
turned to advantage, either by selecting particularly simple
classes of straining functions or by requiring the straining to
satisfy further constraints convenient for a particular appli-
cation. An example of the effect of employing two different
straining functions for a strongly-supercritical flow was

13



provided in reference 6. Here we provide additional results
demonstrating some of the limitations of various polynomial
straining functions and provide some comparisons with piecewise-
continuous functions. The particular classes of straining
functions employed were continuous polynomial and linear
piecewise-continuous. For these two classes, the functional
forms of the straining can be compactly written. For example,
equation (14) becomes, for continuous polynomial straining

_ N-1 c o
X = s + :Eq Li(S)-(xi-—xi) (21)
1=
where Li are Lagrangian coefficients given by
N (s-—xi)
L.(s) = T &——————— (22)
* k=1 (x5 -x2)
i k

k#i

whereas for linear piecewise-continuous straining, x is given
by

o
N-1 | x. - s
X =35+ ) itl - (x5 -x9)
= o - x© i i
1 i+l %3
o
S 7 xi c (o) o o)
t 55 .(Xi+l'-xi+l) H(Xi+l —s)*H(s-—xi) (23)
X -x.
i+l i

where H denotes the Heaviside step function. As discussed

above, it is usually necessary to hold invariant both of the

end points along the contour in addition to the points corre-
sponding to discontinuities or high-gradient maxima. Consequently,
for the results reported here, the array of invariant points in
the base and calibration solutions have been taken as

o o o
x; = {o, xi, Xor eeeey X s 1}

c c c c (24)
X3 {o, Xir Koo eeees Xy 1}

where the contour length has been normalized to unity. Figure 2
provides a summary of the various combinations of flows and
straining functions employed.

14
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3. RESULTS

One of the primary objectives of the present investigation
is to explore the accuracy and range of validity of such pertur-
bation procedures to determine to what extent they are capable
of providing results useful in an engineering analysis. To
this end, we have tested the correction method with coordinate
straining over a wide variety of different geometrical and flow
condition perturbations, including applications to both isolated
airfoils and compressor cascades. In particular, since the
ability of the method to account accurately for the movement of
discontinuities and maxima of high-gradient but continuous
regions is essential if such procedures are to be of general use,
emphasis was placed on transonic flows which are strongly super-
critical and exhibit large surface shock movement over the para-
metric range studied. Base flow theoretical solutions were
determined from small-disturbance transonic potential (ref. 9)
and full potential solutions (refs. 10, 11, 12). In the
results to follow, which were selected as typical from systematic
calculations of a much larger number of cases, the choice of
base and calibration solutions was often made at the limits of
validity of the procedure to observe how well the method works

under such conditions.

3.1 Perturbation Results for Supercritical Single-
Shock Flows and Subcritical Flows

3.1.1 Supercritical applications.- In figure 3, we present
results for a thickness-ratio perturbation of strongly super-
critical flows past a nonlifting cascade of biconvex profiles
at M_ =0.80 having a spacing-to-chord ratio of H/C=1.0. The
dotted and dashed results on the figure represent the base and
calibration surface pressure distribution for 7t = (0.075, 0.065),
respectively, and were obtained by solving the transonic small-
disturbance potential equation using the code TSFOIL (ref. 9).
An x—-grid having 48 points on the blade profile was used. These
solutions were then used to determine the unit perturbation. The
open circles represent the perturbation solution for T =0.073 in
the plot on the left and for T =0.070 in the plot on the right.
Those perturbation results are meant to be compared with the
solid lines in the plots which are the corresponding nonlinear
solutions obtained by rerunning TSFOIL at the new thickness
ratios. Quadratic straining was used with shock point and leading
and trailing edges held invariant. The base and calibration
flow shock-point locations for this example, as well as for all
of the supercritical cases presented here, were determined as
the point where the pressure coefficient passed through critical
with compressive gradient.

15



With regard to the results, several points are noteworthy.
Selection of a cascade rather than an isolated airfoil provides a
more sensitive transonic flow situation. Additionally, the choice
of a highly supercritical base and almost subcritical calibration
solution provides both an example of extreme separation between
the two nonlinear solutions used to define the unit perturbation,
as well as a situation where one solution is near the limits of
validity of the perturbation analysis. Recall that both solutions
must be topographically similar, i.e., must contain the same number
of discontinuities (shocks) and other characteristic features.

We note that comparisons of the perturbation results with
the nonlinear calculations are very satisfactory for both
thickness ratios, with the only discrepancy being a slight disa-
greement at the lower thickness ratio (T =0.070) at several
points in the post-shock region. Additional calculations not
presented here in which a more reasonable choice of calibration
solution is made, say at 1 =0.070, removes that discrepancy as
well. The main point provided by the results of figure 3 is
that for certain classes of supercritical flows even widely
separated base solutions can be used to provide reasonable
perturbation predictions.

In figure 4, we provide similar strongly supercritical
results again for interpolation-only perturbation solutions, but
in this instance on a somewhat finer grid. These results
employed full potential base solutions (ref. 10), and represent
thickness ratio perturbations of nonlifting symmetric free-air
flows past NACA four-digit thickness-only airfoils at M_ =0.820.
The body-fitted mesh employed had 75 points on both upper and
lower surfaces, which is half again as many as in the preceding
example. For the base and calibration flows, the thickness
ratios were T =0.120 and 0.080, respectively. Comparisons between
the perturbation predictions and the full nonlinear calculation
are exhibited in figure 4 for tv=0.110, 0.105, 0.100, and 0.095.
We note that the comparisons are remarkably good, in particular,
in the region of the shock. The first-order perturbation
accurately predicts both shock location and the post-shock
expansion behavior. Reference to the coarser grid results given
in figure 3 indicates that the finer grid resolution clearly
enhances the perturbation result, indicating that better
accuracy and a larger range of validity of the perturbation
solutions can be anticipated when fine-grid base solutions are
used to define the unit perturbation.

In the two preceding examples, perturbation results were
provided for interpolation-only between widely spaced base and
calibration solutions. In figure 5, we provide similar strongly
supercritical thickness~ratio perturbation results for extreme
solution extrapolation using very closely spaced base and
calibration solutions (ref. 10). The upper plots display results
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for extrapolation downward from base and calibration flows past
nonlifting NACA 00XX profiles with 7 =0.115 and 0.120 at
M_=0.820. Perturbation predictions are shown for T =0.105 and
0.100, which represent AT excursions from the base flow

(T =0.115) that are two and three times the parameter change
between the base and calibration solutions (At =0.005) used to
define the unit perturbation. For these results, comparisons
with the full nonlinear calculations are very good. The lower
plots display similar results for extreme extrapolation upward
from base and calibration solutions have T = 0.095 and 0.090.
Perturbation predictions are shown for 1 =0.105 and 0.110, which
again represent excursions from the base flow that are two and
three times the parameter change between the base and calibra-

tion solutions. In this instance, while comparisons of the
perturbation results and the full nonlinear solutions for both
cases are good, the results at 7 = 0.110 are beginning to display

some not surprising discrepancies near the shock wave, indicating
that the perturbation result is nearing the 1imit of its range of
validity for this particular choice of base and calibration flows.

The results indicated in figure 5, however, clearly demon-
strate that not only is accurate solution extrapolation possible,
but that for some situations even closely spaced nonlinear solu-
tions can be used to cover a wide range of related solutions.
Additionally, the range of parameter variation in this example

over which the perturbation results remain accurate - i.e.,
parameter changes three times the difference between the two
nonlinear solutions used to define the unit perturbation - is

remarkable, and far beyond what one would anticipate for a
first-order correction.

Perturbation results using a more reasonable choice of base
and calibration solutions are provided in figure 6. Those
results involve Mach number perturbations of highly supercri-
tical full potential (ref. 10) flows past a NACA 0012 airfoil at
a=0°. The base and calibration results are for M_=0.800 and
0.820, and the comparisons indicated are for perturbation results
interpolated to M_=0.810 and extrapolated downward to M_=0.790.
As in the case of the geometric perturbations given in figures 4
and 5, these perturbation results are also in very good agreement
with the nonlinear calculations at the new Mach numbers. For
this perturbation, as well as for a number of other Mach number
perturbations, we have separately determined the perturbation
result in two different ways. First, we have taken cognizance
of the fact that a Mach number perturbation alters the governing
differential equation for the first-order perturbation from that
of other geometric or flow parameter changes; and have used the
suggestion of reference 6 to consider such perturbations via a
transonic small-disturbance approximation, whereby the same
perturbation equation can be preserved by employing a modified
expansion parameter €. An alternative procedure is to treat a
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Mach perturbation directly and interpret € as the difference in
Mach number. We have done these calculations and compared the
perturbation results for a number of cases using both full
potential solutions, as for the results shown in figure 6, and
transonic small-disturbance solutions, and have observed no
essential difference between the two sets of results., The
perturbation results presented in figure 6 correspond to those
for € equal to the difference in Mach number.

All of the supercritical perturbation results presented in
figures 3 to 6 have been for symmetric flows and have employed
a quadratic straining function, In figure 7, we present results
for an angle of attack perturbation of lifting flows past a
NACA 0012 profile at M_=0.70. The full potential (ref. 10)
base and calibration solutions are at o =3.0° and 4.0°, with
comparisons of the perturbation and full nonlinear results shown
for o =3.5° and 2.5°. Cubic straining has been used with the
invariant points corresponding to the lower trailing edge, stag-
nation point, shock point, and the upper trailing edge (see
fig. 2). We note that o =3.5°, the perturbation results are very
good everywhere, in particular, in the vicinity of the shock and
stagnation regions. At o =2.5°, the perturbation results are still
very good in the shock and stagnation regions and on most of the
upper and lower surface, but near the trailing edge a discrepancy
has occurred. The cause of this discrepancy lies solely with the
cubic straining function used. It is due to the fact that
although the straining vanishes identically at the trailing edge,
for the particular choice of base and calibration solutions in
this example, the straining in the near vicinity of the trailing
edge becomes sufficiently large to introduce a misalignment in the
unit perturbation in that high-gradient region. The correction to
this is discussed in the section describing piecewise-continuous
straining functions.

3.1.2 Subcritical applications.- Although supercritical
flows are clearly of central concern in any transonic analysis
for which the perturbation methods presented here would be used,
applications to subcritical nonlinear flows are also of signifi-
cance. To this end, we have applied these same techniques to a
variety of subcritical flows to examine their accuracy and range
of validity for such applications.

In figure 8, we present some summary results for four
different subcritical perturbation applications to an isolated
airfoil. All of these results are based on full potential
solutions (ref. 10) with quadratic straining holding invariant
the stagnation point and the trailing edge points. The plot on
the upper left displays comparisons for a camber line pertur-
bation of a lifting flow with M_ = 0.50 and o =2° past an airfoil
having a NACA 0012 thickness distribution and a parabolic-arc
camber line having the maximum camber located at midchord. Base
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and calibration flows with camber ratio h/c=0.02 and 0.01 were

used to extrapolate perturbation results to h/c=0.05. Compar-

isons with the full result is essentially exact. The plot on the

upper right provides similar results for a thickness-ratio pertur-

bation of a lifting flow with M_=0.50 and o =2.0° past NACA

00XX thickness—-only airfoils. Base and calibration flows with
=0.12 and 0.04 were used to provide interpolation results at

T =0.08. Again, the agreement is essentially exact even in the

peak suction pressure region. The plot on the lower left provides

angle-of-attack perturbatlon results for M_=0.50 flow past a

NACA 0012 airfoil, using base/calibration Tesults for a=4,0°,

2.0° to predict results at ¢« =3.0°, with the agreement again

being quite good. The final comparisons given in the plot on

the lower left are for a Mach number perturbation of a lifting

flow at 0 =2° past an airfoil having a NACA 0012 thickness

distribution and a parabolic—-arc camber line with camber ratio

h/c =0.03 at midchord. Base/calibration results at M, =0.40,

0.60 were used to predict results at M_=0.55, with good agree-

ment with the full nonlinear calculation.

In figure 9, we present similar summary results for subcrit-
ical perturbation applications to a compressor cascade having
a 4% biconvex thickness distribution and a 1% parabolic-arc
campber line blade, a pitch of t/c =0.37, and oncoming Mach
numpber M_=0.770., These results are based on the full potential
solution procedure of reference 11 and have also used quadratic
straining to hold the trailing edge points and stagnation point
invariant. The plots in the upper part of the figure represent
an inflow angle perturbation, with base/calibration inflow

angles B; =47,.8°, 49.8° used to predict extrapolation results
in the piot on the left for B; =48.8° and interpolation results
in the plot on the right for B; = 48.8°. 1In the lower left

plot, interpolation results are displayed for an outflow

angle perturbation with base/calibration outflow angles
Bo==31.5°, 39.5° used to predict the flow at B5=35.5°, The
lower right plot provides interpolation results for a rotational
speed perturbation with base/calibration rotational speeds
w=967,667 rad/sec used to predict the flow at w =827 rad/sec.
In all of these results, the perturbation results are good,
including the regions near the leading and trailing edge where

a peaky behavior due to local grid resolution is observed.

3.2 Comparison of Continuous and Piecewise-Continuous
Straining Function Perturbation Results

The results presented in figures 10 to 13 illustrate the
effect of using different straining functions to determine the
perturbation results. Comparisons are provided for several
strongly supercritical flows, demonstrating the differences in
perturbation solutions between using quadratic and cubic straining
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functions and corresponding piecewise~continuous straining
functions.

Figure 10 displays a comparison for a symmetric supercrit-
ical thickness-ratio perturbation at 1T =0.110 for which results
based on quadratic straining were given in figure 4. In that
figure the open circles denote the previously obtained perturba-
tion results using quadratic straining, while the asterisks denote
the corresponding result when using linear piecewise-continuous
straining. The points held invariant are the leading and trailing
edges and the shock point. For this case there is virtually exact
agreement everywhere between the two perturbation results as well
as with the nonlinear result. An analogous comparison with a
cubic straining result is provided in figure 11 where the invariant
points are the lower trailing edge, stagnation point, shock point,
and upper trailing edge. Displayed in that figure as open circles
are the cubic-straining supercritical angle-of-attack perturbation
results at o =2.5° which were previously given in figure 7. Aster-
isks denote the corresponding linear piecewise-continuous strain-
ing perturbation result. We note that the discrepancy near the
trailing edge caused by the cubic straining has been effectively
removed in the piecewise-continuous result. Moreover, the good
agreement with the full nonlinear result which the cubic result
displayed near the shock and stagnation regions, as well as over
the remainder of the airfoil surface, is also obtained with the
piecewise~continuous result.

Finally, we have found that when employing quadratic, cubic,
and higher-order polynomials as straining functions, for certain
combinations of base flow shock location and shock movement
between base and calibration solutions, particularly when large
shock movements are involved, the polynomial straining functions
will strain some points off the airfoil surface. This, of course,
invalidates the determination of the unit perturbation, and
requires that a different straining function be employed. Piece-
wise-continuous straining functions provide a simple means of
avoiding such difficulties.

In figures 12 and 13, we have provided examples illustrating
this effect for both guadratic and cubic straining functions.
Figure 12 provides a comparison of perturbation results obtained
using quadratic (open circles) and linear piecewise-continuous
(asterisks) straining applied to a supercritical Mach number
perturbation for symmetric nonlifting flow past a NACA 0012
airfoil. Widely separated base/calibration flows (ref. 10) at
M,=0.820 and 0.750 were used to predict the flow at M_ =0.810.
The spurious behavior near the leading edge displayed by the open
circles is due to the quadratic function moving points in the
strained calibration solution off the airfoil surface. The
piecewise-continuous results indicated by the asterisks display
a smooth variation in that region, and provide good agreement
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everywhere with the full nonlinear result. Figure 13 provides

a corresponding comparison for cubic straining. Angle-of-attack
perturbation results at M_=0.70 for flow past a NACA 0012
profile using base/calibration results (ref. 10) at ¢« =2.25° and
4,.00° are used to predict the flow at o =3.25°., The unusual
results displayed by the open symbols near the trailing edge
indicate that the cubic function has strained points off the
airfoil surface in that region. However, the linear piecewise-
continuous result corrects that problem and displays good agree-
ment with the nonlinear calculation in that region as well as at
the shock and stagnation point.

3.3 Perturbation Applications to Complex
Supercritical Flows

In order to provide a severe test of the perturbation
procedure, we have applied the method to a number of transonic
flows that are characterized by surface pressure distributions
having multiple shock and/or high-gradient locations, such as
those typified schematically in the lower plots of figure 1.
Demonstration of the ability of the perturbation method to
predict accurately such classes of flows, which are typical of
those encountered in certain transonic turbomachinery applications,
is crucial to the present study. In order to accomplish such
a demonstration, we have investigated two separate classes of
sensitive supercritical transonic flows, i.e. those with multiple-
shock waves, and those having a single shock together with
multiple high—-gradient regions. Examples of perturbation
results for such flows are provided below.

3.3.1 Multi-Shock Supercritical Flows.~- In figure 14, we
present results for an angle-of-attack perturbation of super-
critical lifting flows past a NACA 0012 profile at M_ = 0.80.
These highly sensitive flows exhibit two shocks, one on each the
upper and lower surface. The full potential (ref. 10) base and
calibration flows employed are at a=0.50° and 0.20°, with
comparisons of the perturbation and full nonlinear results shown
for a =0.0°, 0.1°, 0.4°, and 0.6°. Piecewise-continuous linear
straining has been used with the invariant points corresponding to
the lower trailing edge, lower surface shock point, stagnation
point, upper surface shock point, and upper trailing edge (see
fig. 2). We note that the symmetrical extrapolation result at
0o=0.0° is separately predicted from both the upper surface and
lower surface pressure distributions, and, as can be seen, the
results are quite good. The remaining results at o« = 0.1°, 0.4°,
and 0.6°, which represent both extrapolation and interpolation
from the base and calibration flows, are in excellent agreement
with the full nonlinear result. As an indication of the sensi-
tivity of these flows, we have found that the lower surface shock
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disappears at an angle of attack of approximately 0.8°; yet the
lower surface pressure distribution is well predicted by the
perturbation result over the parametric range studied.

3.3.2 Supercritical Compressor Cascade Flows.—- As an
example of the ability of the method to predict a complex super-
critical flow, in figure 15 we provide results for oncoming
Mach number perturbation of supercritical flows past a cascade
composed of Jose Sanz (ref. 12) profiles. For these results,
the oncoming and exit flow angles are 30.81° and 0.09°, respec-
tively, the blade twist is 9.33°, while the gap to chord ratio
is 1.028. The full potential (ref. 12) base and calibration flow
oncoming Mach numbers are M_=0.77 and 0.81, with comparisons of
perturbation and full nonlinear results shown at M_=0.75, 0.79,
0.89, and 0.83. Piecewise-continuous linear straining was
employed with invariant points at the lower trailing-edge, stag-
nation point, shock point and upper trailing edge. As with the
multiple-shock example shown in figure 14, we note that the
perturbation predictions are in excellent agreement with the
.nonlinear results. In particular, we note that the perturbation
procedure captures the variation of the plateau-like pressure
distribution on the upper surface near the leading edge, the
location and strength of the shock, the post-shock expansion
region, the rapid expansion near the trailing edge, and the
expansion on the lower surface near the stagnation point, indi-
cating a capability for treating very general flow situations.
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4. CONCLUSIONS AND RECOMMENDATIONS

An evaluation. has been made of a perturbation procedure for
determining highly accurate approximations to families of non-
linear solutions which are either continuous or discontinuous,
and which represent variations in some arbitrary parameter. The
procedure employs a unit perturbation, determined from two
nonlinear solutions which differ from one another by a
nominal change in some geometric or flow parameter, to predict
a family or related nonlinear solutions. Coordinate straining
is used in determining the unit perturbation in order to account
properly for the motion of discontinuities and maxima of high-
gradient regions. Extensive perturbation calculations based
on full potential nonlinear solutions have been carried out.
These calculations cover a variety of flow and goemetric parameter
perturbations involving isolated airfoils and compressor cascades
at both subsonic and transonic flow conditions. Particular
emphasis was placed on supercritical transonic flows which
exhibit large surface shock movements over the parameter range
studied; and on subsonic flows which display large pressure
variations in the stagnation and peak suction pressure regions.
Perturbation results for single-parameter perturbations,
characterized by both extreme solution interpolation using
widely separated base flow solutions and extreme solution
extrapolation using closely spaced based flow solutions, were
obtained in order to determine the accuracy and range of validity
of the method. Additionally, calculation of perturbation results
were made to investigate the effectiveness of employing piece-
wise-continuous straining functions rather than polynomial
(quadratic, cubic, quartic) functions. Multi-shock and other
complex flow situations were studied in order to examine the
capability for treating general transonic flows.

Comparisons of the perturbation results with the corre-
sponding 'exact' nonlinear solutions indicate a remarkable accu-
racy and rande of validity of the perturbation method across
the spectrum of examples reported. Geometry and flow parameter
perturbations are treatable with equal success. Solution inter-
polation and extrapolation are both feasible. Results evaluating
the polynomial and piecewise—-continuous straining functions
indicate that the piecewise-continuous functions are superior.

The latter class of straining functions eliminate both the problem
of unwanted straining in the domain of interest, as well as the
problem of spurious straining out of the domain. Finally, it

was demonstrated that this procedure can successfully treat flows
containing multiple shocks and high-gradient regions by simul-
taneously straining all of these characteristic points.
Computational time of the method, beyond the determination of the
base solutions, is trivial. A code encompassing these developments
has been written for the single-parameter perturbation problem
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and is included as part of this report. Based on these results,
we conclude that such a perturbation procedure can provide a
means for substantially reducing computational requirements in
design studies or other applications where large numbers of
related nonlinear solutions are needed. Further development is
needed, however, to provide a computational tool of wide utility.
Because of the practical need in design or parametric studies to
consider variations in several parameters simultaneously, we
suggest the development of the capability for multiple-parameter
perturbations, making full use of the current developments of the
single parameter procedure. That procedure should incorporate

a limiting~-parameter calculation whereby the parameter bounds
with respect to each varied parameter are determined. Finally,
in order to demonstrate their ultimate power and utility, these
procedures should now be tested by actual application to a
practical problem which involves the high-frequency use of expen-
sive computational codes in order to determine a large number of
related flow solutions. We suggest transonic turbomachinery
blade design optimization studies as both feasible and of high
current importance.
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APPENDIX A - USER'S MANUAL FOR COMPUTER PROGRAM PERTURB

A.1 INTRODUCTION

The purpose of this appendix is to describe the operation
of the computer code which was developed in conjunction with the
theoretical work presented in this report, and to provide
sufficient detail to permit convenient use and change of the
program. The program computes and plots an arbitrary flow
variable on a contour surface by employing the strained-coordinate
perturbation method previously discussed. The plot package
included in this version refers to system routines at the Stanford
University Center for Information Processing facility. In general,
the plotting software must be supplied by the user according to the
requirements of his operating system. This can be accomplished
directly by replacing or modifying the subroutines PLOT, LIMITS,
and ROUND.

A description of the general operating procedure of the
program is given, together with complete description of both
input and output. The program 1s written in FORTRAN IV and has
been developed on an IBM 3033 computer. Typical run times are
1l to 3 seconds. The storage requirements are 50Klo.
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A.2 PROGRAM DESCRIPTION

The program calculates both continuous and discontinuous
nonlinear perturbation solutions which represent a single-
parameter change in either geometry or flow conditions by
employing a strained-coordinate procedure. The method utilizes
a unit perturbation, determined from two previously calculated
solutions ('base' and 'calibration' solutions) obtained from
an 'expensive' computational procedure and displaced from one
another by some reasonable change in geometry or flow variable,
to predict new nonlinear solutions over a range of parameter
variation.,

This version of the procedure is configured to predict and
pPlot an arbitrary flow variable (e.g., pressure coefficient) on
the surface of a blade or airfoil, and can account for the motion
of:

1. one or more critical points (shock points),
2. a stagnation point,
3. a maximum~-suction-pressure point,

or simultaneously for any combination of these.

The program is also configured to compare the perturbation-
predicted solutions with the corresponding 'exact' solutions
obtained by employing the same 'expensive' computational procedure
used to determine the base and calibration solutions.

The coordinate straining employed is piecewise linear with
the end points and up to six interior points held invariant. At
the option of the user, these additional interior points may be
arbitrarily preselected, or chosen from among the minimum, maxi-
mum, and critical points automatically located by the program
itself.

Critical or shock points are located on the basis of a user-
supplied statement function defining the critical value of the
dependent variable as a function of some single flow variable.
The program default is with dependent variable y defined as
bPressure coefficient, with the independent variable being Mach
number. In this case, the critical value is defined as
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where y is the ratio of specific heats. If instead of surface
pressure coefficient, the surface velocity distribution were used,
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Data for base, calibration, and comparison solutions (if
available) are input as an array x(I) of coordinates and a cor-
responding array v (I) giving the dependent variable at each
coordinate location, where 1 < I < N and N < 200.

Oncoming
flow
Read
The leading edge is at x = 0; the data are read in beginning on

the lower surface at the point farthest from the leading edge and
proceeding clockwise around the surface as shown in the sketch.
Data for the different solutions need not correspond to identical
locations on the surface, except for the initial and final points,
i.e., x(1) and x(N) must be the same for all cases. The program
normalizes the x coordinates (0 < x < 1) such that x = 0 corres-
ponds to I = 1 and x =1 to I = N.

27



The base and calibration solutions are searched for minimum,
maximum, and critical points, e.g.,

yA Max,

Crit. #2
crit |- ———\—— — — -

Min, Aif(—

{l - (normalized)

3 -
Direction of
flow

Note that the sign of dy/dx in physical coordinates is used in
determining the critical points. For example, both critical
points indicated on the above figure correspond to dy/dx > 0 in
physical coordinates, since at point #1 the physical coordinate
increases in the direction from right to left, whereas at point #2
it increases from left to right.

The points to be held invariant in straining are either
selected from among those located by the program or individually
specified by the user, after which the unit coordinate straining
and unit perturbation are computed.

Data for the test cases is then read in and nonlinear per-
turbation solutions constructed from the unit perturbation.
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CALIBRATION DATA

A.3 PROGRAM FLOW CHART

START

READ PARAMETERS,
BASE AND

NORMALIZE X _
COORDINATES; LOCATE
MIN., MAX., AND
CRITICAL POINTS

NO

LOAD PROGRAM-
GENERATED POINTS
INTO FIXED-POINT

ARRAYS

Y

YES
STOP

0]

READ PARAMETERS
FOR SOLUTION TO
BE COMPUTED

!

LOAD USER-SELECTED
POINTS INTO FIXED-
POINT ARRAYS

Y

-~

ARRANGE FIXED-
POINT ARRAYS
IN SEQUENCE

DETERMINE UNIT
STRAINING AND
UNIT PERTURBATION

¢

ICASE =0

'

(OD——

ICASE = ICASE+ 1

NO

YES

READ DATA
FOR
COMPARISON
SOLUTION

Y

COMPUTE STRAINED
COORDINATE AND

PERTURBATION
SOLUTION

%

PRINT
RESULTS
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A.4 DICTIONARY OF INPUT VARIABLES

A Scaling parameter in straining procedure. A = -x(1),
where x(1) is location of first data point on lower
surface (see PROGRAM DESCRIPTION).

B Scaling parameter in straining procedure. B = x(N),
where x(N) is location of last data point on upper
surface (see PROGRAM DESCRIPTION).

LCHEK Specifies whether or not perturbation solution is to be
compared with an exact solution.

LCHEK = 0 ... no comparison
LCHEK = 1 ... comparison
LECHO Controls whether or not input deck is printed.
LECHO = 0 ... no print
LECHO = 1 ... print
LOCO(I) Array of length 6 containing subscripts of user-specified
invariant points in base solution; operational only when
LSPEC = 1.
LOCLl(I) Array of length 6 containing subscripts of user-specified

invariant points in calibration solution; operational
only when LSPEC = 1.

LPERT Specifies type of perturbation; operational only when
LCHEK = 1 and only affects output from plot subroutine.

ILPERT = 1 ... thickness-ratio perturbation
LPERT = 2 ... angle~of-attack perturbation
LPERT = 3 ... Mach~-number perturbation

LSELCT (I) Array of length 6 of which NSELCT elements are read in;
operational only when LSPEC = 0, and specifies nature
of points to be held invariant according to the code:

1l ... minimum point held invariant
2 ... maximum point held invariant
3 ... lst critical point held invariant
4 ... 2nd critical point held invariant
5 «.. 3rd critical point held invariant
6 ... 4th critical point held invariant

Note that critical point ordering is determined from
order of occurrence starting at the lower surface at the
point furthest from the leading edge and proceeding clock-
wise around the surface (see PROGRAM DESCRIPTION) .
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LSPEC

LUNIT

MO,M1,M2

NAME

NCASE

NSELCT

Q0,01,Q2

TITLE

Note that the code numbers can be a351gned in any
order, e€.g.,

"LSELCT(1) =1 ~ LSELCT(1) = 4
LSELCT(2) = 3 and LSELCT(2) =1
LSELCT (3) = 4 LSELCT (3) = 3

are equlvalent both corresponding to NSELCT = 3, with
the minimum, and first and second critical points held
invariant.

Controls how invariant points in straining are
specified.

LSPEC = 0 ... invariant points selected from
among those located by the program,
using the array LSELCT(I)

LSPEC = 1 ... invariant points preselected by user,

using the arrays LOCO(I), LOCIL(I)

Controls whether or not unit coordinate straining and
unit perturbation are printed.

LUNIT
LUNIT

0 ... no print
1 ... print

Oncoming Mach numbers in base, calibration, and
perturbation solutions.

Number of locations for which data are input for base,
calibration, and comparison solutions.

Character sfring of length 2 which symbolizes dependent
variable, e.g., "CP" for pressure coefficient.

Number of cases for which perturbation solutions are
to be computed.

Number of points (in addition to end points) to be
held invariant in straining; note: 1 < NSELCT < 6.

Values of perturbation parameter in base, calibration,
and perturbation solutions.

Character string of length 80; identifies job and is
printed as headline on first page of output.
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XBASE (I) ,XCALB(I) , XCHEK(I) ...

Arrays of surface coordinates in base,
and comparison solutions.

YBASE (I) ,YCALB(I) ,YCHEK(I)...

Item

Item

Ttem
Item
Item
Item

Item

Item

Item

Item

Item
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11

Arrays of dependent variables in base,
and comparison solutions.

A.5 PREPARATION OF INPUT DATA
A.5.1 Description of Input
One card, containing the parameters N,
LECHO, LUNIT, LCHEK, LPERT.
One card, containing either
(a) NSELCT, (LSELCT(I), I=1,NSELCT)
(b) NSELCT, (LOCO(I), I=1,NSELCT),
(Locl(1), I=1,NSELCT)

where (a) and (b) correspond to LSPEC
LSPEC = 1, respectively.

calibration,

calibration,

NCASE, LSPEC,

0 and

One card, containing the character string TITLE.

One card, containing the character string NAME.

One card, containing the scaling parameters A and B.

One card, containing MO(real) and QO.

One set of K cards, where K = 1 + INT(N/8), containing

data for x coordinate in base solution.

One set of K cards, K as above, containing data for

dependent variable in base solution.

One card, containing Ml (real) and Ql.

One set of K cards, K as above, containing data for

x coordinate in calibration solution.

One set of K cards, K as above, containing data for
dependent variable in calibration solution.



Item 12 One card, containing M2(rxeal) and Q2.

Item 13 One set of K cards, K as above, containing data for
X coordinate in comparison solution. This item is
required only when LCHEK = 1.

Item 14 One set of K cards, K as above, containing data for
dependent variable in comparison solution. This item
is regquired only when LCHEK = 1.

Note: Items 12-14 are required, in sequence, as many times as
specified by NCASE.
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143

Item no. 1:

Variable
Card column
Format type

Item no. 2a

Variable
Card column
Format type

Item no. 2b

Variable
Card column
Format type

Item no. 3:

Variable
Card column
Format type

Item no. 4:

Variable
Card column

Format type

Item no. 5:

Variable
Card column
Format type

A.5.2 Format of Input Data

1 card
N NCASE LSPEC LECHO LUNIT LCHEK LPERT | /
5 10 15 20 25 30 35
I I I I I I I L
(LSPEC = 0): 1 card /- LSELCT (NSELCT)
NSELCT _|LSELCT (1) |LSELCT (2) — 4 /
5 10 15 20 25 30 35{ ¢
1 I I I I
(LSPEC = 1): 1 card ~ LOCO (NSELCT) r LOCL (NSELCT)
NSELCT LOCO (1) - r LOC1 (1) - 4 o
5 10 15 20 25 30 35| ¢
I I 1 I I I I _{
1 card
TITLE
10f 20] 30] 40 50] 60] 70] 80
A
1 card
NAME /
2 B!
A \
1 card
a B {
10 20 (
F F \




| e

S¢

Item no, 6: 1 card

Variable MO _ Qo {

Card column 10 20 J

Format type F F L

Item no. 7: K cards, K= 1 + INT(N/8), 8 values per card

Variable XBASE (1) | XBASE(2) XBASE (3) ————

Format type F 13 F F

Item no., 8: K cards, K as above, 8 values per card

Variable YBASE (1) YBASE (2)] YBASE (3) ———

Card coclumn 10 20 30 40 50 60 70 80

Format type F F F F

Item no. 9: 1 card

Variable M1 Ql )

Card column 10 20 AAJ

Format type F F ¢

Item no, 10: K cards, K as above, 8 values per card

Variable XCALB(1l) | XCALB(2) XCALB (3) ———=

Card column 10 20 30 40 50 60 70 80

Format type F F F F

Item no. 11: K cards, K as above, 8 values per card

Variable YCALB(1l) | YCALRB(2) YCALB(3) ———

Card column 10 20 30 40 50 60 70 80
F F F F

Format type




9¢

Item no, 12:

Variable
Card column

Format type

Item no, 13:

Variable
Card column
Format type

Item no. 14:

variable
Card column
Format type

1 card
M2 Q2
10 20 {
F F L
K cards, K = 1 + INT(N/8), 8 values per card
XCHEK (1) XCHEK (2)| XCHEK(3) -——
io 20 30 40 50 60 70 80
F F F F
K cards, K as above, 8 values per card
YCHEK(1)| YCHEK(2)| YCHEK(3) ———
10 20 30 40 50 60 70 80
F P F F




A.6 DESCRIPTION OF OQUTPUT
The first output item consists of a banner page, and the card
images of the input data, the latter only if LECHO = 1.
The second item is a page headed by the job title, listing:
1. the input parameters relevant to the actual calculation;
2. the critical wvalues of the dependent variable;

3. the locations of the minimum, maximum, and critical
points found by the program;

4. the straining points selected;
5. the invariant points.

Results for unit straining of XBASE, and unit perturbation
of the dependent variable are the third item output; this is done
only if LUNIT = 1.

The fourth item (repeated for each case computed) summarizes
the results of the calculation. The Mach number, the value of the
perturbation parameter, and the critical value of the dependent
variable are printed first, followed by the locations of the
minimum, maximum, and critical points in the perturbation solution

and comparison solution (if any). Then follows a table listing
XBASE, YBASE, XCALB, YCALB, XPERT (the strained coordinate), and
YPERT (the computed value of the dependent variable). If LCHEK = 1,

three additional columns list XCHEK, YCHEK, and YPERT(INT), the
latter being interpolated values of YPERT (the computed solution)
at the points given by XCHEK. This allows direct numerical com-
parison of YPERT with YCHEK, since the values of XPERT and XCHEK
do not coincide in general.

A.7 ERROR MESSAGES

NUMBER OF CRITICAL POINTS IN
BASE AND CALIBRATION SOLUTIONS
ARE UNEQUAL - CALCULATION ENDED

This message will be printed if critical points are specified

in straining (LSPEC = 0) and the number of critical points in base
and calibration solutions are unequal. The remedy is to avoid use
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of critical points in straining, or to use base and calibration
solutions having equal numbers of critical points.

NUMBER OF CRITICAL POINTS
SELECTED EXCEEDS NUMBER
ACTUALLY LOCATED - CALCULATION
ENDED

This message will be printed if more critical points are
specified in straining (LSPEC = 0) than the number located by the
program. The remedy is to specify a number of points less than
or equal to the actual number.

ORDER OF SPECIFIED POINTS 1IN
BASE AND CALIBRATION SOLUTIONS
DOES NOT CORRESPOND

This message will be printed if the fixed points specified
(LSPEC = 0) occur in a different sequence in the base and calibra-
tion solutions. The remedy is to use base and calibration solu-
tions having the same qualitative features.
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A.8 SAMPLE CASE

The sample case presented in this section provides results
(6 perturbation calculations and comparisons with 'exact'
nonlinear solutions) for a multiple-shock flow for which partial
results were provided in figure 14 of the main text. The calcu-
lation is for anhgle-of-attack perturbations of full potential
flows past an isolated NACA 0012 airfoil at M_ = 0.80. The base
and calibration angles-of-attack are ap=0.500° and o, =0.200°.
Perturbation results are determined at a= 0.00°, 0.10°, 0.30°,
0.40°, 0.60°, and 0.70° and are compared with previously-calcu-
lated 'exact' nonlinear flows at those angles.

The input data is tabulated in figure A.l, with item numbers
corresponding to those indentified in Section A.5.1 and A.5.2.
The first card, item 0, indicates that there are 149 points
(N=149) at which data will be input for the base, calibration,
and comparison solutions; that there will be 5 cases (NCASE=6)
for which perturbation solutions are to be computed, that the
invariant points will be located by the program (LSEPC=0), that
the input card deck will not be printed (LECHO =10), that the
information regarding the unit perturbation will be printed
(LUNIT=1), that there will be a comparison of the perturbation
results with the exact solution (LCHEK=1), and that the plot
output will denote an angle-of-attack perturbation (LPERT = 2).
The second card, item 2a, indicates that there will be three
invariant points (NSELCT = 3) in addition to the end points; and
that those points will be (1) where the maximum occurs
(LSELCT(1) =2) i.e. the stagnation point, (2) the first critical
point (LSELCT(2) =3) 1i.e. the lst shock point found when moving
forward on the bottom surface from the trailing edge, and (3)
the second critical point (LSELCT(3) =4) i.e. the 2nd shock point.
The next card, item 3, contains the identifying title. On the
next card, item 4, the 2 length character string indicates that
the dependent variable for print output will be symbolized by a
'CP' denoting pressure coefficient. Item 5 indicates that the
coordinates of the data points to be read in will start at x=1.0
on the upper surface (refer to descriptions in A.4). The next
card, item 6, indicates that the base flow values of Mach number
and perturbkation parameter (angle-of-attack in this case) are
MO= 0.80 and Q0=0.50, respectively. The following 19 cards,
item 7, provide the 149 base flow values of the surface coordi-
nates, while the next 19 cards, item 8, provide the 149 base flow
values of the dependent variable (pressure coefficient). ITtems 9,
10, and 11 indicate for the calibration flow the corresponding
information given by the items 6,7, and 8 for the base flow.
Items 12, 13, and 14, of which there are six sets corresponding
to the 6 cases to be studied, provide analogous information as
items 6,7, and 8, but now refer to the 'exact' nonlinear results.
These, of course have been previously computed at the indicated

39




values of angle~of-attack (Q2) given in Item 12, and are
included here for comparative purposed to enable assessment of
the perturbation results.

Figure A.2 provides an abbreviated print output for the
sample case, while figure A.3 provides the plot output of the
results for the six cases, and display the base (s+°++),
calibration (-—---), perturbation (#*x*%), and 'exact' nonlinear
( ) flow solutions.
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Item
No.

~NoUunbhwho e

Column

No.
5 10 15 2(|) 2 30 35 80
Vbl
1w9] 6] o] of ] 9] 2}
] 3] 2l 37 a1 .
SAMPLE CASE - ALPHA_ PERTURBATION FOR AULTI-SHOCK ISOLATED ATRFOIL FLOW ]
ce
-1.0 1.0 I
£00000 .500000 R
.999495  .997758  .995132  .991507  .987091  .981656  .975290  .968014
.959827  .950749  .940799  .930018  .918425  .906020  .892863  .B87899%
.864393 .849140 .833235 .816758 .799690 .782110 .764038 . 745536
726603 .707279  .687646  .667702  .647510  .627108  .606518 535801
.564955  .544062  .523144  .502239  .481369  .460595  .439937  .419417
.395095 .378972 .359110 .339530 .320253 .301322 .282758 .264582
.246338 .229547 212731 .196413 180616 165342 .150655 .136558
.123054 .110166 .0%87919 .086338 .075427 .065211 .055678 . 046895
.038773 .031422 .024818 .018960 .013897 .009586 .006089 .003379
.001483 .000362 .000000 .000362 .001483 .003379 .006089 .0095¢86
.0138%7 .018980 .024818 .031422 038773 .046895 .055678 .065211
.075427 .086338 .097919 .110166 .123054 .136558 .150655 1653462
.180616 .196413 .212731% .229547 .246838 .264582 .282758 .301322
.320253 .339530 .359110 .378972 .399095 6194917 .439937 .G60595
481369 .502239  .523144  .544062  .564955  .585801  .606518  .627105
.647510 667702 687646 .707279 .726603 . 745536 . 764038 .782110
.799690 .816758 .833235 .849140 .864393 .87899¢ .892863 .906020
. 918425 .930018 .9407%9 .950749 . 959827 .968014 .97529¢0 .981656
.937091% .991597 . 995132 .997758 . 999495
.454705 494256 414440 .401123 . 376907 .3353%5 .303686 .27%
.247835 .2228%9 . 198568 .174301 .153539 .133375 .110559 .091755
.072839 .053774 .034598 .016276 -.000859 -.019323 ~.037707 ~-.055942
-.071935 -.090813 =-.109358 ~.126685 ~.145033 -.164340 -.183752 ~.202450
-.221343 =-.261733 -~.2608634 -.278560 -~.295505 -.311898 -.326422 -.3,0617
-.403251 -.497623 -.600885 =-.668220 ~-.700287 ~.711640 -.712103 -.707273
-.699075 -.687197 -.672616 ~.656143 -,635506 =-.613957 -.591617 -.562885
-.520817 ~.696814 -.460480 -~.418394 - 370256 =~.3196%2 -.268845 -,205256
-.131694 -.,056739 .037329 .1648457 .285927 443489 .629985 .831392
1.013305 1.1453%4 1.161699 1.053470 .849325 606187 .37149% . 168265
.005374 ~.133558 =-.2430%1 -.335771 -~.41039% =-,483396 -~.,543403 ~_ 590331
-.638836 ~.679361 -.716673 -.749187 -.779281 -.807499 -.834131 -.855738
-.876312 -.896774 -.914886 -.932147 =-.947948 -.961781 =-.974530 -.9866%4
-.937187 -1.006749 -1.016034 ~1.022717 -1.029553 -1.034871 -1.038277 -1.041815
-1.041697 -1.039425 -1.033151 -1.019966 =-.993560 -.947806 -.857172 -.470554
-.047162 .060158 .067005 .059619 .053938 .04953¢6 .050777 .055100
.061931 069406 079745 .092114 .105449 .119529 134216 153439
170576  .188732  .210704  .233000  .256263  .2681298  .309273  .339810
374275 .403616  .416177  .495153  .494705
.600000] .200030]
.998133 .99%611 .990123 . 964707 .978365 .9711%6 .962959 .953914
.934001  .933260  .921710  .909350  .896242  .862G24  .867877  .852680
.836834  .820417  .803411  .785896  .767691  .769457  .730593  .711341
.691779 .671909 65179 .631465 .610551 .590310 .569541 .548725
527234 .507056 .486263 .465556 4449384 .424539 404292 .384243
. 364455 < 346G4% .325740 .306878 .288381 .270271 .252590 .235359
.218602 .20234%0 . 186596 171371 .156730 142674 .129207 .11635%
104130 .092568  .081668  .071455  .061912  .053105  .044940  .037523
.030321 .024841 .019557 .014659 .011060 .00778% .005125 .00299%5
.001399 .000360 .000000 .00C360 .001399 .002955 .005125 .007786
.011060  .014959  .019557  .024841  .030821  .037523  .044940  .053105
.061912  .071455  .081668  .092568  .104130  .116351  .129207  .142674
.156730 AT71371 .186596 202340 .218602 .235359 .25259¢ .270271
.288381  .306878  .325740  .344946  .364455  .304243  .404292  .424530
446984 465566 .486263  .507056  .527884  .54B725  .569541 590310

Figure A.l1- Card input for sample case
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Item
No.

42

.610951 .631465 651791 .671909 .691779 711341 .730593 . 749657
.767891 .785896 .803411 .820417 .836834 .852680 .867577 .850424
.8%9¢242 .909250 .921710 . 933260 . 964001 .953914 . 962959 9731116
.9786365 .984707 .996123 . 994611 .998133
449164 .G48579 .358724 .356677 .323122 .2856384 .2569¢68 .226251
.201234 .174994 .152770 .131478 .107828  .088414 .069020 .049604
.030206 .011790 =-.00534% -.023660 ~.041742 -.055474 <-.074743 -.092628
-.109767 ~-.125161 -.141841 -.156432 -.170621 -.181649 -,190450 -.196776
-.158872 -.203094 -.235719 -.367492 -.586069 -.746810 -.804612 -.822557
-.830010 -.830430 -.828029 -.823224 -.815167 -.805731 -.794610 -.7680953
~,765371 -.748500 -.728200 -.707375 -.685933 -.658961 -.629807 -.598386
~.565587 -.528007 -.483503 -.441185 -.394459 ~-,336168 -,271604 -.211304
-.135609 -.051358 .05213% .163559 .266591 .449001 .62189%0 .810551
.994877 1.129638 1.169160 1.096662 .933160 727769 526208 .346353
.190742 .056809 -.,053575 -.156964 =-.241464 -.316023 ~.377381 -.443385
-.500032 -.542507 -.588047 -.626762 -.662591 -.693996 -.723334¢ -,751171
-.777519 -.7%3919 -.819680 -.839%82 -.857221 -.873286 -.888000 -.901015
-.912830 ~-.923922 -.932634¢ -.940086 -.94%6688 ~-.949963 ~-.952335 -.951561
-.946329 =~.937133 -.917745 -.885770 -.780098 -.450920 -.135657 -,055343
-.048879 ~-.054497 -.059285 -.058713 -~.056033 -.048960 -.035039 -.030023
-.017360 -.0033%6 .011570 .025968 .042113 .0596i3 077446 .0555i4
.113210 . 136692 .156974 .178507  .204143 .230640 .258%08 .289933
.324329 .357599 .3693%0 .649350 L449164
.800000] .0000G0]
.999465  ,997758 .995132 .991597  ,987091 . 981656 .975290 .968014
.959827 .950749 .940799  ,930018 .918425 .906020 .892863 .878994
.864393 .849140 .833235 .816753 .799650 .782110 . 764038 .745536
.726603 .707279 L687046 .667702 .6G7510 .627108 .606518 .585801
.5640955 .544062 .523144 .502239  .481369 .460595 .439937  .6416417
.3930695  .378972 .359110 .3305390 .320253 .301322 .282758 .264582
.246838 .229547 .212731 .196413 .180616 .165342 .150655 . 136558
.123054 110166 .097919 .086338 .075627 L065211 .055678 .046855
.0323773 .0314922 .024818 .013980 .013897 .009586 .006089 .003379
.001423 .000362 .000030 .000362 .001483 .003379 . 006029 .009586
.013897 .018939 .024818 .031422 .038773 .046895 .055678 .065211
.0754%27 .086338 .097919 .110166 .1230564 . 136558 .150655 . 165342
.180616 .196413 .212731 .229547 . 246838 .2664582 .282758 .301322
.320253 .339530 .359110 .378572 .399095 .6196417 .436937 .440595
.481349 502239 .523144 .844052 .564655 .585801 .606513 .627108
.647510 667702 .687646 .707279 .726603 .745536 .764038 .782110
.799690 .816758 .833235 .849140 .864393  .878994 .8925863 .906020
.918525 .930018 .940799 .950749 .959827 .968014 . 975250 .981656
.687091 .991597 .995132 .997758  .999495
.436539 .455539 406037  .392728 .362350 .326615 .294714 .265263
.23852 .213577 .189264 . 164699 .144313 .1264278 .101626 .033098
. 064554 .045974 .027430 .009934 -.006143 -.023238 =-.039876 -.055862
-.068951 -.084043 -.097616 ~-.108363 -.118872 -.125296 ~-.,128789 ~,127030
-.123011 -.131088 -.199768 -.4502%6 -.729836 -.839648 -.86£610 -.882942
-.889736 -.891484 -.891050 -.886414 -.880317 -.872670 ~.862403 -.851047
-.838181 -.822989 -.805990 =~.787772 -.766224 ~.744070 ~.721154 -,692722
-.662052 -.629341 -,593876 =-.553475 =-.510373 -.459592 -.407829 -.341769
-.267177 -.193761 -.101301 .008967 .147792 .309033 .505174 . 7264631
.941542 1.107686 1,170402 1.107686 .941542 .726631 .505174 .309038
147752 .008967 -.101302 -.193761 -.267177 -.341769 -.407329 -.4595932
-.510373 -,5653475 -.593876 -.629341 -.662053 -.692722 =-.T721154 -.744070
-.766226 ~,787772 -.805991 -.822989 -.833182 -.851047 -.862403 -.872670
-.880317 -.8686415 -.891050 -.891484 -.889736 -.882942 -.868610 -.839649
-.7269837 -.450293 ~.199783 -.131088 -.123011 <-.127030 -.128789 -.12529%96
-.118372 -.108362 -.097616 ~.06%4043 -.068951 -.0558462 -.039376 -,023238
-.006143  .009934 .027430 . 045974 . 064554 .083098  ,101626 124277

Figure A.l- Continued




Item
No.

146313 .164999 189264  .213576 .238623  .265263  .294714 .326615
.362350 .392727  .606037  .486539  .486539
.80C000] .100000]
. 998831 .996261 .992734  .988238  .982815 .976466  ,969203  .961034
.951976 .942049  ,931291 .91972 . 907346 .894219 .830381 .865812
.850593 .834722 .818282 .801251 .783710 .765678  .747217  .728326
.709945 .689455 669555  ,649607  ,629051 .608507 .587835  .567035
.546189 .525317 .504458 .G483635  .462907 .642295 .421820 .401543
381464 .361646 .362110 .322876 .303936 .285462 .267326 .249620
L£323%6 .215585 .196302 .183537 .168293 .153635 .139563 .126082
L113216 .100986 .085419 .078517  .06&305 .058770 .049977  .041834
.034450 .027794% .021880 .016686 .012213 .008485 .005447  .003104%
.001403 .000341 .0000C00 .000361 .001403 .003104 .005447  .008485
.012213 .016686 .021880 .02779%4 .034450 .0641834 .045977 .053770
.068305 .078517 .08%9419 .100586 113216 .126082 .139563 .1536325
.168293 .183537 .199302 .215585 .232366 .249620 267326 .285462
.303926 .302876 .342110 .361646 .381664 .401543 .621820 .4422095
.662707 .483635 .5044E3 .525317 .546189 .567035 .587&35 .608507
.6C6505% .645507 .669555 .636455 .709045 .728326 .767217  .765678
.783710 .801251 .818282 .8347z2 .850593 .865812 .860381 .894219
.507346 .919724 .631291 .942049 .951976 .961034q .969203  .S576464
.932815 .9ee238 .992734 .995261 .993881
.GBARG3 .458791 . 376081 .371267 . 338657 .305476 L273846 . 245302
.218760 .193%80 .168300 L166943 . 126374 .103259 .084303 .06532
.0456302 .027281 .009255 -.007440 ~.025368 -.042783 .055836  -.074259
-.091057 -.106811 -.120384 -.134618 -.145906 -.155618 .161063  -_162445
-.162500 -.168324 -.216525 -.409216 -.665613 -,793270 .838444 - .852963
-.855704 -.B60938 -.858258 -.853577 -.847175 -.837775 .827215 -.815116
-.860639 -.784352 -.7668450 -.745036 -.7024693 -.70269% .675207 ~.645547
-.616010 -.580003 -.561413 ~-.500299 -.451419 -.402259 .340192 -.270822
-.204%26 =-.121671 -.08533% .093513 .226491 .387546 .B7C2655 .774910
L971786  1.1200%6  1.170101 1.10335% .990603 .733454 526063 .336348
.173240 .040723 -.078005 -.173334 -.256245 -.322903 .393405 ~.455428
-.501918 -.549224 -.586935 -,6076%4 ~-.660084 -.691319 .720232 -.747349
-.767°284 -.790569 <~-.8113G%1 -,80°059 -.845728 -.86045% .873407 -.864908
-.8%5825 -,604302 -.911372 =-.917277 ~.919%15 ~,920039% .916639 -.907461
~.B57168 ~.860794 -.74E8397 -.440787 -.163632 -~.093449 .0882058 -.093776
-.096175 =-.095105 -.086954 =-.0681014 -.070719 =-.057721 .046263  -.0315%4%
~.016004% L0COZ6E L015495 30676 .050827 .069113% .087505 .105656
.123637 L142546 169866 L194712 .219897 .246217 L2T4591 .306084
.335369 .371654% .378391 .455995 .456863
.870000] .300000]
.990455 .997758 .995132 .991597 .987091 .961656 .975290 .968014
.95%527 .950749 .540799 .930018 .918425 .906020 .8%28563 .878564
54393 L849140 .833235 .816758 .799690 .782110 .766073 . 745536
.726603 .707279 L687646 L667702 647510 .627108 L604518 LEE5801
.5664555 .5454062 .523144 .502239 .681369 .4605%5 .439937 LG19617
.39%095 .378972 .359110 .333530 .320253 .301322 .282758 .266500
L246L33 .226547 .212731 .166413 .180616 .165342 . 150655 . 135558
. 123354 L110166 .097919 .086338 .075427 .065211 .055678 .046835
.038773 .031422 .025818 .018%580 .013897 .009586 .066089 .003379
.001483 .000352 .009600 .000362 .001483 .003379 .00605% .005584
.013397 .818%80 .024218 .031422 .038773 .046855 .055078 .065211
.075427 £6333 L067919 .110166 .123054 . 136553 .150655 . 165342
L1E0016 .196413 .212731 .229547 L2468738 .264582 .282758 .301322
.380253 .33953¢0 .355110 .379%72 .3990¢95 L419417 LG36337 .G¢C555
L481349 .50223% 23144 .544062 .564 355 .525201 .606513 .627108
.647510 .667702 L6BTHA6 .707279 .726603 . 745536 .766038 .782110
.7996%9 .816753 .833235 .849140 864393 .87869¢4 .890253 .90¢020
| .9158428 .930018 . 940799 .950749 .959a07 .968014 .575290 .9031655

Figure A.l1- Continued




Item
No.
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.587091 .991597  ,995132 .997758 .99949;7
.G89108  .588886 .408558  .395215  .364845  ,329132 .297230  .267752
.241058  .215931 .191510 167103 1462258 .125956 .103014  .084120
L065123 045966 .026752 .008404 -.008728 -.027140 -.045429 -,063491
-.079201 =-.097685 -.115657 -.132155 -.150327 ~-.166937 -.183882 -.195%52
-.212493 ~.225064 -,233321 ~-.233540 <-.247696 ~-.284055 -.60643125 ~.589334
-.720706 ~.772628 -.795788 -.795047 -.7944046 -.790553 -.782963 -.773702
-.762569 ~.T48667 =-.735627 -.715095 -.693640 -.671857 -.64091C5 =-.620354
-.522698 ~,554654 =,5182649 -.677942 -.432722 -.378478 -.306477 ~.2603E5
-.188543 ~.114700 -.021243  .089693  .2279%8 .387372 .578277  .787676
.928193 1.131675 1.167507 1.07684%06 .850077 657697 .G29117 228601
L066214 ~,072675 -.182169 -.274184 ~.348235 -.424712 -.488345 -.535603
-.585089 ~.627308 -.666135 =-.699952 -.73123% -.760614 =-.783219 ~-.810703
-.832370 -.853337 -.871153 -.838C87 -.903869 -.91773%6 -.930370 -,9%2268
-.951914 ~.960503 -.9¢8506 =~.973536 =-.978179 -.980470 =-.979557 -.976684
-.566756 ~.949158 ~.916589 -.860190 -.600836 =-.2202%7 -.035550 -.008065
-.014402 ~-.021252 -.025646 =-.024423 ~-,619218 -.013954 -.004358  .007052
.019851 .032428 .C46381 .063042 .079533 .096314 L113339 134662
.153582 .173302 .196701 .220C558 . 244641 .270651 .299605  .331015
.366298 .396308  .409349 .489330 .489108
.800000] .400000]
.99683: .696261 .992734 .988238  .962815 .976464 .969203  .961034
.951976 .642049 .931291 .91972 .907346 .864219 .880381 .865812
.850593  .83472 .818282 .801251 L783710 .765678 L747217  .728326
.703045 .689455 .669555 L6G35%07 .622051 .608507 .5876835  .567035
.546189 .525317  .504458 .433635 .662507 .442295 LG21820 LG015453
L301464 .361646 .342110 .320876 .303936 .285462 .267326 .249¢20
.232356 .215585 .169302 .183537 L166293 .153635 .1395563 .126082
L113216 .100956 .085419  .678517  .0£8305 .053770 .049977 041834
.0834450 L0277%4% .021£80 .016686 .012213 .008485 .€05447 .003104
.009403  ,000351 .00C000 L000301 .0014503 .003104 .005447 0060485
L012213 L016685 LOC1ER0 L0C7794% .034456 .041834 .049977  .058770
.0£8305 .075517 L0895%19 .106326 113216 .126082 .139583 1534635
.158293 .183537 .199302 .215385 .230336 .249420 .267326 .285902
.70393% .322876 .342110 V361646 .3581466 .401563 LG21E2D LGGI255
L452%07 .G83635 .504458  .505317 .536169 .567035 .567835 L6CR507
.629051 649407 .669555 L6E9455 .705045 .728326 LT4TCY7 L T6B6TR
.783710 .801251 .81€ez282 .834722 .E50563 .865812 .8£0381 .8%4219
.50734%6 .919724 .931291 .942649 .951876 .961034 .969203 976464
.982815 .98205 L9907 3% L9966 .932321
L463966 . 463542 L3333(0  T.376335 TISL04T 310753 79273 TC50763
.226307 .158533 L173873 .152520 L131851 .108699 .08%614 .0704a59
L051152 .031852 L013404 ~.003844 =-,022380 -.040209 -.05%045 =-.075003
-.093807 ~.1100203 =-.109293 -.146268 ~-.166067 =-.1847C0 -.202242 =~.216409!
-.237169 ~.252347 -,264%¢30 ~-,275050 -.287088 -.310622 -.384371 -.500500
-.651664 -.703049 -.749049 -,757014 -.757358 ~-.750084 -.744805 -.735153
-.722462  -,707479 -.690900 -.670487 -.669353 -.627514 ~-.599640 -,568835
-.535%28 -.501070 -.461913 -.618310 -.367155 ~-.318745 ~-.258751 -.190444
-.123351  -.039874 .057341 .175989  .308200 L466303 645304  .836752
1.016671  1.161462 1.165213 1.072227  .887264 664673 .GGEEER .253724
L0E9550 -.043323 -.161762 ~-.257318 -.340367 -.402038 =-.476755 ~-.5340029
-.576556 -.625309 -.664559 -.700900 -.732686 -.762251 -.790133 -.816546
-.638046 =-.858656 ~.878~83 -.896170 -.913119 -.908684 =-.942283 -.954587
-.936554 =-.976330 ~.685336 -.993910 -.999744 -1.005513 -1.00%427 -1.010893
~1.011n13 -1.007216 =~.593251 =,981310 -.951183 <-.898%42 -.675924 ~-.l07956
-.06144393 28G5% .026008 .017221 .012851 .013018 .014088  .020132
.028577 .033929 .069669 062311 L075694%1 .092261 L108099 124370
L 145106 .163¢85  ,183252 .206792 .230823 .256119 .283563  .314198
.346700 .378313 3845611 L464269 L463906
.800000 .6006357]
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Item
No.

.998133  .994611  .990123  .984707  .978365  .971116  .962959  .953914
.944001  .933260  .921710  .909350  .896242  .882424  .867877  .852680
.836234  .820417  .803411  .785896  .767891  .749457  .730593  .711341
.691779  .671909  .651791  .631465  .610951  .590310  .569541  .548725
.527884  .507056  .486263  .465566  .444984 424539  ,404252  .384243
.364455  ,344946  .325740  .306878  .288381  .270271  .2525%0  .235359
.218602  .202340  .186566  .171371  .156730  .142674  .129207  .116351
.104130 ,092568  .081668  .071455  .061912  .053105 .044940 .037523
.030821  .024841  .019557  .014959  .011060 .007786  .005125  .0062995
.001399  .000360  .000000 .000360 .001399  .002995 .005125 .007786
L011060 .014959  ,019557  .024841  .030821  .037523  .044930  .053105
.061912  .071455  .081668  .092568 .104130  .116351  .129207 .142674
.156730 171371 .186596  .202340  .218602 .235359  .250590 .270271
.288381 306878  .325740  .344946  .364455  .384243  .404292  .424539
444984 465566  .4860263  .507056  .527884  .548725  .566541  ,590310
L610351 631465  .651791  .671909  .691779  .711341  .730593  .749457
.767891  .785896  .803411  .820417  .836834  .B852680 .867877  .8B82424
.636042  .909356  .921710  .933260  .944001  .953914  .962959  .971116
978365 .$854707  .990123  .594611  .998133
.46C0483 461570  .382264  .370167  .336918  .302577  .271523  .243132
.216423 190478  .168483 147409  .124007  .104765  .085520  .066233
.046930  ,028541  .011355 -.007085 ~.025401 -.043535 -.059445 -.078202
-.095599 -.113795 ~-.133011 -,151223 ~-.170603 -.189406 -.208636 -.229710
-.250142 -.270238 =~.291004 -.312540 ~-.331581 -.351660 -.373582 =-.4603607
-.455352 ~.519560 -,531649 -.625410 =-.647867 -.65654% -.656523 —.6459851
-.638908 -.625234 ~.606912 -.587538 ~-.567393 -.540859 -.511204 =-.479994
-.446358 ~-.407620 =-.366183 ~-.319089 =-.274597 -.218665 -.155032 -.0936264
-.017795  .068219  .171463  .282458  .413040  .560212  .723428  .895624
1.054411  1.155458 1.157109 1.047805  .852882  .625219  .410777  .224683
L066500  -.066937 -.176675 =-.2603046 -.366630 -.442649 -.49569% =-.555762
-.611902 -.653198 =,69563% =-.731009 =-.764265 -.793338 =-.820540 --846013,
-.870094 -.839922 -.509713 =-.929431 -.946512 -.962757 -.977730 =-.990551
-1.003343 -1.015392 -1.025564 ~1.035091 -1.044424 —1.051292 -1.058472 -1.0664373
-1.068684 -1.073640 -1.075761 =-1.077063 -1,076656 ~1.073327 -1.063527 —-1.045402
~-1.011530 -.950877 -.606516 =-.212306  .066583  .111356  .110028  .$01565
.097627  .097297  .100041  ,104126  .111381  .121190  .1324C8  .1644787
.158122 176327 .192981 211133 ,233658  .257373  .283129  .311842
3644092 .375500  .385985  .463397  .462483
.800600] .700000]
.997307  .992822  .987410  .931072  .973828  .965677  .956638 . 946732
.935998  .924455  ,912104  .899005  .885196  .&70659  .855472  .839636
.B23231  .806236  ,788732  .770739  .752317  .733466  .T14206  .694678
.674821  ,654716  .634403  .613903  .593275  .572520 .551718  .5303890
.510077  .489297  .468614 468046  ,42761G¢  .407381  .387345  .367569
.348073  .328880  .310029  .291544  .273445  .255774  .238553  .221805
.205551  .18%815  .174597  .159960  .145909  .132444  .119560  .107368
.095302  .0848%6  .074673  .065117  .056291  .048101  .040650 .033903
.027865  .022504  .017806  .013774  .010327  .007438  .005C01  .000592
.001397  .000359  .600000 .000359  .001397  .002992  .005001 .007438
.010327  .013774  .0178C6  .022504  .007865  .033903  .040650  .048101
.056291  .065117  .074673  .084896  .095802  .107368  .119590 132444
.145909  .159960  .174597  .189815  .20555%  .221805 .238553 ,CE5774
.273%45  .291544  .310029  .328880  ,348073  .367569  .387345  .G07381
L427614  ,448046 668616 .G85297  .510077  .530890 .5517:i8  .572520
.593275  .613903  .634403  .654716  .674821 694678  .716226  .733466
.752317  .770739  .788732  .806236  .B23231  .83%$536  .855472  .870659
.885196  .899005  ,912104  .924455  ,935998  .946732  .956638  .965677
.973628  .981072  ,987410 _ .992822  ,997307
.668728  .668307 522300  .441943  .369762  .314595  .273042  .239321
.209654  .185547  .163233  .139135  .119414 _ .099830  .050298  .060812
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.042266 .024934 .006399 ~-.011958 -.030082 ~-.045955 -.064578 -.082762
-.099637 -.118538 -.136324 ~.155210 ~-.173483 -.192150 -.212669 -.232627
~.252466 -.273361 -.295668 -.316378 =-.338889 -.361301 -.383949 -.409232
-.43723% -.471741 -.508264 -.53G430 -.5628679 -.5771é1 -.581808 ~.57%150
~-.571404 -.557257 =-.5640964 ~.523283 -.498949 -.4716497 -.441655 -.409089
-.372779 ~-.334533 ~-.290600 -.2649155 =-.196686 -.137268 -.081064 ~-.012045

. 064911 .156050 .2507%7 .360544 .482596 .6186%2¢4 .7709Co .932586
1.0768%92 1.162004 1.149392 1.027122 .B29499 .598496 .380563 .1987%8

.04G066 -,077266 =-.187047 ~.280101 -.373953 -.,451564 ~-.515750 -.564158
-.616415 -.668576 ~.705960 -.744879 ~-.777275 -.808043 -.834895 -.859770
-.8383137 -.906457 ~.,925930 -.944%10 -.963698 -.979%17 -.995537 -1.010093

-1.0230%92 -1.035272 ~1.047226 ~1.057403 -1.066934 -1.076385 -1.083%63 -1.090957
-1.097319 -1.102275 -1.108152 -1.111634 -1.114588 -1.11783%9 -1.119¢57 -1.119530
-1.117783 - .112354 ~1.0984€9 ~-1.070169 -1.00%648 -.890889 -.417645 062612

.15465¢4 163569 .1600€2 157352 .156120 .168521 164013 . 171487

.180676 191367 .207425 .222816 .240828 .265001 .293844 .331050

382321 .G50996 .528020 .66%9150 668728

Figure A.l1- Concluded




66 226 36 36 36 3 26 3 26 2 e TE I I I I I I 636 IE-HE-6-1E H 3366 I 6 336 36366 I I 3636 36 36 36336 36 36 36 I I3 63
PROGRAM PERTURB
CALCULATES HONLINEAR SINGLE-PARAMETER
CONTINUOUS OR DISCONTINUOUS
PERTURBATION SOLUTIONS
WHICH REPRESENT A CHANGE IN EXYTHER
GEOMETRY OR FLOW CONDITIONS
BY EMPLOYING A STRAINED-COORDINATE PROCEDURE
UTILIZING A UNIT PERTURBATION DETERMINED FROM
TWO PREVIOUSLY CALCULATED
'BASE' AND ‘CALIBRATION' SOLUTIONS
DISPLACED FROM ONE ANOTHER BY SOME REASONABLE

CHANGE IN GEOMETRY DR FLOW CONDITION

WRITTEN BY

JAMES P. ELLIOTT AND STEPHEN S. STAHARA

NIELSEN ENGINEERING AND RESEARCH, INC.

MOUNTAIN VIEW, CALIFORNIA

X K X X K K XK Kk Kk X XK K XK X X %K XK X XK XK XKXXXKKXXHXKZNKDINKIZEXZ EKI RXDIXDHX
* K K K K K XK K X XK X Kk K K Kk K K K kK Kk X XK K XK K K ¥k X K X K XK X XK X

I I IE I I T I T I I I I I I I W I I T VI I T I T I I F I I I I I I K F ]I I M I I W I

263636 3636 3 3626 HEIEIEIE 262 366 I DI 23 30 33632 I WU I I I I IE I IE I I3 I I I I DI DE I I B I B I I I I I I I I P
* SAMPLE CASE - ALPHA PERTURBATION FOR MULTI-SHOCK ISOLATED AIRFOIL FLOW *
F I I I T I I HEIEHEIE I T I I I I I3 I I IE U I I3 I I I JEJE I I T2 I I 36 36 2633636 3 3 HE I JEHIE I TN I 32 I 36 2T I I I I I J 30

€<<<<<<<<< LIST OF INPUT PARAMETERS >>>>>>>>3>>
N = 149
A= -1.0 B = 1.0
BASE SOLUTION: MO = 0.8000 Q0 = 0.5000

CALIBRATION SOLN: H1 = 0.8000 Q1 = 0.2000

Figure A.2- Abbreviated print output for sample case
47



<<<<<<<<<< CRITICAL VALUES OF CP >>>>>>>>>>
BASE SOLUTION: CPCRIT = -0.4346

CALIBRATION SOLN: CPCRIT = -0.4366

<<<<< LOCATIONS OF MIN., MAX., AND CRITICAL PTS. >>>>>
(% DENOTES POINT ON LOWER SURFACE)

BASE SOLUTION:

0.4606 {POINT #112)

0.0000 (POINT # 75)
NT(S}:

0.3924% (AFTER PQINT # 41)

0.6288 (AFTER POINT #120)

MINIMUM AT X
MAXIMUM AT X
2 CRITICAL PO
1ST AT X
2ND AT X

Wil 1y

CALIBRATION SOLN:

MIMIMUM AT X 0.4043 (POINT #111)

MAY IMUM AT X 0.0000 (POINT # 75)

2 CRITICAL POINT(S):
1ST AT X 0.4592% (AFTER POINT # 36)
2ND AT X 0.5498 (AFTER POINT #118)

n i

<K<K STRAINING POINTS SELECTED >>>>>>>>>>
NUMBER OF FIXED POINTS : 5
FIXED PCINTS SELECTED (IN ADDITION TO EMD POINTS)
POTHT OF MAXIMUM CP

CPCRIT (1ST OF 2)
CPCRIT (2ND OF 2)

<€<<<CLL<<< LOCATION OF FIXED POINTS >>>>>>>>>>

(% BENOTES POINT ON LOWER SURFACE)

BASE SOLUTION:

XFIX(1) = 1.0000%
XFLX(2) = 0.3924%
XFIX(3) = 0.0000
XFIX(4) = 0.6288
XFIX(5) = 1.0000

CALIBRATION SOLN:

XFIX{1) = 1.0000%
XFIX(2) = 0.4592%
XFIX(3) = 0.0000
XFIX(4) = 0.5498
XFIX(5) = 1.0000

A8 Figure A.2- Continued



66363636 96 36 36 36 36 36 36 36 I I I 36 3 3 I I
# UNIT PERTUR3ATION OF CP *
* 4 *
* UNIT STRAINING OF XBASE *
6636 96 3963 3 363K 36 36 I I 3 H I HHHHHH

POINT XBASE XSTRUNIT CPUNIT

1 0.9995 0.9996 0.1516
2 8.9978 0.9980 0.1503

3 0.9351 0.9957 -0.1153
4 0.9916 0.9925 -0.0350
5 0.9871 0.9885 0.0192
] 0.9817 0.9837 -0.0527

7 0.9733 0.9780 -0.0591
8 0.9680 6.9715 -0.0533

9 0.9.98 0.9642 ~-0.0470
10 0.9507 0.9562 ~0.0418
1" 0.9408 0.9473 -0.0390
12 0.9300 0.9377 -0.0386
13 0.9184 0.9274 -0.0339
14 0.9060 0.9164 -0.0339
15 0.8929 0.9046 -0.0415
16 0.8790 06.8923 -0.0351
17 0.8644 0.8793 -0.0381
18 0.8491 0.8657 -0.0417
19 0.8332 0.8516 -0.0455
20 0.8168 0.8369 ~0.0468
21 0.7997 0.8217 -0.0471
22 0.7821 0.8061 -0.0556
23 0.7640 0.7700 -0.0611
24 0.7455 0.7735 ~0.0662
25 0.7266 0.7567 ~-0.0647
26 0.7073 0.7395 -0.0775
27 0.6876 0.7220 -0.0888
28 0.6677 0.7043 -0.0928
29 0.6%75 0.6863 -0.1067
30 0.6271 0.6681 -0.120%
31 0.6065 0.6498 ~0.1349
32 0.5858 0.6314 ~-0.1532
33 0.5650 0.6128 -0.1734
34 0.544% 0.5942 -0.2064%
35 0.5231 0.5756 -0.2428
36 0.5022 0.5570 -0.2809
37 0.4814 0.5384 -0.3257
38 0.4606 0.5199 -0.3711
39 0.4399 0.5015 -0.3818
40 0.4194 0.4833 -0.3191
41 0.3991 0.4652 -0.1193
42 0.3790 0.4435 0.2948
43 0.3591 0.4203 0.5270
44 0.3395 0.3976 0.4753
45 0.3203 0.3748 0.4154
46 0.3013 0.3526 0.3%944
47 0.2828 0.3309 0.3886
48 0.2646 0.3096 0.3889
49 0.2468 0.2889 0.3877
50 0.2295 0.2686 0.3917
51 0.2127 0.2490 0.3971

Figure A.2- Continued



52 0.1964
53 0.1806
54 0.1653
55 0.1507
56 0.1366
57 0.1231
58 6.1102
59 0.0979
60 0.0863
61 0.0754
62 0.0652
63 0.0557
64 0.0469
65 0.0388
66 0.0314
67 0.0248
68 0.0190
69 0.0139
70 0.0096
71 0.0061
72 0.0034
73 0.0015
74 0.0004
75 0.0000
76 0.0004
77 0.0015
78 0.0034
79 0.005%
80 0.00%6
81 0.0139
82 0.0150
a3y 0.0248
84 0.0314
85 0.0388
86 0.0449
87 0.0557
88 0.0652
89 0.0754
%0 0.0563
91 0.0679
92 0.1102
93 0.1231
9% 0.1366
95 0.1507
96 0.1653
97 0.1806
98 0.1564
929 0.2127
100 0.223%5
101 0.2468
102 0.2. 46
103 0.2328
104 0.3013
105 0.3203
106 0.3395
107 0.3591
108 0.37%0
109 0.3991
110 0.4194
tn 0.4399

0.2299
0.211¢4¢
0.1935

0.1763

0.1598
0.1440
0.1289
0.1146
0.10t0
0.0883
0.0763
0.0652
0.0549
0.0454
0.0368
0.0290
0.0222
0.0163
0.0t12
0.0071
0.0040
0.0017
0.0004
0.0000
0.0003
0.0013
0.0030
0.0053
0.0084
0.0121
0.0166
0.0217
0.0275
0.0339
0.0410
0.0487
0.0570
0.0659
0.0755
0.0856
0.0963
0.1076
0.1194
0.1317
0.1446
0.1579
0.1717
0.1860
0.2007
0.2158
0.2313
0.2472
0.2634
0.2800
0.2969
0.3140
0.3313
0.3489
0.3667
0.3846

0.39%0
0.4079
0.4105
0.4084
0.4252
0.4357
0.4411
0.4454
0.4572
0.4672
0.4799
0.4718
0.4757
0.4779
0.4874
0.495¢
0.4945
0.5134
0.5078
0.4605
0.3529
0.2112
0.0803
-0.0247
-0.1734¢
-0.3329
-0.4227
-0.4710
-0.4994
~0.4931
-0.5033
-0.4911
-0.4720
-0.4489
-0.4620
~0.4517
-0.4046
-0.4024
-0.3963
-0.3821
-0.3693
-0.359¢
-0.3552
-0.3520
-0.3368
-0.3235
-0.3246
-0.3201
~0.3143
-0.3123
-0.3079
-0.3037
-0.3028
-0.299%
-0.2961
-0.2961
-0.2930
-0.2937
-0.2927
-0.2942

Figure A.2- Continued
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112 0.4606

113 0.4314
114 0.59022
115 0.5231
116 0.5441
117 0.5650
118 0.5858
119 0.6065
120 0.6271
121 0.6475
122 Q.6677
123 0.6876
124 0.7073
125 0.7266
126 0.7455
127 0.7640
128 0.7821
129 0.7997
130 0.8168
131 0.8332
132 0.8491
133 0.864%
134 0.8790
135 0.8929
136 0.9060
137 0.9184
138 0.9300
139 0.9408
140 0.9507
141 0.9598
142 0.9680
143 0.9753
144 0.9817
145 0.9871
146 0.9916
147 0.9951
148 0.9978
149 0.9995

0.4027
0.4209
0.4391

0.4574
0.4757
0.4939
0.5122
0.5303
0.5483
0.5724
0.5969
0.6211

0.6449
0.6684%
0.6913
0.7138
0.7357
0.7570
0.7777
0.7977
0.8170
0.8355
0.8532
0.8700
0.8860
0.9011

0.9151

0.9282
0.9403
0.9513
0.9612
0.9700
0.9777
0.9843
0.98%98
0.9941

0.9973
0.9994

-0.2989
-0.3000
-0.3053
-0.3079
-0.3077
-0.2921
-0.2933
-0.3833
-0.0654
0.2949
0.3781
0.39E58
0.33910
0.3758
0.3521
0.3283
0.3056
0.2892
0.2640
0.2435
0.2301
0.2154
0.1976
0.1802
0.1773
0.1615
0.1423
0.1338
0.1259
0.1090
0.0929
0.0783
0.0614
0.0620
0.1164
-0.0799
0.1531
0.152¢

Figure A.2- Continued
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2696 36 263636 36 36 36 3 36 J 36 3 36 36 3 3 3 J6 3 36 32 2
% OUTPUT FOR CASE #1 OF 6 *
0363696 3636 6 36 3636 3 3 3 36 K 3 6 F 3 K HHHH
M2 = 0.£000
Q2 = 0.0000

CPCRIT = -0.4346

<<<<< LOCATICNS OF MIN., MAX., AND CRITICAL PTS. >>>>>
(% DENOTES OINT ON LOWER SURFACE)
PERTURB’TION SOLN:

MINIMUM AT X = 0.4112% (POINT # 45)

MAY.IHUM AT X = 0.0000% (POINT & 75)

2 CRITICAL POINT(S):
1ST AT X = 0.5024% (AFTER POINT # 41)
2ND AT X = 0.4961 (AFTER POINT #t120)

COMPARISON SOLN:

MINIMUM AT X = 0.3790% (POINT # 42)
MAKIMUM AT X = 0.0000 (POINT # 75)
2 CRITICAL POINT(S):

1ST AT X = 0.5035% (AFTER POINT

2ND AT X = 0.5035 (AFTER POINT
POINT XBASE CPBASE XCALB CPCALB
1 0.9995 0.4947 0.998t 0.4492
2 0.9378 0.4943 0.9%46 0.64490
3 0.9951 0.4144 0.9901 0.3687
4 0.5916 0.4011 0.9847 0.3567
5 0.3871 0.3709 0.9784 0.3231
6 0.9817 0.3354 0.9711 0.2884
7 0.9753 0.3037 0.9630 0.2570
8 0.9680 0.2744 0.9539 0.2283
9 0.9598 0.2478 0.9440 0.2012
10 0.9507 0.2228 0.9333 0.1750
i1 0.9408 0.1986 0.9217 0.1528
12 0.9300 0.1743 0.9093 0.1315
13 0.9184 0.1535 0.8962 0.1078
14 0.9060 0.1334 0.8824 0.0884
15 0.8929 0.1106 0.8679 0.06%0
16 0.8750 0.0918 0.8527 0.0496
17 0.8644% 0.0728 0.8368 0.0302
18 0.8491 0.6538 0.8204 0.0118
19 0.8332 0.0346 0.8034 -0.0053
20 0.81¢8 0.0163 0.7359 -0.0237
21 0.7997 -0.0009 0.7679 -0.0417
22 0.7821 -0.0193 0.7495 -0.05%5
23 0.7640 -0.0377 0.7306 -0.0747
24 0.7455 -0.0559 0.7113 ~-0.0926
25 0.7266 -0.0719 0.6918 -0.1098
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£CLLLLCLLLLLLLLCLLCCL<<<< MAIN PROGRAM PERTURB ))>>)>>)>>))>)>>>>>>>>)>>IHA!NOOI

OO00O0DOON0000N000O00NO00000O00000000DOOO0ONONOO00NO0CcanNOOO0000000ON0

|HAINGO2
CALCULATES CONTINUOUS OR OISCONTINUOUS NOMLINEAR PERTURBATION IMAINOO3
SOLUTIONS WHICH REPRESENT A SINGLE-PARAMETER CHANGE IN EITHER |MAINOO4
GEOMETRY OR FLOW CONDITIONS BY EMPLOYING A STRAIMED-COORDINATE |MAINOOS
PROCEDURE. THE METHOD UTILIZES A UNIT PERTURBATION, DETERMINEO IMATHOO06

FROM TWO PREVIOUSLY CALCULATED SOLUTIONS ('BASE' AND ‘CALIBRATION'|MAINOO7
SOLUTIONS) OBTAINED FROM AN 'EXPEMSIVE' COMPUTATIONAL PROCEOURE IMAINGOS

AND DISPLACED FROM ONE ANOTHER BY SOME REASONABLE CHANGE IN IMAINOO9
GEOMETRY OR FLOW VARIABLE, TO PREDICT NEW NONLINEAR SOLUTIONS OVER|HAING10
A RANGE OF PARAMETER VARIATION. |HAINO1 1

|MAINO12

THIS CURRENT VERSION OF THE PROCEDURE IS CONFIGURED TO PREDICT AND]MAINO13
PLOT PRESSURE COEFFICIENTS ON A BLADE OR AIRFOIL SURFACE, AND CAN |MAINO14

ACCOUNT FOR THE MOTION OF: |HAINO1S
(1) ONE OR MORE CRITICAL POINTS (SHOCK POINTS), IMAINO1S

(2) A STAGNATION POINT, IMAINO17

(3) A MAXIMUM-SUCTION-PRESSURE PDINT, |MAINOTS

OR SIMULTANEOUSLY FOR ANY COMBINATIOM OF THESE. IMAIHO19
IMAINOZ0

THE PROGRAM IS ALSO CONFIGURED TO COMPARE THE PERTURBATION- |HAING2Y
PREDICTED SOLUTIONS WITH THE CORRESPONDING 'EXACT' SOLUTIONS IMAINO22
OBTAINED BY EMPLOYING THE SAME 'EXPENSIVE' COMPUTATIONAL IMAIND23
PROCEDURE USED TO DETERMINE THE BASE AND CALIBRATION SOLUTIONS.  |MAINO24
SEE THE SUBROUTINE INPUT FOR DETAILS. IMAING2S
IHAINO26

N = NO. OF POINTS IN SURFACE PRESSURE DISTRIBUTION - ASSUMED EQUALIMAINOZ7
FOR BASE, CALIBRATION, AND PREDICTED DISTRIBUTIONS. IMAINO28
NOTE: N <= 200. [HAINO29

{HAINO30

BASE CALIBRATION |HAINO31

ONCOMING MACH NO. Mo M [MAINO32
PARAMETER PERTURBED Q0 Q1 IMAINO33
{HAING34

M2 = ONCOMING MACH NO. OF PREDICTED FLOW IMAINO35
Q2 = VALUE OF PERTURBED PARAMETER IN PREQICTED FLOW IMAINO36
IMAINO3?7

COORDINATE STRAINING IS PIECEWISE LINEAR WITH END POINTS AND ONE IMAING3S
OR MORE USER-SELECTED INTERIOR POINTS HELD INVARIANT. |MAINO 39
IMAINOGO

THE PROGRAM LOCATES MINIMUM, MAXIMUM, AND ALL CRITICAL POINTS IHAINOGY

(SHOCK POINTS) IN THE BASE AND CALIBRATION SOLUTIONS, AND STORES |MAINGG2
THESE IN THE ARRAYS XLOCO AND XLOC! (IT IS ASSUMED THAT THE NUMBER{MAINOG3I

OF CRITICAL POINTS DOES NOT EXCEED FOUR) AS FOLLOMS! | HAINOGS
| MATHO45

BASE CALIBRATION | MAINO46

IMAINO47

XLOCO(1) = MINIMUM PT. XLOC1(1) = MINIMUM PT. |HAIHO48
XLOC0(2) = MAXIMUM PT. XLOC1(2) = MAXIMUM PT. | MAINOG9
XLOCO(3) = CRITICAL PT. #1 XLOC1(3) = CRITICAL PT. #1  [MAINOS0
e = .. . = ... |MAINOSY
XLOCO(6) = CRITICAL PT. #4 XLOC1(6) = CRITICAL PT. #4  [MAINOS52
|MAINO53

THE HUMBER OF POINTS SELECTED FROM THESE IS SPECIFIED BY NSELCT. |MAINOS4
THE CORRESPONDING SUBSCRIPTS OF XLOCO AND XLOC! ARE SPECIFIED IN |MAINOSS
THE FIRST NSELCT ELEMENTS OF THE ARRAY LSECT, E.G. TO SELECT THE |MAINO56

MAXIMUM POINT AND THE FIRST AND THIRD CRITICAL POINTS, ONE |HAINOS7
SPECIFIES: |MAINOS8
IMAINO59

NSELCY = 3 IHAINO6O

c LSELCT(t) = 2 |HATHO61
[ LSELCT(R2) = 3 [MAINOG2
c LSELCT(3) = 5 [MATHO63
[+ {MAINO6Y
[+ PROVISION IS ALSO MADE TO ALLOW THE USER TO SPECIFY THE POINTS IN |MAINGSS
Cc THE BASE AND CALIBRATION SOLUTIONS THAT WILL BE HELD INVARIANT, TO|MAINO46
[ A MAXIMUM OF SIX. SEE THE SUBRQUTINE INPUT FOR DETAILS. | MATHO67
c {MAIHOGS
DIMENSTON XBASE(200),XCALB(200),XCHEK(2001),XPERT{200),XUNIT(200) JHAINO&9
DIMENSION YBASE(200),YCALB(200),YPERT(200),YCHEK(200),YINTP{200), |[MAINO7O

7z YPRTI(200),YUNIT(200) IMAINO 71
DIMENSILON XLOCO(6),XLOC1(6),XLOC2(6),XLOC3(6),XFIX0(8),XFIX1(8) {MAINO72
DIHENSION LCRO(4),LCRI(G),LCR2(4),LCR3(4),L0C0(6),LOCI(6), IMAINO73

Z ISEQO(3),ISEQI(8),LSELCT(6) IMAINO 74
DIMENSION XOUT(8) |MAINO75
DIMENSION TITLE(20} |t1AIHO76
INTEGER#2 NAHE |HAINOT77
INTEGER HEADO(5) /4HBASE,4H SOL,4HUTIO,4HN: ,4H 7/ |MAINO78

7 HEAD1(5) /4HCALI,4HBRAT,4HION ,4HSOLH,4H: /» [HAINO79

4 HEAD2(5) /4HFERT,4HURBA,4HTION,GH SOL,4HN: /, |MAINOBO

Z HEAD3(5) /4HCOMP,4HARIS,4HON S,4HOLN:,4H / IMAINOBY
INTEGEF ORD(4) /4H1ST ,4H2ND ,4H3RD ,4H4TH / | HATHO082
LOGICAL%1 FLAG(8) |HAINOB3

REAL M~ ,Mt,H2 | HAXHO84
COMHON /COEFF/ C(7),D(7) {MAINOBS
COMMON /PARAM/ TITLE,LOCO,L0C1,LSELCT,N,NCASE,LSPEC, LECHO,LUNIT, [MAINO86

Z LCHEK, LPERT,NSELCT,A,B,NAME IMAINO8B?
COMMON /PERT/ MO,M1,M2,Q0,Q1,Q2,YCRQ,YCR1,YCR2 |MAINOSS
COMHON /XY/ XBASE,XCALB,XPERT,XCHEK, YBASE, YCALB, YPERT, YCHEK {MAINOBY

DATA LTERM 70/, LCORR /0/ |MAING90O

o | MAIHO91
c * e RN * |MAINO92
[ JMAINO93
[+ USER-SUPPLIED STATEMENT FUNCTION YCRIT(Z!} DETERMINES CRITICAL 1HA1N094
[ VALUES OF FLOW VARIABLE YCRIT AS FUNCTIOH OF FLOW PARAMETER Z. I MAIH09S
C IGRAD (+t OR -1) IS THE USER-SUPPLIED ALGEBRAIC SIGN OF DYCRIT/DX |MAINO%6
c USED IN LOCATING THE CRITICAL POINT. [MATINO97
c |MAINO9S
c IN THE PRESENT VERSION OF THE CODE, YCRIT REPRESENTS THE FULL- I1MAIND99
[ POTENTIAL CRITICAL PRESSURE COEFFICIENT FOR AIR (GAMMA = 1.4), Z |[MAIN10OO
c 1S THE FREE STREAM MACH HUMBER, AND IGRAD CORRESPONDS TO POSITIVE |MAINtOI
[ PRESSURE GRADIENT (+1). IMAIN102
[ IMAINI03
YCRIT(Z)=2.0%(((2.0+¢0.4%Z%%2)/2.418%(1.4/0.4)-1,0)/(1.4%Z%n2) |MAIN1 04
IGRAD=1 IMAINI OS5

[ |HAIN106
c LT * 33 YTt 0 MR | MATH107
C {t1AIH108
C..... INPUT COHTROL, GEOMETRY, AND STRAINING PARAMETERS, AHD DATA FOR IMAINIO0G,
C BASE AMND CALIBRATION SOLUTIONS. |MAIN110
c IMAINI1Y
CALL THPUT(1} |MAINI12

[ [HAINTLS
C.....PRINT BANNER PAGE |MAINItG
c |HAINI1S
CALL BANNER IMAINI16

c IMAIH117
C.ooven ECHO INPUT DECK IF LECHO .NE. 0. {MAINI18
c IMAINE19
IF (LECHO .NE. 0) CALL ECHINP {MAINIZ20

FINLIdd WYED0dd ¥ALAAWOD J0 ONILSIT - 9 XIANIAJY




S9

oO0O0Mo

noon

anooa

DEL1=Q1-Q0

YCRO=YCRIT{110)

YCRI=YCRIT(M1}

WRITE 16,2000) TITLE

WRITE (6,2010) N,A,B,HEADO,H0,Q0,HEADT,H1,GQ1

WRITE (6,2020) MNAME,HEADO,NAME,YCRO,HEAD! ,HAME,YCR

.NORMALIZE X COORDINATES AND LOCATE MINIMUM, MAXIMUM, AND CRITICAL

POINTS FOR BASE AND CALIBRATION SOLUYIONS.

CALL SCALE (N,XBASE,1,A,B)

CALL LOCATE (H,XBASE,YBASE,YCRO,IGRAD,LHMNO,LHX0,NCRO,LCRO,XLOCO)
CALL SCALE (H,XCALB,1,A,B)

CALL LOCATE (M,XCALB,YCALB,YCR1,IGRAD,LMNT,LMX1,NCR1,LCRT,XLOCT)
WRITE (6,2030)

WRITE (6,2035)

CALL UPLOW (A,B,XLOCO,6,NCRO+2,X0UT,FLAG)

HRITE (6,2040) HEADO,XOUT(11,FLAG(1),LMNO,X0UT(2),FLAG(2},LMX0
IF (NCRO .GT. 0) WRITE (6,2045) NCRO,

3 (0R0(I),X0UT(X+2),FLAG(I+2),LCRO(T),I=1,NCRO)

4

~

&

CALL UPLOW (A,B,XLOCY,6,HCR1+42,X0UT,FLAG)

WRITE (6,2040) HEADU.XOUTC11,FLAGU1], LUNL,XQUTL21,FLAGL2 ), LHXL

IF (NCR1 .GT. 0) WRITE (6,2045) NCRi,
(ORO(I))XOUT(I+2),FLAG(I+2),LCRI(I),I=1,NCRI)

CHECK FOR INVALID STRAINING SPECIFICATION IF LSPEC = 0.

IF {LSPEC .EQ.
ICOUNT=0

DO 2 I=1,NSELCT
IF (LSELCT(I) .LE. 2) GO TO 2
ICOUNT=ICOUNT+1

IF (NCRD .NE. NCR1) LTERM=1
CONTINUE

1) GO TO 4

STOP EXECUTION IF CRITICAL POINTS ARE TO BE USED IN STRAINING AND

NUMBER OF CRITICAL POINTS IN BASE AND CALIBRATION SOLUTIONS ARE
UNEQUAL.
IF (LTERHM .EQ. 1) GO TO 900

STOP EXECUTIOM IF NUMBER OF CRITICAL POINTS SELECTED EXCEEDS
NUMBER ACTUALLY LOCATED.

IF (JCOUNT .GT. NCRO) GQ TO 905
CONTINUE

LOAD SELECTED STRAINING POINTS INTO FIXED-POINT ARRAYS FOR BASE
AND CALIBRATION SOLUTIONS.

HFIX=HSELCT+2
XFIX0111=0.0

XFIX101)=0.0
XFIZOINFIZ)=1.0
AFIAIHFIX)=1.0

DO 10 =1,HNSELCT

IF (LSP'EC .EQ. 0) GO TO 5
AFIXOUT 41 1= BASEC(LOCOL L))

THATNI 21
IMATHI22
IMAINI23
IMAINT 24
IHMAINT 25
[MAINI26
IMAIN1I27
IHAINT 28
|MAIN129
IMAIN1I30
IMAINT 31
IMAINY32
|MAINI33
IMAING 34
|MAIN1 35
IMAINI 36
IMAIN137
IMAIN138
1MAINT 39
|HAINTGO
IHMAINI G
IMAIN1G2
IMAINTGY
|MAINI G4
IMAINT 45
[HAINt 46
IMAINIGT7
IMAINI 48
IHAIN149
{MAIN150
IMAIN151
IHAINI52
IMAINI53
IMAINI5G
IMAIN1ISS
|MAIN156
IMAINIST
IMAIN1SS
|HAIN1IS9
|MATH160
|MAINT 61
IMAIN162
IHAIN163
[MATHY64
|MAIN165
|MAINL 64
IMAINI67
IHAINI 68
IMAIN169
|MATIN170
IMATHI 78
IHATIHY 72
IMAIN173
IMAIN176
IHATN175
IMAIN176
IMAIN177
IMATHI 78
{HAIH179
IHATHIBO

o000

s Na NN NelNalal

L

15
18

20
25

30

XFIX1(I+1)=XCALB(LOCI(I)}

60 TO 10

CONTINUE
XFIX0(T+1)=XLOCO(LSELCT(I})
XFIX1(I+1)=XLOC1(LSELCT(I})
CONTINUE

WRITE 16,2050) NFIX

IF (LSPEC .EQ. 0) GO TO 14

HRITE (6,2046) HEADO,HEADI

DO 13 I=1,HSELCT

HRITE (6.:2047) LOCO(I),LOCI(I)
CONTINUE

GO TO 18

CONTINUE

00 15 I=I,NSELCT

IF (LSELCT(I) .EQ. 1) WRITE (6,2060) NAME
IF (LSELCT(I) .EQ. 2) WRITE (6,2070) NAME
IF (LSELCT(I) .LE. 2) GO TO 15
LCORR=1

LPR=LSELCT(I)-2

WRITE (6,2080) NAME,CRD(LPR),NCRG
CONTINUE

CONTINUE

ARRANGE SELECTED FIXED POINTS IN A HONOTONE SEQUENCE.

CALL SORT (MNFIX,XFIX0,ISEQO)

CALL SORT (NFIX,XFIX1,ISEQ1)

HWRITE (6,2090)

HWRITE (6,2035)

CALL UPLOW {A,B,XFIX0,8,NFIX,X0UT,FLAG)

WRITE (6,2100) HEADO,{I,XOUT(I),FLAGLI),I=1,NFIX)
CALL UPLOW (A,B,XFIX1,8,NFIX,X0UT,FLAG)

WRITE €6,2100) HEAD$,(I,XOUT(I),FLAG(I),I=1,NFIX)

STOP EXECUTION IF ORDER OF OCCURRENCE OF CRITICAL POINTS IN BASE
AND CALIBRATION SOLUTIONS DOES NOT CORRESPOND.

IF (LSPEC .EQ.
DO 20 I=1,NFIX
IF (ISEQO(I) .NE, ISEQI(I)) GO TO 910
CONRTIHUE
CONTINUE

1) G0 TO 25

COMPUTE COEFFICIENTS IN UNIT STRAINING OF XBASE:

XSTR = C(I) + D(I}#XBASE, I=1,2, ... »NSEG,

WHERE NSEG IS THE NUMBER OF LINEAR SEGHENTS.

NSEG=NFIX-1

DO 30 I=1,HSEG

CHUM=XFIX1 (I )wXFIXO(I+1)-XFIX1(I+4 )#XFIX0(T)
DHUM=XFIX1 (I+1)-XFIX1(I)
DENOM=XFIX0(I+1)-XFIX0O(I)

C(1)=CHUM/DENCH

D{I3=DNUM/DENCH

CONTIHUE

DETERMINE UNIT STRAINING OF XBASE

IHAINISY
|HAINt82
|MAIN183
|HAINTBG
|HAIN1 85
IMAINt 86
|MAINI 87
|MATINIBS
|MAINIBY
|HAIN190
[MAINT 9t
JMAINT 92
|HAINI93
IHAINI 94
|HAIN195
| MAIN1 96
|HAIN1 97
|HAIN1 98
IMATH199
|HAIN200
|HAIN20t
|MAIN202
|MAIN20Y
|MAIN204
|HATM205
|HAIN206
|MAIN207
YMAIHZ 0B
IHAINZ09
[HAIN210
[HAIN21Y
|MAINZ12
|HAIN213
|MAIN214
|HAIN21S
|HAIN216
{HAIN2YT
IMAINZ18
|HAIN219
|MAIN220
[MAINZ2A
|MATN222
|HAIN223
|HAIN224
|HAIN225
{ttAIH226
IMAIN227
|HAIt228
|HAIN229
|HAINZ30
| HAIN23Y
|HAIN232
IMAIN233
IMAIN234
[MAIN2 35
|MAIN236
|HAIN237
|HAINZ238
{HAIN239
{HMAIN2GO



99

| MAIN241

CALL STRAIN (N,NSEG,XFIX0,XBASE,1.0,XUNIT) |MATHR42

c |HATIH243
C.....INTERPOLATE CALIBRATION SCLUTION TO BASE FLOW POINTS CORRESPONDING|MAIN244
c TO UNIT STRAINING. IMAIN24S
c IMATNZ46
CALL INTERP (N,XCALB,YCALB,XUNIT,YINTP) [MAINZG7

c IMAIN248
C.....CORRECT VALUES ON EITHER SIDE OF CRITICAL POINTS, IF THESE ARE IMAINR49
c USED IN STRAINING. |MATH250
4 | MAIN251
IF (LCORR .EQ. 0) GO TO 36 [HAIN252

DO 35 I=1,NCRI IMAIN253
YINTP(LCRO(I))=YCALB(LCRI(I)) IHAIN2SG
YINTPCLCRO(I)+1)=YCALB(LCRI(I}+1) |MAIN255

35 CONTINUE | MAIN256

36 CONTINUE [HMAINC5?

c |MAINZ58
C.....RESTORE PHYSICAL X IN CALIBRATION SOLUTION SINCE IT WILL NOT BE  |MAIN259
c FURTHER USED. {HATINR60
c |HAIN261
CALL SCALE (N,XCALB,2,A,B) |MAIN262

c IMAIN263
Connn DETERMINE THE UNIT PERTURBATION. IMAIN264
c {HAIN26S
DO 40 I=1,N |HATHR266

40 YUNIT(I)=(YINTP(I)-YBASE(I))/DEL1 |MAIN267

c |HAIN268
C.....PRINT UNIT PERTURBATION AND UNIT STRAINING IF LUNIT .NE. IMAIN269
c |HMAIN270
IF (LUNIT .EQ. 0) GO TO 50 {MAIN2T71

CALL SCALE (N,XBASE,2,A,B) InaIN272

CALL SCALE {N,XUNIT,2,A,8) |MAIN273

WRITE (6,2110) NAME,NAME IMAIN2 74

WRITE (6,2120) (I,XBASE(I),XUNITC(I),YUNIT(I),1=1,N) {HAIN2 75

CALL SCALE (N,XBASE,1,A,B) |MAIN276

50 CONTINUE |MAIN277

c IMAIN278
C.....CONSTRUCT PERTURBATION SOLUTIONS FOR TEST CASES (AND COMPARE WITH |MAIN279
c EXACT SOLUTION, IF AVAILABLE). |MAIN2BO
c IMAINZ8
DO 200 ICASE=1,NCASE [MAIN282

CALL INPUT(2) |MAIN283
DEL2=Q2-Q0 |HAINZ8G
DEL21=DEL2/DELL |MATH285
YCR2=YCRIT(MZ) |MATNZ86
YCR3=YCR2 IMAIN287

c IMAIN288
C.....DETERMINE STRAINED COORDINATE FOR GIVEN PERTURBATION. |MAIH289
c IMAINZS0
CALL STRAIN (N,NSEG,XFIX0,XBASE,DEL21,XPERT) {HAIN2 9!

[ | MATH292
C..... DETERMINE PERTURBATION SOLUTION. |MAINZ93
c {HATNZ 94
D0 60 I=1,N | MAIN295

60 YPERT(I)=YBASE(I)+DEL2%YUNIT(I) IMAIN296

c IMAIN297
C.....ADJUST VALUES NEAR CRITICAL POINT FOR MONOTONE BEHAVIOR. |MATIN2 98
c |MATN299
IF (LCORR .EGQ. 1} CALL MONO (NCRO,LCRO,XPERT,YPERT) |MAIN300

..... LOCATE MINIMUM, MAXIMUM, AND CRITICAL POINTS IN PERTURBATION

[
C
[o4 SOLUTION.
c

CALL SCALE (N,XPERT,2,A,B)
CALL SCALE (N,XPERT,1,A,B)

CALL LOCATE (N,XPERT,YPERT,YCR2,IGRAD,LMH2,LMX2,NCR2,LCR2,XL0OC2)

WRITE (6,2130) ICASE,NCASE,M2,Q2,NAHE,YCR2
HRITE (&,2030)

HWRITE (6,2035)

CALL UPLOW (A,B,XL0C2,6,NCR2+2,X0UT,FLAG)

WRITE (6,2040) HEAD2,X0UT{1),FLAG(1),LHMN2,X0UT(2),FLAGI2),LHMX2

IF (NCR2 .GT. 0) WRITE (6,2045) HCR2,
Z (ORD(I},XOUT(I+2),FLAG(I+42},LCR2(I),X=1,NCR2)
CALL SCALE (N,XBASE,Z,A,B)

MINIMUM, MAXIMUM, AND CRITICAL POINTS.

noOMO0

IF (LCHEK .EQ. 0) GO TO 90
CALL INPUT(3)
CALL SCALE (N,XCHEK,1,A.B)

CALL LOCATE (N,XCHEK,YCHEK,YCR3,IGRAD,LHN3,LMX3,NCR3,LCR3,XLOC3)

CALL UPLOW {A,B,XLOC3,6,NCR3+2,X0UT,FLAG)

WRITE (6,2040) HEAD3,XOUT(1),FLAG(1),LMN3,X0UT(2),FLAG(2),LHX3

IF (NCR3 .GT. 0) HRITE (6,2045) HCR3,
Z (ORD(I),XOUT{I+2),FLAG(I+2),LCR3(I},I=1,NCR3)
CALL INTERP (N,XPERT,YPERT,XCHEK,YPRTI)

CALL SCALE (N,XPERT,2,A,B)

CALL SCALE (M,XCHEK,2,A,B)

WRITE (6,2135) NAME,NAME,NAME,NAME ,NAME

WRITE (6,2140) (I,XBASE(I),YBASE(I),XCALB(I),YCALB(I],

14 XPERT(1),YPERT(I),XCHEK(I),YCHEK(I),YPRTI(1},
4

4 I=1,N)
60 TG 100
90 CONTINUE

CALL SCALE (N,XPERT,2,A,8)

WRITE (6,2145) NAME,HAME,NAME

WRITE (4,2150) (I,XBASE(I),YBASE(I),XCALB(I),YCALB(I),

Z XPERT(I),YPERT(I),I=1,N)
100 CONTINUE
c
c...
c

IF (LCHEK .EQ. 1) CALL PLOT (N,LPERT)
CALL SCALE (N,XBASE,1,A,B)

200 CONTIHUE
60 TO 999

.ABNORMAL TERMINATION OF COMPUTATION.

o0

900 WRITE (6,9000)
GO TQ $79

905 WRITE (46,9050}
G0 TO 99

910 WRITE 16,9100}

999 WRITE (6,9500)
STOP

«vse.IF LCHEK .NE. 0 READ IN DATA FOR COMPARISON SOLUTION AND LOCATE

.IF LCHEK .NE. 0 PLOT PERTURBATION AND COMPARISON SOLUTIONS.

IMAIN3O®
IMAIN302
|MAIN303
| MATH304
{HMAIN305
| MAIN306
IMAIN3O7
IMAIN308
IMAIN309
IHAIN310
|MAIH31Y
IMAIN312
|MAIN313
|MAIN314
|MAIN3IS
[HAIN316
|MAIN317
[MAIN318
IMAIN319
|HATH320
JHAIN321
|MAIN322
{HMAIN3Z3
IMAIN324
{HAIN32S
[HAIN326
|HAIN327
IMAIN328
|MATH329
|HATH330
{MAIN33t
IMAIN332
{HATIN333
|MAIN3 34
|MAIN33S
IHAIN336
|MAIN337
|HAIN338
|MAIN339
| MAIN340
|HATH3GY
|HAIN342
|MATH343
| MAIN3GG
|MAIN3GS
IMATH3G6
|HAIN3G?
{MATH348
IMATH349
| MAIN350
|MATH3SY
JHAIN3S2
|MAIN3S3
|MATH354
|HAIN35E
|MATN356
IHATH3S?
[MAIN3SE
|HAIN359
| MAIN360
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c

C.....1/0 FORHAT STATEMENTS FOLLOW.
c

!000 FORMAT

NN

2010 FORMAT

NMNNN

2020 FORMAT

N

2030 FORMAT

2045 FORMAT

v
2046 FORMAT

2047 FORMAT
2050 FORMAT

NNXNNXN

2060 FORHAT
2070 FORMAT
2080 FORMAT
2090 FORMAT
£210C FORMAT

N

HW FORMAT

NNNNN

2120 FWHAT
2130 FORHAT

Z
Z
Z
Z

Z
2135 FORMAT

2140 FORHAT
2145 FORMAT
Z
Z
2150 FORMAT
9000 FORMAT
%

(1H1, 1320 1H*)/
1X5 1H%, 25X, 2044 25X, 1H%/
1X213201H%)/7/)

(tH ,1001H<),1X,24HLIST OF INPUT PARAMETERS,1X,1001H>)//

6X,3HN =,1X,13//

6X ) 3HA =,1X,F4.1,4%,3HB =,1X,F4. .87/

6X)5Ah%, 1X,4HH0 =,1X,F6.4,4X,4HG0 =,1X,Fé.4/7
6X,5A4,1X,4HM1 =, 1X,F6.4,4X,4HQ1 =,1X,F6.4///)

(1H ,1001H<), 1X, 18HCRITICAL VALUES OF,1X,A2,1X,10(1H>)//

206X, 5A%, 1X,A2,6HCRIT =,1X,F7.4//)/)

{tH ,5(1H< ), 1X, 37HLOCATIONS OF MIN., MAX., AND CRITICAL,

1X;4HPTS. , 1X,5(1H>))

{1H ,2X,34H{* DENOTES POINT ON LOWER SLRF
(76X,5h4//
11X, 1GHMINIMUM AT X =,1X,F6.4,A1,3X,8H{ POINT
11X, 14HMAXIMUM AT X =,1X,F6.4,A1,3X,8H(POINT
(1H ,10X,I1,1X,18HCRITICAL POINT{S)1/
(15X, A4,6HAT X =,1X,F6.4,A1,3X,

1GHCAFTER POINT &,13:1HIN)
(1H ,10X,2(5A4)/)
C1H 5 14X, 2HX(, I3, tH), 15X, 2HX(,13,1H))
(2271%, 10U 1H<), 1X, 25HSTRAINING POINTS SELECTED, X,

1901H>), /7
6X, 24HNUMBER OF FIXED POINTS :,1X,I1//

6X,51HFIXED POINTS SELECTED (IN ADDITION TO END POINTS) @

/)
(14 , 10X, 16HPOINT OF HINIMUM,1X,A2}
C1H 510X, 16HPOINT OF HAXINUM,1X,A2}
(1H ,10X,A2,6HCRIT (,A%4,3HOF ,It,1H))

(/771X 100 1H<), 1X,24HLOCATION OF FIXED POINTS,1X,10(1H>))

(/6X,5K4//
CIH 10X, SRXFIX(,I1,3H) =, 1X,F6.6,A1))
(tH1,27(1H*) 7
1X, 1H#, 1X, 20HUNIT PERTURBATION OF , 1X,A2,1X, H®/
X5 1H%, 12X, tHE, 12X, 1HW/
1X5 1H¥*, 31X, 23HUNIT STRAINING OF XBASE,1X,1H%/
1X,27¢1HR)/ /7
1X, SHPOINT,4X, SHXBASE , 4X , BHXSTRUNIT) 3X, A2 , 4HUNIT/)
(1H ,1%,13,1X,3F10.4)
(1H1, 270 HR )/
1X, 19H® OUTPUT FOR CASE #,I1,4H OF ,I1,2H #/
1X22701HR) 2/
6X,4HH2 =,1%X,F6.64//
6X,4HQ2 =,1X,F6.4//
6X,A2)6HCRIT =,1X,F7.4//7)
/771X, 5HPOINT, 4X, SHXBASE , 5X, A2, 4HBASE ,
4X ) 5HXCALB,5X,A2,4HCALB,
4X,5HXPERT, 5%, A2,GHPERT,
4X, 5HXCHEK , 5X, A2 4HCHEK
2X,A2»FHPERT(INT)/)
CIH ,1X,13,1X,9F10.4)
(//771X,5HPOINT, 4X, 5HXBASE, 5X, A2, 4HBASE,
4X>5HXCALB,5X1A2,4HCALS,
4%, 5HXPERT,5%,A2,4HPERT/)
(1H 3 1%,13,1X,6F10.4)
(7/71%,28HNUMBER OF CRITICAL POINTS IN/
1X,30HBASE AND CALIBRATION SOLUTIONS/

»I3,1HY/
13,1H))

{MAIN361
[MAIN362
IMAIN363
IHATIN364
|MAIN36S
|MAIN366
IMAIN367
|MAIN368
IMAIN36S
|HAIN37O
[HAIN37Y
|HAIN372
|HATIN3?3
|MAIN374
IMAIN37S

IMATMTT?L
THAINZTS

|MAIN377
IMAIN378
|MAIN3?79
|HAIN3S0
IMAIN3SY
IMAINIS2
|MAIN3S3
|MAIN3SG
IMAIN3SS
|MAIN3SS
|MAIN3S?
|MAIN3SS
|HAIN3B9
{MAINI9O
{MAIN391
IMAIN392
|HAIN393
IMAIN39%
|MAIN39S
|MAIN396
|MAIN39?
|MAIN39S
|HAIN399
IMAING0O
IHAINGO1
|MAINGO2
IMAINGO3
|MAINGOG
IMAINGOS
| MAINGO6
[MAINGO7
| MAING 08
|HAINGOS
|MAING 1O
|MAING Y
|HAING12
|MAING13
IMAING 14
|HAING15
IMAING 16
IHAING17
IMAING 18
{MAING19
IMAING20

OOO0OO00OO0000O0N00O0OO0ONOD0DO00N0NO00ON0O0O000D0OO00O00

b3 1X; 3THARE UNEQUAL - CALCULATION ENDED) |HAING2Y
9050 FORMAT (///1X,25HNUMBER OF CRITICAL POINTS/ |MAING22
4 1X,23HSELECTED EXCEEDS NUMBER/ |MAING23
% 1X,30HACTUALLY LOCATED ~ CALCULATION/ IHAING24
4 1%, 5HENDED) [MAING2S
9|oo FORMAT {(///1X,28HORDER OF SPECIFIED POINTS IN/ |HAING26
1X;30HBASE AND CALIBRATION SOLUTIONS/ |HAING27

4 1X»39HDOES NOT CORRESPOND - CALCULATION ENDED) |HAING28
9500 FORMAT (1H1) |HAING29
END {1iAIHi430
SUBROUTINE INPUT (ICALL) 1INPUOCY
{ INPUDO2

ALL INFUT FOR PROGRAM PERTURB IS READ BY THIS SUBROUTINE, AND IS |INPU0O3
REQUIRED IN THE FOLLOWING ORDER (FOR DETAILS, REFER TO | IHPUCQ4
ACCOMPANYING MANUAL). | INPUOOS
1 INPUGCS

¥uN# CARD #1 (16I5) LI 1 INPUQG?
1 INPUDOS

N NUMBER OF DATA POINTS IN BASE AND CALIBRATION { INPUDO9
SOLUTIONS. 1 INPUO10

| INPUO11

NCASE NUMBER QF CASES FOR WMICH PERTURBATION SOLUTIONS ARE[INPLOY2

TO BE COMPUTED. | INPUCYS

| INPUO14

LSPEC CONTROLS HOW INVARIANT POINTS IN STRAINING ARE 1INPUOIS
SPECIFIED (SEE CARD #2). | INPUOD16

| THPUD17

LSPEC = 0 ... INVARIANT POINTS SELECTED FROM AMONG |INPUO1S

THOSE LOCATED BY THE PROGRAH 1 IHPUD19

LSPEC = 1 ... INVARIANT POINTS PRESELECTED BY USER |INPUO20

1 INPUO21

LECHO CONTROLS WHETHER OR NOT INPUT DECK IS PRINTED. | INPUD22

1 INPUO23

LECHO = 0 ... NO OUTPUT 1 1MPUD24

LECHO = t ... QUTPUT | INPUO25

| INPUO26

LUNIT CONTROLS WHETHER OR NOT UNIT COORDINATE STRAINING | INPUO27

AND UNIT PERTURBATION ARE PRINTED. | INPUO2S

[ IHPUO29

LUNIT = 0 ... NO OUTPUT | INPUO30

LUNIT = 1 ..., OUTPUT ] INPUO 31

| INPUD32

LCHEK SPECIFIES WHETHER OR NOT PERTURBATION SOLUTION IS TO!INPUO33

BE CHECKED WITH AND PLOTTED AGAINST AN EXACT 1 INPUO34

COMPARISON SOLUTION. | INPUO35

| INPUO36

LCHEK = 0 ... NO COMPARISON, NO PLOT 1 INPUO37

LCHEK = 1 ... COMPARISON, PLOT | INPUO3S

| INPUR39

LPERT SPECIFIES TYPE OF PERTURBATION. OPERATIOMAL ONLY | INPUO4O
WHEN LCHEK = 1 AND AFFECTS ONLY OUTPUT FROM PLOT 1 INPUGGY

SUBROUTINE, | INPUO42

1 IMPUO43

LPERT = 1 ... THICKNESS-RATIO PERTURBATION 1 INPUDGG

LPERT = 2 ... ANGLE-OF~ATTACK PERTURBATION 1 INPU04S

LPERT = 3 ... MACH-NUMBER PERTURBATION 1 INPUO46

] INPUO47

wuss CARD %2 (1615) ¥* 03¢ | INPUOGS
| INPUO49

REQUIRED INPUT DEPENDS ON VALUE OF LSPEC: | INPUOSO
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OO0 OOO00ODO0N0000a0A000000000000NO0D00N0O0O0O0OONOONOOOaO0O0 om0

:
E

Ll L2

| IHPUOSY

LLLLALLLLLLLLLLLLLLLL7. INPUT FOR LSPEC = 0 A4 | INPUO52
Z 1 INPUO53
%  NSELCT NUMBER OF POINTS (IN ADDITION TO END POINTS} TO BE | INPUO5G
% HELD INVARIANT IN STRAINING. NOTE: 1 <= NSELCT <= 6.|INPUOSS
% ] INPUOS6
74 LSELCT(I) ... | INPUOS?
% ARRAY OF LENGTH 6 OF WHICH NSELCT ELEMENTS ARE READ |INPUO58
Z IN. SPECIFIES NATURE OF POINTS TO BE HELD INVARIANT |INPU0O59
4 ACCORDING TO THE CODE: | INPUD6O
% | INPURG Y
% 1 ... MINIMUM PT. HELD INVARIANT | INPUOS 2
% 2 ... MAXIMUM PT. HELD INVARIANT | INPUOS 3
Z 3 ... 1ST CRITICAL PY. HELD INVARIANT | INPUOGG
3 4 ... 2ND CRITICAL PT. HELD INVARIANT | INPUDGS
% 5 ... 3RD CRITICAL PT. HELD INVARIANT | INPU066
3 6 ... 4TH CRITICAL PT. HELD INVARIANT | INPUOG7
4 | INPUOGS
2 NOTE THAT THE CODE NUMBERS CAN BE ASSIGNED IN ANY | INPUO69
b3 ORDER, E.G. | INPUO70
% 1 INPUO 71
F LSELCT(1) = 1 | INPUO72
% LSELET(2) = 3 | INPUOT3
4 LSELCT(3) = 6 | INPUO74
4 | INPUO 75
F IS EQUIVALENT TO | INPUO76
3 | INPUO77
% LSELCT(1) = 4 | INPUO78
% LSELCT(2) = 1 1 INPUOT9
% LSELCT(3) = 3 ] INPUOBO
4 | INPUOBY
% BOTH CORRESPONDING TO NSELCT = 3 WITH THE MINIMUM, |INPUOB2
3 AND FIRST AND SECOND CRITICAL POINTS HELD INVARIANT.|INPUOS3
3 | INPUOB4
ALL YA YA 27 7 VAN YA A 7 YA YA 7 7 7 IINPans

| INPU0BS

ALLLLLLL Y, #72%2% INPUT FOR LSPEC = 1 %27%%| INPUOBT

% | INPUCBS
Z  NSELCT NUMBER OF POINTS (IN ADDITION TO END POINTS) TO BE |INPU089
% HELD INVARIANT IN STRAINING. NOTE: 1 <= NSELCT <= 6.|INPU090
% 1 INPUOSY
Z LOCO(I) ARRAY OF LENGTH 6 OF WHICH NSELCT ELEMENTS ARE READ |INPU092
% IN. SPECIFIES SUBSRIPTS OF THOSE BASE FLOW POINTS | INFUOS3
F3 WHICH ARE TO BE HELD INVARIANT. | INPUO94
F3 | INPUO9S
% LOCI1(I) ARRAY OF LENGTH 6 OF WHICH NSELCT ELEMENTS ARE READ |INPU096
% IN. SPECIFIES SUBSCRIPTS OF THOSE CALIBRATION FLOW |INPU097
4 POINTS WHICH ARE TO BE HELD INVARIANT. 1 INPUO9S
% | INPUO99
LALLLALLLLLALL, VA YA LLLLLLL, YA A LA 2227 INPUL OO
| INPU1O1

CARD 83 (20A4) # wxux] INPU1 02
| INPU103

TITLE IDENTIFIES JOB - PRINTED AS HEADLINE ON FIRST PAGE |INPU104

OF QUTPUT. | INPU105

| INPU1 06

CARD #¢ (A2) " LIl | INPU1O?
[ INPU10B

NAME CHARACTER STRING OF LENGTH 2 WHICH SYMBOLIZES 1 INPU109
DEPENDENT VARIABLE, E.G. 'CP' FOR PRESSURE | INPUT10O

on0on

o000 0

OOONOOONGO00D0NOO000N0O0O0O0000

OO0 N00000000

111

63 3¢

£ 23 ]

{114

34656 30

a0t

3496 94 3¢

96 3

COEFFICIENT. JINPUI 1Y
1INPUS12

CARD #5 (8F10.6) waun | INPU113
| INPU1 14

A SCALING PARAMETER (A = -X(1), WHERE X{1) IS FIRST |INPU115
DATA POINT ON LOWER SURFACE ... SEE MANUAL). 1INPUL16

| INPUYL?

B SCALING PARAMETER (B = X(N), WHERE X(N} IS LAST DATA|INPU118
POINT ON UPPER SURFACE ... SEE MANUAL). JINPUI19

| INPUS 20

CARD #6 (8F10.6) * * ¥ wm| INPUL21
| INPUT22

Mo ONCOMING MACH NUMBER IN BASE SOLUTION. L INPU123

| INPUL2G

Q0 VALUE OF PERTURBATION PARAMETER IN BASE SOLUTION. {INPU!ZS
INPU126

ONE SET OF K CARDS (8F10.6), WHERE X = 1 + INT(N/8) ssxtuwmunnunsnnn| INPUI27
| INPU1 28

XBASE(I), I=1,N ... | INPU129

X COORDINATE IN BASE SOLUTION. ] INPUT 30

| INPU1 31

ONE SET OF K CARDS (8F10.6), K AS ABOVE "N wa#| INPUY 32
| INPU133

YBASE(I), I=1,N ... | INPU1 34
DEPENDENT VARIABLE IN BASE SOLUTION. | INPUL 35

| INPU136

NEXT CARD (8F10.6) #x * RN | INPU137
| INPU138

M ONCOMING MACH NUMBER IN CALIBRATION SOLUTION. | INPU139

| INPU140

Q1 VALUE OF PERTURBATION PARAMETER IN CALIBRATION | INPU1 41
SOLUTION. | INPU1G2

| INPU143

ONE SET OF K CARDS (8F10.6), K AS ABOVE x| INPUL GG
| INPU14S

XCALB(I), I= 1,N ... | INPU146

X COORDINATE IN CALIBRATION SOLUTION. | INPUYG?

| INPU148

ONE SET OF K CARDS (B8F10.6), K AS ABOVE HMMMIEMNMMMNIMMNNUNKMMNNINNR | THPU1GI
| INPU150

YCALB(I}, I=1,N ... | INPU151
DEPENDENT VARIABLE IN CALIBRATION SOLUTION.. | INPU152

] INPU153

NCASE SETS OF CARDS, EACH SET COMPRISED AS FOLLOWS: #mwsmuusmwssin] INPUISG
| INPUL5S

*x%% FIRST CARD (8F10.6) #xx sk | INPU156

| INPUIS7

M2 ONCOMING MACH NUMBER IN SOLUTION TO BE | INPUI58

COMPUTED. | INPUE59

| INPUI60

Q2 VALUE OF PERTURBATION PARAMETER IN SOLUTION TOIINPUt61

BE COMPUTED. | INPUt62

| INPU163

uww# ONE SET OF K CARDS (8F10.6), K AS ABOVE wxmmxsumuxns| INPUI6G

| INPUT65

XCHEK(I), I= 1,N ... | INPU166

X COORDINATE IN COMPARISON SOLUTION. 1 INPUL6T

| INPUL 6B

#xus ONE SET OF K CARDS (8F10.6), K AS ABOVE wiwssmmaxsuns] INPU169
| INPUt 70



YCHEK(I}, I=1,N ...
DEPENDENT VARIABLE IN COMPARISON SOLUTION.

LR T THE LATTER THO SETS OF K CARDS ARE
* NOTE = OMITTED WHEN LCHEK = 0 (NO COMPARISOMN
NN NN SOLUTION AVAILABLE).

o000 0O000

DIMENSION LOCO(6),LOCI(6),LSELCT(6),TITLE(20)
DIMENSION XBASE(200),XCALB(200),XPERT(2001),XCHEK(2001,
z YBASE(200),YCALB( 200), YPERT(200), YCHEK( 200}
REAL MG,M1,M2
INTEGER#2 NAME
COMHON /PARAM/ TITLE,LGCO,LOC1,LSELCT,N;NCASE, LSPEC, LECHO, LUNIT,
Z LCHEK , LPERT,NSELCT, A, B, NANE
COMMON /PERT/ MO,M$,M2,Q0,Q1,Q2,YCRO,YCRT,YCR2
COHMON /XY/ XBASE,XCALB,XPERT,XCHEK, YBASE, YCALB, YPERT, YCHEK
60 TO (100,200,300}, ICALL
100 READ (5,1000) N,NCASE,LSPEC, LECHO, LUNIT,LCHEK, LPERT
IF (LSPEC .EQ. 0) READ (5,1000) NSELCT,(LSELCT(I),I=1,NSELCT)
IF (LS(EC .EQ. 1) READ (5,1000) NSELCT,(LOCO(I),I=1,NSELCTI,
d (LOCH(I1,I=1,NSELCT)
READ (5,1050) TITLE
READ (5,1100) NAHE
READ (5,1200) A,B
READ (5,1200) H0,Q0
READ (5,1200) (XBASE(I),I=1,N)
READ (5,1200) (YBASE{I),I=1,N)
READ (5,1200) M1,Q1
READ (5,1200) (XCALBII),I=1,N)
READ (5,1200) (YCALB(I),I=1,N)
RETURN
200 READ (5,1200) M2,Q2
RETURN
1 300 READ (5,1200) (XCHEK(I),I=1,N)
READ (5,1200) (YCHEK(I)},I=1,N)
i RETURN
| 1000 FORMAT (1615)
1050 FORMAT (20A4)
1100 FORMAT (A2)
1200 FORMAT (8F10.6)
END
SUBROUTINE ECHINP
DIMENSION LOCO(6},LOCI(6),LSELCT(6),TITLE(20)
DIMENSION XBASE(200),XCALB(2001,XPERT(200),XCHEK(200),
Z YBASE(200),YCALB(200),YPERT(200),YCHEK(200)
REAL MO,M1,M2
INTEGER#2 NAME
COMMON /PARAM/ TITLE,LOCO,LOCY,LSELCT,N,NCASE, LSPEC, LECHO, LUNIT,
% LCHEK , LPERT ,NSELCT, A, B, NAME
COMMON /PERT/ M0,M1,M2,Q0,Q1,Q2,YCRO,YCR1,YCR2
COHMON /XY/ XBASE,XCALB,XPERT,XCHEK,YBASE, YCALB, YPERT, YCHEK
WRITE (6,1400)
WRITE (6,1500) N,NCASE,LSPEC,LECHO, LUNIT,LCHEK, LPERT
IF (LSPEC .EQ. 0) WRITE (6,1500) NSELCT,(LSELCT(I},I=1,NSELCT}
IF (LSPEC .EQ. 1) WRITE (6,1500) NSELCT,(LOCO(I),I=1,NSELCT),
Z (LOC1(1),1=1,NSELCT)
WRITE (6,1550) TITLE
[ WRITE (6,1600) NAME
HRITE (€,1700) A,B
HRITE 16,1700) M0,Q0

69

| INPUL 71
| INPU1 72
| INPU1 73
| INPUI 74
{INPU175
| INPU1 76
| INPUY 77
| INPU178
| IHPUL79
| INFPU1 8O
| INPU1 81
| INPUT B2
| INPU1B3
1 INPU184
| INPU185
| INPU186
| INPUTB?
1 INPU188
| INPUIBS
| INPUS 90
| INPU19Y
| INPU192
1 INPU193
| INPU1 94
| INPU1 95
| INPU196
| INPU197
| INPU1 98
| INPUL 99
| INPU20O
| INPU201
| INPU202
| INPU203
| INPU204
| INPU205
| INPU206
} INPU20?
| INPU20S
| INPU209
| INPU210
1 INPU21Y
lECHIOO!
| ECHI002
| ECHI003
|ECHIO00G
|ECHI005
| ECRI006
|ECHIOO07
| ECHIg08
[ECHI009
IECHIO010
|ECHIO1t
|ECHIO12
{€CHIO3
|ECHIONG
[ECHIO015
|ECHIO16
{ECHIO0N?
|ECHIO18
[ECHIOt9

ooo0o0on

WRITE (6,1700) (XBASE(I),I=1,N) |ECHI020
WRITE (6,1700) (YBASE(I),I=1,N) | ECHIO021
HRITE (6,1700) M1,Qt JECHI022
WRITE (6,1700) (XCALB(I),I=1,N) JECHIO23
WRITE (6,1700) (YCALB(I),I=t,N) |ECHIO24
RETURN {ECHIO25
1400 FORMAT (1H1,25(1H®)/ JECHIO026
% 1%, 1H%, X, 21HLISTING OF INPUT DECK,1X,iH®/ {ECHIO27

% 1X,25( tH®1///7) |ECH1I028
1500 FORMAT (1X,16I5) JECHIO029
1550 FORMAT (1X,20A4) | ECHI030
1600 FORMAT (1X,A2) [ECHIO31
1706 FORMAT (1X,8F10.6) |ECRI032
END | ECHIO33
SUBROUTINE BANNER |BANNOOY
WRITE (6,1300) 1BANNOO2
WRITE (6,1310) | BANNOO3

1300 FORMAT (1H1,10(/},49X,55( {H¥}/49X, 1H%,53X, 1HK/ {BANNOOG
% 49X, 1H®, 19X, 15HPROGRAM PERTURB, 19X, 1H*/49X, tH%*,53X, 1H#*/ | BANNDOS

% 49X, 1H#,8X,37HCALCULATES NONLINEAR SINGLE-PARAMETER, |BANNOO6

b3 BX 5 1HR/G9X, 1H*, 53X, 1H#/ {BANNDOT

7 49X, |H#, 13X, 27HCONTINUOUS OR DISCONTINUOUS, |BANNDOS

b3 13X, tH%/G9X, 1H*, 53X, tH*/ |BANNOOS

7 49X, tH#, 15X, 2ZHPERTURBATION SOLUTIONS 16X, 1H*/69X, 1H%,53X, {HX/  [BANNO10

7 69%, 1H*, 9%, 36HWHICH REPRESENT A CHANGE IN EITHER, |BANNDY

4 10X, TH®/G9X, 1H®, 53X, THR/ |BANNO12

4 49X, 1H*, 13X, 27HGEOMETRY OR FLOW CONDITIONS, JBANNO13

b3 13X tH¥/G9X, tH#, 53X, TH*/ IBANND14

7 49X, 1H%,4X,44HBY EMPLOYING A STRAINED-COORDINATE PROCEDURE, | BANNDIS

7 5X, TH#/49X, 1H®, 53X, 1H#/ | BANHO16

7 49X, 1H#,4X,45HUTILIZING A UNIT PERTURBATION DETERHINED FROM, | BANNO17

% 4Xy 1HR/GIX, 1H¥, 53X, 1HR/ |BANNO1S

7 49%, 1H#, 14X, 25HTRO PREVIOUSLY CALCULATED, | BAKNO19

4 16X, 1HR/49X, 1H*, 53X, 1H#) | BANNO20
1310 FORMAT ( 49X, 1H%,9X,34H'BASE' AND °‘CALIBRATION' SOLUTIONS, | BANNO21
4 10X, 1H#/GIX, 1H®, 53X, 1HK/ | BANNO22

7 49%, 1H*,4X,45HDISPLACED FROM ONE ANGTHER BY SOME REASONABLE, |BANND23

7 4Xy TH®/49X, 1H¥, 53X, 1HR/ |BANND24

7 49X, 1H#,8X,36HCHANGE IN GEOMETRY OR FLOW CONDITION, | BANNO25

7 9X» tH*/49%, tH%,53X, 1H*/ |BANNO26

b3 49X, tH*, 53X, 1H*/ | BANND27

7 49X, 1H#, 21X, 1OHWRITTEN BY, 22X, IH#/49X s 1H#,53X, tH*/ | BANNO28

7 49X, 1H#,7X, 39HJAMES P. ELLIOTT AND STEPHEN S. STAHARA, |BANNO29

b4 7X» TH#Z49X, 1H®, 53X, 1H#/ | BANNO30

4 49X, 1H*, 53X, 1H*/ | BANNO3Y

% 49X>1H¥,7X, 3BHNIELSEN ENGINEERING AND RESEARCH, INC., | BANNO32

4 8X, 1HR/49X, 1H#*, 53X, 1H#/ |BANNO33

7 49X, 1H¥*, 14X, 25HHOUNTAIN VIEN, CALIFORNIA, 14X, H*/69X, 1H*,53X, 1Hx/|BANNO3G

3 49X, 55( tH*)) | BANNO 35
RETURN | BANNO36

END | BANNO37
SUBROUTINE SCALE (N,X,H,A,B) | SCALOOY

| SCALDO2

.«...ENTRY HITH M = { CONVERTS FROM PHYSICAL X (0 TO -A ON LOKER |SCALOO3
SURFACE, 0 TO B ON UPPER SURFACE) TO NORMALIZED X (0 < X < 1), | SCALOOG
ENTRY WITH M=2 REVERSES THE PROCESS. NZ (DETERMINED WHEN H=1) | SCALOOS
CORRESPONDS TO POINT AT NOSE OF BLADE OR AIRFOIL. | SCALO06

| SCALOO?

COMMON /FLOREV/ NZ | scALOOS
DIMENSION X(200) | SCALOO®



0L

o000 O0O00DO000

GO TO (1,6),M IscaLo10

1 CONTINUE |SCALOY
NZ=0 |scALOt2
00 2 I=2,N |SCALOL3
IF (X(I) .LT. X(I-1)) NZ=I |SCALO1G

2 CONTINJE |scaLo1s
D0 5 I=1,N | scALo16
IF (I .LE. NZ) T=-X(I) |scaLo1?
IF (I .6T. NZ) T=X(I}) |scaLO18
X(I)=(T-A)/(B-A) |SCALO19
5 CONTINUE 1SCALO20
RETURN {scaL021

6 DO 7 I=1,N ) scAL022
X(I)=ABS{ (B-A)WX(I)+A) |scALO23

7 CONTINUE |SCALO24
RETURN |SCALO25
END |SCALO26
SUBROUTINE LOCATE (N,X,Y,YCRIT,IGRAD,LMIN,LMAX,NCRIT,LCRIT,XLOC) |LOCAOO!

| LOCAOO2

...DPERATES ON THE INPUT ARRAY Y, LOCATING MINIMUM AND MAXIMUM | LOCA0O3
VALUES, AND ALL CRITICAL POINTS (Y=YCRIT) FOR WHICH DY/DX (IN | LocA004
PHYSICAL COORDINATES) HAS ALGEBRAIC SIGN GIVEN BY IGRAD. NCRIT 1 LOCA00S
IS NUMBER OF CRITICAL POINTS. POINTS FOUND ARE STORED IN THE ARRAY|LOCAG06
XLOC AS FOLLOMWS: ILOCA007
|Locao0s

XLOC(1) = MINIMUM PT, | Loca009

XLOC(2) = HAXIMUM PT. 1LOCAD10

XLOC(3) = CRITICAL PT, #1 | LOCADY1

ves = ... JLocaot2

XLOC(6) = CRITICAL PT. %4 |LOCAD13

|LOCAD14

DIMENSION X(200),Y(2001},LCRIT(4),XCRIT(4),XLOC(6) 1LOCAD15
COMMON /FLOREY/ IREV |tacao16
IFLOW=~1 | Locao17
LHIN=1 jLocAO18
LMAX=1 |LoCAO19
ISTART=2 jLoca020
IF (IREV .EQ. 0) GO TO 5 i Locao21
LMIN=2 lLocao22
LHAX=2 |LocAa023
ISTART=3 | LocAs24
5 CONTINUE 1LocA025
NCRIT=0 | LocA026
DO 108 I=ISTART,N lLocao2?
IF (IREV .NE. 0 .AND. I .EQ. N) GO TO 10 jLocA028
IF (Y(I) .6T. Y(LMAX)) LMAX=I I Loca029
IF (Y(I) .LT. Y(LMIN)) LMIN=I | LocAo30
10 CONTINUE lLocA031
IF ({(Y(I) .6T. YCRIT .AND. Y(I-1) .6T. YCRIT) .OR. | LOCAD32
4 (Y{I) .LT. YCRIT .AND. Y(I-1) .LT. YCRIT)) GO TO 100 |LOCAD33
IF (I .6T. IREV) IFLOW=1 | LOCAD34
IF ({Y(I)-Y(I-1)I*FLOAT{IFLOW*IGRAD) .LT. 0.0) GO TO 100 ILocA035
NCRIT=NCRIT+1 1LOCAD36
LCRIT(NCRIT)=I-1 | LOCAD37
SLOPE=(X(T)-X(I-1))/(Y(I)-Y(I-1)) | LOCAO38
XCRIT(NCRIT)=X(I-1)+SLOPEX(YCRIT-Y(I-11}) 1LOCAG39
100 CONTINUE 1 LOCAD40
XLOC( 1)=X( LHIN) | LOCAD4
XLOC(2)5X( LHAX) | LOCA042
IF (MCRIT .EQ. 0) RETURN 1L0CA043

DO 200 I=1,NCRIT
200 XLOC(I+2)=XCRIT(I)
RETURN
END
SUBROUTINE SORT (N»X,ISEQ)
[

C.....ARRANGES THE SET X(1), X{2), ...
c SEQUENCE. ISEQ GIVES ORDER OF SUBSCRIPTS IN REARRANGED SEQUENCE.

c

DIMENSION X(8),ISEQ(8)
NME=R-1
DO 1 I=1,N

1 ISEQ(I)=I

10 ITEST=0
DO 100 I=1,NMt
IF (X(I) .LE. X{I+1)) GO TO 100
XSAVE=X(I)
X(II=X I+1)
X(I+1)=XSAVE
ISAVE=ISEQ(I)
ISEQ(I=ISEQ(I+1)
ISEQ(I+1)=ISAVE
ITEST=1

100 CONTINUE
IF (ITEST .EQ. 1) 60 TO 10
RETURN
END
SUBROUTINE INTERP (N,X,Y,XI,YI)

oo0oao

DIMENS10N X(200),Y(200),XI(200),YI(208)

NM1=N-1
JSTART=}
DO 100 I=1,N
IF (XI(XI) .LE. X(1}) GO TO 10
If (XI(I) .GE. X(N)) GO TO 20
GO TO 30
10 J=1
GO TO 95
20 J=N-1
60 TO 9%
30 CONTINUE
DO 90 J=JSTART,NMI
IF (XI(I) .NE. X(J)) 60 TO 40
YI(I)=Y(J)
GO TO 100

40 IF (XI(I) .6T. X(J) .AND. XI(I) .LT. X(J+1)) GO TO 95

90 CONTINUE

95 SLOPE=(Y(J+1)-Y(J)IZ(X(JI+1)-X(J))

YI(I)=YEJ)+SLOPE#EXI(I)-X(J))
JSTART=J
100 CONTINUE
RETURN
END

SUBROUTINE STRAIN (N,NSEG,XFIX,XIN,PARN,X0UT)

c

» X(N) IN A MONOTONE INCREASING

ves..GIVEN THE SET OF POINTS X(I), Y(I), I=1,N, AND THE SET XI(J},
J=1,N, USES LINEAR INTERPOLATION TO COMPUTE THE SET YI(J), J=1,N.

| LOCAD4YG
1 LOCA04S
1 LOCAO46
|LOCAO47
| SORTOO1
| SORT002
| SORT003
| SORT004
| SORTO0S
| SORT006
1 SORT007
| SORTO08
| SORT009
| SORTO10
{ SORTO11
| SORTO12
| SORTO13
| SORTO14
| SORTOLS
| SORTO16
| SORTO17
1 SO0RTO18
{SORTO19
| SORT020
|SORTO21
| SORT022
| SORTO23
| INTEOOY
| INTE002
| INTE0O3
| INTE0OOG
| INTEOOS
L INTEOO6
| INTEOO7
| INTE0O8
| INTE009
| INTEO10
| INTEOS 1
| INTEO12
| INTE013
| INTEO14
{INTEOLS
| INTEOt6
| INTEO17
| INTEO18
LINTEO19
{ INTEO20
| INTEO21
| INTE022
| INTE023
| INTEO24
| INTE025
| INTEO26
1 INTEO27
| INTE028
| INTE029
|STRAOO1
| STRADO2

C.....COMPUTES STRAINED COORDINATE FROM INPUT ARRAY XIM, USING PIECEWISE|STRA003

c LINEAR STRAINING WITH NSEG LINEAR SEGHMENTS. FOR UNIT STRAINING,

| STRA004



TL

anoo

o000

INPUT VALUE OF PARM IS 1.0; FOR GEHERAL CASE,
PARM = (QZ-Q0)/(Q1-Q0}.

DIMENSION XFIX(81,XIN(200),X0UT(200)

COMHON /COEFF/ Ct71.,D(7)

JSTART=1

00 50 I=1,N

00 40 J=JSTART,NSEG

IF (XIH(I) .GE. XFIX(J) .AND. XIN(I) .LE. XFIX(J+1)) GO TO 45

40 CONTINUE
45 XOUT(TI)=XIN(I}+PARM®(C{J)+(D(J)-1.0)}%*XIR(I)}

s

=3

100

JSTART=Y

CONTINUE

RETURN

END

SUBROUTINE MONO (N,L,X,Y)

CHECKS POINTS IN VICINITY OF A CRITICAL POINT FOR MONOTONE
BEHAVIOR, AND ADJUSTS VALUES TO GIVE A LINEAR PROFILE.

DIMENSION L(4),X(200),Y(200)

DO 100 I=1,N

LS=L(I)

Y1=Y(LS-1)

Y2=Y(LS)

Y3=Y(1S41)

Y4=Y(LS+2)

IF ((Y1 .LT..Y2) .AND. (Y2 .LT. Y3) .AND. (Y3 .LT. Y4)) GO TO 100
IF ((Y1 .GT. Y2) .AMD. (Y2 .GT. Y3) .AND. (Y3 .GT. Y4)) GO TO 100
X1=X(18=1)

X2=X(LS)

X3=X(LS+1 )

X4=X(L5+2)

SLOPE=(Y4-Y1)/(X4-X1)

Y(LS)=Y1+SLOPE#(X2-X1)

Y(LS#+1)=Y14SLOPEX(X3-X1)

CONTINUE

RETURN

END

SUBROUTINE PLOT (N,LPERT)

..CREATES FILE OF COMMANDS FOR PROGRAM ‘'TOPDRAW' AT STANFORD CENTER

FOR INFORMATION PROCESSING (S.C.I.P.). CALLED ONLY ONCE IN MAIN
PROGRAM AND MAY BE DELETED OR REPLACED.

DIMENSION X0(200),X1(200),X2(200),X3(200),
Z . Y0(200),Y1({200),Y2(200),Y3(200)

COMMON ./PERT/ M0,M1,M2,Q0,Q1,Q2,YCRO, YCR1,YCR2
COMMON /XY/ X0,X1,X2,X3,Y0,Y1,Y2,Y3

LOGICAL#1 SYM(3) /1HT,1HA,1HN/, SUB(3) /1HG,1HG,1H /,
% S0 /1HB/, S1 /1HC/

REAL hy,H1,M2

DATA ICALL 70/, XL,XRO.XTO,XR1,XT1,XR2,XT2
% /0.0, 0.12, 0.14, 0.16, 0.18, 0.2, 0.24/
IF (ICALL .EQ. 0) WRITE (4,1000)

ICALL=Y

CALL LIMITS (N,YMIN,YMAX)
. HRITE (4,1050)

HRITE (4,1100) YHIN,YMAX

HRITE [4,1200)

|STRADOS
1S1RAQOG
1S1RADO7
IsTRADOS
| STRAQO9
[STRADIO
ISTRAODTS
|sTRAOI2
ISTRA013
ISTRAO14
|STRAO15
ISTRAO1E
|STRAO17
|STRAD1B
ISTRAO19
{MOHD00
| MoHooo2
1MoHo003
| MOMO004
| MOH0005
11010006
| HOHOOO7
| MONO008
| MOHO009
IMotio01 0
IrMoto0 11
IMONOO12
|HONOO 3
|HoHOO1 4
11OHOO015
1100016
| 10H001 7
IMonoo 18
1110H0019
| MOND020
iMonoo21
IHOHo022
fMoNO023
| Moto024
1PLOTOOY
1PLOTO02
1PLOT003
|PLOTOO0G
1PLOTO0S
|PLOTOO0G
|PLOTOO7
1PLOTO08
|PLOTO09
|PLOTOS0
|pPLOTOY
|PLovO12
IPLOTO13
|PLOTO14
|PLOTO1S
IPLOTO16
IpPLOTO17
|PLOTO18
|PLOTO19
|PLOTO20
|PLOTO2}

HRITE (4,1300)
WR1TE (4,1350) SYHM(LPERT},SYM(LPERT),Q0,SYM(LPERT),Q1
WRITE (4,1360)
HRITE (4,1370) SUB(LPERT),SUB(LPERT},SUB(LPERT)
HRITE (4,1400)
IF (LPERT .NE. 3) WRITE (4,1500) MO,SYM(LPERT),Q2
IF (LPERT .EQ. 3) WRITE (4,1505) Q2
IF (LPERT .HE. 3) GO TO 10
WRITE (4,5000) XL,YCRO,XR0,YCRO
WRITE (4,1700}
WRITE (4,1530) XTO,YCRO,SC
HRITE (%,5000}) XL,YCR1,XR1,YCR1
WRITE (4,1800)
WRITE (4,1530) XT1,YCR$,S1
t0 CONTINUE

WRITE (4,5000) XL,YCR2,XR2,YCR2
WRITE (4,1510)
HRITE (4,1550) XT2,YCR2
HWRITE (4,5000) (X0{I),Y0(I),I=1,N)
HWRITE (4,1700)
WRITE (4,5000) (X1{1),¥Y1{I},I=1,N)
WRITE (4,1800)
WRITE (4,5000) (X2(I),Y2(I},I=1,N)
WRITE (4,1900)
WRITE (4,5000) (X3(I),Y3(X),I=1,N}
WRITE (4,1510)
RETURN

1000 FORMAT (45H//PERTPLOT JOB ' JIH ELLIOTT',REGION=512K/

NNNN

1050 FORHAT
Z
4
4
1100 FORMAT
1200 FORMAT
Z
1300 FORMAT
7
1350 FORMAT
Z
1360 FORMAT
1370 FORMAT
1400 FORMAT
Z
Z
1500 FORMAT
Z
/4
1505 FORMAT
1510 FORMAT
1530 FORMAT
%
Z
1550 FORMAT
4

1700 FORMAT
“

19H//DRAW EXEC TOPDRAW/

GOHSET DEVICE VERSATEC CONTINUOUS INTENSITY/

t18HSET CARD LENGTH 80/
1SHSET FONT OUPLEX)
{ SHNEW FRAMNE/
27HSET TICKS TOP OFF RIGHT OFF/
CHSET WIHDOW X 2 7 Y 2 8/
20HSET SYMBOL 8P SIZE 1)
(18HSET LIMITS X 0 1 Y,2F5.1)
(S1HTITLE 4.5 9.5 CENTER SIZE 3 SPACES 7
19HCASE * LLL LL CLC*)
(39HTITLE 4.5 8.7 CENTER SIZE 1.5 SPACES
24H'FULL FZHOLST3  HONL. ')
(GHMORE . 1X, 1H* A1, 1X,5HPERT ., 3X,A1,5H28B3
5H2C3 =,F6.3,1H")
(4HCASE,1X,24H" LLL GC LLLLC L "

'PLOT OF C2P3'/
38,1X,

=,F6.3,3X,A1,

[PLOTO22
|PLOTD23
[ PLOTO24
|PLOTO2S
| PLOTO26
| PLOTO27
|pLOTO28
|PLOTO29
| PLOTO30
{PLOTO3Y
| PLoT032
| PLOTO33
| PLOTO34
| PLOTO3S
|PLOTO36
|PLOTO37
|PLOTO38
|PLOTO39
| PLOT040
| PLOT D41
| PLOTO42
| PLOTO43
| PLOTO044
| PLOTO45
| PLOTO46
|PLOTO4?
| PLOT048
| PLOT 049
| PLOTO50
| PLOTO51
| PLOTO52
| PLOTO53
| PLOTOS4
| PLOT055
| PLOT056
|PLOTO57
{PLOTO58
|PLOTO59
|PLOTO60
| PLOTO61
| PLOTO62
| PLOTQ63
| PLOT064
| PLOT06S

(4HCASE, 1X, TH' 4 A1, 2X, 3HLLL,4X, A1, 3HCLC, 11X, A1, 3HCLC,8X, tH' )| PLOT066

{25HTITLE 0.8 5 SIZE 2 ‘'C2P3'/
GHCASE,1X,6H' CLC'/

23HTITLE BOTTOH SIZE 2 *'X')
(47HTEITLE 4.5 0.5 CENTER SIZE 1.5 SPACES
F6.3,3X,A1,2R =,F6.3,1H"'/

10HCASE ' CSC,11X,1HG,8X,1H")

17 'H203 =,

(3GHTITLE 4.5 0.5 CENTER SIZE 1.5 ‘H =,F6.3,1H')

{6HJOIN 1)
(SHTITLE,1X,2(F6.3,1X),

27HDATA SIZE 1.0 '(C42P350%1)2,A1,2H3'/
4HCASE,1X,16H' CCLCCC € CLC')
(SHTITLE,1X,2¢F6.3,1X),25HDATA SIZE 1.5
16HCASE ' cCLCCC C*)
(15HSET INTENSITY 3/

11HJOIN 1 DOTS/

'C42P350%1 '/

|PLOTO67
| PLOT068
| PLOT069
[PLOTO70
IPLOTO71
{pLOTO72
|PLOTO73
|PLOTO74
|PLOTO75
|PLOTO76
|PLOTO77
|PLOTO78
|PLOTO79
| PLOTD80
1pLOTOBY



cL

o000

[z NaNaNgl

Z 1SHSET INTENSITY 2)

1800
1900
5000

FORMAT (13HJOIN 1 DASHES)
FORMAT (4HPLOT)

FORMAT (5(2(F6.3,1X),1H;})

END

SUBROUTINE LIMITS (N,YMIN,YMAX)

SEARCHES FOUR DATA ARRAYS Y0,Y1,Y2,Y3 FOR MINIMUM AND MAXIHMUM.
CALLED ONLY BY PLOT SUBROUTINE.

DIMENSION X0(2001),X1(200),X2(200),%X3(200),

7 Y0(200),Y1(200),Y2(200),Y31200)

DIMEHNSION Z(800)

COMMON /XY/ X0,X1,X2,X3,Y0,Y1,Y2,Y3
EQUIVALENCE (YO0(1),2(1))
YMIN=Z/ 1)

YMAX=Z 1)

DO 10 i=1,4
JSTART=200%(I-1)+1
JSTOP=JSTART+N-1

DO 10 J=JSTART,JSTOP

IF (Z(J).GT.YMAX} YMAX=Z(J)
IF (Z(J).LT.YHIN) YHIN=Z(J)
CONTINUE

YSAVE=YMAX

YMAX=YMIN

YHIN=YSAVE

CALL ROUND (YMIN)

CALL ROUND (YMAX)

RETURN

END

SUBROUTINE ROUND (Y)

.ROUNDS Y LIMITS FOR OUTPUT IN F5.1 FORMAT. CALLED ONLY BY

SUBROUTINE LIMITS.

Z=ABS(Y)

IF (10.#Z-INT(10.%Z).LT,.5) Z=Z+.05

IF (Y.6GT.0.) GO TO 1

Y=-Z

RETURN

Y=2

RETURN

EHD

SUBROUTINE UPLOW (A,B,XIN,K,N,XOUT,FLAG)

CONVERTS NORMALIZED ARRAY XIN TO PHYSICAL ARRAY XOUT AND FLAGS
POINTS ON LOWER SURFACE WITH A ‘'»',

DIMENSTON XIN(K),X0UT(8)

LOGICAL*1 FLAG(8), BLANK/1H /), STAR/1H*/
XNOSE=-~A/(B-A}

DO t I=1,N

FLAG(T)=BLANK

IF €XIN(I) .LT. XNOSE) FLAG(I)=STAR
XOUT(I)=ABS((B-A)*XIN(I)+A)

CONTINUE

RETURN

END

|PLOTOB2
|pLOTO83
|PLOTO84
| PLOTO8S
|PLOTO086
jLIMI0O0Y
[LIMIO02
|LIMICO3
| LIMIOO04
| LIMI00S
| LIMIOOG
|LIMI007
| LIMI008
|LIMI0O0®
jLIMIO10
JLIMION
|LIMION2
|LIM1013
[LIMIO14
|LIMIO1S
|LIMIOGE
ILIMION 7
|LIMIO18
|LIMIO1®
| LIM1020
{LIMI021
fLIMI022
|LINIO23
|LIMIO24
JLINI025
[LIttz026
|ROUNGO 1
IROUNOO2
| ROUNOO3
| ROUNOOG
| ROUHOOS
|ROUNO0E
[ROUNOO?7
| ROUNOO8
|ROUNO09
|ROUNO1 0
IROUNO11
[ROUNO12
|POUNO13
{uPLO00Y
luPLO0O2
|uPLO0O3
|UPLODO4
{uPLO0OS
|uPLO006
luPLO007
luPLO008
|UPLO009
|UPLDO10
JUPLOO1 §
luPLOO12
fuPLOO13
{uPLOOD14
|UPLOOIS



APPENDIX C

LIST OF SYMBOLS

C blade chord, m
H blade spacing for nonstaggered cascades, m
i invariant point index; egq. (6); also, index for

Lagrangian coefficients; eq. (22)

k dummy index; eg. (20)

L two~dimensional full potential operator; eq. (2)

Ll linear operator representing first-order perturbation
of two-dimensional full potential eqguation; eq. (4)

L2 linear operator representing first-order perturbation
terms arising from coordinate straining; eqg. (9)

Li Lagrangian coefficients; eqg. (22)

n total number of shock points and high-gradient
maxima points; eqg. (24)

N total number of invariant points, equal to n + 2;
eq. (24)

q arbitrary geometric or flow parameter to be perturbed;
eqg. (13)

9. calibration flow value of g; eq. (9)

9, base flow value of q; eg. (3)

Q approximate flow solution for arbitrary flow quantity;
eq. (1)

QC calibration flow solution for value q. of arbitrary
parameter; eq. (8)

QO base flow solution for value q, of arbitrary parameter;
eq. (1)

Q linearized perturbation solution per unit change of

P perturbed parameter; eg. (1)

(s,t) strained (x,y) coordinates; eq. (5)
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(x,y) nondimensional bladeefiXed-orthogonal coordinates;
eq. (5), normalized’by C

(X,v) nondimensional blade-fixed orthogonal coordinates
related to calibration solution; eq. (9)

(Xl’yl) straining functions associated with (x,y) coordinates;
eqg. (6)

(xl 'Yq ) sﬁraining functions associated with ith invariant

i i point; eq. (6)
(6xi,6y.) unit displacements in (x,y) directions associated with
1 ith invariant point; eq. (6)

Gxi unit displacement in x direction between base and
calibration flows of the ith invariant point; eq. (18)

€ perturbation change of geometric or flow parameter;
eq. (17)

€ perturbation of geometric or flow parameter between
base and calibration flows; eqg. (18)

® nondimensional total velocity potential; eq. (2),
normalized by CV_

¢O nondimensional base flow velocity ptential; eqg. (3),
normalized by CV_

@l nondimensional perturbation velocity potential; eq. (3),
normalized by CV_

Subscripts

o denotes base flow quantities

1 denotes perturbation guantities

o denotes quantities associated with calibration

flow
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Perturbation for Perturbation for

;alibration solution calibration solution
in physical coordinates in strained coordinates
Cp Cp
X X, X'
+ +
(a) Single srock.

Cp
0 =N
X, X'
+
(b) Multiple shock and high-gradient locations.

Figure 1l.- Illustration of perturbation solution
for calibration solution in physical and
strained coordinates
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LL

FLOW TYPE: SUPERCRITICAL SUBCRITICAL SUPERCRITICAL

(SYMMETRIC)
© ® © A Q @
@ Q@ @ ..
® ®
STRAINING PARABOLIC, PARABOLIC, CUBIC, PIECEWISE
FUNCTION: PIECEWISE CONTINUOUS PIECEWISE CONTINUOUS CONTINUOUS
POINTS HELD
. L.E., SHOCK, T.E. T.E., STAG. PT,, T.E. T.E., STAG. PT.,
INVARIANT : SHOCK PT., T.E.
FLOW TYPE: SUBCRITICAL SUPERCRITICAL
®
f 9@ ® 5
@ o. @ @ *
[ ]
@ O]
STRAINING cuBlC, QUARTIC,
FUNCTION: PIECEWISE CONTINUOUS PIECEWISE CONTINUOUS
POINTS HELD T.E., STAG. PT., T.E., SHOCK PT., STAG. PT.,
INVARIANT: MAX SUC. PRES. PT., T.E. SHOCK PT.,TE.
Figure 2.- Summary of various flows and straining

functions considered
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. BICONVEX PROFILES
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Figure 3.- Comparison of perturbation (0) and non-
linear (—) surface pressures for a thickness-
ratio perturbation of a nonlifting cascade
of biconvex profiles with H/C = 1.0
at M, = 0.80
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Figure 4.- Comparison of perturbation (0) and non-
linear (—) surface pressures for a thickness-
ratio perturbation for an isolated NACA 00XX
airfoil at M_ = 0.820 and a = 0° for
solution interpolation
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Figure 5.- Comparison of perturbation (0) and non-
linear (—) surface pressures for a thickness-
ratio perturbation for an isolated NACA 00XX
airfoil at M_
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Figure 7.- Comparison of perturbation (0) and
nonlinear (—) surface pressures for an
angle-of-attack perturbation of an
isolated NACA 0012 airfoil at
M = 0.70
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Figure 8.~ Comparison of perturbation (0) and
nonlinear (—) surface pressures for
various geometry and flow parameter
perturbations of isolated airfoils
at subcritical speeds
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Figure 10.- Comparison of nonlinear (—) sur-

face pressures with perturbation results
using quadratic (0) and linear piece-
wise-continuous (*) straining functions
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Figure 1ll1l.- Comparison of nonlinear (—) sur-
face pressures with perturbation results
using cubic (0) and linear piecewise-
continuous (*) straining functions for
an angle-of-attack perturbation of an
isolated NACA 0012 airfoil at
M_ = 0.70
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