# A Rapid Perturbation Procedure for Determining Nonlinear Flow Solutions: Application to Transonic Turbomachinery Flows 

Stephen S. Stahara, James P. Elliott, and John R. Spreiter

# A Rapid Perturbation Procedure for Determining Nonlinear Flow Solutions：Application to Transonic Turbomachinery Flows 

Stephen S．Stahara，James P．Elliott， and John R．Spreiter<br>Nielsen Engineering $\mathcal{E}$ Research，Inc．<br>Mountain View，California

Prepared for
Lewis Research Center
under Contract NAS3－20836

## N／SN

National Aeronautics
and Space Administration
Scientific and Technical
Information Branch

## TABLE OF CONTENTS

Page
Section
SUMMARY ..... 1

1. INTRODUCTION ..... 3
2. ANALYSIS ..... 5
2.1 Perturbation Concept and Methods ..... 5
2.2 Previous Applications ..... 7
2.3 Coordinate Straining ..... 8
2.4 Theoretical Formulation for Single Parameter Perturbations ..... 9
2.5 Current Applications: Surface Pressures ..... 12
3. RESULTS ..... 15
3.1 Perturbation Results for Supercritical Single- Shock Flows and Subcritical Flows ..... 15
3.1.1 Supercritical applications ..... 15
3.1.2 Subcritical applications ..... 18
3.2 Comparison of Continuous and Piecewise- Continuous straining Function Perturbation Results ..... 19
3.3 Perturbation Applications to Complex Super- critical Flows ..... 21
3.3.1 Multi-shock supercritical flows ..... 21
3.3.2 Supercritical compressor cascade flows ..... 22
4. CONCLUSIONS AND RECOMMENDATIONS ..... 23
APPENDIXES
A - USER'S MANUAL FOR COMPUTER PROGRAM PERTURB ..... 25
A. 1 INTRODUCTION ..... 25
A. 2 PROGRAM DESCRIPTION ..... 26
A. 3 PROGRAM FLOW CHART ..... 29
A. 4 DICTIONARY OF INPUT VARIABLES ..... 30
A. 5 PREPARATION OF INPUT DATA ..... 33
A.5.1 Description of Input ..... 33
A.5.2 Format of Input Data ..... 34
A. 6 DESCRIPTION OF OUTPUT ..... 37
A. 7 ERROR MESSAGES ..... 37
A. 8 SAMPLE CASE ..... 39
FIGURES A. 1 TO A. 3 ..... 41
B - LISTING OF COMPUTER PROGRAM PERTURB ..... 64
C - LIST OF SYMBOLS ..... 73
REFERENCES ..... 75
FIGURES ..... 76

# A RAPID PERTURBATION PROCEDURE FOR DETERMINING <br> NONLINEAR FLOW SOLUTIONS: APPLICATION TO TRANSONIC TURBOMACHINERY FLOWS 

Stephen S. Stahara, James P. Elliott, and John R. Spreiter*<br>Nielsen Engineering \& Research, Inc. Mountain View, CA

## SUMMARY

An investigation was conducted to develop perturbation procedures and associated computational codes for determining nonlinear flow solutions, with the objective of establishing a method for minimizing computational requirements associated with parametric studies of transonic flows in turbomachines. The theoretical analysis involved the development of a rapid method for calculating first-order changes in nonlinear flow solutions due to variations of an arbitrary geometrical or flow parameter.

The procedure developed and evaluated, referred to as the direct correction method, was found to be capable of determining highly accurate approximations to families of strongly nonlinear solutions which are either continuous or discontinuous, and which represent variations in some arbitrary parameter. The method consists of defining a unit perturbation by employing two nonlinear solutions which differ from one another by a nominal change in some geometric or flow parameter, and then using that unit perturbation to predict a family of related nonlinear solutions over a range of parameter variation. Coordinate straining is used in determining the unit perturbation to account for the movement of discontinuities and maxima of highgradient regions due to the perturbation. While simultaneous multiple-parameter perturbations can be treated by the method, the theoretical development and results presented in this initial study are for the single-parameter perturbation problem.

Although the procedure is generally applicable, the results reported here have been directed toward nonlinear aerodynamic applications. Attention is focused in particular on transonic

[^0]
#### Abstract

flows which are strongly supercritical and exhibit large surface shock movement over the parametric range studied; and on subsonic flows which display large pressure variations in the stagnation and peak suction pressure regions. Flows past both isolated airfoils and compressor cascades involving a wide variety of flow and geometry parameter changes are reported. Comparisons with the corresponding 'exact' nonlinear solutions indicate a remarkable accuracy and range of validity of such a procedure. Computational time of the method, beyond the determination of the base solutions, is trivial.


## 1. INTRODUCTION

Given the remarkable growth in capability of advanced computational methods for the determination of a spectrum of nonlinear phenomena in such diverse disciplines as fluid dynamics, structures, and nuclear physics to name just a few a capability which has already made many difficult calculations routine and which is certain to improve in the future - it is apparent that a need exists for complementary methods capable of alleviating, at least in part, the usage limitations imposed on these methods by their run times. The need becomes particularly compelling when large numbers of related cases are required as in parametric or design studies. Techniques such as direct acceleration procedures provide an important means of reducing computer time by improving computational efficiency of the solution algorithm, but these and similar methods, which enhance the solution algorithm itself, represent only a partial answer. What is most desirable is a means to minimize the actual number of separate calculations required in a particular application by extending, over some parametric range, the usefulness of each individual solution determined by these computationally expensive procedures.

Consequently, the basic motivation underlying this study is to extend the usefulness of such numerical solutions computed for specific turbomachinery configurations and flow conditions with a view toward reducing the computational requirements now necessary. The nature of the present investigation is both exploratory and developmental in the sense that aspects of the procedure such as validity, range of application, and economy will be investigated, and a computational code embodying all the results of the study will be developed.

Two fundamental methods for accomplishing such a perturbation procedure are available: a classical approach involving posing and solving linear perturbation equations; and a direct correction method employing two or more nonlinear base solutions. In this report, both of these methods are discussed; and an evaluation of the latter method, based on a large number of different applications, is made.

A crucial aspect of such perturbation methods is their ability to accurately treat regions where either discontinuities or high gradients exist. For the results presented here coordinate straining is introduced as a means of accounting properly for the displacement of discontinuities due to an arbitrary change in some solution parameter. This is shown to result in highly accurate perturbation predictions in the vicinity of the discontinuity. That idea has also been extended to improve predictions in the vicinity of other high-gradient regions.

Although the procedures developed are generally applicable, the specific results reported here are for aerodynamic applications. Since one of the primary objectives of this study was to provide a definitive proof-of-concept of such a perturbation method, a large variety of perturbation results based on transonic small-disturbance and full potential solutions were studied and are presented for nonlinear subsonic and transonic flows past both isolated airfoils and compressor cascades. In order to enable a critical evaluation of the range of validity and accuracy of the straining procedure, emphasis was placed on transonic flows which are strongly supercritical and exhibit large surface shock movement over the parametric range studied; and on subsonic flows which display large pressure variations in the stagnation and peak suction pressure regions.

## 2. ANALYSIS

### 2.1 Perturbation Concept and Methods

The basic hypothesis underlying the present procedure is that a range of solutions in the vicinity of a previously determined or base solution can be calculated to first-order accuracy in the incremental change of the varied parameter by determining a linearized unit perturbation solution $Q_{p}$ defined according to the relation


The effectiveness of such a method, of course, depends upon the ability of the relationship defined by equation (l) to remain accurate over a range $\varepsilon$ of practical significance, and the fact that the unit perturbation $Q_{p}$ need be determined only once. The significance of the unit perturbation $Q$ is obvious. It represents the local rate of change of the base ${ }^{\text {flow }}$ solution $Q$ with respect to the particular quantity, say $q$, perturbed; that is $Q_{p}=(\partial Q / \partial p)_{o}$.

Two generic methods exist for determining $Q_{p}$, each differing in philosophy and having its own particular strengths and weaknesses. We refer to these methods simply as the linear perturbation equation method and the direct correction method.

The linear perturbation equation method represents the classical approach for performing a perturbation analysis and proceeds by establishing and solving a linear differential equation for the perturbation. Although in the present application, we confine out interest solely to the first-order term, the complete procedure represents a rational approximation scheme capable of continuation to any order. The method proceeds by expanding the dependent variables in an ascending power series in the incremental change $\varepsilon$ of the varied parameter, inserting that representation into the full governing equations and then assembling the result into a corresponding series of linear equations in ascending orders in $\varepsilon$. Higher-order solutions
in general depend on both base flow plus lower-order solutions. Determination of the appropriate boundary conditions is done in a similar fashion.

The power of the linear perturbation equation method is that it requires the calculation of only one nonlinear base solution. With that information, any number of individual perturbations can then be calculated, subject to the particular governing linear partial differential equations and boundary conditions which apply. The disadvantages are that each perturbation problem must be posed individually, including differential equations and boundary conditions. Furthermore, it may be necessary to simplify the governing equations and boundary conditions to a point where they can be solved rapidly relative to rerunning the base flow procedure. Moreover, the perturbation solutions themselves may be quite sensitive to the base flow solutions which usually enter into the perturbation problem through the differential equation and sometimes through the boundary conditions as well.

The fundamental limitation of the method is the restriction of the range over which the perturbation procedure remains valid to a linear one. Since this characteristic depends upon the local behavior of the base flow with respect to the varied parameter, no general statement regarding range of validity is possible. Typical behavior for a given class of flows must be ascertained by checks with the base flow procedure. Initially unknown at the outset of an application with this technique, then, are the accuracy requirements imposed on the base solution by the perturbation procedure and the range of parameter variation over which the linear assumption is valid.

For the alternative method, the perturbation solution per unit change of the varied parameter, $Q_{p}$, is determined simply by differencing two nonlinear base flow solutions removed from one another by some nominal change of a particular flow or geometrical quantity. A unit perturbation solution is then obtained by dividing that result by the change in the perturbed quantity. Related solutions are determined by multiplying the unit perturbation by the desired parameter change and adding that result to the base flow solution. This simple procedure, however, only works directly for continuous flows for which the perturbation change docs not alter the solution domain. For those perturbations which change the flow domain, coordinate stretching (usually obvious) is necessary to insure proper definition of the unit perturbation solution. Similarly, for discontinuous flows, coordinate straining is necessary to account for movement of discontinuities due to the perturbation solution.

The attractiveness of the correction method is that it is not restricted to a linear variation range but rather replaces the nonlinear variation between two base solutions with a linear
fit. This de-emphasizes the dependence and sensitivity inherent in the linear perturbation equation method on the local rate of change of the base flow solution with respect to the varied quantity. For many applications, particularly at transonic speeds, the flow is highly sensitive, and the linear range of parameter variation can be sufficiently small to be of no practical use. Furthermore, other than the approximation of a linear fit between two nonlinear base solutions, the direct correction method is not restricted by further approximations with respect to the governing differential equations and boundary conditions. Rather, it retains the full character of the original methods used to calculate the base flow solutions. Most importantly, no perturbation differential equations have to be posed and solved, only algebraic ones. In fact, it isn't even necessary to know the exact form of the perturbation equation, only that it can be obtained by some systematic procedure and that the perturbations thus defined will behave in some 'generally appropriate' fashion so as to permit a logical perturbation analysis. For situations involving perturbations of physical parameters, such as reported here, the governing perturbation equations are usually transparent, or at least readily derivable. Finally, in applying this method it isn't necessary to work with primitive variables; rather the procedure can be applied directly to the final quantity desired.

The primary disadvantage of this method is that two base solutions are required for each parameter perturbation considered. Furthermore, both flows must be topologically similar, i.e., discontinuities or other characteristic features must be present in both base solutions used to establish the unit perturbation.

## 2. 2 Previous Applications

Detailed studies of the linear perturbation equation method to sensitive transonic flows, with a view toward testing the method as an effective tool for reducing computational requirements, have not been done. The primary reason is that such studies quickly become overwhelming. Each perturbation problem must be posed individually, subject to its own particular governing equations and boundary conditions; and then a separate computational code for the perturbation established. Generally, the governing equations and boundary conditions of the perturbation, even though they are linear, are more involved than those for the base solution. Additionally, the computational and convergence characteristics can pose similar or additional problems from those of the base flow procedure.

In an attempt to examine some of these problems for transonic applications in at least a preliminary fashion, an application of the linear perturbation equation method to
transonic turbomachinery flows was made in reference 1. The conclusions obtained from that study were that reasonable results could be anticipated from the method for blade geometry changes, such as blade thickness and angle of attack. Less satisfactory results were obtained for perturbation changes in overall quantities, such as blade spacing and free-stream Mach number, a result that could be anticipated a priori since such perturbations alter the basic character of the flow more rapidly. The most significant conclusion of that study was the demonstration of the primary limitation of the linear perturbation equation method. That is, for sensitive flows such as occur in transonic situations, the basic linear variation assumption fundamental to the technique is sufficiently restrictive that the permissible range of parameter variation becomes so small as to be of limited practical use. Some preliminary applications of the direct correction method, however, displayed a significantly wider range of perturbation solution validity, in particular for strongly supercritical flows when coordinate straining was employed to account for shock movement.

### 2.3 Coordinate Straining

The concept of employing coordinate straining to remove nonuniformities from perturbation solutions of nonlinear problems is well established and originally suggested by Lighthill (ref. 2) three decades ago. The basic idea of the technique is that a straightforward perturbation solution may possess the appropriate form, but not quite at the appropriate location. The procedure is to strain slightly the coordinates by expanding them as well as the dependent variables in an asymptotic series. It is often unnecessary to actually solve for the straining. It can generally be established by inspection. The final uniformly valid solution is then found in implicit form, with the strained coordinate appearing as a parameter.

In the original applications of the method (ref. 3), it was applied in the 'classical' sense; that is, series expansions of the dependent and independent variables in ascending powers in some small parameter were inserted into the full governing equation and boundary conditions, and the individual terms of the series determined. An ingenious variation in the application of the method was made by Pritulo (ref. 4) who demonstrated that if a perturbation solution in unstrained coordinates has been determined and found to be nonuniform, the coordinate straining required to render that solution uniformily valid can be found by employing straining directly in the known non-uniform solution, and then solving algebraic rather than differential equations. The idea of introducing strained coordinates a posteriori has since been applied to a variety of different problems (see ref. 3), and forms the basis of the current applications.

The fundamental idea underlying coordinate straining as it relates to the application of perturbation methods to supercritical transonic flows is illustrated geometrically in figure 1. In the upper plot on the left, two typical transonic pressure distributions are shown for a highly supercritical flow about a nonlifting symmetric profile. The distributions can be regarded as related nonlinear flow solutions separated by a nominal change in some geometric or flow parameter. The shaded area between the solutions represents the perturbation result that would be obtained by directly differencing the two solutions. We observe that the perturbation so obtained is small everywhere except in the region between the two shock waves, where it is fully as large as the base solutions themselves. This clearly invalidates the perturbation technique in that region and most probably somewhat ahead and behind it as well. The key idea of a procedure for correcting this, pointed out by Nixon (refs. 5,6), is first to strain the coordinates of one of the two solutions in such a fashion that the shock waves align, as shown in the upper plot on the right of figure 1, and then determine the unit perturbation. Equivalently, this can be considered as maintaining the shock wave location invariant during the perturbation process, and assures that the unit perturbation remains small both at and in the vicinity of the shock wave. Obviously, shock points are only one of a number of characteristic high-gradient locations such as stagnation points, maximum suction pressure points, etc., in which the accuracy of the perturbation solution can degrade rapidly. The plots in the lower left part of the figure 1 indicate such a situation and display typical transonic pressure distributions which contain multiple shocks and high-gradient regions. Simultaneously straining at all these locations, as indicated in the lower right plot, serves to minimize the unit perturbation over the entire domain considered, and provides the key to maximizing the range of validity of the perturbation method.

### 2.4 Theoretical Formulation for <br> Single-Parameter Perturbations

In order to provide the theoretical essentials of the correction method, consider the formulation of the procedure at the level of the full potential equation, as most of the results presented here are based on that level. We denote the operator $L$ acting on the velocity potential $\Phi$ as that which results in the two-dimensional full potential equation for $\Phi$, i.e.

$$
\begin{equation*}
\mathrm{L}[\Phi]=0 \tag{2}
\end{equation*}
$$

If we now expand the potential in terms of zero- and higherorder components in order to account for the variation of some arbitrary geometrical or flow parameter $q$

$$
\begin{align*}
& \Phi=\Phi_{0}+\varepsilon \Phi_{1}+\cdots \\
& q=q_{0}+\Delta q
\end{align*}
$$

and then insert this into the governing equation (2), expand the result, order the equations into zero- and first-order components, and make the obvious choice of expansion parameter $\varepsilon=\Delta q$, we obtain the following governing equations for the zeroand first-order components

$$
\begin{align*}
& L\left[\Phi_{0}\right]=0 \\
& L_{1}\left[\Phi_{1}\right]+\frac{\partial}{\partial q} L\left[\Phi_{0}\right]=0 \tag{4}
\end{align*}
$$

Here $L_{1}$ is a linear operator whose coefficients depend on zeroorder quantities and $\partial L[\Phi] / \partial q$ represents a 'forcing'term due to the perturbation. Actual forms of $\mathrm{L}_{1}$ and the 'forcing' term are provided in reference $l$ for a variety of flow and geometry parameter perturbations of a two-dimensional turbomachine, and in reference 7 for profile shape perturbations of an isolated airfoil. An important point regarding equation (4) for the first-order perturbation $\Phi_{1}$ is that the equation represents a unit perturbation independent of the actual value of the perturbation quantity $\varepsilon$.

Appropriate account of the movement of discontinuities and maxima of high-gradient regions due to the perturbation is now accomplished by the introduction of strained coordinates ( $s, t$ ) in the form

$$
\begin{align*}
& x=s+\varepsilon x_{1}(s, t)  \tag{5}\\
& y=t+\varepsilon y_{1}(s, t)
\end{align*}
$$

where

$$
\begin{align*}
& x_{1}(s, t)=\sum_{i=1}^{N} \delta x_{i} x_{I_{i}}(s, t) \\
& y_{1}(s, t)=\sum_{i=1}^{N} \delta y_{i} y_{I_{i}}(s, t) \tag{6}
\end{align*}
$$

and $\varepsilon \delta x_{i}, \varepsilon \delta y_{i}$ represents individual displacements of the $N$ strained points, and $x_{l i}(s, t), y_{l_{i}}(s, t)$ are straining functions associated with each of the $N$ strained points. Introducing the strained coordinate equations (5) and (6) into the expansion formulation leaves the zero-order result in equation (4) unchanged, but results in a change of the following form for the perturbation

$$
\begin{equation*}
L_{1}\left[\Phi_{1}\right]+L_{2}\left[\Phi_{0}\right]+\frac{\partial}{\partial q} L\left[\Phi_{0}\right]=0 \tag{7}
\end{equation*}
$$

Here the operators are understood to be expressed in terms of the strained ( $s, t$ ) coordinates, and the additional operator $\mathrm{L}_{2}$ arises specifically from displacement of the strained points. In references 6 and 7 , specific expressions for $L_{2}$ are provided for selected perturbations involving transonic small-disturbance and full potential equation formulations. The primary point, however, with regard to perturbation equation (7) expressed in strained coordinates is that it remains valid as before for a unit perturbation and independent of $\varepsilon$.

In employing the correction method, equation (7) for the unit perturbation is solved by taking the difference between two solutions obtained by the full nonlinear procedure after appropriately straining the coordinates. If we designate the two solutions for some arbitrary flow quantity $Q$ as base $Q_{O}$ and calibration $Q_{C}$, respectively, of the varied parameter, we have for the predicted flow at some new parameter value q (ref. 8)

$$
\begin{equation*}
Q(x, y)=Q_{O}(s, t)+\frac{\varepsilon}{\varepsilon_{O}}\left[Q_{C}(\bar{x}, \bar{Y})-Q_{O}(s, t)\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{x}=s+\varepsilon_{0} x_{1}(s, t) \\
& \bar{y}=t+\varepsilon_{0} y_{1}(s, t) \\
& x=s+\frac{\varepsilon}{\varepsilon_{0}}[\bar{x}-s]  \tag{9}\\
& y=t+\frac{\varepsilon}{\varepsilon_{0}}[\bar{y}-t] \\
& \varepsilon_{0}=q_{C}-q_{0} \\
& \varepsilon=q-q_{0}
\end{align*}
$$

In the following section, applications of the correction procedure are made to predict surface properties. Also provided are the particular forms of the straining functions equation (6) for those applications.

### 2.5 Current Applications: Surface Pressures

For the current applications, we have employed coordinate straining with the correction method to predict surface pressure distributions for a wide variety of single-parameter geometrical flow perturbations of isolated airfoils and cascades. In that instance where flow properties are required along some contour, the solutions can be represented by

$$
\begin{gather*}
Q(x ; \varepsilon) \sim Q_{0}(s)+\varepsilon Q_{1}(s)+\ldots \\
x \sim s+\varepsilon x_{1}(s)+\ldots \tag{10}
\end{gather*}
$$

where x is the independent variable measuring distance along the contour or a convenient projection of that distance, $s$ is the strained coordinate, and $\varepsilon$ a small parameter representing the change in some flow or geometrical variable which we wish to vary.

In order to determine the first-order corrections $Q_{1}(s)$, we require a base and calibration solution in which the calibration solution is determined by varying an arbitrary parameter $q$ by some nominal amount from the base flow value.

In this way, the first-order correction $Q_{1}(s)$ can be determined as

$$
\begin{equation*}
Q_{1}(s)=\frac{Q_{C}(\bar{x})-Q_{O}(s)}{q_{C}-q_{O}} \tag{11}
\end{equation*}
$$

where $Q_{c}$ is the calibration solution corresponding to changing the parameter $q$ to a new value $q_{C}$, $\bar{x}$ is the strained coordinate pertaining to the $Q_{C}$ calibration solution, and $q_{C}-q_{0}$ represents the change in the $q$ parameter from its base flow value. If we now desire to keep invariant during the perturbation process a total of $N$ points corresponding to discontinuities or high-gradient maxima, we can represent the solution by:

$$
\begin{equation*}
Q(x ; \varepsilon)=Q_{0}(s)+\varepsilon Q_{1}(s) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{I}(s)=\frac{Q_{C}(\bar{x})-Q_{O}(s)}{\varepsilon_{C}} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}=s+\sum_{i=1}^{N} \varepsilon_{c}\left(\delta x_{i}^{c}\right) \cdot x_{l_{i}}(s)  \tag{14}\\
& x=s+\sum_{i=1}^{N} \varepsilon\left(\delta x_{i}^{c}\right) \cdot x_{l_{i}}(s)  \tag{15}\\
& \varepsilon_{C}=q_{C}-q_{o}  \tag{16}\\
& \varepsilon=q-q_{O}  \tag{17}\\
& \varepsilon_{C}\left(\delta x_{i}^{c}\right)=\left(x_{i}^{c}-x_{i}^{o}\right)  \tag{18}\\
& \varepsilon\left(\delta x_{i}^{o}\right)=\frac{\varepsilon}{\varepsilon_{C}}\left(x_{1}-x_{i}^{o}\right) \tag{19}
\end{align*}
$$

Here $\varepsilon_{C}\left(\delta X_{i}^{C}\right)$ given in equation (18) represents the displacement of the ith invariant point in the calibration solution from its base flow location due to the selected change $\varepsilon$ in the $q$ parameter given by equation (16), $\varepsilon\left(\delta x_{1}^{C}\right)$ given in equation represents the predicted displacement of the ith invariant point from its base flow location due to the desired change $\varepsilon$ in the $q$ parameter given by equation (17), and ${ }^{X_{l}}{ }_{i}(s)$ is a unit-order straining function having the property that

$$
x_{l_{i}}\left(x_{k}^{\circ}\right)= \begin{cases}1 & k=i  \tag{20}\\ 0 & k \neq i\end{cases}
$$

which assures alignment of the ith invariant point between the base and calibration solutions.

In addition to the single condition equation (20) on the straining function, it may be convenient or necessary to impose additional conditions at other locations along the contour. For example, it is usually necessary to hold invariant the end points along the contour, as well as to require that the straining vanish in a particular fashion in those locations. All of these conditions, however, do not serve to determine the straining uniquely. The nonuniqueness of the straining, nevertheless, can often be turned to advantage, either by selecting particularly simple classes of straining functions or by requiring the straining to satisfy further constraints convenient for a particular application. An example of the effect of employing two different straining functions for a strongly-supercritical flow was
provided in reference 6. Here we provide additional results demonstrating some of the limitations of various polynomial straining functions and provide some comparisons with piecewisecontinuous functions. The particular classes of straining functions employed were continuous polynomial and linear piecewise-continuous. For these two classes, the functional forms of the straining can be compactly written. For example, equation (14) becomes, for continuous polynomial straining

$$
\begin{equation*}
\bar{x}=s+\sum_{i=2}^{N-1} L_{i}(s) \cdot\left(x_{i}^{c}-x_{i}^{o}\right) \tag{2l}
\end{equation*}
$$

where $L_{i}$ are Lagrangian coefficients given by

$$
\begin{equation*}
L_{i}(s)=\prod_{\substack{k=1 \\ k \neq i}}^{N} \frac{\left(s-x_{k}^{O}\right)}{\left(x_{i}^{O}-x_{k}^{O}\right)} \tag{22}
\end{equation*}
$$

whereas for linear piecewise-continuous straining, $\bar{x}$ is given by

$$
\begin{align*}
\bar{x}=s+ & \sum_{i=2}^{N-1}\left\{\frac{x_{i+1}^{O}-s}{x_{i+1}^{O}-x_{i}^{O}} \cdot\left(x_{i}^{C}-x_{i}^{O}\right)\right. \\
& \left.+\frac{s-x_{i}^{O}}{x_{i+1}^{O}-x_{i}^{O}} \cdot\left(x_{i+1}^{c}-x_{i+1}^{O}\right)\right\} H\left(x_{i+1}^{O}-s\right) \cdot H\left(s-x_{i}^{O}\right) \tag{23}
\end{align*}
$$

where $H$ denotes the Heaviside step function. As discussed above, it is usually necessary to hold invariant both of the end points along the contour in addition to the points corresponding to discontinuities or high-gradient maxima. Consequently, for the results reported here, the array of invariant points in the base and calibration solutions have been taken as

$$
\begin{align*}
& x_{i}^{o}=\left\{0, x_{1}^{o}, x_{2}^{o}, \ldots \ldots, x_{n}^{o}, 1\right\} \\
& x_{i}^{c}
\end{align*}\left\{\begin{array}{llll}
0, & x_{1}^{c}, & x_{2}^{c}, \ldots, & \left.x_{n}^{c}, 1\right\} \tag{24}
\end{array}\right.
$$

where the contour length has been normalized to unity. Figure 2 provides a summary of the various combinations of flows and straining functions employed.

## 3. RESULTS

One of the primary objectives of the present investigation is to explore the accuracy and range of validity of such perturbation procedures to determine to what extent they are capable of providing results useful in an engineering analysis. To this end, we have tested the correction method with coordinate straining over a wide variety of different geometrical and flow condition perturbations, including applications to both isolated airfoils and compressor cascades. In particular, since the ability of the method to account accurately for the movement of discontinuities and maxima of high-gradient but continuous regions is essential if such procedures are to be of general use, emphasis was placed on transonic flows which are strongly supercritical and exhibit large surface shock movement over the parametric range studied. Base flow theoretical solutions were determined from small-disturbance transonic potential (ref. 9) and full potential solutions (refs. lo, ll, l2). In the results to follow, which were selected as typical from systematic calculations of a much larger number of cases, the choice of base and calibration solutions was often made at the limits of validity of the procedure to observe how well the method works under such conditions.

### 3.1 Perturbation Results for Supercritical SingleShock Flows and Subcritical Flows

3.1.1 Supercritical applications.- In figure 3, we present results for a thickness-ratio perturbation of strongly supercritical flows past a nonlifting cascade of biconvex profiles at $M_{\infty}=0.80$ having a spacing-to-chord ratio of $H / C=1.0$. The dotted and dashed results on the figure represent the base and calibration surface pressure distribution for $\tau=(0.075,0.065)$, respectively, and were obtained by solving the transonic smalldisturbance potential equation using the code TSFOIL (ref. 9). An x -grid having 48 points on the blade profile was used. These solutions were then used to determine the unit perturbation. The open circles represent the perturbation solution for $\tau=0.073$ in the plot on the left and for $\tau=0.070$ in the plot on the right. Those perturbation results are meant to be compared with the solid lines in the plots which are the corresponding nonlinear solutions obtained by rerunning TSFOIL at the new thickness ratios. Quadratic straining was used with shock point and leading and trailing edges held invariant. The base and calibration flow shock-point locations for this example, as well as for all of the supercritical cases presented here, were determined as the point where the pressure coefficient passed through critical with compressive gradient.

With regard to the results, several points are noteworthy. Selection of a cascade rather than an isolated airfoil provides a more sensitive transonic flow situation. Additionally, the choice of a highly supercritical base and almost subcritical calibration solution provides both an example of extreme separation between the two nonlinear solutions used to define the unit perturbation, as well as a situation where one solution is near the limits of validity of the perturbation analysis. Recall that both solutions must be topographically similar, i.e., must contain the same number of discontinuities (shocks) and other characteristic features.

We note that comparisons of the perturbation results with the nonlinear calculations are very satisfactory for both thickness ratios, with the only discrepancy being a slight disagreement at the lower thickness ratio ( $\tau=0.070$ ) at several points in the post-shock region. Additional calculations not presented here in which a more reasonable choice of calibration solution is made, say at $\tau=0.070$, removes that discrepancy as well. The main point provided by the results of figure 3 is that for certain classes of supercritical flows even widely separated base solutions can be used to provide reasonable perturbation predictions.

In figure 4, we provide similar strongly supercritical results again for interpolation-only perturbation solutions, but in this instance on a somewhat finer grid. These results employed full potential base solutions (ref. 10), and represent thickness ratio perturbations of nonlifting symmetric free-air flows past NACA four-digit thickness-only airfoils at $\mathrm{M}_{\infty}=0.820$. The body-fitted mesh employed had 75 points on both upper and lower surfaces, which is half again as many as in the preceding example. For the base and calibration flows, the thickness ratios were $\tau=0.120$ and 0.080 , respectively. Comparisons between the perturbation predictions and the full nonlinear calculation are exhibited in figure 4 for $\tau=0.110,0.105,0.100$, and 0.095. We note that the comparisons are remarkably good, in particular, in the region of the shock. The first-order perturbation accurately predicts both shock location and the post-shock expansion behavior. Reference to the coarser grid results given in figure 3 indicates that the finer grid resolution clearly enhances the perturbation result, indicating that better accuracy and a larger range of validity of the perturbation solutions can be anticipated when fine-grid base solutions are used to define the unit perturbation.

In the two preceding examples, perturbation results were provided for interpolation-only between widely spaced base and calibration solutions. In figure 5 , we provide similar strongly supercritical thickness-ratio perturbation results for extreme solution extrapolation using very closely spaced base and calibration solutions (ref. 10). The upper plots display results
for extrapolation downward from base and calibration flows past nonlifting NACA 00XX profiles with $\tau=0.115$ and 0.120 at $\mathrm{M}_{\infty}=0.820$. Perturbation predictions are shown for $\tau=0.105$ and 0.100 , which represent $\Delta \tau$ excursions from the base flow ( $\tau=0.115$ ) that are two and three times the parameter change between the base and calibration solutions ( $\Delta \tau=0.005$ ) used to define the unit perturbation. For these results, comparisons with the full nonlinear calculations are very good. The lower plots display similar results for extreme extrapolation upward from base and calibration solutions have $\tau=0.095$ and 0.090 . Perturbation predictions are shown for $\tau=0.105$ and 0.110 , which again represent excursions from the base flow that are two and three times the parameter change between the base and calibration solutions. In this instance, while comparisons of the perturbation results and the full nonlinear solutions for both cases are good, the results at $\tau=0.110$ are beginning to display some not surprising discrepancies near the shock wave, indicating that the perturbation result is nearing the limit of its range of validity for this particular choice of base and calibration flows.

The results indicated in figure 5, however, clearly demonstrate that not only is accurate solution extrapolation possible, but that for some situations even closely spaced nonlinear solutions can be used to cover a wide rangc of related solutions. Additionally, the range of parameter variation in this example over which the perturbation results remain accurate - i.e., parameter changes three times the difference between the two nonlinear solutions used to define the unit perturbation - is remarkable, and far beyond what one would anticipate for a first-order correction.

Perturbation results using a more reasonable choice of base and calibration solutions are provided in figure 6. Those results involve Mach number perturbations of highly supercritical full potential (ref. l0) flows past a NACA 0012 airfoil at $\alpha=0^{\circ}$. The base and calibration results are for $M_{\infty}=0.800$ and 0.820 , and the comparisons indicated are for perturbation results interpolated to $M_{\infty}=0.810$ and extrapolated downward to $M_{\infty}=0.790$. As in the case of the geometric perturbations given in figures 4 and 5, these perturbation results are also in very good agreement with the nonlinear calculations at the new Mach numbers. For this perturbation, as well as for a number of other Mach number perturbations, we have separately determined the perturbation result in two different ways. First, we have taken cognizance of the fact that a Mach number perturbation alters the governing differential equation for the first-order perturbation from that of other geometric or flow parameter changes; and have used the suggestion of reference 6 to consider such perturbations via a transonic small-disturbance approximation, whereby the same perturbation equation can be preserved by employing a modified expansion parameter $\varepsilon$. An alternative procedure is to treat a

Mach perturbation directly and interpret $\varepsilon$ as the difference in Mach number. We have done these calculations and compared the perturbation results for a number of cases using both full potential solutions, as for the results shown in figure 6, and transonic small-disturbance solutions, and have observed no essential difference between the two sets of results. The perturbation results presented in figure 6 correspond to those for $\varepsilon$ equal to the difference in Mach number.

All of the supercritical perturbation results presented in figures 3 to 6 have been for symmetric flows and have employed a quadratic straining function. In figure 7, we present results for an angle of attack perturbation of lifting flows past a NACA 0012 profile at $M_{\infty}=0.70$. The full potential (ref. 10) base and calibration solutions are at $\alpha=3.0^{\circ}$ and $4.0^{\circ}$, with comparisons of the perturbation and full nonlinear results shown for $\alpha=3.5^{\circ}$ and $2.5^{\circ}$. Cubic straining has been used with the invariant points corresponding to the lower trailing edge, stagnation point, shock point, and the upper trailing edge (see fig. 2). We note that $\alpha=3.5^{\circ}$, the perturbation results are very good everywhere, in particular, in the vicinity of the shock and stagnation regions. At $\alpha=2.5^{\circ}$, the perturbation results are still very good in the shock and stagnation regions and on most of the upper and lower surface, but near the trailing edge a discrepancy has occurred. The cause of this discrepancy lies solely with the cubic straining function used. It is due to the fact that although the straining vanishes identically at the trailing edge, for the particular choice of base and calibration solutions in this example, the straining in the near vicinity of the trailing edge becomes sufficiently large to introduce a misalignment in the unit perturbation in that high-gradient region. The correction to this is discussed in the section describing piecewise-continuous straining functions.

### 3.1.2 Subcritical applications.- Although supercritical

 flows are clearly of central concern in any transonic analysis for which the perturbation methods presented here would be used, applications to subcritical nonlinear flows are also of significance. To this end, we have applied these same techniques to a variety of subcritical flows to examine their accuracy and range of validity for such applications.
## In figure 8, we present some summary results for four

 different subcritical perturbation applications to an isolated airfoil. All of these results are based on full potential solutions (ref. 10) with quadratic straining holding invariant the stagnation point and the trailing edge points. The plot on the upper left displays comparisons for a camber line perturbation of a lifting flow with $M_{\infty}=0.50$ and $\alpha=2^{\circ}$ past an airfoil having a NACA 0012 thickness distribution and a parabolic-arc camber line having the maximum camber located at midchord. Baseand calibration flows with camber ratio $h / c=0.02$ and 0.01 were used to extrapolate perturbation results to $\mathrm{h} / \mathrm{c}=0.05$. Comparisons with the full result is essentially exact. The plot on the upper right provides similar results for a thickness-ratio perturbation of a lifting flow with $M_{\infty}=0.50$ and $\alpha=2.0^{\circ}$ past NACA 00XX thickness-only airfoils. Base and calibration flows with $\tau=0.12$ and 0.04 were used to provide interpolation results at $\tau=0.08$. Again, the agreement is essentially exact even in the peak suction pressure region. The plot on the lower left provides angle-of-attack perturbation results for $M_{\infty}=0.50$ flow past a NACA 0012 airfoil, using base/calibration ${ }^{\infty}$ esults for $\alpha=4.0^{\circ}$, $2.0^{\circ}$ to predict results at $\alpha=3.0^{\circ}$, with the agreement again being quite good. The final comparisons given in the plot on the lower left are for a Mach number perturbation of a lifting flow at $\alpha=2^{\circ}$ past an airfoil having a NACA 0012 thickness distribution and a parabolic-arc camber line with camber ratio $\mathrm{h} / \mathrm{c}=0.03$ at midchord. Base/calibration results at $\mathrm{M}_{\infty}=0.40$, 0.60 were used to predict results at $M_{\infty}=0.55$, with good agreement with the full nonlinear calculation.

In figure 9, we present similar summary results for subcritical perturbation applications to a compressor cascade having a $4 \%$ biconvex thickness distribution and a $1 \%$ parabolic-arc camber line blade, a pitch of $t / c=0.37$, and oncoming Mach number $M_{\infty}=0.770$. These results are based on the full potential solution procedure of reference 11 and have also used quadratic straining to hold the trailing edge points and stagnation point invariant. The plots in the upper part of the figure represent an inflow angle perturbation, with base/calibration inflow angles $\beta_{\dot{j}}=47.8^{\circ}, 49.8^{\circ}$ used to predict extrapolation results in the plot on the left for $\beta_{i}=48.8^{\circ}$ and interpolation results in the plot on the right for $\bar{\beta}_{i}=48.8^{\circ}$. In the lower left plot, interpolation results are displayed for an outflow angle perturbation with base/calibration outflow angles $\beta=31.5^{\circ}$, $39.5^{\circ}$ used to predict the flow at $\beta_{\mathrm{O}}=35.5^{\circ}$. The lower right plot provides interpolation results for a rotational speed perturbation with base/calibration rotational speeds $\omega=967,667 \mathrm{rad} / \mathrm{sec}$ used to predict the flow at $\omega=827 \mathrm{rad} / \mathrm{sec}$. In all of these results, the perturbation results are good, including the regions near the leading and trailing edge where a peaky behavior due to local grid resolution is observed.

### 3.2 Comparison of Continuous and Piecewise-Continuous Straining Function Perturbation Results

The results presented in figures 10 to 13 illustrate the effect of using different straining functions to determine the perturbation results. Comparisons are provided for several strongly supercritical flows, demonstrating the differences in perturbation solutions between using quadratic and cubic straining
functions and corresponding piecewise-continuous straining functions.

Figure 10 displays a comparison for a symmetric supercritical thickness-ratio perturbation at $\tau=0.110$ for which results based on quadratic straining were given in figure 4. In that figure the open circles denote the previously obtained perturbation results using quadratic straining, while the asterisks denote the corresponding result when using linear piecewise-continuous straining. The points held invariant are the leading and trailing edges and the shock point. For this case there is virtually exact agreement everywhere between the two perturbation results as well as with the nonlinear result. An analogous comparison with a cubic straining result is provided in figure ll where the invariant points are the lower trailing edge, stagnation point, shock point, and upper trailing edge. Displayed in that figure as open circles are the cubic-straining supercritical angle-of-attack perturbation results at $\alpha=2.5^{\circ}$ which were previously given in figure 7. Asterisks denote the corresponding linear piecewise-continuous straining perturbation result. We note that the discrepancy near the trailing edge caused by the cubic straining has been effectively removed in the piecewise-continuous result. Moreover, the good agreement with the full nonlinear result which the cubic result displayed near the shock and stagnation regions, as well as over the remainder of the airfoil surface, is also obtained with the piecewise-continuous result.

Finally, we have found that when employing quadratic, cubic, and higher-order polynomials as straining functions, for certain combinations of base flow shock location and shock movement between base and calibration solutions, particularly when large shock movements are involved, the polynomial straining functions will strain some points off the airfoil surface. This, of course, invalidates the determination of the unit perturbation, and requires that a different straining function be employed. Piece-wise-continuous straining functions provide a simple means of avoiding such difficulties.

In figures 12 and 13 , we have provided examples illustrating this effect for both quadratic and cubic straining functions. Figure 12 provides a comparison of perturbation results obtained using quadratic (open circles) and linear piecewise-continuous (asterisks) straining applied to a supercritical Mach number perturbation for symmetric nonlifting flow past a NACA 0012 airfoil. Widely separated base/calibration flows (ref. lo) at $M_{\infty}=0.820$ and 0.750 were used to predict the flow at $M_{\infty}=0.810$. The spurious behavior near the leading edge displayed by the open circles is due to the quadratic function moving points in the strained calibration solution off the airfoil surface. The piecewise-continuous results indicated by the asterisks display a smooth variation in that region, and provide good agreement
everywhere with the full nonlinear result. Figure 13 provides a corresponding comparison for cubic straining. Angle-of-attack perturbation results at $M_{\infty}=0.70$ for flow past a NACA 0012 profile using base/calibration results (ref. 10) at $\alpha=2.25^{\circ}$ and $4.00^{\circ}$ are used to predict the flow at $\alpha=3.25^{\circ}$. The unusual results displayed by the open symbols near the trailing edge indicate that the cubic function has strained points off the airfoil surface in that region. However, the linear piecewisecontinuous result corrects that problem and displays good agreement with the nonlinear calculation in that region as well as at the shock and stagnation point.

### 3.3 Perturbation Applications to Complex Supercritical Flows

In order to provide a severe test of the perturbation procedure, we have applied the method to a number of transonic flows that are characterized by surface pressure distributions having multiple shock and/or high-gradient locations, such as those typified schematically in the lower plots of figure 1. Demonstration of the ability of the perturbation method to predict accurately such classes of flows, which are typical of those encountered in certain transonic turbomachinery applications, is crucial to the present study. In order to accomplish such a demonstration, we have investigated two separate classes of sensitive supercritical transonic flows, i.e. those with multipleshock waves, and those having a single shock together with multiple high-gradient regions. Examples of perturbation results for such flows are provided below.
3.3.1 Multi-Shock Supercritical Flows.- In figure l4, we present results for an angle-of-attack perturbation of supercritical lifting flows past a NACA 0012 profile at $M_{\infty}=0.80$. These highly sensitive flows exhibit two shocks, one on each the upper and lower surface. The full potential (ref. l0) base and calibration flows employed are at $\alpha=0.50^{\circ}$ and $0.20^{\circ}$, with comparisons of the perturbation and full nonlinear results shown for $\alpha=0.0^{\circ}, 0.1^{\circ}, 0.4^{\circ}$, and $0.6^{\circ}$. Piecewise-continuous linear straining has been used with the invariant points corresponding to the lower trailing edge, lower surface shock point, stagnation point, upper surface shock point, and upper trailing edge (see fig. 2). We note that the symmetrical extrapolation result at $\alpha=0.0^{\circ}$ is separately predicted from both the upper surface and lower surface pressure distributions, and, as can be seen, the results are quite good. The remaining results at $\alpha=0.1^{\circ}, 0.4^{\circ}$, and $0.6^{\circ}$, which represent both extrapolation and interpolation from the base and calibration flows, are in excellent agreement with the full nonlinear result. As an indication of the sensitivity of these flows, we have found that the lower surface shock
disappears at an angle of attack of approximately $0.8^{\circ}$; yet the lower surface pressure distribution is well predicted by the perturbation result over the parametric range studied.
3.3.2 Supercritical Compressor Cascade Flows.- As an example of the ability of the method to predict a complex supercritical flow, in figure 15 we provide results for oncoming Mach number perturbation of supercritical flows past a cascade composed of Jose Sanz (ref. l2) profiles. For these results, the oncoming and exit flow angles are $30.81^{\circ}$ and $0.09^{\circ}$, respectively, the blade twist is $9.33^{\circ}$, while the gap to chord ratio is 1.028 . The full potential (ref. 12) base and calibration flow oncoming Mach numbers are $M_{\infty}=0.77$ and 0.81 , with comparisons of perturbation and full nonlinear results shown at $M_{\infty}=0.75,0.79$, 0.89 , and 0.83 . Piecewise-continuous linear straining was employed with invariant points at the lower trailing-edge, stagnation point, shock point and upper trailing edge. As with the multiple-shock example shown in figure l4, we note that the perturbation predictions are in excellent agreement with the nonlinear results. In particular, we note that the perturbation procedure captures the variation of the plateau-like pressure distribution on the upper surface near the leading edge, the location and strength of the shock, the post-shock expansion region, the rapid expansion near the trailing edge, and the expansion on the lower surface near the stagnation point, indicating a capability for treating very general flow situations.

## 4. CONCLUSIONS AND RECOMMENDATIONS

An evaluation has been made of a perturbation procedure for determining highly accurate approximations to families of nonlinear solutions which are either continuous or discontinuous, and which represent variations in some arbitrary parameter. The procedure employs a unit perturbation, determined from two nonlinear solutions which differ from one another by a nominal change in some geometric or flow parameter, to predict a family or related nonlinear solutions. Coordinate straining is used in determining the unit perturbation in order to account properly for the motion of discontinuities and maxima of highgradient regions. Extensive perturbation calculations based on full potential nonlinear solutions have been carried out. These calculations cover a variety of flow and goemetric parameter perturbations involving isolated airfoils and compressor cascades at both subsonic and transonic flow conditions. Particular emphasis was placed on supercritical transonic flows which exhibit large surface shock movements over the parameter range studied; and on subsonic flows which display large pressure variations in the stagnation and peak suction pressure regions. Perturbation results for single-parameter perturbations, characterized by both extreme solution interpolation using widely separated base flow solutions and extreme solution extrapolation using closely spaced based flow solutions, were obtained in order to determine the accuracy and range of validity of the method. Additionally, calculation of perturbation results were made to investigate the effectiveness of employing piece-wise-continuous straining functions rather than polynomial (quadratic, cubic, quartic) functions. Multi-shock and other complex flow situations were studied in order to examine the capability for treating general transonic flows.

Comparisons of the perturbation results with the corresponding 'exact' nonlinear solutions indicate a remarkable accuracy and range of validity of the perturbation method across the spectrum of examples reported. Geometry and flow parameter perturbations are treatable with equal success. Solution interpolation and extrapolation are both feasible. Results evaluating the polynomial and piecewise-continuous straining functions indicate that the piecewise-continuous functions are superior. The latter class of straining functions eliminate both the problem of unwanted straining in the domain of interest, as well as the problem of spurious straining out of the domain. finally, it was demonstrated that this procedure can successfully treat flows containing multiple shocks and high-gradient regions by simultaneously straining all of these characteristic points. Computational time of the method, beyond the determination of the base solutions, is trivial. A code encompassing these developments has been written for the single-parameter perturbation problem
and is included as part of this report. Based on these results, we conclude that such a perturbation procedure can provide a means for substantially reducing computational requirements in design studies or other applications where large numbers of related nonlinear solutions are needed. Further development is needed, however, to provide a computational tool of wide utility. Because of the practical need in design or parametric studies to consider variations in several parameters simultaneously, we suggest the development of the capability for multiple-parameter perturbations, making full use of the current developments of the single parameter procedure. That procedure should incorporate a limiting-parameter calculation whereby the parameter bounds with respect to each varied parameter are determined. Finally, in order to demonstrate their ultimate power and utility, these procedures should now be tested by actual application to a practical problem which involves the high-frequency use of expensive computational codes in order to determine a large number of related flow solutions. We suggest transonic turbomachinery blade design optimization studies as both feasible and of high current importance.

APPENDIX A - USER'S MANUAL FOR COMPUTER PROGRAM PERTURB

## A. 1 INTRODUCTION

The purpose of this appendix is to describe the operation of the computer code which was developed in conjunction with the theoretical work presented in this report, and to provide sufficient detail to permit convenient use and change of the program. The program computes and plots an arbitrary flow variable on a contour surface by employing the strained-coordinate perturbation method previously discussed. The plot packaqe included in this version refers to system routines at the Stanford University Centex for Information Processing facility. In general, the plotting software must be supplied by the user according to the requirements of his operating system. This can be accomplished directly by replacing or modifying the subroutines PLOT, LIMITS, and ROUND.

A description of the general operating procedure of the program is given, together with complete description of both input and output. The program is written in FORTRAN IV and has been developed on an IBM 3033 computer. Typical run times are 1 to 3 seconds. The storage requirements are $50 \mathrm{~K}_{10^{\circ}}$

## A. 2 PROGRAM DESCRIPTION

The program calculates both continuous and discontinuous nonlinear perturbation solutions which represent a singleparameter change in either geometry or flow conditions by employing a strained-coordinate procedure. The method utilizes a unit perturbation, determined from two previously calculated solutions ('base' and 'calibration' solutions) obtained from an 'expensive' computational procedure and displaced from one another by some reasonable change in geometry or flow variable, to predict new nonlinear solutions over a range of parameter variation.

This version of the procedure is configured to predict and plot an arbitrary flow variable (e.g., pressure coefficient) on the surface of a blade or airfoil, and can account for the motion of:

1. one or more critical points (shock points),
2. a stagnation point,
3. a maximum-suction-pressure point,
or simultaneously for any combination of these.
The program is also configured to compare the perturbationpredicted solutions with the corresponding 'exact' solutions obtained by employing the same 'expensive' computational procedure used to determine the base and calibration solutions.

The coordinate straining employed is piecewise linear with the end points and up to six interior points held invariant. At the option of the user, these additional interior points may be arbitrarily preselected, or chosen from among the minimum, maximum, and critical points automatically located by the program itself.

Critical or shock points are located on the basis of a usersupplied statement function defining the critical value of the dependent variable as a function of some single flow variable. The program default is with dependent variable y defined as pressure coefficient, with the independent variable being Mach number. In this case, the critical value is defined as

$$
\begin{equation*}
y_{\text {crit }}=c_{p}^{*}=\frac{2}{\gamma M_{\infty}^{2}}\left[\left(\frac{2+(\gamma-1) M_{\infty}^{2}}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}-1\right] \tag{A-I}
\end{equation*}
$$

where $\gamma$ is the ratio of specific heats. If instead of surface pressure coefficient, the surface velocity distribution were used, then the value of $y_{\text {crit }}$ would be given by

$$
\begin{equation*}
y_{\text {crit }}=\frac{V^{*}}{\bar{V}_{\infty}}=\left(\frac{\gamma+1}{2+(\gamma-1) M_{\infty}^{2}}\right)^{\frac{1}{\gamma-1}} \tag{A-2}
\end{equation*}
$$

Data for base, calibration, and comparison solutions (if available) are input as an array $x(I)$ of coordinates and a corresponding array $y(I)$ giving the dependent variable at each coordinate location, where $1 \leq I \leq N$ and $N \leq 200$.


The leading edge is at $x=0$; the data are read in beginning on the lower surface at the point farthest from the leading edge and proceeding clockwise around the surface as shown in the sketch. Data for the different solutions need not correspond to identical locations on the surface, except for the initial and final points, i.e., $x(l)$ and $x(N)$ must be the same for all cases. The program normalizes the x coordinates $(0 \leq \mathrm{x} \leq 1)$ such that $\mathrm{x}=0$ corresponds to $I=1$ and $x=1$ to $I=\bar{N}$.

The base and calibration solutions are searched for minimum, maximum, and critical points, e.g.,


Note that the sign of $d y / d x$ in physical coordinates is used in determining the critical points. For example, both critical points indicated on the above figure correspond to $d y / d x>0$ in physical coordinates, since at point \#l the physical coordinate increases in the direction from right to left, whereas at point \#2 it increases from left to right.

The points to be held invariant in straining are either selected from among those located by the program or individually specified by the user, after which the unit coordinate straining and unit perturbation are computed.

Data for the test cases is then read in and nonlinear perturbation solutions constructed from the unit perturbation.


## A. 4 DICTIONARY OF INPUT VARIABLES

A

B

LCHEK Specifies whether or not perturbation solution is to be comparer with an exact solution.

```
LCHEK = 0 ... no comparison
LCHEK = 1 ... comparison
```

LECHO

LOCO(I) Array of length 6 containing subscripts of user-specified invariant points in base solution; operational only when LSPEC $=1$.

LOCl(I) Array of length 6 containing subscripts of user-specified invariant points in calibration solution; operational only when LSPEC $=1$.

IPEERT Specifies type of perturbation; operational only when LCHEK $=1$. and only affects output from plot subroutine.

> LPERT $=1 \ldots$ thickness-ratio perturbation LPERT $=2 \ldots$ angle-of-attack perturbation LPERT $=3 .$. Mach-number perturbation

LSELCT (I) Array of length 6 of which NSELCT elements are read in; operational only when LSPEC $=0$, and specifies nature of points to be held invariant according to the code:

| 1 | $\ldots$ | minimum point held invariant |
| :--- | :--- | :--- |
| 2 | $\ldots$ | maximum point held invariant |
| 3 | $\ldots$ | lst critical point held invariant |
| 4 | $\ldots$ | $2 n d$ critical point held invariant |
| 5 | $\ldots$ | 3rd critical point held invariant |
| 6 | $\ldots$ | 4th critical point held invariant |

Note that critical point ordering is determined from order of occurrence starting at the lower surface at the point furthest from the leading edge and proceeding clockwise around the surface (see PROGRAM DESCRIPTION).

Note that the code numbers can be assigned in any order, e.g.,

$$
\begin{array}{ll}
\operatorname{LSELCT}(1) & =1 \\
\operatorname{LSELCT}(2) & =3 \\
\operatorname{LSELCT}(3) & =4
\end{array} \quad \text { and } \quad \begin{aligned}
& \operatorname{LSELCT}(1) \\
& \operatorname{LSELCT}(2)
\end{aligned}=4
$$

are equivalent, both corresponding to NSELCT $=3$, with the minimum, and first and second critical points held invariant.

LSPEC Controls how invariant points in straining are specified.

$$
\begin{aligned}
& \text { LSPEC }=0 \ldots \text { invariant points selected from } \\
& \text { among those located by the program, } \\
& \text { using the array LSELCT(I) }
\end{aligned}
$$

LUNIT Controls whether or not unit coordinate straining and unit perturbation are printed.

$$
\begin{aligned}
& \text { LUNIT }=0 \text {... no print } \\
& \text { LUNIT }=1 \text {... print }
\end{aligned}
$$

M0,M1,M2 Oncoming Mach numbers in base, calibration, and perturbation solutions.

N

NAME

NCASE

NSELCT

TITLE

QO,Ql,Q2 Values of perturbation parameter in base, calibration, Values of perturbation para
and perturbation solutions.
Number of locations for which data are input for base, calibration, and comparison solutions.

Character string of length 2 which symbolizes dependent variable, e.g., "CP" for pressure coefficient.

Number of cases for which perturbation solutions are to be computed.

Number of points (in addition to end points) to be held invariant in straining; note: $1 \leq N S E L C T \leq 6$.

Character string of length 80; identifies job and is printed as headline on first page of output.

XBASE (I) , XCALB (I) , XCHEK (I) . . .
Arrays of surface coordinates in base, calibration, and comparison solutions.

YBASE (I) , YCALB (I) , YCHEK (I) ...
Arrays of dependent variables in base, calibration, and comparison solutions.

> A. 5 PREPARATION OF INPUT DATA
> A.5.1 Description of Input

Item 1 One card, containing the parameters $N$, NCASE, LSPEC, LECHO, LUNIT, LCHEK, LPERT.

Item 2 One card, containing either
(a) NSELCT, (LSELCT (I) , I=1,NSELCT)
(b) NSELCT, (LOC0 (I), $I=1, N S E L C T$ ), (LOCl (I), I=1,NSELCT)
where (a) and (b) correspond to LSPEC $=0$ and LSPEC $=1$, respectively.

Item 3 One card, containing the character string TITLE.
Item 4 One card, containing the character string NAME.
Item 5 One card, containing the scaling parameters $A$ and $B$.
Item 6 One card, containing MO (real) and Q0.
Item 7 One set of $K$ cards, where $K=1+\operatorname{INT}(N / 8)$, containing data for x coordinate in base solution.

Item 8 One set of K cards, K as above, containing data for dependent variable in base solution.

Item 9 One card, containing Ml (real) and Ql.
Item 10 One set of $K$ cards, $K$ as above, containing data for $x$ coordinate in calibration solution.

Item 11 One set of $K$ cards, $K$ as above, containing data for dependent variable in calibration solution.

Item 12 One card, containing M2 (real) and Q2.
Item 13 One set of $K$ cards, $K$ as above, containing data for $x$ coordinate in comparison solution. This item is required only when LCHEK $=1$.

Item 14 One set of $K$ cards, $K$ as above, containing data for dependent variable in comparison solution. This item is required only when LCHEK $=1$.

Note: Items 12-14 are required, in sequence, as many times as specified by NCASE.

> A.5.2 Format of Input Data
$\underset{\sim}{\omega}$ Item no. 1: 1 card

| Variable | N | NCASE | LSPEC | LECHO | LUNIT | LCHEK | LPERT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Card column | 5 | 10 | 15 | 20 | 25 | 30 | 35 |  |
| Format type | I | I | I | I | I | I | I |  |



| Item no. 2b | $($ LSPEC $=1$ ) : 1 card |  |  | $\Gamma \mathrm{LOCO}$ (NSELCT) |  |  | $\Gamma^{\text {LOCl (NSELCT) }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | NSELCT | LOCO (1) | ---- | 7 | LOC1 (1) | ----- | $V$ | - |
| Card column | 5 | 10 | 15 | 20 | 25 | 30 | 35 | , |
| Format type | I | I | I | I | I | I | I | I |

Item no. 3: 1 card

| Variable <br> Card column | TITLE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | A |  |  |  |  |  |  |  |


| Item no. 4: | 1 card |  |
| :--- | :--- | :--- |
| Variable | NAME |  |
| Card column |  | 2 |
|  |  |  |
| Format type | A |  |
|  |  |  |



Item no. 6: 1 card

| Variable |  |  |  |
| :--- | :--- | :--- | :--- |
| Card column <br> Format type | MO | QO |  |
|  | F | 10 |  |

Item no. 7: K cards, $\mathrm{K}=1+\operatorname{INT}(\mathrm{N} / 8), 8$ values per card

| Variable | XBASE (1) | XBASE (2) | XBASE (3) | ---- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Card column | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |

Format type
Item no. 8: $K$ cards, $K$ as above, 8 values per card

| Variable | YBASE (l) | YBASE (2) | YBASE (3) | ---- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Card column | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |



Item no. 10: $K$ cards, $K$ as above, 8 values per card

| Variable <br> Card column | XCALB (1) | XCALB (2) | XCALB (3) | -- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |

Item no. ll: $K$ cards, $K$ as above, 8 values per card

| Variable <br> Card column | YCALB (1) | YCALB (2) | YCALB (3) | ---- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |

Item no. 12: 1 card


Item no. 13: $K$ cards, $K=1+\operatorname{INT}(N / 8), 8$ values per card

| Variable | XCHEK (1) | XCHEK (2) | XCHEK (3) | --- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Card column | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |

Item no. 14: $K$ cards, $K$ as above, 8 values per card

| Variable | YCHEK (1) | YCHEK (2) | YCHEK (3) | ---- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Card column | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| Format type | F | F | F | F | F | F | F | F |

## A. 6 DESCRIPTION OF OUTPUT

The first output item consists of a banner page, and the card images of the input data, the latter only if LECHO $=1$.

The second item is a page headed by the job title, listing:

1. the input parameters relevant to the actual calculation;
2. the critical values of the dependent variable;
3. the locations of the minimum, maximum, and critical points found by the program;
4. the straining points selected;
5. the invariant points.

Results for unit straining of XBASE, and unit perturbation of the dependent variable are the third item output; this is done only if LUNIT = 1 .

The fourth item (repeated for each case computed) summarizes the results of the calculation. The Mach number, the value of the perturbation paramctcr, and the critical value of the dependent variable are printed first, followed by the locations of the minimum, maximum, and critical points in the perturbation solution and comparison solution (if any). Then follows a table listing XBASE, YBASE, XCALB, YCALB, XPERT (the strained coordinate), and YPERT (the computed value of the dependent variable). If LCHEK $=1$, three additional columns list XCHEK, YCHEK, and YPERT(INT), the latter being interpolated values of YPERT (the computed solution) at the points given by XCHEK. This allows direct numerical comparison of YPERT with YCHEK, since the values of XPERT and XCHEK do not coincide in general.

## A. 7 ERROR MESSAGES

NUMBER OF CRITICAL POINTS IN
BASE AND CALIBRATION SOLUTIONS
ARE UNEQUAL - CALCULATION ENDED
This message will be printed if critical points are specified in straining (LSPEC $=0$ ) and the number of critical points in base and calibration solutions are unequal. The remedy is to avoid use
of critical points in straining, or to use base and calibration solutions having equal numbers of critical points.

NUMBER OF CRITICAL POINTS
SELECTED EXCEEDS NUMBER ACTUALLY LOCATED - CALCULATION ENDED

This message will be printed if more critical points are specified in straining ( LSPEC $=0$ ) than the number located by the program. The remedy is to specify a number of points less than or equal to the actual number.

> ORDER OF SPECIFIED POINTS IN BASE AND CALIBRATION SOLUTIONS DOES NOT CORRESPOND

This message will be printed if the fixed points specified (LSPEC $=0$ ) occur in a different sequence in the base and calibration solutions. The remedy is to use base and calibration solutions having the same qualitative features.

## A. 8 SAMPLE CASE

The sample case presented in this section provides results (6 perturbation calculations and comparisons with 'exact' nonlinear solutions) for a multiple-shock flow for which partial results were provided in figure 14 of the main text. The calculation is for angle-of-attack perturbations of full potential flows past an isolated NACA 0012 airfoil at $M_{\infty}=0.80$. The base and calibration angles-of-attack are $\alpha_{b}=0.500^{\circ}$ and $\alpha_{C}=0.200^{\circ}$. Perturbation results are determined at $\alpha=0.00^{\circ}, 0.10^{\circ}, 0.30^{\circ}$, $0.40^{\circ}, 0.60^{\circ}$, and $0.70^{\circ}$ and are compared with previously-calculated 'exact' nonlinear flows at those angles.

The input data is tabulated in figure A.1, with item numbers corresponding to those indentified in Section A.5.l and A.5.2. The first card, item 0 , indicates that there are 140 points ( $\mathrm{N}=149$ ) at which data will be input for the base, calibration, and comparison solutions; that there will be 5 cases (NCASE $=6$ ) for which perturbation solutions are to be computed, that the invariant points will be located by the program (LSEPC=0), that the input card deck will not be printed (LECHO $=0$ ), that the information regarding the unit perturbation will be printed (LUNIT = l), that there will be a comparison of the perturbation results with the exact solution (LCHEK = l), and that the plot output will denote an angle-of-attack perturbation (LPERT = 2). The second card, item 2a, indicates that there will be three invariant points (NSELCT = 3) in addition to the end points; and that those points will be (1) where the maximum occurs
(LSELCT (1) = 2) i.e. the stagnation point, (2) the first critical point (LSELCT (2) = 3) i.e. the lst shock point found when moving forward on the bottom surface from the trailing edge, and (3) the second critical point $(\operatorname{LSELCT}(3)=4)$ i.e. the 2 nd shock point. The next card, item 3, contains the identifying title. On the next card, item 4, the 2 length character string indicates that the dependent variable for print output will be symbolized by a 'CP' denoting pressure coefficient. Item 5 indicates that the coordinates of the data points to be read in will start at $x=1.0$ on the upper surface (refer to descriptions in A.4). The next card, item 6, indicates that the base flow values of Mach number and perturbation parameter (angle-of-attack in this case) are $\mathrm{MO}=0.80$ and $Q 0=0.50$, respectively. The following 19 cards, item 7, provide the 149 base flow values of the surface coordinates, while the next 19 cards, item 8, provide the 149 base flow values of the dependent variable (pressure coefficient). Items 9, l0, and ll indicate for the calibration flow the corresponding information given by the items 6,7, and 8 for the base flow. Items 12, 13 , and 14 , of which there are six sets corresponding to the 6 cases to be studied, provide analogous information as items 6,7, and 8, but now refer to the 'exact' nonlinear results. These, of course have been previously computed at the indicated
values of angle-of-attack (Q2) given in Item l2, and are included here for comparative purposed to enable assessment of the perturbation results.

Figure A. 2 provides an abbreviated print output for the sample case, while figure A. 3 provides the plot output of the results for the six cases, and display the base (....), calibration (----), perturbation (****), and 'exact' nonlinear (——) flow solutions.

| Column No. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item No. | $\overbrace{1}^{5} 10$ | \% ${ }^{15} \quad 20$ | $\overbrace{1}^{25}$ | $\overbrace{}^{35}$ |  |  |  | 80 |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$ | 1496 | 0 - 0 | $1{ }^{1 /}$ | 2 |  |  |  |  |
|  | 312 | 31.4 |  |  |  |  |  |  |
|  | SAMPLE CASE - ALPHA |  |  |  |  |  |  |  |
|  | $-1.0 .800000^{1.0} .500000$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | . 979495 | . 997758 | . 995132 | . 991597 | . 987091 | . 981656 | . 975290 | . 968014 |
|  | . 959827 | . 950749 | . 940799 | . 930018 | . 918425 | . 906020 | . 892863 | . 878994 |
|  | . 864393 | . 849140 | . 833235 | . 816758 | . 799690 | . 782110 | . 764038 | . 745536 |
|  | . 726603 | . 707279 | . 687646 | . 667702 | . 647510 | . 627108 | . 606518 | . 585801 |
|  | . 564955 | . 544062 | . 523144 | . 502239 | . 481369 | . 460595 | . 439937 | . 419417 |
|  | . 399095 | . 378972 | . 359110 | . 339530 | . 320253 | . 301322 | . 282758 | . 264582 |
|  | . 245838 | . 229547 | . 212731 | . 196413 | .180616 | . 165342 | . 150655 | . 136558 |
|  | . 123054 | . 110166 | . 097919 | . 086338 | . 075427 | . 065211 | . 055678 | . 046895 |
|  | . 038773 | . 031422 | . 024818 | . 018980 | . 013897 | . 009586 | . 006089 | . 003379 |
|  | . 001483 | . 000362 | . 000000 | . 000362 | . 001483 | . 003379 | . 006089 | . 009586 |
|  | . 013897 | . 018980 | . 024818 | . 031422 | . 038773 | . 046895 | . 055678 | . 065211 |
|  | . 075427 | . 086338 | . 097919 | . 110166 | . 123054 | . 136559 | . 150655 | . 165342 |
|  | . 180616 | . 196413 | . 212731 | . 229547 | . 246838 | . 264582 | . 282758 | . 301322 |
|  | . 320253 | . 339530 | . 359110 | . 378972 | . 399095 | . 419417 | . 439937 | . 460595 |
|  | . 481369 | . 502239 | . 523144 | . 544062 | . 564955 | . 585301 | . 606518 | . 627108 |
|  | . 647510 | . 667702 | . 687646 | . 707279 | . 726603 | . 745536 | . 764038 | . 782110 |
|  | . 799690 | . 816758 | . 833235 | . 849140 | . 864393 | . 878994 | . 892863 | . 906020 |
|  | . 918425 | . 930018 | . 940799 | . 950749 | . 959827 | . 968014 | . 975290 | . 981656 |
|  | . 937091 | . 999597 | . 995132 | . 997750 | . 999495 |  |  |  |
| 8 | . 454705 | . 494256 | . 414440 | . 401123 | . 370901 | . 335399 | .303686 | . 274379 |
|  | . 247835 | . 222349 | . 198568 | . 174301 | . 153539 | . 133375 | . 110559 | . 091755 |
|  | . 072839 | . 053774 | . 034598 | . 016276 | -. 000859 | -. 019323 | -. 037707 | -. 055942 |
|  | -. 071935 | -. 090813 | -. 109358 | -. 126685 | -. 145033 | -. 164340 | -. 183752 | -. 202450 |
|  | -.221343 | -. 241733 | -. 2600834 | -. 279560 | -. 295525 | -. 311898 | -. 326422 | -. -20417 |
|  | -.405251 | -. 497623 | -. 600895 | -. 668220 | -. 700287 | -.711940 | -. 712103 | -. 707273 |
|  | -. 697075 | -. 687197 | -. 672616 | -. 656143 | -. 635506 | -. 613957 | -. 591617 | -. 562885 |
|  | -. 530917 | -. 496814 | -. 460480 | -. 416394 | -. 372256 | -. 319692 | -. 268845 | -. 205250 |
|  | -. 131694 | -. 056739 | . 037329 | . 148457 | . 285927 | . 443489 | . 629985 | . 831392 |
|  | 1.017305 | 1. 145374 | 1.161699 | 1.053470 | . 849365 | . 606187 | . 371474 | . 168265 |
|  | . 005374 | -. 133558 | -. 243041 | -. 335771 | -. 410304 | -. 485396 | -. 543403 | -. 590331 |
|  | -.638326 | -. 679361 | -. 716673 | -. $74 \times 187$ | -. 779281 | -. 807499 | -. 834131 | -. 855730 |
|  | -. 876312 | -. 896774 | -. 914886 | -. 932147 | -. 947948 | -. 961781 | -. 974530 | -.9868E4 |
|  | -. 997187 | -1.006749 | -1.016031 | -1.022717 | -1.029553 | -1.034871 | -1.038277 | -1.041815 |
|  | -1.041697 | -1.039425 | -1.033151 | -1.019966 | -. 993560 | -. 947806 | -.857172 | -. 470554 |
|  | -. 047182 | . 060158 | . 067006 | . 059619 | . 053938 | . 049536 | . 050777 | . 055100 |
|  | . 061931 | . 069406 | . 079745 | . 092114 | . 105449 | . 119529 | . 134216 | . 153439 |
|  | . 170576 | . 188732 | . 210704 | . 233000 | . 256263 | . 281298 | . 309273 | . 339810 |
|  | . 374275 | . 403616 | .416177 | . 405153 | . 494705 |  |  |  |
| 67 | .8000001 | . 200000 |  |  |  |  |  |  |
|  | . 995133 | . 994611 | . 990123 | . 984707 | . 978365 | . 971116 | . 962959 | . 953914 |
|  | . 944001 | . 933260 | . 921710 | . 909350 | . 890242 | . 882424 | . 867877 | . 852680 |
|  | . 836534 | . 820417 | . 803411 | . 785896 | . 767891 | . 749457 | . 730593 | .711341 |
|  | . 691777 | . 671909 | . 651791 | . 631465 | . 610951 | . 590310 | . 569541 | . 548725 |
|  | . 527234 | . 507056 | . 486263 | . 465556 | . 444984 | . 424539 | . 404292 | . 384243 |
|  | . 364455 | . 344543 | . 325740 | . 306870 | . 288389 | . 270271 | . 252590 | . 235359 |
|  | . 210602 | . 202340 | . 186596 | . 171371 | . 156730 | . 142674 | . 129207 | . 116351 |
|  | . 104130 | . 092568 | . 081668 | . 071455 | . 061912 | . 053105 | . 044940 | . 037523 |
|  | . 030321 | . 024841 | . 019557 | . 014959 | . 011060 | . 007786 | . 005125 | . 002995 |
|  | . 001399 | . 000360 | . 000000 | . 0006360 | . 001379 | . 002995 | . 005125 | . 007786 |
|  | . 011050 | . 014959 | . 019557 | . 024841 | . 030521 | . 037523 | . 044940 | . 053105 |
|  | . 061912 | . 071455 | . 081668 | . 092568 | . 104130 | . 116351 | . 129207 | . 142674 |
|  | . 156730 | .171371 | . 186590 | . 202340 | . 218602 | . 235359 | . 252590 | . 270271 |
|  | . 288381 | . 306878 | . 325740 | . 344946 | . 364455 | . 384643 | . 404292 | . 424539 |
|  | . 444984 | . 465566 | . 486263 | . 507056 | . 527884 | . 548725 | . 569541 | . 570310 |

Figure A.l- Card input for sample case

| Item No. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | . 610951 | . 631465 | . 651791 | . 671909 | . 691779 | . 711341 | . 730573 | 749457 |
|  | . 767891 | . 785896 | . 803411 | . 820417 | . 836834 | . 852080 | . 867877 | . 852424 |
|  | . 896.242 | . 909350 | . 921710 | . 933260 | . 944001 | . 953914 | . 962959 | . 971116 |
|  | . 978365 | . 984707 | . 990123 | . 994611 | . 978133 |  |  |  |
|  | . 449164 | . 448979 | . 368724 | . 356677 | . 323122 | . 288384 | . 256968 | . 228851 |
|  | . 201234 | . 174994 | . 152770 | . 131478 | .107828 | . 088414 | . 069020 | . 049604 |
|  | . 030206 | . 211790 | -. $00534 i$ | -. 023660 | -. 041742 | -. 059474 | -. 074743 | -. 0926:8 |
|  | -. 109767 | -.125101 | -. 141841 | -. 156432 | -. 170621 | -. 181949 | -. 190490 | -. 196776 |
|  | -. 158872 | -. 203274 | -. 235719 | -. 367492 | -. 586069 | -. 746810 | -. 804612 | -. 822557 |
|  | -. 830010 | -. 830430 | -. 828029 | -. 823224 | -. 815167 | -. 805731 | -. 794610 | -. 780953 |
|  | -. 765371 | -.748500 | -. 728200 | -. 707375 | -. 685933 | -. 658961 | -.629307 | -. 598986 |
|  | -. 555587 | -. 528007 | -.483403 | -. 441185 | -. 394459 | -. 336198 | -. 271604 | -. 211304 |
|  | -. 130609 | -. 051358 | . 052134 | . 163559 | . 296591 | . 449001 | . 621890 | . 810551 |
|  | . 994877 | 1.129638 | 1.169160 | 1.096662 | . 933160 | . 727769 | . 526208 | . 3146353 |
|  | . 190742 | . 056809 | -. 053975 | -. 156954 | -. 241464 | -. 316023 | -. 377381 | -. 443985 |
|  | -. 500232 | -. 542507 | -. 588047 | -.626762 | -.662591 | -.693996 | -. 723334 | -. 751171 |
|  | -. 777519 | -. 778719 | -. 819630 | -.839¢82 | -. 857221 | -. 873286 | -.888000 | -. 901015 |
|  | -. 912830 | -.923922 | -.932634 | -. 940086 | -. 946688 | -. 949963 | -. 952335 | -. 951561 |
|  | -. 946329 | -. 937133 | -. 917745 | -. 885770 | -. 780090 | -. 450920 | -. 135657 | -. 055353 |
|  | -. 048879 | -. 054497 | -. 059285 | -. 058713 | -. 056033 | -. 048960 | -. 035039 | -. 030023 |
|  | -. 017360 | -. 003396 | . 011570 | . 025968 | . 042113 | . 059613 | . 077446 | . 095514 |
|  | . 113310 | . 136492 | . 156974 | . 178507 | . 204143 | . 230640 | . 258908 | . 289733 |
|  | . 324329 | . 357590 | . 369390 | . 449350 | . 449164 |  |  |  |
| $\begin{aligned} & 6 \\ & 7 \end{aligned}$ | . 8000001 | . 0000001 |  |  |  |  |  |  |
|  | . 999495 | . 997758 | . 955132 | . 991507 | . 987099 | . 981656 | . 975290 | . 968014 |
|  | . 959527 | . 950749 | . 940799 | . 930018 | . 918425 | . 906020 | . 892863 | . 878094 |
|  | . 864393 | . 849140 | . 833235 | . 816753 | . 799690 | . 782110 | . 764038 | . 745536 |
|  | . 726603 | . 707279 | . 687046 | . 667702 | . 647510 | . 627108 | . 606518 | . 585801 |
|  | . 564955 | . 544062 | . 525144 | . 502239 | . 481369 | . 460595 | . 437937 | . 415417 |
|  | . 397095 | . 378972 | . 359110 | . 339530 | . 220253 | . 301322 | . 282758 | . 264582 |
|  | . 246838 | . 229547 | . 212731 | . 196413 | . 180616 | . 165342 | . 150655 | . 136558 |
|  | . 123054 | . 110166 | . 077919 | . 086338 | . 075427 | . 055211 | . 055678 | . 046895 |
|  | . 03975 | . 031422 | . 024818 | . 016980 | . 013897 | . 009586 | . 006089 | . 003379 |
|  | . 001403 | . 000362 | . 000000 | . 000362 | . 001483 | . 003377 | . 006089 | . 009586 |
|  | . 013897 | . 018939 | . 024818 | . 031422 | . 038773 | . 046895 | . 055678 | . 065211 |
|  | . 075427 | . 086338 | . 097917 | . 110166 | . 123054 | . 136558 | . 150655 | . 165342 |
|  | . 180616 | . 196413 | . 212731 | . 229547 | . 246838 | . 264582 | . 282758 | . 301322 |
|  | . 320253 | . 339530 | . 359110 | . 378972 | . 399095 | . 419417 | . 439937 | . $4 \times 0595$ |
|  | . 481369 | . 502230 | . 523144 | . 544052 | . 564955 | . 585801 | . 606518 | . 627108 |
|  | . 647510 | . 667702 | . 687646 | . 707279 | . 726603 | . 745536 | . 764038 | . 722110 |
|  | . 799690 | . 816758 | . 833255 | . 849140 | . 864393 | . 878994 | . 892863 | . 906020 |
|  | . 918425 | . 930013 | . 940799 | . 950749 | . 959327 | . 908014 | . 975290 | . 981650 |
|  | . 987091 | . 091597 | . 995132 | . 997758 | . 999495 |  |  |  |
| 8 | . 436539 | . 455539 | . 406037 | . 392728 | . 362550 | . 326615 | . 294714 | . 265263 |
|  | . 238523 | . 213577 | . 189264 | . 164999 | . 144313 | . 124278 | . 101626 | . 063098 |
|  | . 064554 | . 045974 | . 027430 | . 009934 | -. 006143 | -. 023238 | -. 039876 | -. 055862 |
|  | -. 068951 | -. 084043 | -. 097616 | -. 108363 | -. 118872 | -. 125296 | -. 128789 | -. 127030 |
|  | -. 123011 | -. 131093 | -. 199768 | -. 450296 | -. 729836 | -. 837648 | -. 868610 | -. 882942 |
|  | -. 889736 | -. 891484 | -. 891050 | -. 886414 | -. 880317 | -. 872670 | -. 862403 | -. 851047 |
|  | -. 838181 | -. 822789 | -. 805990 | -. 787772 | -. 766224 | -. 744070 | -. 721154 | -. 692722 |
|  | -.662052 | -.629341 | -. 593876 | -. 553475 | -. 510373 | -. 459592 | -. 407829 | -. 341769 |
|  | -. 267177 | -. 193761 | -. 101301 | . 005967 | . 147792 | . 309033 | . 505174 | . 724631 |
|  | . 941542 | 1.107686 | 1.170402 | 1.107686 | . 941542 | . 724631 | . 505174 | . 309038 |
|  | . 147792 | . 008967 | -. 101302 | -. 193761 | -. 267177 | -. 341769 | -. 407829 | -. 459572 |
|  | -.510373 | -. 553475 | -. 593876 | -. 629341 | -. 662053 | -. 692722 | -. 721154 | -. 744070 |
|  | -. 766224 | -. 787772 | -. 805991 | -. 822989 | -. 833182 | -. 851047 | -. 862403 | -. 872670 |
|  | -. 890317 | -. 886415 | -. 891050 | -. 891484 | -. 889736 | -. 862942 | -. 868610 | -. 839649 |
|  | -. 729837 | -. 450298 | -. 199788 | -. 131088 | -. 123011 | -. 127030 | -. 128789 | -. 125296 |
|  | -. 118372 | -. 103362 | -. 097616 | -. 064043 | -. 068951 | -. 055862 | -. 039376 | -. 023238 |
|  | -. 006143 | . 009934 | . 027430 | . 045974 | . 064554 | . 083098 | . 101626 | . 124277 |

Figure A.1- Continued

| Item No. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | . 144313 | . 164999 | . 189264 | . 213576 | . 238623 | . 265263 | . 294714 | . 326615 |
|  | . 362350 | . 392727 | . 406037 | . 486539 | . 486539 |  |  |  |
| 67 | . 8000001 | . 100000 |  |  |  |  |  |  |
|  | . 998531 | . 996261 | . 992734 | . 988238 | . 982815 | . 976464 | . 969203 | . 961034 |
|  | . 951976 | . 942049 | . 931291 | . 919724 | . 907346 | . 894219 | . 230381 | . 865812 |
|  | . 850593 | . 834722 | . 818282 | . 801251 | . 783710 | . 765678 | . 747217 | . 728326 |
|  | . 709045 | . 689455 | . 669555 | . 649407 | . 629051 | . 608507 | . 587835 | . 567035 |
|  | . 546189 | . 525317 | . 504458 | . 483635 | . 462907 | . 442295 | . 421820 | . 401543 |
|  | . 381464 | . 361646 | . 342110 | . 322876 | . 303986 | . 265462 | . 267326 | . 249620 |
|  | . 232356 | . 215585 | . 199302 | . 183537 | . 168293 | . 153635 | . 139563 | . 125082 |
|  | . 113210 | . 100986 | . 085419 | . 078517 | .068305 | . 053770 | . 049977 | . 041834 |
|  | . 034450 | . 027794 | . 021880 | . 016686 | . 012213 | . 008485 | . 005447 | . 003104 |
|  | . 001403 | . 000351 | . 000000 | . 000361 | . 001403 | . 003104 | . 005447 | . 008485 |
|  | . 012213 | . 016686 | . 221850 | . 027794 | . 034450 | . 041834 | .049977 | . 053770 |
|  | . 068305 | . 078517 | . 089419 | . 100986 | . 113216 | . 126082 | . 139563 | . 153635 |
|  | . 168293 | . 183537 | . 199302 | . 215585 | . 232366 | . 249620 | . 26 ¢320 | . 285462 |
|  | . 303986 | . 3228.76 | . 342110 | . 361646 | . 381464 | . 401543 | . 421820 | . 442205 |
|  | . 462.707 | . 453635 | . 504453 | . 525317 | . 546189 | . 567035 | . 537835 | . 608507 |
|  | . 625051 | . 649407 | . 669555 | . 639455 | . 709045 | . 728326 | . 747217 | . 765678 |
|  | . 785710 | . 831251 | . 818.282 | . 834722 | . 850593 | . 865812 | . 860381 | . 694219 |
|  | . 907346 | . 919724 | . 931271 | . 042049 | . 951976 | .96:034 | . 969203 | . 976464 |
|  | . 932315 | . 920238 | . 992734 | . 995261 | . 993881 |  |  |  |
| 8 | . 458893 | . 458791 | . 378081 | . 371267 | . 338852 | . 305476 | . 273840 | . $24530{ }^{-1}$ |
|  | . 213790 | . 193380 | . 168300 | . 146953 | . 126374 | . 103259 | . 084303 | . 065328 |
|  | . 046302 | . 027281 | . 007255 | -. 007440 | -. 025268 | -. 042783 | -. 059836 | -. 074259 |
|  | -. 091057 | -. 106811 | -. 120384 | -. 134618 | -. 145906 | -. 155618 | -. 161043 | -. 162445 |
|  | -. 162500 | -. 168324 | -. 216525 | -. 409216 | -. 665613 | -. $793=70$ | -. 838444 | -.852963 |
|  | -. 855704 | -. 860935 | -. 858258 | -. $855{ }^{\circ} \mathrm{j} 77$ | -. 847175 | -. 837775 | -.827215 | -.815116 |
|  | -. Sc0639 | -. 784352 | -. 766850 | -. 745036 | -. 724693 | -. 70269.4 | -.675207 | -.645547 |
|  | -. 614010 | -. 580003 | -. 541413 | -. 500299 | -. 451419 | -. 402259 | -. 340172 | -. 270822 |
|  | -. 204126 | -. 121671 | -.065336 | . 093513 | . 226491 | . 387549 | . 570605 | . 774910 |
|  | . 771786 | 1.120006 | 1.170101 | 1.103551 | . 940603 | . 733454 | . 52486.3 | . 336346 |
|  | . 173240 | . 040723 | -. 078005 | -. 173834 | -. 256245 | -. 322903 | -. 393505 | $-.455428$ |
|  | -. 501918 | -. 549224 | -. $58993{ }^{\circ}$ | -. 627684 | -. 660684 | -. 691319 | -. 720232 | -. 747349 |
|  | -. 769284 | -. 790569 | -.811391 | -.829097 | -. 645728 | -. 860684 | -.873407 | -.884928 |
|  | -. 895825 | -. 904302 | -. 911372 | -. 917277 | -. 919415 | -. 920037 | -. 916639 | -. 907461 |
|  | -.85.183 | -. 800784 | -. 740397 | -. 440787 | -. 1636.82 | -. 073549 | -. 080289 | -.093776 |
|  | -.096178 | -. 095105 | -. 086954 | -.061014 | -. 070719 | -. 057721 | -. 046263 | -. 031594 |
|  | -. 016004 | . 000205 | . 015695 | . 032676 | . 050827 | . 069131 | . 087505 | . 10595.6 |
|  | . 123537 | . 143 Ec 5 | . 10.989 | . 194712 | . 219897 | . 246217 | .274571 | . 306034 |
|  | . 339369 | . 371654 | . 378391 | . 455995 | . 456893 |  |  |  |
| 7 | . 830030 | . 300000 |  |  |  |  |  |  |
|  | . 990455 | . 097755 | . 995132 | . 991597 | . 987091 | . 981656 | . 975290 | . 968014 |
|  | . 95 ¢ニこ | . 950749 | . 940797 | . 930018 | . 918425 | . 906000 | . 8928.5 | . 878984 |
|  | . 654393 | . $8+10$ | . 833235 | . 816753 | . 799690 | . 782110 | . 7640 Z 3 | . 745536 |
|  | . 726603 | . 707279 | . 685646 | . 667702 | . 647510 | . 627108 | . 605518 | .565501 |
|  | . 564955 | . 544062 | . 523144 | . 502239 | . 481367 | . 460595 | . 437937 | . 419417 |
|  | . 399095 | . 378972 | . 359110 | . 339530 | . 320253 | . 301322 | . 282753 | . 264502 |
|  | . 246 ¢53 | . 229554 | . 212731 | . 996413 | . 180616 | . 165342 | . 150655 | . 135558 |
|  | . 123054 | . 110166 | . 097919 | . 0806338 | . 075427 | . 065211 | . 055678 | . 046875 |
|  | . 038773 | . 031422 | . 024818 | . 016380 | . 013897 | . 009586 | . 006089 | . 003379 |
|  | . 001483 | . 000352 | . 009000 | . 000362 | . 001453 | . 003379 | . 006059 | . $00958{ }^{\circ}$ |
|  | . 013097 | . 018000 | . 024318 | .031422 | . 038773 | . 046855 | . 055078 | . 0055211 |
|  | . 075427 | . 096338 | . $05791{ }^{\circ}$ | . 110106 | . 123054 | . 136553 | . 150655 | . 165342 |
|  | . 180016 | . 190413 | . 212731 | . 220547 | . 246838 | . 264582 | . 282758 | . 301320 |
|  | . 320253 | . 339530 | . 355110 | . 373972 | . 3990 ¢ 5 | . 419417 | . 436937 | . 460595 |
|  | . $4815 \div 9$ | . 502237 | . 523144 | . $5440 \leqslant 2$ | . 564355 | . 5 25801 | . 606513 | .627103 |
|  | . 647510 | . 667702 | .6875it | . 707279 | . 726603 | . 745536 | . 7064035 | . 782110 |
|  | . 790690 | . 816753 | . 635235 | . 849140 | . $864=93$ | . 878594 | . 892053 | . 906020 |
|  | . 916425 | . 930018 | . 940799 | . 950749 | . 959227 | . 908014 | . 775290 | . 9316.55 |

Figure A.l- Continued

Item
No．

| 7 | ． 987091 | .991597 | .995132 | ． 997758 | ． 999495 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | ． 489108 | ． 4888.96 | ． 408558 | ． 395215 | ． 364845 | ． 329132 | .297230 | ． 267752 |
|  | ． 241058 | ． 215931 | ． 191510 | .167103 | ． 146223 | ． 125956 | .103014 | ． 084120 |
|  | ． 065123 | ． 045985 | ． 026752 | ． 008404 | －． 008728 | －． 027140 | －． 045429 | －． 063491 |
|  | －． 079201 | －． 097685 | －． 115657 | －． 132155 | －． 150327 | －． 166937 | －． 183882 | －． 196952 |
|  | －． 212493 | －．225064 | －． 233421 | －． 23.3540 | －． 247096 | －． 284055 | －． 404125 | －． 589334 |
|  | －． 720706 | －． 772628 | －． 795788 | －． 795047 | －． 794404 | －． 790553 | －． 782963 | －． 773702 |
|  | －． 762569 | $-.748667$ | －．732027 | －． 715095 | －． 693840 | －． 671857 | －． 649105 | －． 620354 |
|  | －． 53 2698 | －． $55465^{\prime}+$ | －．5i8249 | －．477942 | －． 432722 | －． 378478 | －． 326477 | －．26235．5 |
|  | －．188543 | $\sim 114700$ | －． 021243 | ． 089693 | ． 227968 | ． 357372 | ． 579277 | 787676 |
|  | ． 938193 | 1.131475 | 1.167507 | 1.078400 | ． 890077 | ． 657697 | ． 429117 | 228601 |
|  | ． 066214 | －．072675 | －． 182969 | －． 274184 | －．342235 | －． 424712 | －． 488345 | －． 535603 |
|  | －．585089 | －． 627328 | －． 666135 | － 69995 | －． 731254 | －． 760614 | －． 783219 | －． 810703 |
|  | －．8323フ0 | －．853357 | －． 871153 | －． 888087 | －． 903609 | －． 917736 | －． 930570 | －． 942263 |
|  | －． 951914 | －．960503 | －．90． 2506 | －． 973530 | －． 978179 | －．980470 | －． 979557 | －． 976684 |
|  | －．906756 | －． 949158 | －． 918569 | －． 860190 | －． 600536 | －． 220297 | －． 035550 | －． 008065 |
|  | －． 014402 | －． 021252 | －． 0256696 | －． 024423 | －．019218 | －． 013954 | －． 004358 | ． 007052 |
|  | ． 017801 | ． 032428 | ． 046981 | ． 003042 | ． 079533 | ． 096314 | ． 113339 | .134662 |
|  | ． 15358 ？ | ． 173302 | ． 196701 | ． 220253 | ． 244641 | ． 270691 | ． 299605 | 331015 |
|  | ． 366298 | ． 396308 | .409349 | ． 489330 | ． 489108 |  |  |  |
| 6 | ． 8000001 | ． 400000 |  |  |  |  |  |  |
|  | ． 99883 ； | ． 990261 | ． 992734 | ． 988238 | ． 962815 | ． 976464 | ． 969203 | ． 961034 |
|  | ． 951976 | ． 942049 | ． 931291 | ． 9197 ¢ 4 | ． 907346 | ． 894219 | ． 880381 | ． 665812 |
|  | ． 850573 | ． 834722 | ． 818282 | ． 801251 | ． 783710 | ． 765678 | ．747217 | ． 728326 |
|  | ． 707045 | ． 689455 | ．669555 | ． 647407 | ． 629051 | ． 608507 | ． 58.78 .35 | ． 567035 |
|  | ． 546189 | ． 525317 | ． 504458 | ． 433635 | ． 462907 | ．442295 | ． 421820 | ． 401543 |
|  | ． 321464 | ． 361646 | ． 342110 | ． 3 2ヘ876 | .303036 | ． 285462 | ． 267326 | －ごム9もこ0 |
|  | ． 232356 | ． 215585 | ． 199302 | ． 183537 | $.168=93$ | ． 153635 | ． 139503 | 1260sへ |
|  | ．113216 | ． 100956 | ． 085419 | ． 678517 | ． $0 \pm 6305$ | ． 058770 | ． 049977 | 04：834 |
|  | ． 034450 | ． 027794 | ．021880 | ． 016685 | ． 0152 S | ． 008485 | ． 605447 | ． 003104 |
|  | ．00：403 | ． 000361 | ． 000000 | ． 000561 | ． 001403 | ． 005104 | ． 005447 | ． 008495 |
|  | ．012213 | ． 016686 | ．OLIESO | ．027794 | ． 034450 | ． 041834 | ． 049977 | ． 053770 |
|  | ． 068305 | ． 070517 | ．057419 | ． 100586 | ．113こ16 | ． 126052 | ． 130563 | ． 153535 |
|  | ．158こ93 | ． 183537 | ． 199302 | ． 215 585 | ． 232506 | ． 249520 | ． 2673 こ6 | ． 285402 |
|  | ． 7039 S | ． 322876 | ． 342110 | ． 361545 | ． 351464 | ． 401543 | ．4ごヒこう | ．442こち5 |
|  | ．402907 | ． 463635 | ． 504458 | ． 525317 | ． 540169 | ． 567035 | ． $5 ¢ 7$ ¢うこ | ．6．08507 |
|  | ． 629051 | ． 649407 | ． 669555 | ． 689455 | ． 709045 | ． 728326 | ．74アべ7 | ． 765678 |
|  | ． 783710 | ． 801251 | ．818こ22 | ． $83+7$ こ2 | ． 650593 | ． 865912 | ． 880381 | ． 894219 |
|  | ． 937346 | ． 919724 | ． 931271 | ． 942049 | ． 951976 | ． 961034 | ． 969203 | 976464 |
|  | ． 982815 | ．90ここう3 | ． 992734 | ． 9 ctis 1 | ． 998.331 |  |  |  |
| 8 | ． 463906 | ． 463542 | ． 353210 | ． 376335 | ． 344041 | .310753 | ． 279223 | ． 250763 |
|  | ． 224307 | ． 198933 | ． 173573 | ．15こ5こ0 | ． 331821 | ． 108699 | ． 087614 | ． 070459 |
|  | ．051172 | ． 031852 | ． 013404 | －． 003 S®4 | －． 022380 | －． 040009 | －． 059045 | －． 075003 |
|  | －． 093807 | －．11ここ03 | －．12929j | －． 148288 | －．166067 | －． 184700 | －． 202042 | －．219409 |
|  | －．23：15 | －．2525こ7 | －． 264450 | －． 275050 | －． 257088 | －． 310062 2 | －． 324371 | －．520500 |
|  | －． 6.51464 | －．723049 | －．749049 | －． 757014 | －． 757558 | －．752284 | －．744825 | －． 735153 |
|  | －．722462 | －． 707479 | －． 690900 | －． 670467 | －． 649353 | －． 627514 | －． 599640 | －． $568830^{\circ}$ |
|  | －． 555928 | －． 501070 | －． 461913 | －． 418310 | －． 367155 | －． 318745 | －． 258751 | －． 190444 |
|  | －． 123351 | －． 030574 | ． 057341 | ． 175989 | ． 308200 | ． 466303 | ． 645304 | ． 836752 |
|  | 1.016671 | 1.1415 E2 | 1.165213 | 1.072227 | ． 857204 | ． 604673 | ．446882 | ． 253724 |
|  | ． 08.9500 | －． 043323 | －． 161762 | －． 257318 | －． 340367 | －． 408038 | －． 476755 | －． 534027 |
|  | －． 576506 | －． 625309 | －． 664559 | －． 700900 | －． 732686 | －． 762251 | －． 700133 | －． 816546 |
|  | －． 838046 | －． 858656 | －．878085 | －． 896170 | －． 913119 | －． 928684 | －． 942283 | －．954587 |
|  | －． 956554 | －． 976380 | －． 925356 | －． 993910 | －． 999744 | －1．005513 | －1．007427 | －1．010893 |
|  | －1．011013 | －1．007516 | －． 993251 | －． 981310 | －． 951183 | －． 898342 | －． 675924 | －． 20.7956 |
|  | －． $01443 \%$ | ． 020454 | ．026005 | ． 017221 | .012851 | ． 013018 | ． 014058 | ． 020132 |
|  | ． 028577 | ． 030929 | ． 049469 | ．062311 | ． 075941 | ． 072 ¢6 1 | ． 108009 | ． 124370 |
|  | ．145106 | ．163695 | ． 183252 | ． 206792 | ． 230823 | ． 256119 | ． 283563 | .314198 |
|  | ． 346700 | ． 378313 | ． 384511 | ． 464269 | ． 463906 |  |  |  |
| 6 | ． 800000 | ． 600000 |  |  |  |  |  |  |

Figure A．l－Continued

| Item No. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | . 998133 | . 994611 | . 990123 | . 984707 | . 978365 | . 971116 |  |  |
|  | . 944001 | . 933260 | . 921710 | . 909350 | . 896242 | . 882424 | . 867877 | . 852680 |
|  | . 836934 | . 820417 | . 803411 | . 785896 | . 767891 | . 749457 | . 730593 | . 711341 |
|  | . 691779 | . 671909 | . 651791 | . 631465 | . 610951 | . 590310 | . 569541 | . 548725 |
|  | . 527884 | . 507056 | . 486263 | . 465566 | . 444984 | . 424539 | . 404292 | . 384243 |
|  | . 364455 | . 344946 | . 325740 | . 306878 | . 288381 | . 270271 | . 252590 | . 235359 |
|  | . 218602 | . 202340 | . 186596 | . 171371 | . 156730 | . 142674 | . 129207 | . 196351 |
|  | . 104130 | . 092568 | . 061663 | . 071455 | . 061912 | . 053105 | . 044940 | . 037523 |
|  | . 030821 | . $0 \hat{4} 4841$ | . 019557 | . 014959 | . 011060 | . 007786 | . 005125 | . 002995 |
|  | . 001399 | . 000360 | . 000000 | . 000350 | . 001399 | . 002995 | . 005125 | . 007786 |
|  | . 011060 | . 014959 | . 019557 | . 024841 | . 030321 | . 037523 | . 044940 | . 053105 |
|  | . 061912 | . 071455 | . 081668 | . 092568 | . 104130 | . 116351 | . 129207 | . 142674 |
|  | . 156730 | . 171371 | . 186596 | . 202340 | . 218602 | . 235359 | . 252590 | . 270271 |
|  | . 288381 | . 306878 | . 325740 | . 344946 | . 364455 | . 384243 | . 404292 | . 424539 |
|  | . 444984 | . 465566 | . 486263 | . 507056 | . 527884 | . 548725 | . 569541 | . 590310 |
|  | . 610351 | . 631465 | . 651791 | . 671909 | . 691779 | . 711341 | . 730593 | . 749457 |
|  | . 767891 | . 785896 | . 803411 | . 820417 | . 835834 | . 852680 | . 867877 | . 882424 |
|  | . 836242 | . 939350 | . 921710 | . 933260 | . 944001 | . 953914 | . 962959 | . 971116 |
|  | . 978365 | . 954707 | . 990123 | . 994611 | . 998133 |  |  |  |
| 8 | . 462483 | . $46: 570$ | . 382264 | . 370167 | . 336918 | . 302577 | . 271523 | . 243132 |
|  | . 216423 | . 190478 | . 168483 | . 147409 | . 124007 | . 104765 | . 085520 | . 066233 |
|  | . 046930 | . 028541 | . 011355 | -. 007085 | -. 025401 | -. 043535 | -. 059445 | -. 078202 |
|  | -. 005599 | -. 113795 | -. 133011 | -. 151223 | -. 170603 | -. 189406 | -. 208636 | -. 229710 |
|  | -. 250142 | -. 270238 | -. 291004 | -. 312540 | -. 331581 | -. 351660 | -. 373582 | -. 403607 |
|  | -.45;352 | -. 51956.0 | -. 581649 | -. 625410 | -. 647867 | -. 656544 | -. 656523 | -. 649851 |
|  | -. 638908 | -. 625234 | -. 606912 | -. 587538 | -. 567393 | -. 540859 | -. 511204 | -. 479994 |
|  | -. 446358 | -. 407620 | -. 365183 | -. 319089 | -. 274597 | -. 218665 | -. 155032 | -. 073624 |
|  | -. 017775 | . 068219 | . 171463 | . 282458 | . 413040 | . 560212 | . 723428 | . 895624 |
|  | 1.054411 | 1.155458 | 1.157109 | 1.047805 | . 852882 | . 625219 | . 410777 | . 224683 |
|  | . 066900 | -. 066937 | -. 176675 | -. 280304 | -. 366630 | -. 442649 | -. 499694 | -. 555702 |
|  | -. 611902 | -. 653195 | -.695534 | -. 731009 | -. 764265 | -. 793388 | -. 820540 | -. 646013 |
|  | -. 870094 | -. 8999922 | -.909713 | -. 929431 | -. 940512 | -. 962757 | -. 977730 | -. 990991 |
|  | -1.003343 | -1.015392 | -1.0こ5594 | -1.035091 | -1.044424 | -1.051292 | -1.058472 | -1.064373 |
|  | -1.008684 | -1.073640 | -1.075761 | -1.077063 | -1.076656 | -1.073327 | -1.0635? 7 | -1.045402 |
|  | -1.011535 | -. 950877 | -. 600516 | -. 212324 | . 066583 | . 111356 | . 110028 | . 101565 |
|  | . 097637 | . 077297 | . 100041 | .104126 | . 111381 | . 121190 | . 132408 | . 144752 |
|  | . 150122 | . 1763 27 | . 192981 | . 211133 | . 233658 | . 257373 | . 283129 | . 311842 |
|  | . 344092 | . 375500 | . 385985 | . 463397 | . 462483 |  |  |  |
|  | . 8000001 | . 7000001 |  |  |  |  |  |  |
|  | . 997307 | -992e22 | . 987410 | . 939072 | . 973828 | . 965677 | . 956638 | . 946732 |
|  | . 935998 | . 924455 | . 912104 | . 899005 | . 885196 | . 870659 | . 855472 | . 839636 |
|  | . 823231 | . 806236 | . 758732 | . 770739 | . 752317 | . 733466 | . 714226 | . 694678 |
|  | . 674821 | . 654716 | . 634403 | . 613903 | . 593275 | . 572520 | . 551718 | . 530890 |
|  | . 510077 | . 483297 | . 468614 | . 448046 | . 427614 | . 407301 | . 387345 | . 367569 |
|  | . 345073 | . 328880 | . 310029 | . 291544 | . 273445 | . 255774 | . 238553 | . 221805 |
|  | . 205551 | . 189815 | . 174597 | . 159060 | .145909 | . 132444 | . 119590 | . 107368 |
|  | . 095302 | . 084896 | . 074673 | . 065117 | . 056291 | . 048101 | . 040650 | . 033903 |
|  | . 027365 | . 022504 | . 017806 | . 013774 | . 010327 | . 007438 | . 005001 | . 002992 |
|  | . 001397 | . 000359 | . 000000 | . 000359 | . 001397 | . 002992 | . 005001 | . 007438 |
|  | . 010327 | . 013774 | . 017806 | . 022504 | . 027865 | . 033903 | . 040650 | . 048101 |
|  | . 056291 | . 065117 | . 074673 | . 084896 | . 095802 | . 107368 | . 119590 | . 132444 |
|  | . 145909 | . 159960 | . 174597 | . 189815 | . 205551 | . 221805 | . 238553 | . 255774 |
|  | . 273445 | . 291544 | . 310029 | . 328880 | . 348073 | . 367569 | . 387345 | . 407381 |
|  | . 427614 | . 448046 | . 468614 | . 489297 | . 510077 | . 530890 | . 551718 | . 572520 |
|  | . 593275 | . 613903 | . 634403 | . 654716 | . 674821 | . 694678 | . 714226 | . 733466 |
|  | . 752317 | . 770739 | . 768732 | . 806236 | . 623231 | . 8396036 | . 855472 | . 870659 |
|  | . 885196 | . 899005 | . 912104 | . 924455 | . 935998 | . 946732 | . 956638 | . 965677 |
|  | . 973828 | . 981072 | . 987410 | . 992822 | . 997307 |  |  |  |
| 8 | . 668728 | . 668307 | . 5 ¢2300 | . 441943 | . 369762 | . 314595 | . 273042 | . 239321 |
|  | . 209654 | . 185547 | . 163233 | . 139135 | . 119414 | . 009830 | . 080298 | $.060812$ |

Figure A.1- Continued

| 6 | . 0 | . 006399 | 8 | . 030082 | . 045955 | -. 064578 | -. 082762 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -. 099687 | -. 118538 | -. 136324 | -. 155210 | -. 173483 | -. 192150 | -. 212667 | -. 232627 |
| 252466 | -. 273361 | -. 295663 | -. 316378 | -. 338889 | -. 361309 | -. 383849 | . 409232 |
| -. 437231 | -. 471741 | -. 509264 | -. 539430 | -. 562879 | -. 577161 | -. 581808 | -. 579150 |
| -. .571404 | -. 557257 | -. 540964 | -.523283 | -. 498949 | -. 471497 | . 441655 | 99089 |
| -. 372779 | -. 334533 | -. 290600 | . 249155 | -. 196686 | -. 137258 | . 081064 | . 012045 |
| . 064911 | . 156050 | . 250797 | . 360544 | . 482506 | . 618924 | . 770906 | . 932586 |
| 1.076892 | 1.162004 | 1.149382 | 1.027122 | . 829499 | . 598496 | . 380563 | . 198798 |
| . 049066 | . 077266 | -. 187047 | -. 280101 | -. 373953 | -. 451564 | -.515750 | -. 564158 |
| -. 619415 | . 668570 | . 705900 | . 744879 | -. 777275 | -. 808043 | -. 634895 | -.859770 |
| . 8.33 | 906457 | . 925930 | -. 944910 | -. 963673 | -. 979917 | -. 995537 | -1.010093 |
| -1.023092 | -i.035272 | -1.047226 | -1.057403 | -1.066934 | -1.076385 | -1.083463 | -1.090957 |
| -1.097319 | -1.102275 | -1.108152 | -1.111634 | -1.114988 | -1.117839 | -1.119¢57 | -1.119530 |
| -1.117793 | . 112354 | -1.098409 | -1.070169 | -1.009848 | -. 890889 | -. 417645 | . 062612 |
| . 154654 | . 163569 | . 160082 | . 157352 | . 156120 | . 158521 | . 164093 | . 171487 |
| . 180676 | . 191367 | . 207425 | . 222816 | . 240828 | . 265001 | . 293844 | 331050 |
| . 382321 | . 450996 | . 528020 | . 669150 | .668728 |  |  |  |

Figure A.l- Concluded

| * |  | * |
| :---: | :---: | :---: |
| * | PROGRAM PERTURB | * |
| * |  | * |
| * | CALCULATES HONLINEAR SINGLE-PARAMETER | * |
| * |  | * |
| * | CONTINUOUS OR DISCONTINUOUS | * |
| * |  | * |
| * | PERTURBATION SOLUTIONS | * |
| * |  | * |
| * | WHICH REPRESENT A CHANGE IN EITHER | * |
| * |  | * |
| * | GEOMETRY OR FLOW CONDITIONS | * |
| * |  | * |
| * | BY EMPLOYING A STRAINED-COORDINATE PROCEDURE | * |
| * |  | * |
| * | UTILIZING A UNIT PERTURBATION DETERMINED FROM | * |
| * |  | * |
| * | TWO PREVIOUSLY CALCULATED | * |
| * |  | * |
| * | 'BASE' AND 'CALIBRATION' SOLUTIONS | * |
| * |  | * |
| * | DISPLACED FROM ONE ANOTHER BY SOME REASONABLE | * |
| * |  | * |
| * | CHANGE IN GEOMETRY OR FLOW CONDITION | * |
| * |  | * |
| * |  | * |
| * | WRITTEN BY | * |
| * |  | * |
| * | James P. ELLIOTT AND StEPhen S. Stahara | * |
| * |  | * |
| * |  | * |
| * | NIELSEN ENGINEERING AND RESEARCH, INC. | * |
| * |  | * |
| * |  | * |
| * |  | * |
|  |  |  |

[^1]
$N=149$
$A=-1.0 \quad B=1.0$

BASE SOLUTION: $\quad M O=0.8000 \quad$ QO $=0.5000$
CALIBRATION SOLN: $\quad M 1=0.8000 \quad$ Q1 $=0.2000$

Figure A.2- Abbreviated print output for sample case

```
<<<<<<<<<<< CRITICAL VALUES OF CP >>>>>>>>>>
    BASE SOLUTION: CPCRIT =-0.4346
    CALIBRATION SOLN: CPCRIT = -0.4346
<<<<< LOCATIONS OF MIN., MAX., AND CRITICAL PTS. >>>>>
    (* DENOTES POINT ON LOWER SURFACE)
        BASE SOLUTION:
            MINIMUM AT X = 0.4606 (POINT #112)
            MAXINIUM AT X = 0.0000 (POINT # 75)
            2 CRITICAL POINT(S):
                    IST AT X = 0.3924* (AFTER POINT # 41)
                    2ND AT }X=0.6288 (AFTER POINT #120)
        CALIBRATION SOLN:
            MINIMUM AT X = 0.4043 (POINT #111)
                MAYIMUM AT X = 0.0000 (FOIHT # 75)
                2 CRITICAL POINT(S):
                1ST AT X = 0.4592* (AFTER POINT # 36)
                2ND AT X = 0.5498 (AFTER POINT #\{8)
<<<<<<<<<<< STRAINIFG POINTS SELECTED >>>>>>>>>>
    NUMBER OF FIXED POINTS : 5
    FIXED POINTS SELECTED (IN ADDITION TO END POINTS) :
            POENT OF MAXIMUM CP
            CPCRIT (1ST OF 2)
            CPCRIT (2ND OF 2)
<<<<<<<<<<< LOCATION OF FIXED POINTS >>>>>>>>>>
(* DENOTES POINT ON LOWER SURFACE)
- base solution:
\(\operatorname{XFIX(1)}=1.0000 *\)
\(X F I X(2)=0.3924 *\)
XFIX(3) = 0.0000
XFIX(4) = 0.6288
XFIX(5) = 1.0000
CALIBRATION SOLN:
```

```
XFIX(1) = 1.0000*
```

XFIX(1) = 1.0000*
XFIX(2) = 0.4592*
XFIX(2) = 0.4592*
XFIX(3) = 0.0000
XFIX(3) = 0.0000
XFIX(4) = 0.5490
XFIX(4) = 0.5490
XFIX(5) = 1.0000

```
XFIX(5) = 1.0000
```



| POINT | XBASE | XSTRUNIT | CPUNIT |
| ---: | :--- | :--- | ---: |
|  |  |  |  |
| 1 | 0.9995 | 0.9996 | 0.1516 |
| 2 | 0.9978 | 0.9980 | 0.1503 |
| 3 | 0.9351 | 0.9957 | -0.1153 |
| 4 | 0.9916 | 0.9925 | -0.0350 |
| 5 | 0.9871 | 0.9885 | 0.0192 |
| 6 | 0.9817 | 0.9837 | -0.0527 |
| 7 | 0.9753 | 0.9780 | -0.0591 |
| 8 | 0.9680 | 0.9715 | -0.0533 |
| 9 | 0.9 .98 | 0.9642 | -0.0470 |
| 10 | 0.9507 | 0.9562 | -0.0418 |
| 11 | 0.9408 | 0.9473 | -0.0390 |
| 12 | 0.9300 | 0.9377 | -0.0386 |
| 13 | 0.9184 | 0.9274 | -0.0339 |
| 14 | 0.9060 | 0.9164 | -0.0339 |
| 15 | 0.8929 | 0.9046 | -0.0415 |
| 16 | 0.8790 | 0.8923 | -0.0351 |
| 17 | 0.8644 | 0.8793 | -0.0381 |
| 18 | 0.8491 | 0.8657 | -0.0417 |
| 19 | 0.8332 | 0.8516 | -0.0455 |
| 20 | 0.8168 | 0.8369 | -0.0468 |
| 21 | 0.7997 | 0.8217 | -0.0471 |
| 22 | 0.7821 | 0.8061 | -0.0556 |
| 23 | 0.7640 | 0.7900 | -0.0611 |
| 24 | 0.7455 | 0.7735 | -0.0662 |
| 25 | 0.7266 | 0.7567 | -0.0647 |
| 26 | 0.7073 | 0.7395 | -0.0775 |
| 27 | 0.6876 | 0.7220 | -0.0888 |
| 28 | 0.6677 | 0.7043 | -0.0928 |
| 29 | 0.6475 | 0.6863 | -0.1067 |
| 30 | 0.6271 | 0.6681 | -0.1201 |
| 31 | 0.6065 | 0.6498 | -0.1349 |
| 32 | 0.5858 | 0.6314 | -0.1532 |
| 33 | 0.5650 | 0.6128 | -0.1734 |
| 34 | 0.5449 | 0.5942 | -0.2064 |
| 35 | 0.5231 | 0.5756 | -0.2428 |
| 36 | 0.5022 | 0.5570 | -0.2809 |
| 37 | 0.4814 | 0.5384 | -0.3257 |
| 38 | 0.4606 | 0.5199 | -0.3711 |
| 39 | 0.4399 | 0.5015 | -0.3898 |
| 40 | 0.4194 | 0.4833 | -0.3191 |
| 41 | 0.3991 | 0.4652 | -0.1193 |
| 42 | 0.3790 | 0.4435 | 0.2948 |
| 43 | 0.3591 | 0.4203 | 0.5270 |
| 44 | 0.3395 | 0.3974 | 0.4753 |
| 45 | 0.3203 | 0.3748 | 0.4194 |
| 46 | 0.3013 | 0.3526 | 0.3944 |
| 47 | 0.2828 | 0.3309 | 0.3886 |
| 48 | 0.2646 | 0.3096 | 0.3889 |
| 49 | 0.2468 | 0.2889 | 0.3877 |
| 50 | 0.2295 | 0.2686 | 0.3917 |
| 51 | 0.2127 | 0.2490 | 0.3971 |
|  |  |  |  |


| 52 | 0.1964 | 0.2299 | 0.3990 |
| :--- | :--- | :--- | :--- |
| 53 | 0.1806 | 0.2114 | 0.4079 |
| 54 | 0.1653 | 0.1935 | 0.4105 |
| 55 | 0.1507 | 0.1763 | 0.4084 |
| 56 | 0.1366 | 0.1598 | 0.4252 |
| 57 | 0.1231 | 0.1440 | 0.4357 |
| 58 | 0.1102 | 0.1289 | 0.4411 |
| 59 | 0.0979 | 0.1146 | 0.4454 |
| 60 | 0.0863 | 0.1010 | 0.4572 |
| 61 | 0.0754 | 0.0883 | 0.4672 |
| 62 | 0.0652 | 0.0763 | 0.4799 |
| 63 | 0.0557 | 0.0652 | 0.4718 |
| 64 | 0.0459 | 0.0549 | 0.4757 |
| 65 | 0.0388 | 0.0454 | 0.4779 |
| 66 | 0.0314 | 0.0368 | 0.4074 |
| 67 | 0.0248 | 0.0290 | 0.4954 |
| 68 | 0.0190 | 0.0222 | 0.4945 |
| 69 | 0.0139 | 0.0163 | 0.5134 |
| 70 | 0.0096 | 0.0112 | 0.5078 |
| 71 | 0.0061 | 0.0071 | 0.4605 |
| 72 | 0.0034 | 0.0040 | 0.3529 |
| 73 | 0.0015 | 0.0017 | 0.2112 |
| 74 | 0.0004 | 0.0004 | 0.0803 |
| 75 | 0.0000 | 0.0000 | -0.0247 |
| 76 | 0.0004 | 0.0003 | -0.1734 |
| 77 | 0.0015 | 0.0013 | -0.3329 |
| 78 | 0.0034 | 0.0030 | -0.4227 |
| 79 | 0.0061 | 0.0053 | -0.4710 |
| 80 | 0.0096 | 0.0084 | -0.4994 |
| 81 | 0.0139 | 0.0121 | -0.4931 |
| 82 | 0.0190 | 0.0166 | -0.5033 |
| 83 | 0.0248 | 0.0217 | -0.4911 |
| 84 | 0.0314 | 0.0275 | -0.4720 |
| 85 | 0.0388 | 0.0339 | -0.4489 |
| 86 | 0.0459 | 0.0410 | -0.4620 |
| 87 | 0.0557 | 0.0487 | -0.4517 |
| 88 | 0.0652 | 0.0570 | -0.4046 |
| 89 | 0.0354 | 0.0659 | -0.4024 |
| 90 | 0.0863 | 0.0755 | -0.3963 |
| 91 | 0.0979 | 0.0856 | -0.3821 |
| 92 | 0.1102 | 0.0963 | -0.3693 |
| 93 | 0.1231 | 0.1076 | -0.3594 |
| 94 | 0.1366 | 0.1194 | -0.3552 |
| 95 | 0.1507 | 0.1317 | -0.3520 |
| 96 | 0.1653 | 0.14466 | -0.3368 |
| 97 | 0.1806 | 0.1579 | -0.3235 |
| 98 | 0.1984 | 0.1717 | -0.3246 |
| 99 | 0.2127 | 0.1860 | -0.3201 |
| 100 | 0.2275 | 0.2007 | -0.3143 |
| 101 | 0.2468 | 0.2158 | -0.3123 |
| 102 | 0.2 .46 | 0.2313 | -0.3079 |
| 103 | 0.2828 | 0.2472 | -0.3037 |
| 104 | 0.3013 | 0.2634 | -0.3028 |
| 105 | 0.3203 | 0.2800 | -0.2994 |
| 106 | 0.3395 | 0.2969 | -0.2961 |
| 107 | 0.3591 | 0.3140 | -0.2961 |
| 108 | 0.3790 | 0.3313 | -0.2930 |
| 109 | 0.3991 | 0.3489 | -0.2937 |
| 110 | 0.4194 | 0.3667 | -0.2927 |
| 111 | 0.4399 | 0.3846 | -0.2942 |
|  |  |  |  |

Figure A.2- Continued

| 112 | 0.4606 | 0.4027 | -0.2989 |
| :--- | :--- | :--- | :--- |
| 113 | 0.4314 | 0.4209 | -0.3000 |
| 114 | 0.5022 | 0.4391 | -0.3053 |
| 115 | 0.5231 | 0.4574 | -0.3079 |
| 116 | 0.5441 | 0.4757 | -0.3077 |
| 117 | 0.5650 | 0.4939 | -0.2921 |
| 118 | 0.5858 | 0.5122 | -0.2933 |
| 119 | 0.6065 | 0.5303 | -0.3833 |
| 120 | 0.6271 | 0.5483 | -0.0654 |
| 121 | 0.6475 | 0.5724 | 0.2949 |
| 122 | 0.6677 | 0.5969 | 0.3781 |
| 123 | 0.6876 | 0.6211 | 0.3958 |
| 124 | 0.7073 | 0.6449 | 0.3910 |
| 125 | 0.7266 | 0.6684 | 0.3758 |
| 126 | 0.7455 | 0.6913 | 0.3521 |
| 127 | 0.7640 | 0.7138 | 0.3283 |
| 128 | 0.7821 | 0.7357 | 0.3056 |
| 129 | 0.7997 | 0.7570 | 0.2892 |
| 130 | 0.8168 | 0.7777 | 0.2640 |
| 131 | 0.8332 | 0.7977 | 0.2435 |
| 132 | 0.8491 | 0.8170 | 0.2301 |
| 133 | 0.8644 | 0.8355 | 0.2154 |
| 134 | 0.8790 | 0.8532 | 0.1976 |
| 135 | 0.8929 | 0.8700 | 0.1802 |
| 136 | 0.9060 | 0.8860 | 0.1773 |
| 137 | 0.9184 | 0.9011 | 0.1615 |
| 138 | 0.9300 | 0.9151 | 0.1423 |
| 139 | 0.9408 | 0.9282 | 0.1398 |
| 140 | 0.9507 | 0.9403 | 0.1259 |
| 141 | 0.9578 | 0.9513 | 0.1090 |
| 142 | 0.9680 | 0.9612 | 0.0929 |
| 143 | 0.9753 | 0.9700 | 0.0783 |
| 144 | 0.9817 | 0.9777 | 0.0614 |
| 145 | 0.9871 | 0.9843 | 0.0620 |
| 146 | 0.9916 | 0.9898 | 0.1164 |
| 147 | 0.9951 | 0.9941 | -0.0799 |
| 148 | 0.9978 | 0.9973 | 0.1531 |
| 149 | 0.9995 | 0.9994 | 0.1520 |
| 14 |  |  |  |

Figure A.2- Continued

## 

* OUTPUT FOR CASE \#1 OF 6

$M 2=0 . \varepsilon 000$
$Q 2=0.0000$
CPCRIT $=-0.4346$
<<<<< LOCATICNS OF MIN., MAX., AND CRITICAL PTS. >>>>> (* DENOTES DOINT ON LOWER SURFACE)

PERTURB'TION SOLN:

| MINIMUM AT $x=0.4112 *$ | (POINT \# 45) |  |
| ---: | :--- | :--- |
| MAYIMUM AT $x=0.0000^{*}$ | (POINT \# 75) |  |
| 2CRITICAL POINT(S): |  |  |
| 1ST AT $x=0.5024 *$ | (AFTER POINT \#41) |  |
| 2ND AT $x=0.4961$ | (AFTER POINT \#120) |  |

## COMPARISON SOLN:

| MINIMUM AT $x=0.3790 *$ | (POINT \#42) |  |
| ---: | :--- | :--- |
| MAKIMUM AT $X=0.0000$ | (POINT \# 75) |  |
| 2 CRITICAL POINT(S): |  |  |
| 1ST AT $X=0.5035 *$ | (AFTER POINT \#35) |  |
| 2ND AT $X=0.5035$ | (AFTER POINT \#114) |  |


|  |  |  |  |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| POINT | XBASE | CPBASE | XCALB | CPCALB | XPERT | CPPERT | XCHEK | CPCHEK | CPPERT(INT) |
|  |  |  |  |  |  |  |  |  |  |
| 1 | 0.9995 | 0.4947 | 0.9981 | 0.4492 | 0.9996 | 0.4189 | 0.9995 | 0.4865 | 0.4189 |
| 2 | 0.9978 | 0.4943 | 0.9946 | 0.4490 | 0.9982 | 0.4191 | 0.9978 | 0.4865 | 0.4293 |
| 3 | 0.9951 | 0.4144 | 0.9901 | 0.3687 | 0.9960 | 0.4721 | 0.9951 | 0.4060 | 0.4556 |
| 4 | 0.9916 | 0.4011 | 0.9847 | 0.3567 | 0.9931 | 0.4186 | 0.9916 | 0.3927 | 0.3946 |
| $\mathbf{5}$ | 0.9871 | 0.3709 | 0.9784 | 0.3231 | 0.9895 | 0.3613 | 0.9871 | 0.3623 | 0.3615 |
| 6 | 0.9817 | 0.3354 | 0.9711 | 0.2884 | 0.9850 | 0.3618 | 0.9817 | 0.3266 | 0.3433 |
| 7 | 0.9753 | 0.3037 | 0.9630 | 0.2570 | 0.9798 | 0.3332 | 0.9753 | 0.2947 | 0.3087 |
| 8 | 0.9680 | 0.2744 | 0.9539 | 0.2283 | 0.9739 | 0.3010 | 0.9680 | 0.2653 | 0.2750 |
| 9 | 0.9598 | 0.2478 | 0.9440 | 0.2012 | 0.9672 | 0.2713 | 0.9598 | 0.2386 | 0.2440 |
| 10 | 0.9507 | 0.2228 | 0.9333 | 0.1750 | 0.9598 | 0.2438 | 0.9507 | 0.2136 | 0.2155 |
| 11 | 0.9408 | 0.1986 | 0.9217 | 0.1528 | 0.9517 | 0.2180 | 0.9408 | 0.1893 | 0.1886 |
| 12 | 0.9300 | 0.1743 | 0.9093 | 0.1315 | 0.9428 | 0.1936 | 0.9300 | 0.1650 | 0.1638 |
| 13 | 0.9184 | 0.1535 | 0.8962 | 0.1078 | 0.9334 | 0.1705 | 0.9184 | 0.1443 | 0.1418 |
| 14 | 0.9060 | 0.1334 | 0.8824 | 0.0884 | 0.9232 | 0.1503 | 0.9060 | 0.1243 | 0.1187 |
| 15 | 0.8929 | 0.1106 | 0.8679 | 0.0690 | 0.9125 | 0.1313 | 0.8929 | 0.1016 | 0.0972 |
| 16 | 0.8790 | 0.0918 | 0.8527 | 0.0496 | 0.9012 | 0.1093 | 0.8790 | 0.0831 | 0.0777 |
| 17 | 0.8644 | 0.0728 | 0.8368 | 0.0302 | 0.8893 | 0.0919 | 0.8644 | 0.0646 | 0.0581 |
| 18 | 0.8491 | 0.0538 | 0.8204 | 0.0118 | 0.8768 | 0.0746 | 0.8491 | 0.0460 | 0.0382 |
| 19 | 0.8332 | 0.0346 | 0.8034 | -0.0053 | 0.8638 | 0.0574 | 0.8332 | 0.0274 | 0.0195 |
| 20 | 0.8168 | 0.0163 | 0.7859 | -0.0237 | 0.8504 | 0.0397 | 0.8168 | 0.0099 | 0.0027 |
| 21 | 0.7997 | -0.0009 | 0.7679 | -0.0417 | 0.8364 | 0.0227 | 0.7997 | -0.0061 | -0.0151 |
| 22 | 0.7821 | -0.0193 | 0.7495 | -0.0595 | 0.8221 | 0.0085 | 0.7821 | -0.0232 | -0.0338 |
| 23 | 0.7640 | -0.0377 | 0.7306 | -0.0747 | 0.8073 | -0.0072 | 0.7640 | -0.0399 | -0.0496 |
| 24 | 0.7455 | -0.0559 | 0.7113 | -0.0926 | 0.7922 | -0.0228 | 0.7455 | -0.0559 | -0.0645 |
| 25 | 0.7266 | -0.0719 | 0.6918 | -0.1098 | 0.7767 | -0.0396 | 0.7266 | -0.0690 | -0.0818 |

Figure A.2- Continued

| 26 | 0.7073 | -0.0908 | 0.6719 | -0.1252 | 0.7609 | -0.0520 | 0.7073 | -0.0840 | -0.0961 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 0.6876 | -0.1094 | 0.6518 | -0.1418 | 0.7449 | -0.0650 | 0.6876 | -0.0976 | -0.1099 |
| 28 | 0.6677 | -0.1267 | 0.6315 | -0.1564 | 0.7286 | -0.0803 | 0.6677 | -0.1084 | -0.1225 |
| 29 | 0.6475 | -0.1460 | 0.6110 | -0.1706 | 0.7121 | -0.0927 | 0.6475 | -0.1189 | -0.1332 |
| 30 | 0.6271 | -0.1643 | 0.5903 | -0.1819 | 0.6955 | -0.1043 | 0.6271 | -0.1253 | -0.1385 |
| 31 | 0.6065 | -0.1838 | 0.5695 | -0.1905 | 0.6787 | -0.1163 | 0.6065 | -0.1288 | -0.1391 |
| 32 | 0.5858 | -0.2024 | 0.5487 | -0.1968 | 0.6617 | -0.1259 | 0.5858 | -0.1270 | -0.1356 |
| 33 | 0.5650 | -0.2213 | 0.5279 | -0.1989 | 0.6447 | -0.1347 | 0.5650 | -0.1230 | -0.1284 |
| 34 | 0.5441 | -0.2417 | 0.5071 | -0.2033 | 0.6277 | -0.1385 | 0.5441 | -0.1311 | -0.1347 |
| 35 | 0.5231 | -0.2608 | 0.4863 | -0.2357 | 0.6106 | -0.1394 | 0.5231 | -0.1998 | -0.2159 |
| 36 | 0.5022 | -0.2786 | 0.4656 | -0.3675 | 0.5935 | -0.1381 | 0.5022 | -0.4503 | -0.4368 |
| 37 | 0.4014 | -0.2955 | 0.4450 | -0.5861 | 0.5765 | -0.1327 | 0.4814 | -0.7298 | -0.6696 |
| 38 | 0.4606 | -0.3119 | 0.4245 | -0.7468 | 0.5595 | -0.1263 | 0.4606 | -0.8396 | -0.8651 |
| 39 | 0.4399 | -0.3264 | 0.4043 | -0.8046 | 0.5426 | -0.1355 | 0.4399 | -0.8686 | -0.8992 |
| 40 | 0.4174 | -0.3504 | 0.3842 | -0.8226 | 0.5259 | -0.1909 | 0.4194 | -0.8829 | -0.9096 |
| 41 | 0.3991 | -0.4033 | 0.3645 | -0.8300 | 0.5093 | -0.3436 | 0.3991 | -0.8897 | -0.9096 |
| 42 | 0.3790 | -0.4976 | 0.3449 | -0.8304 | 0.4866 | -0.6450 | 0.3790 | -0.8915 | -0.9082 |
| 43 | 0.3591 | -0.6009 | 0.3257 | -0.8280 | 0.4611 | -0.8644 | 0.3591 | -0.8910 | -0.9056 |
| 44 | 0.3375 | -0.6682 | 0.3069 | -0.8232 | 0.4359 | -0.9059 | 0.3395 | -0.8864 | -0.9016 |
| 45 | 0.3203 | -0.7003 | 0.2884 | -0.8152 | 0.4112 | -0.9100 | 0.3203 | -0.8803 | -0.8942 |
| 46 | 0.3013 | -0.7119 | 0.2703 | -0.8057 | 0.3869 | -0.9091 | 0.3013 | -0.8727 | -0.8860 |
| 47 | 0.2828 | -0.7121 | 0.2526 | -0.7946 | 0.3630 | -0.9064 | 0.2828 | -0.8624 | -0.8765 |
| 48 | 0.2646 | -0.7073 | 0.2354 | -0.7810 | 0.3397 | -0.9017 | 0.2646 | -0.8510 | -0.8648 |
| 49 | 0.2438 | -0.6991 | 0.2186 | -0.7654 | 0.3169 | -0.8929 | 0.2468 | -0.8382 | -0.8514 |
| 50 | 0.2275 | -0.6872 | 0.2023 | -0.7485 | 0.2947 | -0.8830 | 0.2295 | -0.8230 | -0.8370 |
| 51 | 0.2127 | -0.6726 | 0.1866 | -0.7282 | 0.2731 | -0.8711 | 0.2127 | -0.8060 | -0.8197 |
| 52 | 0.1964 | -0.6561 | 0.1714 | -0.7074 | 0.2522 | -0.8556 | 0.1964 | -0.7878 | -0.7995 |
| 53 | 0.1806 | -0.6355 | 0.1567 | -0.6859 | 0.2319 | -0.8395 | 0.1806 | -0.7662 | -0.7814 |
| 54 | 0.1653 | -0.6140 | 0.1427 | -0.6590 | 0.2123 | -0.8192 | 0.1653 | -0.7441 | -0.7601 |
| 55 | 0.1507 | -0.5916 | 0.1292 | -0.6298 | 0.1934 | -0.7958 | 0.1507 | -0.7212 | -0.7348 |
| 56 | 0.1366 | -0.5629 | 0.1164 | -0.5989 | 0.1753 | -0.7755 | 0.1366 | -0.6927 | -0.7068 |
| 57 | $0.1 \div 31$ | -0.5308 | 0.1041 | -0.5656 | 0.1580 | -0.7487 | 0.1231 | -0.6621 | -0.6767 |
| 58 | 0.1102 | -0.4968 | 0.0926 | -0.5280 | 0.1414 | -0.7174 | 0.1102 | -0.6293 | -0.6450 |
| 59 | 0.0979 | -0.4605 | 0.0817 | -0.4884 | 0.1257 | -0.6832 | 0.0979 | -0.5939 | -0.6090 |
| 60 | 0.0863 | -0.4184 | 0.0715 | -0.4412 | 0.1108 | -0.6470 | 0.0863 | -0.5535 | -0.5689 |
| 61 | 0.0754 | -0.3723 | 0.0619 | -0.3945 | 0.0968 | -0.6058 | 0.0754 | -0.5104 | -0.5224 |
| 62 | 0.0652 | -0.3197 | 0.0531 | -0.3362 | 0.0837 | -0.5597 | 0.0652 | -0.4596 | -0.4704 |
| 63 | 0.0557 | -0.2688 | 0.0449 | -0.2716 | 0.0715 | -0.5047 | 0.0557 | -0.4078 | -0.4116 |
| 64 | 0.0469 | -0.2053 | 0.0375 | -0.2113 | 0.0602 | -0.4431 | 0.0469 | -0.3418 | -0.3492 |
| 65 | 0.0388 | -0.1317 | 0.0308 | -0.1366 | 0.0498 | -0.3706 | 0.0388 | -0.2672 | -0.2838 |
| 66 | 0.0314 | -0.0567 | 0.0248 | -0.0514 | 0.0403 | -0.3004 | 0.0314 | -0.1938 | -0.2038 |
| 67 | 0.0248 | 0.0373 | 0.0196 | 0.0521 | 0.0319 | -0.2104 | 0.0248 | -0.1013 | -0.1055 |
| 68 | 0.0190 | 0.1485 | 0.0150 | 0.1636 | 0.0244 | -0.0988 | 0.0190 | 0.0090 | 0.0069 |
| 69 | 0.0139 | 0.2859 | 0.0111 | 0.2966 | 0.0178 | 0.0292 | 0.0139 | 0.1478 | 0.1436 |
| 70 | 0.0096 | 0.4435 | 0.0078 | 0.4490 | 0.0123 | 0.1896 | 0.0096 | 0.3090 | 0.3170 |
| 71 | 0.0061 | 0.6300 | 0.0051 | 0.6219 | 0.0078 | 0.3998 | 0.0061 | 0.5052 | 0.5266 |
| 72 | 0.0034 | 0.8314 | 0.0030 | 0.8106 | 0.0043 | 0.6549 | 0.0034 | 0.7246 | 0.7570 |
| 73 | 0.0015 | 1.0193 | 0.0014 | 0.9949 | 0.0019 | 0.9137 | 0.0015 | 0.9415 | 0.9699 |
| 74 | 0.0104 | 1.1454 | 0.0004 | 1.1296 | 0.0005 | 1.1052 | 0.0004 | 1.1077 | 1.1206 |
| 75 | 0.0500 | 1.1617 | 0.0000 | 1.1692 | 0.0000 | 1.1740 | 0.0000 | 1.1704 | 1.1739 |
| 76 | 0.0004 | 1.0535 | 0.0004 | 1.0967 | 0.0003 | 1.1402 | 0.0004 | 1.1077 | 1. 1294 |
| 77 | 0.0015 | 0.8493 | 0.0014 | 0.9332 | 0.0012 | 1.0158 | 0.0015 | 0.9415 | 0.9745 |
| 78 | 0.0034 | 0.6062 | 0.0030 | 0.7278 | 0.0027 | 0.8175 | 0.0034 | 0.7246 | 0.7479 |
| 79 | 0.0061 | 0.3715 | 0.0051 | 0.5262 | 0.0048 | 0.6070 | 0.0061 | 0.5052 | 0.5197 |
| 80 | 0.0096 | 0.1683 | 0.0078 | 0.3464 | 0.0076 | 0.4180 | 0.0096 | 0.3090 | 0.3201 |
| 81 | 0.0139 | 0.0054 | 0.0111 | 0.1907 | 0.0110 | 0.2519 | 0.0139 | 0.1478 | 0.1549 |
| 82 | 0.0190 | -0.1336 | 0.0150 | 0.0568 | 0.0150 | 0.1181 | 0.0190 | 0.0090 | 0.0185 |
| 83 | 0.0248 | -0.2430 | 0.0196 | -0.0540 | 0.0196 | 0.0025 | 0.0248 | -0.1013 | -0.0993 |
| 84 | 0.0314 | -0.3358 | 0.0248 | -0.1570 | 0.0248 | -0.0998 | 0.0314 | -0.1938 | -0.1939 |
| 85 | 0.0388 | -0.4104 | 0.0308 | -0.2415 | 0.0306 | -0.1859 | 0.0388 | -0.2672 | -0.2684 |


| 86 | 0.0469 | -0.4834 | 0.0375 | -0.3160 | 0.0371 | -0.2524 | 0.0469 | -0.3418 | -0.3445 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87 | 0.0557 | -0.5434 | 0.0449 | -0.3774 | 0.0440 | -0.3175 | 0.0557 | -0,4078 | -0.4134 |
| 88 | 0.0652 | -0.5903 | 0.0531 | -0.4440 | 0.0515 | -0.3880 | 0.0652 | -0.4596 | -0.4659 |
| 89 | 0.0754 | -0.6388 | 0.0619 | -0.5002 | 0.0596 | -0.4376 | 0.0754 | -0.5104 | -0.5160 |
| 90 | 0.0963 | -0.6794 | 0.0715 | -0.5425 | 0.0682 | -0.4812 | 0.0863 | -0.5535 | -0.5615 |
| 91 | 0.0979 | -0.7167 | 0.0817 | -0.5880 | 0.0774 | -0.5256 | 0.0979 | -0.5939 | -0.6014 |
| 92 | 0.1102 | -0.7492 | 0.0926 | -0.6268 | 0.0871 | -0.5645 | 0.1102 | -0.6293 | -0.6355 |
| 93 | 0.1231 | -0.7793 | 0.1041 | -0.6626 | 0.0973 | -0.5796 | 0.1231 | -0.6621 | -0.6681 |
| 94 | 0.1366 | -0.8075 | 0.1164 | -0.6940 | 0.1080 | -0.6299 | 0.1366 | -0.6927 | -0.7005 |
| 95 | 0.1507 | -0.8341 | 0.1292 | -0.7233 | 0.1191 | -0.6581 | 0.1507 | -0.7212 | -0.7271 |
| 96 | 0.1653 | -0.8557 | 0.1427 | -0.7512 | 0.1307 | -0.6974 | 0.1653 | -0.7441 | -0.7504 |
| 97 | 0.1806 | -0.8763 | 0.1567 | -0.7775 | 0.1428 | -0.7145 | 0.1806 | -0.7662 | -0.7737 |
| 98 | 0.1964 | -0.8968 | 0.1714 | -0.7789 | 0.1553 | -0.7345 | 0.1964 | -0.7878 | -0.7933 |
| 99 | 0.2127 | -0.9149 | 0.1866 | -0.8197 | 0.1682 | -0.7548 | 0.2127 | -0.8060 | -0.8115 |
| 100 | 0.2295 | -0.9321 | 0.2023 | -0.8400 | 0.1815 | -0.7750 | 0.2295 | -0.8230 | -0.8279 |
| 101 | 0.2468 | -0.9479 | 0.2106 | -0.8572 | 0.1951 | -0.7918 | 0.2468 | -0.8382 | -0.8424 |
| 102 | 0.2646 | -0.9618 | 0.2354 | -0.8733 | 0.2092 | -0.8078 | 0.2646 | -0.8510 | -0.8559 |
| 103 | 0.2828 | -0.9745 | 0.2526 | -0.8890 | 0.2235 | -0.8227 | 0.2828 | -0.8624 | -0.8673 |
| 104 | 0.3013 | -0.9868 | 0.2703 | -0.9010 | 0.23 .92 | -0.8354 | 0.3013 | -0.8727 | -0.8769 |
| 105 | 0.3203 | -0.9972 | 0.2884 | -0.9128 | 0.2532 | -0.8475 | 0.3203 | -0.8803 | -0.8844 |
| 106 | 0.3395 | -1.0067 | 0.3069 | -0.9239 | 0.2684 | -0.8587 | 0.3395 | -0.6864 | -0.8898 |
| 107 | 0.3591 | -1.0160 | 0.3257 | -0.9326 | 0.2839 | -0.8680 | 0.3591 | -0.8910 | -0.8920 |
| 108 | 0.3790 | -1.0227 | 0.3449 | -0.9401 | 0.2996 | -0.8762 | 0.3790 | -0.8915 | -0.8918 |
| 109 | 0.3991 | -1.0296 | 0.3645 | -0.9467 | 0.3155 | -0.8827 | 0.3991 | -0.8897 | -0.8858 |
| 110 | 0.4194 | -1.0349 | 0.3842 | -0.9500 | 0.3316 | -0.8885 | 0.4194 | -0.8829 | -0.8746 |
| 111 | 0.4399 | -1.0383 | 0.4043 | -0.9523 | 0.3478 | -0.8912 | 0.4399 | -0.8686 | -0.8550 |
| 112 | 0.4606 | -1.0418 | 0.4245 | -0.9516 | 0.3641 | -0.8924 | 0.4606 | -0.8396 | -0.8082 |
| 113 | 0.4814 | -1.0417 | 0.4450 | -0.9463 | 0.3805 | -0.8917 | 0.4814 | -0.7298 | -0.6388 |
| 114 | 0.5022 | -1.0394 | 0.4656 | -0.9371 | 0.3970 | -0.8868 | 0.5022 | -0.4503 | -0.3785 |
| 115 | 0.5231 | -1.0332 | 0.4863 | -0.9177 | 0.4136 | -0.8792 | 0.5231 | -0.1998 | -0.1929 |
| 116 | 0.5441 | -1.0200 | 0.5071 | -0.8858 | 0.4301 | -0.8661 | 0.5441 | -0.1311 | -0.1426 |
| 117 | 0.5650 | -0.9936 | 0.5279 | -0.7301 | 0.4466 | -0.8475 | 0.5650 | -0.1230 | -0.1300 |
| 118 | 0.5858 | -0.9478 | 0.5487 | -0.4509 | 0.4631 | -0.8012 | 0.5858 | -0.1270 | -0.1325 |
| 119 | 0.6065 | -0.8572 | 0.5695 | -0.1357 | 0.4795 | -0.6655 | 0.6065 | -0.1288 | -0.1356 |
| 120 | 0.6271 | -0.4706 | 0.5903 | -0.0554 | 0.4957 | -0.4378 | 0.6271 | -0.1253 | -0.1342 |
| 121 | 0.6475 | -0.0472 | 0.6110 | -0.0489 | 0.5224 | -0.1946 | 0.6475 | -0.1189 | -0.1288 |
| 122 | 0.6677 | 0.0602 | 0.6315 | -0.0545 | 0.5498 | -0.1289 | 0.6677 | -0.1084 | -0.1200 |
| 123 | 0.6876 | 0.0671 | 0.6518 | -0.0593 | 0.5768 | -0.1308 | 0.6876 | -0.0976 | -0.1087 |
| 124 | 0.7073 | 0.0596 | 0.6719 | -0.0587 | 0.6034 | -0.1359 | 0.7073 | -0.0840 | -0.0961 |
| 125 | 0.7266 | 0.0539 | 0.6918 | -0.0560 | 0.6296 | -0.1340 | 0.7266 | -0.0690 | -0.0839 |
| 126 | 0.7455 | 0.0495 | 0.7113 | -0.0490 | 0.6552 | -0.1265 | 0.7455 | -0.0559 | -0.0679 |
| 127 | 0.7640 | 0.0508 | 0.7306 | -0.0390 | 0.6803 | -0.1133 | 0.7640 | -0.0399 | -0.0512 |
| 128 | 0.7021 | 0.0551 | 0.7495 | -0.0300 | 0.7048 | -0.0977 | 0.7821 | -0.0232 | -0.0349 |
| 129 | 0.7997 | 0.0619 | 0.7679 | -0.0174 | 0.7286 | -0.0827 | 0.7997 | -0.0061 | -0.0188 |
| 130 | 0.8168 | 0.0695 | 0.7859 | -0.0034 | 0.7517 | -0.0625 | 0.8168 | 0.0099 | -0.0017 |
| 131 | 0.8332 | 0.0797 | 0.8034 | 0.0116 | 0.7740 | -0.0420 | 0.8332 | 0.0274 | 0.0175 |
| 132 | 0.8471 | 0.0921 | 0.8204 | 0.0260 | 0.7956 | -0.0229 | 0.8491 | 0.0460 | 0.0370 |
| 133 | 0.8644 | 0.1054 | 0.8368 | 0.0421 | 0.8163 | -0.0023 | 0.8644 | 0.0646 | 0.0552 |
| 134 | 0.8790 | 0.1195 | 0.8527 | 0.0596 | 0.8360 | 0.0207 | 0.8790 | 0.0831 | 0.0742 |
| 135 | 0.8929 | 0.1342 | 0.8679 | 0.0774 | 0.8548 | 0.0441 | 0.8929 | 0.1016 | 0.0958 |
| 136 | 0.9060 | 0.1534 | 0.8824 | 0.0955 | 0.8727 | 0.0648 | 0.9060 | 0.1243 | 0.1190 |
| 137 | 0.9134 | 0.1706 | 0.8962 | 0.1138 | 0.8895 | 0.0898 | 0.9184 | 0.1443 | 0.1391 |
| 138 | 0.9300 | 0.1887 | 0.9093 | 0.1365 | 0.9052 | 0.1176 | 0.9300 | 0.1650 | 0.1631 |
| 139 | 0.9408 | 0.2107 | 0.9217 | 0.1570 | 0.9198 | 0.1413 | 0.9408 | 0.1893 | 0.1895 |
| 140 | 0.9507 | 0.2330 | 0.9333 | 0.1785 | 0.9333 | 0.1700 | 0.9507 | 0.2136 | 0.2172 |
| 141 | 0.9598 | 0.2563 | 0.9440 | 0.2041 | 0.9456 | 0.2018 | 0.9598 | 0.2386 | 0.2462 |
| 142 | 0.9680 | 0.2813 | 0.9539 | 0.2306 | 0.9567 | 0.2348 | 0.9680 | 0.2653 | 0.2769 |
| 143 | 0.9753 | 0.3093 | 0.9630 | 0.2589 | 0.9665 | 0.2701 | 0.9753 | 0.2947 | 0.3098 |
| 144 | 0.9817 | 0.3398 | 0.9711 | 0.2899 | 0.9751 | 0.3091 | 0.9817 | 0.3266 | 0.3393 |
| 145 | 0.9871 | 0.3743 | 0.9784 | 0.3243 | 0.9825 | 0.3433 | 0.9871 | 0,3623 | 0.3449 |


$\lll \lll$ LOCATIONS OF MIN., MAX., AND CRITICAL PTS. >>>>>>
(* DENOTES POINT ON LOWER SURFACE)
PERTURBATION SOLN:

| MINIMUM AT $X=0.3834$ | (POINT \#112) |
| ---: | :--- |
| MAXIMUM AT $X=0.0000 *$ | (POINT \# 75) |
| 2 CRITICAL POINT(S): |  |
| IST AT X $=0.4805 *$ | (AFTER POINT $\% 41$ ) |
| 2ND AT $X=0.5229$ | (AFTER POINT 120 ) |

COMPARISON SOLN:

| MINIMUM AT $X=0.4015$ | (POINT \#110) |
| ---: | :--- |
| MAXIMUM AT $X=0.0000$ | (POINT \# 75) |
| 2 CRITICAL POINT(S): |  |
| 1ST AT $X=0.4816 *$ | (AFTER POINT \#36) |
| 2FND AT $X=0.5258$ | (AFTER POINT $\# 16$ ) |


| POINT | XBASE | CPBASE | XCALB | CPCALB | XPERT | CPPERT | XCHEK | CPCHEK | CPPERT(INT) |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| 1 | 0.9995 | 0.4947 | 0.9981 | 0.4492 | 0.9996 | 0.4341 | 0.9989 | 0.4589 | 0.4341 |
| 2 | 0.9578 | 0.4943 | 0.9946 | 0.4490 | 0.9981 | 0.4341 | 0.9963 | 0.4588 | 0.4557 |
| 3 | 0.9951 | 0.4144 | 0.9901 | 0.3687 | 0.9958 | 0.4606 | 0.9927 | 0.3781 | 0.4138 |
| 4 | 0.9916 | 0.4011 | 0.9847 | 0.3567 | 0.9928 | 0.4151 | 0.9882 | 0.3713 | 0.3621 |
| 5 | 0.9871 | 0.3709 | 0.9784 | 0.3231 | 0.9890 | 0.3632 | 0.9828 | 0.3389 | 0.3483 |
| 6 | 0.9817 | 0.3354 | 0.9711 | 0.2884 | 0.9843 | 0.3565 | 0.9765 | 0.3055 | 0.3148 |
| 7 | 0.9753 | 0.3037 | 0.9630 | 0.2570 | 0.9789 | 0.3273 | 0.9692 | 0.2738 | 0.2811 |
| 8 | 0.9680 | 0.2744 | 0.9539 | 0.2283 | 0.9727 | 0.2957 | 0.9610 | 0.2453 | 0.2503 |
| 9 | 0.9598 | 0.2478 | 0.9440 | 0.2012 | 0.9657 | 0.2666 | 0.9520 | 0.2188 | 0.2216 |
| 10 | 0.9507 | 0.2228 | 0.9333 | 0.1750 | 0.9580 | 0.2396 | 0.9420 | 0.1934 | 0.1944 |
| 11 | 0.9408 | 0.1986 | 0.9217 | 0.1528 | 0.9495 | 0.2142 | 0.9313 | 0.1683 | 0.1692 |
| 12 | 0.9300 | 0.1743 | 0.9093 | 0.1315 | 0.9403 | 0.1897 | 0.9197 | 0.1470 | 0.1468 |
| 13 | 0.984 | 0.1535 | 0.8962 | 0.1078 | 0.9304 | 0.1671 | 0.9073 | 0.1264 | 0.1249 |
| 14 | $0.9 n 60$ | 0.1334 | 0.8824 | 0.0884 | 0.9198 | 0.1469 | 0.8942 | 0.1033 | 0.1022 |
| 15 | 0.8429 | 0.1106 | 0.8679 | 0.0690 | 0.9086 | 0.1271 | 0.8804 | 0.0843 | 0.0828 |
| 16 | 0.8790 | 0.0918 | 0.8527 | 0.0496 | 0.8967 | 0.1058 | 0.8658 | 0.0653 | 0.0634 |
| 17 | 0.8644 | 0.0728 | 0.8368 | 0.0302 | 0.8843 | 0.0881 | 0.8506 | 0.0463 | 0.0438 |
| 18 | 0.8491 | 0.0538 | 0.8204 | 0.0118 | 0.8713 | 0.0705 | 0.8347 | 0.0273 | 0.0246 |
| 19 | 0.8332 | 0.0346 | 0.8034 | -0.0053 | 0.8577 | 0.0528 | 0.8183 | 0.0093 | 0.0071 |
| 20 | 0.8168 | 0.0163 | 0.7859 | -0.0237 | 0.8436 | 0.0350 | 0.8013 | -0.0074 | -0.0105 |
| 21 | 0.7997 | -0.0009 | 0.7679 | -0.0417 | 0.8291 | 0.0180 | 0.7837 | -0.0253 | -0.0286 |
| 22 | 0.7821 | -0.0193 | 0.7495 | -0.0595 | 0.8141 | 0.0029 | 0.7657 | -0.0428 | -0.0469 |
| 23 | 0.7640 | -0.0377 | 0.7306 | -0.0747 | 0.7986 | -0.0133 | 0.7472 | -0.0598 | -0.0623 |
| 24 | 0.7455 | -0.0559 | 0.7113 | -0.0926 | 0.7829 | -0.0295 | 0.7283 | -0.0743 | -0.0786 |
| 25 | 0.7266 | -0.0719 | 0.6918 | -0.1098 | 0.7667 | -0.0461 | 0.7090 | -0.0911 | -0.0955 |


| 26 | 0.7073 | -0.0908 | 0.6719 | -0.1252 | 0.7502 | -0.0598 | 0.6895 | -0.1068 | -0.1106 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 0.6876 | -0.1094 | 0.6518 | -0.1418 | 0.7335 | -0.0738 | 0.6696 | -0.1204 | -0.1257 |
| 28 | 0.6677 | -0.1267 | 0.6315 | -0.1564 | 0.7164 | -0.0896 | 0.6494 | -0.1346 | -0.1393 |
| 29 | 0.6475 | -0.1460 | 0.6110 | -0.1706 | 0.6992 | -0.1034 | 0.6291 | -0.1459 | -0.1518 |
| 30 | 0.6271 | -0.1643 | 0.5903 | -0.1819 | 0.6818 | -0.1163 | 0.6085 | -0.1556 | -0.1598 |
| 31 | 0.6065 | -0.1838 | 0.5695 | -0.1905 | 0.6642 | -0.1298 | 0.5878 | -0.1610 | -0.1644 |
| 32 | 0.5858 | -0.2024 | 0.5487 | -0.1968 | 0.6466 | -0.1412 | 0.5670 | -0.1624 | -0.1658 |
| 33 | 0.5650 | -0.2213 | 0.5279 | -0.1989 | 0.6288 | -0.1520 | 0.5462 | -0.1625 | -0.1641 |
| 34 | 0.5441 | -0.2417 | 0.5071 | -0.2033 | 0.6109 | -0.1592 | 0.5253 | -0.1683 | -0.1718 |
| 35 | 0.5231 | -0.2608 | 0.4863 | -0.2357 | 0.5931 | -0.1637 | 0.5045 | -0.2166 | -0.2237 |
| 36 | 0.5022 | -0.2786 | 0.4656 | -0.3675 | 0.5752 | -0.1662 | 0.4836 | -0.4092 | -0.3977 |
| 37 | 0.4814 | -0.2955 | 0.4450 | -0.5861 | 0.5574 | -0.1652 | 0.4629 | -0.6656 | -0.6327 |
| 38 | 0.4606 | -0.3119 | 0.4245 | -0.7468 | 0.5397 | -0.1634 | 0.4423 | -0.7983 | -0.7985 |
| 39 | 0.4399 | -0.3264 | 0.4043 | -0.8046 | 0.5221 | -0.1737 | 0.4218 | -0.8384 | -0.8483 |
| 40 | 0.4194 | -0.3504 | 0.3842 | -0.8226 | 0.5046 | -0.2228 | 0.4015 | -0.8530 | -0.8645 |
| 41 | 0.3991 | -0.4033 | 0.3645 | -0.8300 | 0.4872 | -0.3556 | 0.3815 | -0.8587 | -0.8689 |
| 42 | 0.3790 | -0.4976 | 0.3449 | -0.8304 | 0.4650 | -0.6156 | 0.3616 | -0.8609 | -0.8689 |
| 43 | 0.3591 | -0.6009 | 0.3257 | -0.8280 | 0.4407 | -0.8117 | 0.3421 | -0.8583 | -0.8665 |
| 44 | 0.3395 | -0.6682 | 0.3069 | -0.8232 | 0.4166 | -0.8583 | 0.3229 | -0.8537 | -0.8621 |
| 45 | 0.3203 | -0.7003 | 0.2804 | -0.8152 | 0.3930 | -0.8681 | 0.3040 | -0.8472 | -0.8546 |
| 46 | 0.3013 | -0.7119 | 0.2703 | -0.8057 | 0.3698 | -0.8697 | 0.2855 | -0.8378 | -0.8457 |
| 47 | 0.2828 | -0.7121 | 0.2526 | -0.7946 | 0.3470 | -0.8675 | 0.2673 | -0.8272 | -0.8352 |
| 48 | 0.2646 | -0.7073 | 0.2354 | -0.7810 | 0.3247 | -0.8628 | 0.2496 | -0.8151 | -0.8225 |
| 49 | 0.2468 | -0.6991 | 0.2186 | -0.7654 | 0.3029 | -0.8542 | 0.2324 | -0.8006 | -0.8081 |
| 50 | 0.2295 | -0.6872 | 0.2023 | -0.7485 | 0.2817 | -0.8439 | 0.2156 | -0.7844 | -0.7920 |
| 51 | 0.2127 | -0.6726 | 0.1866 | -0.7282 | 0.2610 | -0.8314 | 0.1993 | -0.7669 | -0.7735 |
| 52 | 0.1964 | -0.6561 | 0.1714 | -0.7074 | 0.2410 | -0.8157 | 0.1835 | -0.7460 | -0.7533 |
| 53 | 0.1806 | -0.6355 | 0.1567 | -0.6859 | 0.2216 | -0.7987 | 0.1683 | -0.7247 | -0.7339 |
| 54 | 0.1653 | -0.6140 | 0.1427 | -0.6590 | 0.2029 | -0.7782 | 0.1536 | -0.7027 | -0.7095 |
| 55 | 0.1507 | -0.5916 | 0.1292 | -0.6298 | 0.1849 | -0.7550 | 0.1396 | -0.6752 | -0.6821 |
| 56 | 0.1366 | -0.5629 | 0.1164 | -0.5989 | 0.1676 | -0.7330 | 0.1261 | -0.6455 | -0.6523 |
| 57 | 0.1231 | -0.5308 | 0.1041 | -0.5656 | 0.1510 | -0.7051 | 0.1132 | -0.6140 | -0.6204 |
| 58 | 0.1102 | -0.4968 | 0.0926 | -0.5280 | 0.1352 | -0.6733 | 0.1010 | -0.5800 | -0.5857 |
| 59 | 0.0979 | -0.4605 | 0.0817 | -0.4884 | 0.1202 | -0.6336 | 0.0894 | -0.5414 | -0.5472 |
| 60 | 0.0863 | -0.4184 | 0.0715 | -0.4412 | 0.1059 | -0.6013 | 0.0785 | -0.5003 | -0.5047 |
| 61 | 0.1754 | -0.3723 | 0.0619 | -0.3945 | 0.0926 | -0.5591 | 0.0683 | -0.4514 | -0.4574 |
| 62 | 0.0652 | -0.3197 | 0.0531 | -0.3362 | 0.0800 | -0.5117 | 0.0588 | -0.4023 | -0.4026 |
| 63 | 0.0557 | -0.2688 | 0.0449 | -0.2716 | 0.0683 | -0.4575 | 0.0500 | -0.3402 | -0.3403 |
| 64 | 0.0469 | -0.2053 | 0.0375 | -0.2113 | 0.0575 | -0.3955 | 0.0418 | -0.2708 | -0.2775 |
| 65 | 0.0388 | -0.1317 | 0.0308 | -0.1366 | 0.0476 | -0.3229 | 0.0345 | -0.2044 | -0.2056 |
| 66 | 0.0314 | -0.0567 | 0.0248 | -0.0514 | 0.0386 | -0.2517 | 0.0278 | -0.1217 | -0.1194 |
| 67 | 0.0248 | 0.0373 | 0.0196 | 0.0521 | 0.0305 | -0.1608 | 0.0219 | -0.0253 | -0.0199 |
| 68 | 0.0170 | 0.1485 | 0.0150 | 0.1636 | 0.0233 | -0.0493 | 0.0167 | 0.0935 | 0.0917 |
| 69 | 0.0139 | 0.2859 | 0.0111 | 0.2966 | 0.0171 | 0.0806 | 0.0122 | 0.2265 | 0.2268 |
| 7 | 0.0096 | 0.4435 | 0.0078 | 0.4490 | 0.0118 | 0.2404 | 0.0085 | 0.3875 | 0.3973 |
| 71 | 0.0061 | 0.6300 | 0.0051 | 0.6219 | 0.0075 | 0.4458 | 0.0054 | 0.5727 | 0.5947 |
| 72 | 0.0034 | 0.8314 | 0.0030 | 0.8106 | 0.0041 | 0.6902 | 0.0031 | 0.7749 | 0.7999 |
| 73 | 0.0015 | 1.0193 | 0.0014 | 0.9949 | 0.0018 | 0.9348 | 0.0014 | 0.9718 | 0.9890 |
| 74 | 0.0014 | 1.1454 | 0.0004 | 1.1296 | 0.0004 | 1.1133 | 0.0004 | 1.1201 | 1.1243 |
| 75 | 0.0000 | 1.1617 | 0.0000 | 1.1692 | 0.0000 | 1.1716 | 0.0000 | 1.1701 | 1.1715 |
| 76 | 0.0004 | 1.0535 | 0.0004 | 1.0967 | 0.0003 | 1.1228 | 0.0004 | 1.1034 | 1.1138 |
| 77 | 0.0015 | 0.8493 | 0.0014 | 0.9332 | 0.0012 | 0.7825 | 0.0014 | 0.9406 | 0.9603 |
| 78 | 0.0034 | 0.6062 | 0.0030 | 0.7278 | 0.0028 | 0.7753 | 0.0031 | 0.7335 | 0.7474 |
| 79 | 0.0061 | 0.3715 | 0.0051 | 0.5262 | 0.0051 | 0.5599 | 0.0054 | 0.5249 | 0.5349 |
| 80 | 0.0 .096 | 0.1683 | 0.0078 | 0.3464 | 0.0080 | 0.3630 | 0.0085 | 0.3363 | 0.3447 |
| 81 | 0.0139 | 0.0054 | 0.0111 | 0.1907 | 0.0116 | 0.2026 | 0.0122 | 0.1738 | 0.1820 |
| 82 | 0.0190 | -0.1336 | 0.0150 | 0.0568 | 0.0158 | 0.0677 | 0.0167 | 0.0407 | 0.0469 |
| 83 | 0.0248 | -0.2430 | 0.0196 | -0.0540 | 0.0207 | -0.0466 | 0.0219 | -0.0780 | -0.0589 |
| 84 | 0.0314 | -0.3358 | 0.0248 | -0.1570 | 0.0262 | -0.1470 | 0.0278 | -0.1738 | -0.1694 |
| 85 | 0.0388 | -0.4104 | 0.0308 | -0.2415 | 0.0323 | -0.2308 | 0.0344 | -0.2562 | -0.2526 |

## Figure A.2- Continued

| 86 | 0.0469 | -0.4834 | 0.0375 | -0.3160 | 0.0390 | -0.2986 | 0.0418 | -0.3229 | -0.3231 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87 | 0.0557 | -0.5434 | 0.0449 | -0.3774 | 0.0463 | -0.3627 | 0.0500 | -0.3936 | -0.3928 |
| 88 | 0.0652 | -0.5903 | 0.0531 | -0.4440 | 0.0543 | -0.4285 | 0.0588 | -0.4554 | -0.4545 |
| 89 | 0.0754 | -0.6388 | 0.0619 | -0.5002 | 0.0628 | -0.4779 | 0.0683 | -0.5019 | -0.5040 |
| 90 | 0.0863 | -0.6794 | 0.0715 | -0.5425 | 0.0719 | -0.5208 | 0.0785 | -0.5492 | -0.5505 |
| 91 | 0.0979 | -0.7167 | 0.0817 | -0.5880 | 0.0815 | -0.5638 | 0.0894 | -0.5899 | -0.5930 |
| 92 | 0.1102 | -0.7492 | 0.0926 | -0.6268 | 0.0917 | -0.6015 | 0.1010 | -0.6277 | -0.6309 |
| 93 | 0.1231 | -0.7793 | 0.1041 | -0.6626 | 0.1024 | -0.6355 | 0.1132 | -0.6607 | -0.6642 |
| 94 | 0.1366 | -0.8075 | 0.1964 | -0.6940 | 0.1137 | -0.6654 | 0.1261 | -0.6913 | -0.6949 |
| 95 | 0.1507 | -0.8341 | 0.1292 | -0.7233 | 0.1254 | -0.6933 | 0.1396 | -0.7202 | -0.7250 |
| 96 | 0.1633 | -0.8557 | 0.1427 | -0.7512 | 0.1376 | -0.7210 | 0.1536 | -0.7473 | -0.7519 |
| 97 | 0.1806 | -0.8763 | 0.1567 | -0.7775 | 0.1503 | -0.7469 | 0.1683 | -0.7693 | -0.7740 |
| 98 | 0.164 | -0.8968 | 0.1714 | -0.7989 | 0.1635 | -0.7669 | 0.1835 | -0.7906 | -0.7959 |
| 99 | 0.2127 | -0.9149 | 0.1866 | -0.8197 | 0.1771 | -0.7868 | 0.1993 | -0.8114 | -0.8159 |
| 100 | 0.2295 | -0.9321 | 0.2023 | -0.8400 | 0.1911 | -0.8064 | 0.2156 | -0.8291 | -0.8337 |
| 101 | 0.2468 | -0.9479 | 0.2186 | -0.8572 | 0.2055 | -0.8230 | 0.2324 | -0.8457 | -0.8502 |
| 102 | 0.2646 | -0.9618 | 0.2354 | -0.8733 | 0.2202 | -0.8386 | 0.2496 | -0.8607 | -0.8647 |
| 103 | 0.2828 | -0.9745 | 0.2526 | -0.8880 | 0.2354 | -0.8530 | 0.2673 | -0.8734 | -0.8779 |
| 104 | 0.3013 | -0.9868 | 0.2703 | -0.9010 | 0.2508 | -0.8657 | 0.2855 | -0.8849 | -0.8899 |
| 105 | 0.3203 | -0.9972 | 0.2884 | -0.9128 | 0.2666 | -0.8774 | 0.3040 | -0.8958 | -0.9000 |
| 106 | 0.3395 | -1.0067 | 0.3069 | -0.9239 | 0.2826 | -0.8883 | 0.3229 | -0.9043 | -0.9084 |
| 107 | 0.3591 | -1.0160 | 0.3257 | -0.9326 | 0.2989 | -0.8976 | 0.3421 | -0.9114 | -0.9154 |
| 108 | 0.3790 | -1.0227 | 0.3449 | -0.9401 | 0.3155 | -0.9055 | 0.3616 | -0.9173 | -0.9198 |
| 109 | 0.3991 | -1.0296 | 0.3645 | -0.9467 | 0.3322 | -0.9121 | 0.3815 | -0.9194 | -0.9221 |
| 110 | 0.4194 | -1.0349 | 0.3842 | -0.9500 | 0.3491 | -0.9178 | 0.4015 | -0.9200 | -0.9215 |
| 111 | 0.4399 | -1.0383 | 0.4043 | -0.9523 | 0.3662 | -0.9206 | 0.4218 | -0.9166 | -0.9157 |
| 112 | 0.4506 | -1.0418 | 0.4245 | -0.9516 | 0.3834 | -0.9223 | 0.4423 | -0.9075 | -0.9049 |
| 113 | 0.4014 | -1.0417 | 0.4450 | -0.9463 | 0.4007 | -0.9217 | 0.4629 | -0.8922 | -0.8853 |
| 114 | 0.5022 | -1.0394 | 0.4656 | -0.9371 | 0.4181 | -0.9173 | 0.4836 | -0.8608 | -0.8411 |
| 115 | 0.5231 | -1.0332 | 0.4863 | -0.9177 | 0.4355 | -0.9100 | 0.5045 | -0.7489 | -0.7069 |
| 116 | 0.5441 | -1.0200 | 0.5071 | -0.8858 | 0.4529 | -0.8969 | 0.5253 | -0.4408 | -0.4081 |
| 117 | 0.5650 | -0.9936 | 0.5279 | -0.7801 | 0.4703 | -0.8767 | 0.5462 | -0.1637 | -0.1787 |
| 118 | 0.5858 | -0.9478 | 0.5487 | -0.4509 | 0.4876 | -0.8305 | 0.5670 | -0.0936 | -0.1091 |
| 119 | 0.6065 | -0.8572 | 0.5695 | -0.1357 | 0.5049 | -0.7038 | 0.5878 | -0.0883 | -0.0912 |
| 120 | 0.6271 | -0.4706 | 0.5903 | -0.0554 | 0.5220 | -0.4444 | 0.6085 | -0.0938 | -0.0933 |
| 121 | 0.6475 | -0.0472 | 0.6110 | -0.0489 | 0.5474 | -0.1651 | 0.6291 | -0.0962 | -0.0967 |
| 122 | 0.6677 | 0.0602 | 0.6315 | -0.0545 | 0.5733 | -0.0911 | 0.6494 | -0.0951 | -0.0963 |
| 123 | 0.6876 | 0.0671 | 0.6518 | -0.0593 | 0.5990 | -0.0912 | 0.6696 | -0.0890 | -0.0921 |
| 124 | 0.7073 | 0.0596 | 0.6719 | -0.0587 | 0.6242 | -0.0968 | 0.6895 | -0.0816 | -0.0840 |
| 125 | 0.7266 | 0.0539 | 0.6918 | -0.0560 | 0.6490 | -0.0964 | 0.7090 | -0.0707 | -0.0736 |
| 126 | 0.7455 | 0.0495 | 0.7113 | -0.0490 | 0.6733 | -0.0913 | 0.7283 | -0.0577 | -0.0624 |
| 127 | 0.7640 | 0.0508 | 0.7306 | -0.0390 | 0.6970 | -0.0805 | 0.7472 | -0.0463 | -0.0502 |
| 128 | 0.7821 | 0.0551 | 0.7495 | -0.0300 | 0.7202 | -0.0672 | 0.7657 | -0.0316 | -0.0353 |
| 129 | 0.7997 | 0.0619 | 0.7679 | -0.0174 | 0.7428 | -0.0537 | 0.7837 | -0.0160 | -0.0195 |
| 130 | 0.8168 | 0.0695 | 0.7859 | -0.0034 | 0.7647 | -0.0361 | 0.8013 | 0.0003 | -0.0043 |
| 131 | 0.8332 | 0.0797 | 0.8034 | 0.0116 | 0.7859 | -0.0176 | 0.8183 | 0.0157 | 0.0118 |
| 132 | 0.8491 | 0.0921 | 0.8204 | 0.0260 | 0.8063 | 0.0001 | 0.8347 | 0.0327 | 0.0293 |
| 133 | 0.8644 | 0.1054 | 0.8368 | 0.0421 | 0.8259 | 0.0193 | 0.8506 | 0.0508 | 0.0477 |
| 134 | 0.8790 | 0.1195 | 0.8527 | 0.0596 | 0.8446 | 0.0405 | 0.8658 | 0.0691 | 0.0662 |
| 135 | 0.8929 | 0.1342 | 0.8679 | 0.0774 | 0.8624 | 0.0621 | 0.8804 | 0.0875 | 0.0841 |
| 136 | 0.9060 | 0.1534 | 0.8824 | 0.0955 | 0.8793 | 0.0825 | 0.8942 | 0.1060 | 0.1045 |
| 137 | 0.9184 | 0.1706 | 0.8962 | 0.1138 | 0.8953 | 0.1060 | 0.9073 | 0.1286 | 0.1270 |
| 138 | 0.9300 | 0.1887 | 0.9093 | 0.1365 | 0.9101 | 0.1318 | 0.9197 | 0.1489 | 0.1480 |
| 139 | 0.9408 | 0.2107 | 0.9217 | 0.1570 | 0.9240 | 0.1552 | 0.9313 | 0.1699 | 0.1709 |
| 140 | 0.9507 | 0.2330 | 0.9333 | 0.1785 | 0.9368 | 0.1826 | 0.9420 | 0.1947 | 0.1963 |
| 141 | 0.9598 | 0.2563 | 0.9440 | 0.2041 | 0.9484 | 0.2127 | 0.9520 | 0.2199 | 0.2233 |
| 142 | 0.9680 | 0.2813 | 0.9539 | 0.2306 | 0.9589 | 0.2441 | 0.9610 | 0.2462 | 0.2547 |
| 143 | 0.9753 | 0.3093 | 0.9630 | 0.2589 | 0.9683 | 0.2780 | 0.9692 | 0.2746 | 0.2822 |
| 144 | 0.9817 | 0.3398 | 0.9711 | 0.2899 | 0.9764 | 0.3153 | 0.9765 | 0.3061 | 0.3154 |
| 145 | 0.9871 | 0.3743 | 0.9784 | 0.3243 | 0.9834 | 0.3495 | 0.9828 | 0.3394 | 0.3465 |
| 146 | 0.9916 | 0.4036 | 0.9847 | 0.3576 | 0.9892 | 0.3571 | 0.9882 | 0.3717 | 0.3558 |
| 147 | 0.9951 | 0.4162 | 0.9901 | 0.3694 | 0.9937 | 0.4481 | 0.9927 | 0.3784 | 0.4278 |
| 148 | 0.9978 | 0.4952 | 0.9946 | 0.4493 | 0.9971 | 0.4339 | 0.9963 | 0.4590 | 0.4375 |
| 149 | 0.9995 | 0.4947 | 0.9981 | 0.4492 | 0.9994 | 0.4339 | 0.9989 | 0.4589 | 0.4339 |

## Plot of $C_{p}$

Full $\phi_{\text {Holst }} \quad$ Nonl. $\alpha$ Pert. $\quad \alpha_{b}=0.500 \quad \alpha_{c}=0.200$


$$
M_{\infty}=0.800 \quad \alpha=0.000
$$

## Plot of $C_{p}$

Full $\phi_{\text {Holst }}$ Nonl. $\alpha$ Pert. $\quad \alpha_{b}=0.500 \quad \alpha_{c}=0.200$


Figure A.3- Continued

## Plot of $C_{p}$

Full $\phi_{\text {Holst }}$ Nonl. $\alpha$ Pert. $\quad \alpha_{b}=0.500 \quad \alpha_{c}=0.200$


## Plot of $C_{p}$

Full $\phi_{\text {Holst }}$ Nonl. $\alpha$ Pert. $\quad \alpha_{b}=0.500 \quad \alpha_{c}=0.200$


Figure A.3- Continued

## Plot of $\mathrm{C}_{\mathrm{p}}$

Full $\phi_{\text {Holst }} \quad$ Nonl. $\alpha$ Pert. $\quad \alpha_{b}=0.500 \quad \alpha_{c}=0.200$


## Plot of $C_{p}$

Full $\phi_{\text {Holst }}$ Nonl. $\alpha$ Pert. $\alpha_{b}=0.500 \quad \alpha_{c}=0.200$


$$
M_{\infty}=0.800 \quad \alpha=0.700
$$

|  | N002 |
| :---: | :---: |
| Calculates contimuous or oiscontinuous nomlinear perturbation | imainoos |
| solutions hhich represent a single-parameter change in either | \| Mainoos |
| geometry or flow cohditions by employing a straimed-coordinate | \|mainoos |
| frocedure. the hethoo utilizes a uhit perturbation, deterhineo | main006 |
| from tho previously calculated solutions ('base' ahd 'calibration' | 1 Mainoot |
| solutions obtained from an 'expensive' computational procedure | Imainoos |
| and displaced from one another by some reasonable change in | [MAINOO9 |
| geometay or flow variable, to predict new nowlimear solutions overi | imarnolo |
| a range of parameter variation. | \|mainol| |
|  | 1 mainolz |
| this Current version of the procedure is configured to predict ahdia | Imainol 3 |
| plot pressure coefficients on a blade or airfoil surface, and can | \|mainol4 |
| ACCOUNT FOR THE MOTION OF: | \|mainol5 |
| (1) ONE OR MORE CRITICAL POINTS (Shock points), | I mainotó |
| (2) A STAGNATION POINT, | IMainol 7 |
| (3) A MAXIMUM-SUCTION-PRESSURE POINT, | \|mainots |
| OR SIMULTANEOUSLY FOR ANY COMBINATION OF THESE. | lmainot9 |
|  | \| Mainozo |
| the program is also configured to compare the perturbation- | Imainozi |
| Predicted solutions hith the corresponding 'exact' solutions | AAIN022 |
| CBTAINED BY EMPLOYING THE SAME 'EXPENSIVE' COMPUTATIONAL | IMainoz3 |
| procedure used to determine the base and calibration solutions. | IMainoz4 |
| see the subrdutine imput for details. | IMAIN025 |
|  | \| MAINO26 |
| $\mathrm{N}=\mathrm{NO}$. OF POINTS in SURFaCE PRESSURE DISTRIBUTION - ASSUMEd equal | \| Mainoz 7 |
| for base, calibration, and predicted distributio | IMAInO2S |
| NOTE: $\mathrm{N}<200$. | itainoz9 |
|  | [mainozo |
| base calibration | \|malnozi |
| OHCOMING MACH NO. MO MI | \|mainos2 |
| Parameter Perturbed qo al | imainozs |
|  | 1 Mainoza |
| M2 = ONCOMING MACH NO. OF PREDICTED FLOW | imaino35 |
| Q2 = value of perturbed parameter in predicted flow | \|MAINO36 |
|  | IMaino37 |
| coordinate straining is piecewise linear hith end points and one | Imainozs |
| OR MORE USER-SElECTED INTERIOR POINTS HELd INVARIaNt. | \|mainoz9 |
|  | \| Maino4o |
| the program locates minimum, maximum, and all critical points | \|maino4| |
| (Shock points) in the base and Calibration solutions, and stores | IMaino4z |
| These in the arrays xloco afd xloci (it is assumed that the numberi | IMaino43 |
| OF CRITICAL POINTS does not exceed four) as followst | IMAIN044 |
|  | \|MAIH045 |
| base caligration | \|MAIN046 |
|  | $1 \mathrm{HAIN047}$ |
| XLOCO(1) $=$ MINIMM PT. $\quad$ XLOCI(1) $=$ MINIMUM PT. | IMaylious |
| XLOCO(2) $=$ MAXIMUM PT. $\quad$ XLOCl(2) $=$ MAXIMUM PT. | Imaino49 |
| XLOCO(3) = CRITICAL PT. \#1 XLOCI(3) = CRITICAL PT. \# | imainoso |
|  | \| Main05 |
| XLOCO(6) = CRITICAL PT. 4 X 4 LOCI(6) = CRITICAL PT. 4 | [MAIN052 |
|  | \| Main053 |
| the humber of points selected from these is specified by nselct. | IMAINO54 |
| the corresponding subscripts of xloco and xloci are specified in | imainos5 |
| the first nselct elements of the array lsect, e.g. to select the | IMAIN056 |
| maximul point and the first and third critical points, one | imainos7 |
| SPECIFIES: | IMaino5s |
|  | I MAIN059 |
| NSELCT $=3$ | imainoso |


c

$$
\begin{aligned}
& \text { DELI }=Q 1-Q 0 \\
& \text { YCRO YCRITIIO) } \\
& \text { YCR1=YCRIT(H1) } \\
& \text { WRITE }(6,2000) \text { TITLE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRITE } 16,20101 \text { N,A, }, \text {, HEADO, HO, QO, HEAOI, M1, Q1 } \\
& \text { WRITE } 16,20201 \text { NAME, HEAOO, NAME, YCRO,HEAO1, HAME, YCRI }
\end{aligned}
$$

c
$\mathrm{c} .$.
.
...normalize $\times$ coordinates ahd locate minihum, maximum, and critical puints for base and calibration solutions.

CALL SCALE ( $N$, XBASE, $1, A, B$ )
CALL LOCATE ( $\mathrm{N}, \mathrm{xb}$,
CALL LOCATE ( $\mathrm{N}, \times \mathrm{XCALB}, \mathrm{YCALB}, \mathrm{YCR}$, IGRAD, LMNI, LMXI, NCRY, LCRI, XLOC1) WRITE (6,2030)
WRITE (6,2035)
CALL $\operatorname{UPLOW}(A, B, \times L O C O, 6, N C R O+2, X O U T, F L A G I$
( 2040 ) HEADO, XOUT(1),FLAG(1), LINO, XOUT(2), FLAG(2), LMXO HRITE ( 6,2040 ) HEADO, XOUT( 11 ) FLAG ( 1 ), L
$\% \quad$ ( ORO (I), XOUT(I +2 ),FLAG(I+2),LCROI I), I=1, NCRO
CALL UPLOW (A,B, XLOC1, 6, HICR1. 2 , XOUT,FLAG)
hRITE ( 6,2040 ) HEAOL, XOUT(T),FLAG (1), LHNT, XOUT(2), FLAG(2), LMX1 IF (NCR1.GT. O) WRITE 16,2045 ) NCRI,

* (OROCI), XOUT(I+2),FLAG(I+2),LCRI(I),I=1,NCR1)
c.....CHECK FOR INVALID STRAINING SPECIFICATION IF LSPEC $=0$.

IF ILSPEC .EQ. 11 GO to 4
ICOUNT $=0$
DO $2 \mathrm{I}=1$, NSELCT
IF (LSELCTSI).LE. 2) GO TO 2
ICOURT = ICOUNT 1
IF (NCRO. NE. NCRU) LTERM=1
2 continue
C.....STUP EXECUTION IF CRITICAL POINTS ARE TO BE USED IN STRAIHING AND nutber of critical points in base and calibration solutions are uHEqual.
If (lterm.eq. 1 ) 60 to 900
C.....stof execution if number of critical points selectio exceeds number actually located.

If (ICOUNT .GT. NCRO) 60 TO 905

## 4 CONTINUE

C.....load selected straining points imo fixed-point arrays for base c. ahid calibration solutions.

MFIX=HSELCT+2

XFI×OHFIXI=1.0
XFIXIUFIXI=1.0
OO $10=1$, NSELC
IF (LSi'EC .EQ. O) GO TO 5

imainizi
MAAN12I
IMAINI22
MMAIN122
MAINI23 Mainiz3
IMAINI24 TMAINIz4
IMAINiz5 IMAINIz6 MAINI26
IMAINI27 IMAINiz8 IMAINI29
IMAIN130 IMairise
Imaini31 Imainisz imainisu Imainisu Imaini 35 mainize Imainlis IMainisb IMAIN139
IMAINI40 MAALNI40
$\mid$ MAIRI4 MARN142 IMAIN143 |mainis4 IMAIN145 IMAIN146
IMATN147
MAL MAIN147
IMAIN148 MAIN148
IMAIN149 | MAIN150 |MAINL51 |MAINI52 TMALB153 | HALINI54 |MAIN155
|MATN156

XFIXI(It 1$)=X$ CALB(LOCI(I))
G0 TO 10
XFIXO(T+1)=XLOCOILSELCT(I)) XFIXI(It1)=XLOC1(LSELCT(I)
10 continue
WRITE 16,2050 ) NFIX
IF (LSPEC, EQ. O) GO TO 14
WRITE $(6,2046)$ HEADO, HEADI DO $13 \mathrm{I}=1$, NSELCT
WRITE (6,2047) LOCO(I),LOC1(I)
13 continue
60 to 18
14 conitinue
OO $15 \mathrm{I}=1$, NSELCT IF (LSELCIII).EG. I) WRITE 16,2060 ) NAME IF (LSELCTII).EQ. 2) WRITE 16,20701 NAME If (LSELCT(I) .LE. 2) GO TO 15
CORR =
WRIIE $(6,2080)$ NAME, ORD (LPR) , NCRO
5 CONTIMUE
I8 CONTIHUE
$\mathrm{c}^{18}$
$\mathrm{c} . .$.
c
c..... arrange selectid fixed points in a honotone sequehee.

CALL SORT (NFIX,XFIXO,ISEQO)
CALL SORT (NFIX,XFIXI,ISEQI)
WRITE 16,2090
WRITE
$(6,2035)$
CALL UPLOW (A,B, XFIXO, O, NFIX, XOUT, FLAG)
WRITE $(6,2100)$ HEADO, (I, XOUT (I),FLAG(I),I=1, NFIX)
CALL UPLOW (A, B,XFIXI, 8 , NFIX, XOUT, FLAG)
c.....stop execuiton if order of occurrence of critical points in base
C.....STOP EXECUITON IF ORDER OF OCCURRENCE OF CRIT
AND CALIBRATION SOLUTIONS OOES NOT CORRESPOHD.

IF (LSPEC .EQ. 1) GO TO 25
DO $20 \mathrm{I}=1$, NFIX
If IISEQO(I). NE. ISEQI(I)) GO TO 910
20 COHIIRUE
25 COHITINUE
c..... compute coefficients in unit straining of xbase:

$$
\text { XSTR }=C(I)+D(I) \text { \#XEASE }, I=1,2, \ldots \text {, NSEG, }
$$

hhere nseg is the number of linear segments.
NSEG=NFIX-1
 DHUII $=X F I \times 1(I+1)-X F I X 1(I)$ DENOH=XFIXO(I+!)-XFIXO(I) C(I)=CHUH/DENOM
DII: $=$ DHUM/DENOM
30 continue
c.....determine unit straining of xbase

imainisi | \|maintiez |
| :--- |
| Maint |


MAIMIS5
hainteg
tMains 87
MAINI8B
MAINI89
MAINI90
MAIN191
MAINI 92
lmainigs
Malmisu
|MAINI 95
MAINI 96
MAIN1 97
MAIM198
MAINI 98
MALIN290
MAIN200
MAIN201
TAIN201
MAIN202
mainz203
IMAIN204
| HATH205
HAIN206
MAIN207
MAIN207
MAINzOO
thailt209
HAIN210
lmaineil

|HAIN213
| MAIN213


| IMAIH215 |
| :--- |
| IMAIN2 |

MAIN2 16
HAIHE17
imaninit
IHAN218
lhain219
M HAIN219
MAIN220
Main221
MAIN2
Mailiz22
MAYN2 23
MAIN224

## MAIN224 MAIN225

MAIN225
MAIH226
Main227
1 HAIH2zB
MAINE29
MAIN

HAIN231
IMAIN232
IMAIN233
Main233
MMAN23
MAIN235
MAIN236
MAIN237

maineza


| c <br> c.....I/O format statements follon. |  |
| :---: | :---: |
| 2000 FORMAT (1H1,132(1H*) |  |
| $\%$ | 1X,1H*,25X,20A4,25X,1H*/ |
| \% | ( $\mathrm{X}, 132\left(1 \mathrm{H}^{(1) / / /)}\right.$ |
| 2010 FORMAT |  |
| \% |  |
| \% | 6X,3HA $=, 1 \mathrm{X}, \mathrm{F} 4.1,4 \mathrm{X}, 3 \mathrm{HB}=, 1 \mathrm{X}, \mathrm{F} 4.1 / /$ |
| \% | 6X,5A4,1X,4HMO $=1 \times, 56.4,4 \mathrm{X}, 4 \mathrm{HGO}=, 1 \mathrm{X}, \mathrm{F6} .4 / /$ |
| $\%$ | 6X,5A4,1X,4HM1 $=, 1 \mathrm{X}, \mathrm{F6} .4,4 \mathrm{X}, 4 \mathrm{HQ1}=, 1 \mathrm{X}, 56.4 / / / 1$ |
| 2020 FORMAT | (1H , $10(1 \mathrm{H}<), 1 \mathrm{X}, 18 \mathrm{HCRITICAL}$ VALUES $\mathrm{OF}, 1 \mathrm{X}, \mathrm{A} 2,1 \mathrm{X}, 10(1 \mathrm{H}>1 / /$ 2(6X,5A4,1X,A2,6HCRIT $=, 1 X, F 7.4 / / / /)$ |
| 2030 FORTAT |  (X,4HPTS.,1X,5(1H>1) |
| 2035 FORMAT |  |
| 2040 FORMAT |  |
| $\%$ |  |
| \% |  |
| 2045 FORMAT | (1H, IOX,I1, IX, 18HCRITICAL POINT(S)!/ |
| \% |  |
| $\%$ |  |
| 2046 FORPAT | (1H , 10X,2(544)/) |
| 2047 FORIAT | $(1 \mathrm{H}, 14 \mathrm{X}, 2 \mathrm{HX}(, 13,1 \mathrm{H}), 15 \mathrm{X}, 2 \mathrm{HX}(, 13,1 \mathrm{H})$ ) |
| 2050 FORPAT | (///IX, 101 $1 \mathrm{H}(1), 1 \mathrm{X}, 25 \mathrm{HSTRAINING}$ POINTS SELECTED, 1 X , |
| $\chi$ | $10(1 \mathrm{H}>1,1 /$ |
| \% |  |
| $\%$ | 6X,24HMMBER OF FIXED POINTS : 1 , |
| \% | 11 |
| 2060 FPamat |  |
| 2070 FORMAT | (1H , 10X, 16HPOINT OF HAXIILH, IX,A2) |
| 2080 FORMAT | ( $1 \mathrm{H}, 10 \mathrm{X}, \mathrm{A} 2,6 \mathrm{HCRIT}(1, A 4,3 \mathrm{HOF}, \mathrm{I}, 1 \mathrm{H})$ ) |
| 2090 FORMAT | (///1X,10(1HC),1X,24HLOCATION OF FIXED POINTS, $1 \mathrm{X}, 10(1 \mathrm{H}>1$ |
| 2100 Forlat | (/6x,5A4// <br> (IH , IOX,5HXFIX(,II,3H) $=, 1 X, F 6.4, A!1)$ |
| $\%$ |  |
|  |  |
| \% | IX,1H*, ix, 2OHUNIT PERTUREATION OF,IX,A2,1X,1HM/ |
| $\%$ | 1X,1H*,12X,1HC,12X,1HM/ |
| \% |  |
| \% | 1x,27(1H*)/// |
| \% | 1X,5HPOINT, $4 \mathrm{X}, 5 \mathrm{SXBASE}, 4 \mathrm{X}, 8 \mathrm{HXSTRLNIT}, \mathrm{3X,A2,4HLNIT/)}$ |
| 2120 FORMAT | (1H, IX, 13, 1X, 3F \{0.4) |
| 2130 FORHAT | (1H1,27(1H*)/ |
| \% | 1X,19H* OUTPUT FOR CASE \#, I1,4H OF , Il, 2 H \#/ |
| $\%$ | \| $\mathrm{X}, 27$ (1H*)// |
| $\%$ | 6X,4H142 $=, 1 \mathrm{X}, \mathrm{F6} .4 / /$ |
| \% | 6x,4HG2 $=, 1 \times, F 6.4 / 1$ |
| \% | 6X,A2,6HCRIT $=, 1 X, F 7,4 / / / 1$ |
| 2135 FORMAT (///IX,5HPOINT, $4 \mathrm{X}, 5 \mathrm{HXBASE}, 5 \mathrm{X}, \mathrm{A} 2,4 \mathrm{HBASE}$, | (///IX,5HPOINT, 4X,5HXBASE,5X,A2,4HBASE, |
| \% | $4 X, 5 \mathrm{HXCALB}, 5 \mathrm{X}, A 2,4 \mathrm{HCALB}$, |
| $\%$ | 4X,5HXPERT,5X,A2,4HPERT, |
| \% | $4 \mathrm{X}, 5 \mathrm{HXCHEK}, 5 \mathrm{X}, \mathrm{AZ}, 4 \mathrm{HCHEK}$, |
| \% | 2X,A2,9HPERT( INT $) /$ ) |
| 2140 FORHAT ( $1 \mathrm{H}, 1 \mathrm{X}, 13,1 \mathrm{X}, 9 \mathrm{~F} 10.4$ ) |  |
| 2145 FORHAT | ///IX,5HPOINT, $4 \mathrm{X}, 5 \mathrm{HXBASE}, 5 \mathrm{X}$, A2, 4 HBASE , |
| $\%$ | 4X,5HXPERT,5X,A2,4HPERT// |
| $\%$ |  |
| 2150 Format | (1H, 1X, 13, 1X,6Fi0.4) |
| 9000 Fortat | (///IX,2EHMNTBER OF CRITICAL POINTS IN/ |
| \% | ix,30hbase ano calibration solutions/ |



| c |  |  | ｜INPU05 ${ }^{\text {a }}$ | c |  |  | COEFFICIENT． |  | ［ INPU1！1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c | \％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％InPUT FOR LSPEC＝ 0 \％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％i |  | InPU052 | c |  |  |  |  | 1 INPU：12 |
| c |  |  | INPU053 | C＊＊\＃\＃ | CARD | \＄5（8F10．6 |  | ＊＊＊＊＊＊＊＊＊世＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊｜ | Inpulis |
| c | NSELCT | number of points（in adoition to end points）to be l held invariant in straining．Note： $1<=$ NSELCT＜＝ 6.1 | 1 INPU054 | c |  |  |  |  | 1 INPUI 14 |
| c |  |  | IINPU055 | c |  | A S | SCALING PARAMETER IA |  | 1 INPU195 |
| c |  |  | INPU056 | c |  |  | DATA POINT ON LOWER S | Surface ．．．see manual）． | Inpuli6 |
| c | LSELCT（I） | array of length 6 of which nselct elements are read | InPU057 | c |  |  |  |  | IINPUI17 |
| c |  |  | INPU058 | E |  | B S | scaling parameter（b | ＝ $\mathrm{X}(\mathrm{N})$ ，where $\mathrm{X}(\mathrm{N})$ IS Last datal | IINPU118 |
| c |  | In．Spectifies nature of points to be held invariant | IINPU059 | c |  |  | POINT ON UPPER SURFAC | ce ．．．see manual）． | ｜INPUI19 |
| c |  | aCCORDING TO THE CODE： | IINPU060 | c |  |  |  |  | 1 INPUI20 |
| c | $\%$ |  | 1 INPU061 | c＊＊＊＊ | CARD | \％${ }^{\text {\％}}$（8F10．6 |  |  | ITPPU121 |
| c | $\%$ | 1 ．．．MINIMUM PT．held invariant | 1 INPU062 | ${ }_{\text {c }}$ |  | ＊${ }^{\text {（8）}} 0.6$ |  | 寿 | ｜INPU122 |
| c | ， | $2 . .$. maximum pt．held invariant | 1 INPU063 | c |  | MO | ONCOMING MACH MUMBER | In base solution． | IINPU123 |
| c | $\%$ | $3 \ldots$ IST CRITICAL PT，held invariant | INPU064 | c |  |  |  |  | ｜INPU124 |
| c | $\%$ | $4 . . .2$ 2ND CRITICAL PT．HELD THVARIANT | 1 INPU065 | c |  | Qo Va | value of perturbation | On parameter in base solution． | ｜ITPU：25 |
| c | $\%$ | 5 ．．．3RD CRITICAL PT．HELD INVARIANT | 1 INPU066 | c |  |  |  |  | IINPU126 |
| c | $\%$ | 6 ．．．4TH Critical pt．helo invariant | 1 InPU067 | c＊＊＊＊ |  | SEt of k ca | Cards（8F10．6），where | $\mathrm{K}=1+\mathrm{INT}(\mathrm{N} / 8)$ \＃＊＊＊＊＊＊＊＊＊＊＊＊＊｜ | 1 INPU127 |
| c | $\%$ |  | 1 INPUOS 8 | c |  |  |  |  | ｜INPU128 |
| c | $\%$ | note that the code numbers can be assigned in any | 1 1nPU069 | c |  | Xbase（I）， 1 | $\boldsymbol{I}=1, \mathrm{~N}$ |  | 1 INPU129 |
| c | $\%$ | ORDER，E．G． | 1 INPU070 | c |  |  | $x$ coordinate in base | SOLUTION． | 1 INPUS 30 |
| c | $\%$ |  | I INPU071 | c |  |  |  |  | INPU1 31 |
| C | ． | LSELCT（ 1 ）＝ 1 | 1 INPU072 | C＊\＃＊＊ |  | SEt Of K ca | Cards（bFio．6）， K as | ABOVE \＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊｜ | ｜INPU1 32 |
| c |  | LSELCT（2）$=3$ | 1 INPU073 | c |  |  |  |  | ｜INPU133 |
| c | $\%$ | LSELCT（3）$=4$ | 1 INPU074 | c |  | Ybase（I），I | $\mathrm{I}=1, \mathrm{~N}$ |  | ｜INPUI 34 |
| c | $\%$ |  | 1 INPU075 | c |  |  | dependent variable in | IN BASE SOLUTION． | ｜INPU｜ 35 |
| c \％ |  | IS Equivalent to | 1 INPU076 | c |  |  |  |  | INPU136 |
| c | $\%$ |  | ｜INPU077 | C＊＊＊＊ | Hext | T CARD（8F10 | 10．6）\＃＊＊\＃＊世＊＊＊＊＊＊＊＊＊＊ | ＊\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊\＃\＃\＃\＃＊\＃＊\＃＊\＃\＃\＃＊＊＊＊｜ | INPU1 37 |
| c | $\%$ | LSELCTI 1 ）$=4$ | 1 INPU078 | c |  |  |  |  | ｜INPUI 38 |
| c | $\%$ | LSELCT（2）$=1$ | 1 INPU079 | c |  | M | OnCOMING MACH MUMBER | In Calibration solution． | 1 INPU139 |
| c | \％ | LSELCT（3）＝ 3 | ｜INPYOBO | c |  |  |  |  | ｜INPU140 |
| $c$ | $\%$ |  | ｜INPU08｜ | c |  | Q1 | value of perturbation | on parameter in calibration | ［INPU141 |
| ${ }_{c}$ | \％ | BOTH CORRESPONDING TO NSELCT $=3$ WITH THE MINIMUM， | 1 INPLOB2 | c |  |  | SOLUTION． |  | I INPU142 |
| $c$ | $\%$ | and first and second critical points held invariant． | 1 INPU083 | c |  |  |  |  | ｜INPU143 |
| c |  |  | 1 INPU084 | C\＃\＃\＃\＃ | ONE | SET OF K CA | Cards（8F10．6），K AS |  | 1 INPUT44 |
| C | \％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％！ |  | 1 INPUOA5 | c |  |  |  |  | ［ IHPU145 |
| C |  |  | 1 INPU086 | c |  | Xcalb（I）， 1 | $\mathrm{I}=1, \mathrm{~N}$ |  | 1 ITPU146 |
| c | $\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$ InPUT FOR LSPEC＝1 \％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％ |  | 1 INPU087 | c |  |  | $x$ coordinate in calibral | tbration solution． | ｜INPU147 |
| ${ }^{\text {c }}$ | \％MsELCT |  | 1 INPU088 | c |  |  |  |  | 1 INPU148 |
| c | \％NSELCT | NUMBER OF POINTS（ In ADDITION TO END POINTS）TO BE | 1 INPU089 | c＊＊＊＊ | ONE | SET OF K Ca | Cards（8F10．6），K as |  | ［ INPU149 |
| c | $\%$ | HELD INVARIANT IN STRAINING．HOTE： $1<=$ NSELCT $<=6.1$ | 1 INPU090 | c |  |  |  |  | ｜INPU150 |
| ${ }_{c}^{\text {c }}$ | $\% \quad \text { LOCO( } 1 \text { ) }$ | array of length 6 of hhich nselct elements are read | IINPU091 | c |  | YCALBII）， | I＝1，N．．． |  | ｜INPU151 |
| c |  | IN．SPECIFIES SUBSRIPTS OF THOSE BASE FLOW POINTS | IINPU093 | c |  |  | deperdent variable in | in calibration solution．． | 1 INPUI52 |
| c | \％ | Which are to be held invariant． | ｜inpuos | C\＃\＃\＃＊ |  | SE SETS Of C | Cards，each Set compr | PRISED AS FOLLOWS：\＃\＃\＃＊\＃＊世＊＊＊＊\＃\＃\＃｜ | 1 INPUS 54 |
| c | $\%$ | array of length 6 df which nselct elements are read | 1 INPU095 | c |  |  |  |  | IINPUI55 |
| c | \％Locili） |  | ｜INPU096 | c |  | ＊＊＊＊ | FIRST CARD（8F10．6） | \＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊｜ | I INPU156 |
| c | $\%$ |  | 1 INPU097 | c |  |  |  |  | ｜INPU157 |
| c | $\%$ | points hhich are to be helo invariant． | IINPU098 | c |  | H2 | Oncoming mach | number in solution to be | ｜INPUI58 |
| c | \％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％\％ |  | 1 IrfPU099 | c |  |  | COMPUTED． |  | I InPus 59 |
| c |  |  | 1 INPU100 | c |  |  |  |  | 1 INPUI60 |
| ${ }^{\text {c }}$ |  |  | 1 INPU101 | c |  | Q2 | Value of perturan | urbation parameter in solution tol | INPU161 |
| C＊＊＊＊ | CARD ${ }^{\text {3 }} 12044$ |  | INPU102 | c |  |  | BE COMPUTED． |  | 1 INPU162 |
| C | tiple | identifies job－printed as headline on first page | IINPU103 | c |  |  |  |  | 1 INPU163 |
| c |  |  | IINPU104 | c |  | ＊＊＊＊ | ONE SET OF K Cards | （8F10．6），K AS ABOVE＊＊＊＊＊＊＊＊＊＊＊｜ | INPUI64 |
| c |  | OF OUTPUT． | IINPU105 | c |  |  |  |  | ［ INPUI65 |
| C |  |  | INPU106 | c |  | XCHEK | EK（I），I＝1，N |  | ｜INPU166 |
| ［＊＊＊＊ | CARD ${ }_{\text {c }}$（AR） | M＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ | 1 INPU107 | c |  |  | $\times$ COORDINATE IN | IN COMPARISON SOLUTION． | 1 INPU167 |
| c | NAME | Character string of lengit 2 hHICH Symbolizes dependent variable，e．g．＇cp＇for pressure | 1 IHPU108 | c |  |  |  |  | 1 INPU168 |
| c |  |  | $\mid$ INPU109 | c |  | ＊＊＊＊ | One set of k cards | （8F10．6），K AS ABOVE \＃＊＊＊\＃＊＊＊＊＊＊＊ | 1 INPU169 |
| c |  |  | ［INPUI 10 | c |  |  |  |  | ｜INPUI 70 |

```
O
* NOTE OMITTED HHEN LCHEK = O (NO COMPARISO
******## SOLUTION AVALLABLE).
OIMENSION LOCO(6),LOCI(6),LSELCT(6),TITLE(20)
    DIMENSION XBASE(200),XCALBI200),XPERT(200),XCHEK(200),
    %
    REAL MC,Mt,H2
    REAL MC,MI,H2
    COHTON/PARAM/ TITLE,LOCO,LOC1,LSELCT,N,NCASE,LSPEC,LECHO,LUNIT,
    %
        LCHEK, LPERT,NSELCT,A,B,NAHE
    COMTMON /PERT/ MO,M1,M2,40,प1,Q2,YCRO,YCR1,YCR2
        COMMON /XY/ XBASE, XCALB, XPERT, XCHEK, YBASE,YCALB, YPERT, YCHEK
    G0 TO (100,200,3003, ICALL
100 REAO (5,1000) N,NCASE,LSPEC, LECHD,LUNIT, LCHEK, LPERT
    IF (LSPEC .EQ. O) READ (5,1000) NSELCT,(LSELCT(I),I=1,NSELCT)
    IF ILS IEC .EQ. I) READ (5,1000) NSELCT,(LOCO(I),I=1,NSELCT)
    %ead (5,1050) tITL
    READ (5,1100) NAME
    READ (5,1200) A,B
    READ (5,1200) H0,QO
    READ (5,1200) (XBASE(I),I=1,N)
    READ (5,1200) (YBASEII,I=1,N
    READ (5,1200) M1,G
    READ (5,1200) (YCALB(I),I=1,N
    RETURN
200 READ (5,1200) H2,Q2
    RETURN
300 READ (5,1200) (XCHEK(I),I=1,N)
        READ (5,1200) (YCHEK(I),I=1,N)
    RETURN
O00 FORMAT (1615
loso FORHAT (20A4)
1200 FORMAT (EF10.6
    END
    SUBROUTINE ECHINP
    DIMENSION LOCO(6),LOCI(6),LSELCT(6),TITLE(20)
    DIMENSION XBASE(200),XCALB(200),XPERT(200),XCHEK(200),
    %
    REAL MO,M1,M2
    COMMON/PARAM/ TITLE,LOCO,LOCI,LSELCT,N,NCASE,LSPEC,LECHO,LUNIT,
%
    COMMON LCHEK,LPERT,NSELCT,A,B,NAME
    COHTON /XY/ XBASE,XCALB,XPERT,XCHEK,YBASE,YCALB,YPERT,YCHEK
    WRITE (6,1400)
    WRITE (6,1500) N,NCASE,LSPEC,LECHO,LUNIT,LCHEK,LPERT
    IF (LSPEC .EQ. O) WRITE (6,1500) NSELCT,(LSELCT(IS,I=1,NSELCT
    IF (LSPEC .EQ. 1) WRITE (6,1500) NSELCT,(LOCO(1),I=1,NSELCT),
%
    (LOC1(I),I=1,NSELCT)
    WRITE (6,1550) TITLE
    WRITE (6,1600) NAME
    WRITE (6,1700) A,B
    MRITE (t,1700) A,B
```

| \| INPU171 |  | WRITE ( 6,1700 ) (XBASE(I) 1 , $1=1, N$ ) |
| :---: | :---: | :---: |
| \| INPUI 72 |  | WRITE ( 6,1700 ) (YBASE (I) $, \mathrm{I}=1, \mathrm{~N})$ |
| \| INPU173 |  | WRITE ( 6,1700 ) M1, Q1 |
| I INPU174 |  | WRITE ( 6,1700 ) (XCALB(I), I= $1, N$ ) |
| 1 INPU175 |  | HRITE ( 6,1700$)$ ( YCALB $(1), I=1, N)$ |
| \| INFU176 |  | RETURN |
| IINPU177 | 1400 |  |
| IIHPU178 | \% | 1X,IH*,IX,2thlisting of INPUT DECK, iX,iH*/ |
| IIHPU179 |  | (x)25(1H*)///7) |
| Infula | 1500 | FORHAT (1x,1615) |
| \| INPUI81 | 1550 | Format ( $1 \times, 2044$ ) |
| IIMPU182 | 1600 | format (ix,az) |
| IINPUIE3 | 1708 | format (ix,efio.6) |
| IINPU184 |  | END |
| IINPU185 |  | SUBROUTINE BANNER |
| \| INPU186 |  | WRITE (6,1300) |
| \|INPU187 |  | WRITE ( 6,1310$)$ |
| 1 INFU188 | 1300 |  |
| 1 INPUIE9 |  | 49X, 1H*, 19X,15HPROGRAM PERTURB, 19X,1H*/49X,1H*,53X,1H*/ |
| 1 INPUI90 |  | $49 \mathrm{X}, 1 \mathrm{H}^{*}, 8 \mathrm{X}, 37 \mathrm{HCALCULATES}$ NONLINEAR SINGLE-PARAMETER, |
| IINPU919 |  |  |
| IINPU192 |  | 49X, IH*,13X,27HCONTINUOUS OR DISCONTINUOUS, |
| \| INPU193 |  |  |
| IINPU194 |  | 49X,1H*,15X,22HPERTUREATION SOLUTIONS,16X,1H*/49X,1H*,53X,1H*/ |
| IINPUI95 |  | $49 \mathrm{X}, 1 \mathrm{H}$, $9 \mathrm{X}, 34 \mathrm{HWHILCH}$ REPRESENT $A$ CHANGE IN EITHER, |
| I INPU196 |  |  |
| IINPU197 |  | 49X,1H*,13X,27HGECMETRY OR FLOH CONDITIONS, |
| IINPU198 |  |  |
| \|INPU199 |  | 49X,1H*,4X,44HBY Employing a Strained-codrdinate prdcedure, |
| $\mid$ Inpuzoo |  |  |
| IINPU201 |  | 49X,1H*, $4 \mathrm{X}, 45 \mathrm{HUTILIZING} \mathrm{A} \mathrm{UNIT} \mathrm{PERTURBATION} \mathrm{DETERHINED} \mathrm{FROM}$, |
| IINPU202 |  | 4X, 1H*/49X, $1 \mathrm{H}^{*}, 53 \mathrm{X}, 1 \mathrm{H} \times /$ |
| IINPUZO3 |  | 49X,1H*, 14X,25HTHO PREVIDUSLY CALCULATED, |
| IINPU204 |  | 14X, 1H*/49X, 1H*, 53X, 1H*) |
| 1 INPU205 | 1310 | FORMAT ( 49X,1H*,9X,34H'BASE' AND 'CALIBRATION' SOLUTIONS, |
| \| INPU206 |  |  |
| \|INPU207 |  | 49X,1H*,4X,45HDISPLACED FROM ONE ANOTHER BY SOME REASDNABLE, |
| \| IkPU208 |  | 4X, $1 \mathrm{H}^{* / 49 \mathrm{X}, 1 \mathrm{H}, 53 \mathrm{~K}, 1 \mathrm{H} \% /}$ |
| \| InPuzos |  | 49X,IH*,BX, 36HCHANGE IN GEOMETRY OR FLON CONDITION, |
| 1 INPU210 | \% | $9 \mathrm{X}, 1 \mathrm{H}^{* / 49 \mathrm{X}, 1 \mathrm{H}^{*}, 53 \mathrm{X}, 1 \mathrm{H}^{\prime} /}$ |
| IINPU2t1 | $\%$ | 49X, 1H*, 53X,1H*/ |
| Pechioot |  | 49X,1H*,21X,10HHRIITEN BY, 22X,1H*/49X,1H*,53X,1H*/ |
| \|ECHIOO2 |  | 49X,1H*,7X, 39HJAMES P. ELLIDTT AND STEPHEN S. STAHARA, |
| IECHIOO3 |  |  |
| \|eCHIOO4 |  | 49x, 1H*,53x,1H*/ |
| \|ECHIOO5 |  | 49X,1H*, 7X, 38hNIELSEN ENGINEERING AND RESEARCH, inc., |
| \|ECHI006 | \% | $8 \mathrm{X}, 1 \mathrm{H} / / 49 \mathrm{X}, 1 \mathrm{H}^{*}, 53 \mathrm{X}, 1 \mathrm{H} * /$ |
| lechiooz |  | 49X,1H*,14X,25HMOLNTAIN VIEN, CALIFORNIA,14X, 1 H \#/49X,1H*,53X,1H* |
| \|ECHI008 |  | 49X,55(1H*) |
| \| ECHIOO9 |  | RETURN |
| \| ECHTOIO |  | ENO |
| \| ECHIOIt |  | Sugroutine scale ( $\mathrm{N}, \mathrm{X}, \mathrm{h}, \mathrm{A}, \mathrm{B}$ ) |
| IECHIO12 | c |  |
| lechiols | c..... | ENTRY HITH M = 1 converts from phisical x 10 to -a On lower |
| \|ECHIO14 | c |  |
| \| ECHIO15 | c | ehitry with miz reverses the process. nz (determined hhen hei) |
| \| ECHIO16 | c | corresponus to point at nose of blade or airfoil. |
| \|ECHIOI7 | c |  |
| IECHIOI8 |  | COMMON /FLOREV/ Hz |
| [ ECHIOI9 |  | dimension xizoor |



GO ro ( 1,6 ), M
( CONTINUE
$\mathrm{NZ}=0$
IF (XII). LT. X(I-1) ) NZ
2 CONTINJE
DO $5 \mathrm{I}=1, \mathrm{~N}$
IF (I .LE. NZ) $T=-X(I)$
IF (I , GT, NZ) $\mathrm{T}=\mathrm{XII}$ )
$x(I)=(T-A) /(B-A)$
CONTINUE
6 DO 7 I=1, N
$X(I)=A B S(1 B-A) \# X(I)+A)$
7 CONTINEE
RETUR
END
(OCATE ( $N, X, Y$, YCRIT, IGRAD,LHIN, LMAX, MCRIT, LCRIT, XLOC)
c..... operates on the input array y, locating minimm and maximum VALUES, AYD ALL CRITICAL POINTS (Y=YCRIT) FOR HHICH OY, OX (IN PHYSICAL COORDINATESI HAS ALGEBRAIC SIGN GIVEN BY IGRAD. NCRIT IS HUHBER OF CRITICAL POINTS. POINTS FOUND ARE STORED IN THE ARRA
XLOC AS FOLLOWS:

```
XLOC(1)= MINIMLM PT.
XLLC(2) = HAXIHMM PT
XLOC(3) }=\mathrm{ = CRITICAL PT.
XLOC(6) = CRITICAL PT. *
```

DIMENSION X(200),Y(200),LCRIT(4),XCRIT(4),XLOC(6)
COMMON /FLOREV/ IREV
IF LOH=-1
MIN $=1$
MAX $=1$
ISTART=2
IF (IREV.EQ. O) GO TO 5
LMIN $=2$
LMAX=2
ISTART=3
COATINUE
DO 100 I=ISTART, $N$
IF (IREY NE O ANO. I .EQ. N) EO TO 10
If (YII). .GT. Y(LMAXi) LMAX=I
IF (YII) .LT. Y(LMIN)) LHIN=I
10 CONTINUE
IF (IY(I) . $6 T$. YCRIT .AND. Y(I-1) .GT. YCRIT) .OR.
(Y(I), LT. YCRIT. AND. Y(I-I).LT. YCRIT)) 60 TO 100 F (I . 67 . IREV) IFLOH=1
(F (iY(I)-Y(I-1))\#FLOATIIFLOW*IGRAD).LT. 0.0) GO TO 100 HCRIT $=$ NCRIT
LCRIT
N
SLOPE=(X(I)-X(I-I) $)$ (Y(I)-Y(I-I)
XCRIT(NCRIT) $=X(I-1)+$ SLOPE\#(YCRIT-Y(IT-1) $)$
100 coritinue
XLOC( 1 )=XILHIN
$X L O C(2)=X($ LHAX $)$
If (NCRIT EQ O) RETUPN

| \|SCALO10 |SCALO11 iscaloia |  |
| :---: | :---: |
|  |  |
| \| SCALO| |  |
|  | SCaL |
| SCa |  |
|  | \| scalol |
| \| SCALO |  |
|  | SCALO |
| [scalozo |  |
|  |  |
| ISCAL |  |
|  | Scal |
| 1 scalo |  |
|  |  |
|  |  |
|  |  |
| loc |  |
|  |  |
| I locao |  |
|  |  |
|  |  |
|  |  |
| loca00 |  |
|  |  |
|  | Local |
| \|locadil |  |
|  | LO |
| Loca |  |
|  | LOCA014 |
| \|local |  |
|  | l locao |
| l Loca017 |  |
|  | ILOCA |
| lloca01 |  |
|  | L0ca020 |
| \| locauz1 |  |
|  | loca |
| I loca02 |  |
|  | Loc |
| I locaozs |  |
| I LOCA026L LOCA027 |  |
|  |  |
| ILOCA027 |  |
| I locaioz |  |
| \| LOCAO |  |
|  |  |
| \| Loca032 |  |
| \| LOCA033 |  |
|  |  |
| I loca03 |  |
| I locaoz6 |  |
| \| LOCA037\| LOCA038 |  |
|  |  |
| loca03 |  |
|  |  |
| I Loca040 |  |
|  |  |

D0 $200 \mathrm{I}=1$, NCRIT
200 XLOC(I $1+2)=$ XCRIT(I)

## RETUR

## SUBROUTINE SORT (N,X,ISEQ

c.....arranges the set $\mathrm{x}(1), \mathrm{x}(2), \ldots, \mathrm{X}(\mathrm{N})$ in a monotone increasing
c SEquence. Iseq gives order of subscripts in rearranged sequence.
DIMENSION X(8),ISEQ(8)
$\mathrm{NM}:=\mathrm{N}-1$
DO $1 \quad I=1, N$
ISEQ(I) $=I$
10 ITEST $=0$
$00100 \mathrm{I}=\mathrm{I}$, $\mathrm{A} / \mathrm{H}$
If (XII).LE. $X(I+1))$ GO TO 100
XSAVE $=X(I)$
$x(I)=X I+1)$
$X(I+1)=x S A V E$
ISAVE $=1$ SEQ(I)
ISEQ(I) $=$ ISEQ(I+1) ISEQ( $\mathrm{I}+1$ )=ISAVE
ITEST=1
100 cohtinue
IF (ITEST EQ 1) 60 TO RETUR
SUBROUTINE INTERP ( $N, X, Y, X I, Y$ I)
C C.....given the set of points X(I), $Y(I), I=I, N$, and the Set XI( 1 ), c.....given the set of points X(I), Y(I), I=1,N, AND THE SET XI(J),
$\mathrm{c} \quad \mathrm{J}=1, \mathrm{~N}, \mathrm{USES}$ LINEAR INTERPOLATION TO COMPUTE THE SET YI(J), $J=1, \mathrm{~N}$. DIMENSLON X(200),Y(200),XI(200),YI(200) NHI $=\mathrm{N}-1$
JSTART=:
DO $100 I=1, N$
IF $(X I I I)$. LE. X(IH) 60 TO 10
If (XIII).GE. X(N)) GO TO 20
G0 10 30
$10 \mathrm{~J}=1$
G0 1095
$20 \mathrm{~J}=\mathrm{N}-1$
30 coniinue
DO $90 \mathrm{~J}=\mathrm{JSTART}$, NMI IF (XIII). NE. X(J)) GO TO 40 rI(I) $=\mathrm{Y}(\mathrm{J})$ 60 TO 100
40 IF (XI(I) .GT. X(J).AND. XI(I) .LT. XIJ+1)) GO TO 95 90 CONTINUE
95 SLOPE $=(Y(J+1)-Y(J)) /(X(J+1)-X(J) 1$ YIII) $=$ Y(J) $+S L$ LOPE*(XI(I)-X(J))
JSTART=J
continue RETUR
ENID
SUBROUTINE STRAIN IN, NSEG, XFTX, XIN, PARM, XOUT
c
C...... COMPUTES STRAINED COORDINATE FROM INPUT ARRAY XIN, USING PIECEWISE
c



| \% 15HSET MNTENSITY 2 ) |  | \| plotobz |
| :---: | :---: | :---: |
|  |  | \| PLOT083 |
| 1900 F | Format (4hPLOT) | \|Plor084 |
| 5000 f | format (5i2(f6.3,1X),1H; ${ }^{\text {a }}$ | \| PLOT085 |
| EHD |  | \| PLOT086 |
| SUBROUTINE LIMITS ( $\mathrm{N}, \mathrm{ymIN}, \mathrm{ymax}$ ) |  | \|LIMI001 |
| C.....searches four data arrays yo,yi, Y2,Y3 for minimum and maximum. |  | \|limioor |
|  |  | \|LIMI003 |
|  | Called only by plot subroutine. | \|Limio04 |
| c |  | Itimio05 |
| DIMENSION XO(200), X1(200), $\times 2(200), \times 3(200)$, |  | ILImi006 |
|  | $\% \quad \mathrm{ro}(200), \mathrm{Y}(200), \mathrm{Y} 2(200), \mathrm{Y} 31200)$ | \|Limi007 |
| - DIMEHSION $Z(800)$, |  | Ilimioos |
|  |  | \|limiodg |
| equivalence (yoli),z(1)) |  | \|limioio |
| YMIN=Zい |  | \|limiol| |
| Ymax $=211$ |  | \|LIMIO12 |
| D0 $10 \%=1,4$ |  | \|limiol3 |
| JSTART $=200 \times(1-1$ ) +1 |  | \|LIMIO14 |
| JSTOP=JSTART + N-1 |  | \|LIMIO15 |
| DO $10 \mathrm{~J}=\mathrm{JSTART}$, JSTOP |  | \|LImiol6 |
|  | IF (Z2).GT. Ymax ) $\mathrm{rmax}=\mathrm{Z}(\mathrm{J})$ | \|limiol 7 |
| IF (Z(J).LT.YMIN) YMIN=Z(J) |  | \| LIMIO18 |
| 10 | continue | litmiola |
|  | YSAVE= YMAX | \|LIMIO20 |
|  | YMAX $=$ YIIIN | \|LIMI021 |
|  | YHIN=YSAVE | 1 limio22 |
|  | CALL ROUND (YMIN) | \|limioz3 |
|  | CALL ROUND ( Ymax ) | \| LIMI024 |
|  | RETURN | \| LImio25 |
|  | END | \| LItHİ26 |
|  | SUBROUTINE ROUND (Y) | Irounoot |
| c |  | IRCUH002 |
| C.....rounds Y Limits for output in f5.l format. Called only by |  | \|roundou |
|  | SUBROUTINE LIMITS. | \|ROUH004 |
| c |  | 1 Roundos |
| $z=A B S(Y)$ |  | 1R0Un1006 |
| IF (10.*Z-INT(10.*Z).LT..5) $\mathrm{z}=\mathrm{Z}+.05$ |  | \|rounoot |
| IF (Y.GT.O.) GO TO 1 |  | \|ROUH008 |
| $\gamma=-2$ |  | \| ROUN009 |
| REIURN |  | \|rounoto |
| $1 \mathrm{Y}=\mathrm{Z}$ |  | \|routhol |
| RETURN |  | [ROUHO12 |
|  |  | \|rounol 3 |
|  |  | IUPL000 |
| c |  | IUPLO002 |
| c..... | . converts normalized array xin to physical array xout and flags | IUPL0003 |
| c POINTS ON LOWER SURFACE WITH A '*'. |  | IUPL0004 |
| c |  | IUPL0005 |
| DIMENSION XIN( $K$ ), XOUT( $B$ ) |  | \|uplooab |
| LOGICAL*I FLAG(B), blank/1H /, STAR/IH*/ |  | IUPL0007 |
| $X$ HOSE $=-A /(B-A)$ |  | \|UPL0008 |
| $\text { Do } I I=1, N$ |  | IUPL0009 |
| FLAG(I) = BLAFK |  | IUPLOOIO |
| IF (XIN(I) .LT. XNOSE) FLAGII)=STAR |  | \|UPL0011 |
|  |  | IUPLOO12 |
|  |  | IUPL0013 |
|  |  | \|upLool4 |
|  |  | IUPLOOIS |

## APPENDIX C

## LIST OF SYMBOLS

C
H
i
k

L
$\mathrm{L}_{1}$
$\mathrm{L}_{2}$
$L_{i}$
n

N
q
$q_{C}$
$\mathrm{q}_{\mathrm{O}}$

Q
$Q_{C}$
$Q_{0}$
$Q_{p}$
(s,t)
blade chord, m
blade spacing for nonstaggered cascades, m
invariant point index; eq. (6); also, index for Lagrangian coefficients; eq. (22)
dummy index; eq. (20)
two-dimensional full potential operator; eq. (2)
linear operator representing first-order perturbation of two-dimensional full potential equation; eq. (4)
linear operator representing first-order perturbation terms arising from coordinate straining; eq. (9)

Lagrangian coefficients; eq. (22)
total number of shock points and high-gradient maxima points; eq. (24)
total number of invariant points, equal to $n+2$; eq. (24)
arbitrary geometric or flow parameter to be perturbed; eq. (13)
calibration flow value of $q$; eq. (9)
base flow value of $q$; eq. (3)
approximate flow solution for arbitrary flow quantity; eq. (I)
calibration flow solution for value $q_{C}$ of arbitrary parameter; eq. (8)
base flow solution for value $q_{0}$ of arbitrary parameter; eq. (1)
linearized perturbation solution per unit change of perturbed parameter; eq. (l)
strained ( $x, y$ ) coordinates; eq.

| ( $\mathrm{x}, \mathrm{y}$ ) | nondimensional blade-fixed orthogonal coordinates; eq. (5), normalized by C |
| :---: | :---: |
| $(\bar{x}, \bar{y})$ | nondimensional blade-fixed orthogonal coordinates related to calibration solution; eq. (9) |
| $\left(\mathrm{x}_{1}, y_{1}\right)$ | straining functions associated with ( $\mathrm{x}, \mathrm{y}$ ) coordinates; eq. (6) |
| $\left(x_{1_{i}}, y_{1_{i}}\right)$ | straining functions associated with ith invariant point; eq. (6) |
| $\left(\delta \mathrm{x}_{\mathrm{i}}, \delta \mathrm{y}_{\mathrm{i}}\right)$ | unit displacements in ( $x, y$ ) directions associated with ith invariant point; eq. (6) |
| $\delta \mathrm{x}_{\mathrm{i}}^{\mathrm{C}}$ | unit displacement in $x$ direction between base and calibration flows of the ith invariant point; eq. (18) |
| $\varepsilon$ | ```perturbation change of geometric or flow parameter; eq. (17)``` |
| $\varepsilon_{C}$ | perturbation of geometric or flow parameter between base and calibration flows; eq. (18) |
| $\Phi$ | nondimensional total velocity potential; eq. (2), normalized by $\mathrm{CV}_{\infty}$ |
| $\Phi_{0}$ | nondimensional base flow velocity ptential; eq. (3), normalized by $\mathrm{CV}_{\infty}$ |
| ${ }_{1}{ }_{1}$ | nondimensional perturbation velocity potential; eq. (3), normalized by $\mathrm{CV}_{\infty}$ |
| Subscripts |  |
| - | denotes base flow quantities |
| 1 | denotes perturbation quantities |
| C | denotes quantities associated with calibration flow |

## REFERENCES

1. Stahara, S. S., Chaussee, D. S., and Spreiter, J. R.: Perturbation Solutions for Transonic Flow on the Blade-to-Blade Surface of Compressor Blade Rows. NASA CR-2941, Jan. 1978.
2. Lighthill, M. J.: A Technique for Rendering Approximate Solutions to Physical Problems Uniformly Valid. Philos. Mag., Vol. 40, 1949, pp. l179-1201.
3. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, California, 1975.
4. Pritulo, M. F.: On the Determination of Uniformly Accurate Solutions of Differential Equations by the Method of Perturbation of Coordinates. J. Appl. Math. Mech., Vol. 26, 1962, pp. 661-667.
5. Nixon, D.: Perturbation of a Discontinuous Transonic Flow. AIAA J., Vol. 16, Jan. 1978, pp. 47-52.
6. Nixon, D.: Perturbations in Two- and Three-Dimensional Transonic Flows. AIAA J., Vol. 16, July 1978, pp. 699-709.
7. Nixon, D.: Design of Transonic Airfoil Sections Using a Similarity Theory. NASA TN 7851, Oct. 1978.
8. Nixon, D.: Perturbation Methods in Transonic Flow. AIAA Paper No. 80-1367, July 1980 .
9. Stahara, S. S.: Operational Manual for Two-Dimensional 'Iransonic Code TSFOIL. NASA CR-3064, Dec. 1978.
10. Holst, T. L. and Ballhaus, W. F.: Fast, Conservative Schemes for the Full Potential Equation Applied to Transonic Flows. AIAA J., Vol. 17, Feb. 1979, pp. 145-152.
11. Katsanis, T.: Fortran Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TND-5427, Sept. 1969.
12. Dulikravich, D. S.: CAS2D: Computer Program for Planar Steady Potential Cascade Flows. NASA TP-1705, 1980.
Perturbation for
calibration solution
in physical coordinates

Perturbation for calibration solution<br>in strained coordinates


(a) Single shock.


(b) Multiple shock and high-gradient locations.

Figure l.- Illustration of perturbation solution for calibration solution in physical and strained coordinates


BICONVEX PROFILES


Figure 3.- Comparison of perturbation (O) and nonlinear (-) surface pressures for a thicknessratio perturbation of a nonlifting cascade of biconvex profiles with $\mathrm{H} / \mathrm{C}=1.0$ at $\mathrm{M}_{\infty}=0.80$


Figure 4.- Comparison of perturbation (O) and nonlinear (-) surface pressures for a thicknessratio perturbation for an isolated NACA OOXX airfoil at $M_{\infty}=0.820$ and $\alpha=0^{\circ}$ for solution interpolation






Figure 5.- Comparison of perturbation ( $O$ ) and nonlinear (-) surface pressures for a thicknessratio perturbation for an isolated NACA 00XX airfoil at $M_{\infty}=0.820$ and $\alpha=0^{\circ}$ for extreme solution extrapolation

|  | AY | －． | BASE |
| :---: | :---: | :---: | :---: |
| $M_{\infty}$ |  | －ーーーーー | CALIBRATION |
|  | $\longrightarrow \mathrm{x}$ | 000000 | PERTURBATION |
|  |  |  | EXACT NONLINEAR |



Figure 6．－Comparison of perturbation（O）and nonlinear（－）surface pressures for a Mach number perturbation of an isolated NACA 0012 airfoil at $\alpha=0^{\circ}$


Figure 7.- Comparison of perturbation (O) and nonlinear (-) surface pressures for an angle-of-attack perturbation of an isolated NACA 0012 airfoil at $M_{\infty}=0.70$


Figure 8.- Comparison of perturbation (O) and nonlinear (-) surface pressures for various geometry and flow parameter perturbations of isolated airfoils at subcritical speeds


Figure 9.- Comparison of perturbation (O) and nonlinear (-) surface pressures for various flow parameter perturbations of a compressor cascade at subcritical speeds

...... BASE
------ CALIBRATION
000000 PERTURBATION, QUADRATIC

PERTURBATION,
PIECEWISE-CONT.
EXACT NONLINEAR

Figure 10.- Comparison of nonlinear (-) sur-
face pressures with perturbation results using quadratic (O) and linear piece-wise-continuous (*) straining functions for a thickness-ratio perturbation of an isolated NACA 00XX airfoil at $\mathrm{M}_{\infty}=0.820$ and $\alpha=0^{\circ}$


Figure ll.- Comparison of nonlinear (-) surface pressures with perturbation results using cubic ( $O$ ) and linear piecewisecontinuous (*) straining functions for an angle-of-attack perturbation of an isolated NACA 0012 airfoil at

$$
M_{\infty}=0.70
$$



Figure l2.- Comparison of nonlinear (-) sur-
face pressures with perturbation results using quadratic (O) and linear piece-wise-continuous (*) straining functions for a Mach number perturbation of an isolated NACA 0012 airfoil at $\alpha=0^{\circ}$

-•••• BASE
---ー-- CALIBRATION
000000 PERTURBATION, CUBIC

PERTURBATION, PIECEWISE-CONT.
EXACT NONLINEAR

Figure 13.- Comparison of nonlinear (-) surface pressures with perturbation results using cubic (O) and linear piecewisecontinuous (*) straining functions for an angle-of-attack perturbation of an isolated NACA 0012 airfoil at

$$
M_{\infty}=0.70
$$




Figure 15.- Comparison of perturbation (*) and nonlinear (-) surface pressures for an oncoming Mach number perturbation of supercritical flow past a cascade of Jose Sanz blade profiles

*For sale by the National Technical Information Service, Springfield, Virginia 22161


[^0]:    *Stanford University, Dept. of Applied Mechanics, Stanford, CA; Consultant, Nielsen Engineering \& Research, Inc.

[^1]:    

