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Introduction 

A method for calculating three dimensional separated flow around 

bodies similar to ground vehicles was investigated in collaboration 

with the Office National dlEtudes et de Recherches Aerospatiales in 

Chatillon. This investigation was a continuation of research started 

in 1975 in which we have analyzed many results obtained in wind and 

water tunnels and prcposed [15] a two dimensional approach based on a 

wake-vortex representation. 

In the present article the investigation has been extended to 

three dimensions, and a nonstationary, inviscid scheme based on the 

method developed by Rehbach [l] is proposed. 

The obstacle is represented by singularities and the wake is 

modeled with the aid of vortex particles emitted from the separation 

line, which is assumed to be known in this case. 

The calculations carried out for axisymmetric bodies show the 

evolution of the vortex sheet's structure as a function of the angle 

of the flat base area. Wind tunnel visualizations confirmed the 

results. The sheet,-which is of a separated two dimensional nature 

for an upright base area, takes on a split sheet structure for 

greatly inclined base areas [81, with lateral rollup present. 



The numerical results presented constitute a first approximation 

of the problem. They especially show the necessity of an in-depth 

study of three dimensional separation. 

Chapter 1 -- The Physical Problem 

1.1 Introduction 

A physical analysis of the base area flow past simple bodies 

related to ground vehicles was conducted in the Lelarge-Renault wind 

tunnel at the Institut Aerotechnique at Saint-Cyr-1'Ecole. The 

experiments' main goal was to complete the recent information 

obtained by other authors. (Morel, Maul1 [2] in 1976) 

The body investigated (figure 1.1) was composed of a corimon 

forward part made up of a Rankine half-body [3]  with a diameter 

jd = 160 mm and length L = 700 mm. Fitted to it are flat base areas 

with angles a = 0 ° ,  30°, and 60°. The assembly is mounted at zero 
. . 

incidence and sideslip with aid of streamlined supports. Height H 

can take on two values: H/jd = 2 and H/% = 0.65. 

figure 1.1 

*Numbers in the margin indicate pagination in the foreign text. 



The analysis was based on: 

--streamline visualizations using paste 

--wake visualizations with bubbles (EMIBUL technique) 

--tracings of boundary layer profiles at the base area edge 

161 

The results presented here are those for H/$ = 2. 

The boundary layer readings make possible an approximate 

calculation of the intensity of the wake vortex emitted at the 

separation line 3 :  



The circulation 6r on contour C, which is defined in figure 

1.2 is, during the period of time 6t: 

If one supposes that the flow is locally two dimensional, 

one obtains, with: 

and 

with 

ds - udt , 

where ue is the velocity outside the boundary layer. It has been 

assumed here that the velocity Ui at the base area is negligible. 

1.2 Experimental Results 

The observations and photographs reveal the following elements: 

( R ~  2 1.2 x 106)- 

The vorticity discharge emitted by the boundary layer is 



constant along the separation line 2 (figure 1.3 and .table 1.1, in 
which the values of ue/Vm, 6, and K given by equation (1.2 are noted). 

Table 1.1 

Figure 1.3 

The vorticity vector associated with each vortex ring is 

parallel to the yz plane, and the vortex sheet C is symmetric about 

the x-axis. Finally, the streamlines $ remain parallel to the x-axis 
-b 

and are perpendicillar to line 3. The lift Fz of such a body when 

:-it is located far from the ground is zero and its drag is situated at 

pint a of the curve Cx = f (a) (traced in figure 1.8, which is 

excerpted from [2] ) . 

The streamline visualizations show that the streamlines $ 

are perpendicular to the line%. The slight base area inclination 

causes dissymmetry in the wake, but its two dimmensional structure 

is conserved. Representative drag point b in figure 1.8 confirms 

this. 

i) The structure of the vortex sheet is greatly modified even 

though, as shown in photo 1, the streamlines remain perpendicular to 

3. (See figure 1.4. ) 
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Key: a )  d iv id ing  p o i n t  
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Streamline visualizations of the base area reveal secondary 

rollups similar to those observed in swept wings (~erle [ 7 ] ) .  These 

rollups are illustrated in figure 1.5, which is based on photographs. 

nappe de tourbi 11 onsa 
en cornet 

Figure 1.5 

Key: a) wake rollup 

These observations were recently confirmed by H..Werle through 

visualizations made in a water tunnel on a body similar to the one 

described in figure 1.1. 

In addition, three-dimensional effects are preponderant. The 

vortex sheet splits at A in figure 1.5, and a rolled up wake is 

emitted all along contour 2 . 

In order to satisfy this scheme, it is necessary that the 

vorticity vector emitted be tangent at B to line 9 and evolve 
continually from B towards A in such a way that it is practically 

parallel to 3- at A. 

ii) The photographic data obtained with the bubble technique /1.5 - 
(see photos 2 and 3) clearly show the formation of the two lateral 

vortices. The flow remains separated in the median plane of the 



base a r e a ,  probably with t h e  formation of a bulb : 2 t  A ,  a s  the  down- 

stream p o i n t  B behaves l i k e  t h e  fol lowing edge of a wing. 

. PHOTO 2 PHOTO 3 

iii) This l a s t  remark i s  confirmed by t h e  readings  of s t a t i c  

p ressu re  on t h e  wa l l  a t  t h e m e d i a n l i n e  ( f i g u r e  1 . 6 ) .  The high pres- 

su re  i n  t h e  downstream region  shows t h a t  t h e  ext rados  s t reaml ine  Y 1  

i s  s t rong ly  d e f l e c t e d  i n  t h e  d i r e c t i o n  of -)V by t h e  i n t r a d o s  flow. 
c4 

(See a l s o  f i g u r e  1.9,  which was taken from [ 2 ]  . ) 
I 

f i g ~ r e  1.6 



iv) The boundary layer readings along contour 9 have made it 
possible to calculate the evolution of the parameter K, equation 

(1.2), as a function of the angular positions O (figure 1.7). 

figure 1 . 7  

The readings were made by finding the direction of the velocity 

vector 5,. The velocities were then measured in a plane perpendicular 

to the wall. 

a= 
figure 1.8  

excerp.t.ed: from [2] , T. MOREL. 
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figure 1.9'-. 

excerpted f ron 121, . T. MOREL 

Chapter 2: Theoretical Basis 

.2.1 The Problem 

It is proposed to solve the following problem, representing the 

flow of an incompressible, inviscid fluid, defined by the equations 

141 : 

and the boundary conditions: 

b in the equations designates the velocity vector, p is the 
7 

pressure, and t the mass density. The slip condition (2.3) is 

applied to solid obstacles inside an unbounded domain with uniform 



velocity at infinity. 

By taking the curl of (2.1) so as to intorduce the vector 
-+ w = curl f ,  the preceding system can be written in the purely 
kinematic form: 

divV, o 
where 

designates the particle derivative in Belmholtz's equation (2.5). 

2.2 Calculation of the Velocity Field 

In the problem (2.5) , (2.6) with boundary conditions (2.3) and 
(2.4) , the velocity field 3 can be represented by Green's function 

19, 11: 

-+ 
This function gives an expression for V at any point P of a 

volume v inside a closed surface S whose normal ?i points inward. 

When point P belongs to volume v, the second member of (2.7) 

has the value 4nQP. 

It is equal to zero when P is outside volume v. 

Let there be two concentric surfaces So and Sl. (figure 2.1). 



Let V1 be the volume between So and S1 and v2 be the volume inside 

s1- 

f igure  2.1 

2.2.1 

Equation (2.7) written for a point P inside volume vl is: 

- -  I x $d [f) d$ + I\\ div 4. grad 1;) d l Q  174 g4 

Since the surface S10 is that of a sphere whose radius R -t -, 
equation (2.7) together with condition (2.4) yields for a point within 

s10: - - 



and relation (2.8 ) becomes : 

It is interesting to find any possible discontinuities in velocity 

across S12. To do this, (2.7) is written for P outside volume v2: 

If it is assumed that, in volume V2: 

Adding (2.9) to (2.10) vihile including the boundary condition /2.4 

(2.2) results in: 

where (+) and (-) have replaced. subscripts (12) and (21). 

The integral equati0.n (2.12) can be considered as the basis of 

the method of singular points. The problem posed by (2.5) and (2.6) 

and the boundary conditions (2.3) and (2.4) are replaced by (2.5) , 
(2.12) , and condition (2.3) on S. 



2.2.4 Method of Singular Points 

i) Integral (a) of equation (2.12) expresses the contribution 

at P of all vorticity vectors : contained in volume vl. It should 

be noted that the volume integral only covers the regions of vl 

where does not equal zero. This makes its calculation easy when 

the domain v is unlimited. 

In addition [l], as the fluid is assumed to be incompressible, 

the calculations are carried'out for the vector: - 

+ -+ 
fl-~b (2.13) 

where 2 represents the average vortex intensity associated with the 
particle of constant volume . 

+ -+ 
ii) Integral (b) can be written, with %+ = -n- = n: 

The local scalar quantity q = - v') is equal to the increase 

in the normal component of velocity across the surface element dcr~ 

and therefore has the dimensions .of a rate per unit area. 

The contribution of velocity corresponding to integral (b) is then 

When point P approaches point Q (figure 2.2), the contribution . /2.5 - 
jf the integral at the singularity is 2nq,3+ on the n+ side and 

C 

2 n q p K  = -2nqp'h+ on the n- side, with the increase h-($' - 8-1 equal 
to the local intensity q. 

iii) Integral (c) of (2.12) can also be written: 

and the local vectoral quantity i' = x (p - 8-) is equal to the 

14 



surface vortex density associated with the discontinuity in tangential 

velocity across surface S. 

i- figure 2.2 n 

The contribution of velocity corresponding to integral (c) is: 

This is the classic Biot-Savart equation [lo]. The integral's 

contribution at the singularity is 2rTxfi+ on the n+ side and 2 ~ 7  x$' = 

-2r7x?i+ on the n- side, with the increase in the tangential component 

of velocity equal to 7x3. 

i . 2.2.5- Application to Physical Problems 

The integral equation (2.12) is written: 

i) The hypothesis of continuity of tangential velocity on S f  or 12.6 - 



leads to the "source" solution. It is known that this solution is 

particularly well adapted to external zero-liftleumann problems. In 

contrast, the distribution of sources giving an imposed distribution 

of normal velocity 9-8  on an internal surface S (internal Neumann 
problem), is generally not unique. (Hunt [51). 

ii) The hypothesis of continuity for normal velocity on S, - - 
n +*v+  = n -17 , leads to the vvortex" solution. 

This solution is suitable for problems with positive lift and 

makes it possible to take into account vortex sheets for incompressible 

flows of transient viscosity. The vortex intensities in the sheet are 

then directly derived from the intensities on the surface of the 

body (Rehbach [I]) . 

Let a volume element [ll] 

and : be the vorticity vector at a point Q or a surface S (figure 

2.3). The quantity E can represent the local thickness of the 

boundary layer and i?i the transported viscosity vector. 

figure 2.3 

The application of Guass's theorem to infinetesimal cylindrical 

volume element dv yields the following approximate result: 



- w E ~ B ~ ( F ; + X ~ + + ~ ~ X V ] J +  [lateral surface 

d V t  - 7 - 1  t e r  surface 

Note. that y= i% 

By making E+O (Reynolds + w )  in such a way that the product 
-% 
us remains constant, equation (2.19) yields: 

--. "t " Y= ii)((.v - v-) 
which is the vectorial quantity already obtained in paragraph 2 .23  

with Green's function. 

Finally, (figure 2 . 4 )  if surface S is a closed surface on which 

the restriction 6$/6n = 0 (b%;+= 0) everywhere is imposed, and if 

the problem is resolved with the vortex solution, equation (2.19) 

shows that 68+/6n = 0.  It can be deduced from this that the potential 

within the interior volume is constant and that f- = 0 everywhere [5] . 

figure 2.4 

The local intensity 7 = 3 x v  therefore is the image of the dis- 

continuity of tangential velocity on surface S when the Reynolds 

numser approaches infinity. 

+ 
In these conditions the intensities $2 of the vortex particles 



which we used to model the wake C '(figure 2.4) and are followed with 

the aid of Helmholtz's Equation (2.5) can be determined directly with 

the aid of the vortex intensities 3 on surface S along the separation 

line . 
-- - 

iii) In contrast, it is not necessary to include the idea of /2 .8  
- 

an infinite Reynolds number for the source solution. 

The vorticity discharge into the wake can in principle be cal- 

culated on the basis of physical data valid for a fixed Reynolds 

number. 

Three-dimensional emission models do not seem to exist at 

present. Approximate schmes based on iocal two-dimensional approaches 

are used, and the vorticity discharge has the form (1.2): 

In equation (2.21) ue and Ui represent the velocities on either 

side of 9 (figure 2.4); k is uniform at a given distance, see [121 
and [I]. The main difficulty in the use of this model is in the 

choice of the unit vector g, whose direction is closely linked to the 
extent of the flow's three-dimensional character at the base area. 

Thus, for an upright base area, d is everywhere tangent to the 
/ 

separation line, whereas for a highly inclined base area, the vector 

I$ varies continuously along 9. . 

This point is nuinerically analyzed in the following chapter. 

2.3 Calculation of Pressure 

The pressure field is related to the velocity field by equation 

(2.1) , which, in the regions where curl f = 0, i.e. outside the 

vortex sheets, is written: 



where 9 = grad and C(t) is a constant function of time t. 

It will be assumed in the following discussion that a steady 

state on surface S has been achieved and that the potential j3 tends 

toward a finite limit, which is physically likely. 

2.3.1 Upright Base Area 

Let there be a cylindrical body whose axis is directed along the 

vector and which possesses an upright base area. 

Physical observations (Werle [7], Siriex [16] ) show that down- 

stream from the base area there is a vortical recirculation region 

R2 (figure 2.5a) separated from region R1 by streamline C. 

figure 2.5 

Point R is a free reattachment point. 

It is known in addition that physically and for Reynolds numbers 

on the order of lo6, the velocity at the base area is small. The 

pressure coefficients, reduced to p, and [V,], are on the order of 

-0.2 at the axis. This value remains practically constant over the 

base area, but depends on the configuration of the edge. 



The constants C 1  and C2 in regions R1 and R2 are therefere 

different, and for points 1 and 2 located in the two regions: 

If one examines a point 2 on the base area where V2 = 0 and a /2.10 

point 1 in R1 where V1 = 0 also, one will therefore have: 

The quantity AKp is the irreversible &nergy loss due to viscous 

,effects. This loss is not taken into account in a perfect fluid model 

leading to the result in figure 2.5b. It therefore seems difficult to 

obtain realistic base area pressure coefficients in this case. (See 

also [13], p. 14.) 

2.3.2 Inclined Base Area (a = 60°) 

In cases in which the sheet is split, the problem is different. 

For points on the base area which are not located near the separation 

line a , there is a steady-state streamline in which (figure 2.6): 

The pressure coefficients can then be calculated by: , 



Key: a) vortex wake rollup 

2.4 Calculation of Stress 

When a velocity-pressure relation can be defined for all points 

in S, the aerodynamic force can of course by calculated by: 

Referring to equation (2.231, equation 2.24 becomes: 

In the vortex solution equation (2.26) (Milne-Thomson [lll, pp 

185-86) becomes: 

The velocity vector bQ can be decomposed into: 



where QYQ and bUQ respectively represent the velocities induced in 
Q bythevortex layer distributed on S and by the point singularities 

contained in the sheet C .  
-- . .. -. . 

The aerodynamic force is then: 

with 

-t 
In Po and F1 the conventional forms of induced lift and drag can 

be recognized. 

3 .  L Introduction 

The different calculation programs developed on the basis of the 

preceding theoretical elements have made it possible to numerically 

study three-dimensional separated flow around cylinders with flat 

base areas inclined at an angle a (figure 3.1). 

f igure 3.1 

Key: a) panel 

22 



The bodies are broken up into discrete quadrilateral panels. 

The control point for each of the panels is its center of gravity. 

The calculations presented here were carried out for bodies at 

zero incidence and sideslip located at a great distance from the 

ground, and with L/R = 3. 

The evolution of the vortex particles emitted at the separation 

contour D is calculated on the basis of Helmholtz's equation (2.5), 

which for nondimensional variables is written: 

where S = l/Vmdt is the Strouhal number associated with 1 and V,, and 

the vortex release frequency n = l/At. 

The choice of step At in the discrete equation associated with ., 

(3.1) determines the Strouhal number of the numerical model. If the 

length 1 designates the average characteristic dimension of the panels 

: located at [sic], - the value of Scorrespondingto a satisfactory 

evolution of the sheet is on. the order of one. 

3.2 Numerical Results: Vortex Solution /3.2 - 

For this type of numerical model and for the results presented, 

the emission is made from a flap (figure 3.la) located directly down- 

stream from a . .. 

The method for creating the vorticity vector 8 is similar to 
the one proposed by Rehbach [ll for the study of flat wings of zero 

thickness. The adaptation to three dimensions is sketched out in 

figures 3.2a, b, and c. 



f l a p  

f i g u r e  3.2 

The r e s u l t s  obtained f o r  a = 0°, 30°, and 60° are t r aced  i n  

f i g u r e s  3.3, 3.4, and 3.5. 

f i a u r e  3.3 

+ 
Vector L l  

f i g u r e  3.4 



10 step calcrilation o(=fcO 

For a = O0 and 30°,. the sheet has a two-dhnensional separated 

structure, and the vectors if associated with the particles emitted at 
the flap's following edge remain parallel to 9 (figure 3.4b). 

Finally, particularly for a = 0°, the velocities on the base 

area are very small, which is physically correct. 

For a = 60°, the emission lines traced on figure 3.5a show 

lateral rollups beginning to form. The flow is separated on the lower 

part of the base area and reattached at its upper part, in'the median 

plane. 

It should be pointed out that with this model, the emitted 

vectors if remain practically parallel to the following edge of the 
flaps since the sheet is not split, The direct consequence of this 

is that the velocities obtained at the base area are insufficient, and 



the pressure coefficients remain positive there. 

The improvements made recently by Billet [14] in the emission /3.3 

model (elimination of the flap, participation of the panels neigh- 

boring bj ) should make it possible to obtain good results, while 

at the"same time probably causing the sheet to tear. 

3.3 Numerical Results: Sour-ce Solution 

For this type of numerical model, the emission is defined by 

equation (2.21) , with the quantity Ui2 not being taken into account 
in the present shceme. The flap associated with the scheme described 

in paragraph 3.2 is suppressed, and the direction of the vector 3 is 
arbitrary. 

For a = 00 (figure 3-61, the 

-g vector is parallel to [sic]. The - 
result shows a zone of recirculation 

beginning to form downstream from 
----.- . . ---- 

the base area. The velocities on 

the base area, reduced to V,, are on 

the order of 0.1, which is physically 
f icjure 3.6 

correct. 

For a = 60°, several numerical tests are presented. Their goal 

is to analyze the role of the vectors1 direction at emission, whose 

modulus is defined by equation (2.21): 

i) The vector if remains parallel to a : The result in figure 

3.7, obtained after an 18-step calculation, confirms the one in 

figure 3.5. The sheet is not split; the velocities at the base area 

remain insufficient. 



Key: a) 

b 1 

f i g u r e  2 . 7  



Key: a) 

b) 

-% 
Vector $2 varies 
along .D 
18-step cal- 
culation 

figure 3.P 



numerical insta- 
bility 
18-step calculatioq 



ii) The vector d varies continuously along contour : The flow 

is two-dimensional in the downstream part of the base area (figure 3.8) . 
The numerical results obtained are interesting, the sheet is split, and 

the lateral rollups are satisfactory. The velocities at the base area 

are greater, but insufficient a t 3  . This is probably due to the fact 

that the split in the sheet is incomplete, with the emission line 

(marked with the symbol "+" on figure 3.8) remaining in the median 
part of the base area. 

iii) Since the force exerted on the vector particle d has the 
form 3 ?. 6 x 9 ,  the sheet is in equilibrium when d 1 1  6. For the prob- 

lem that interests us, the steady state was the only one desired, and 

itseemeduseful to impose these conditions on the emission from the 

beginning of the calculation. 

The results obtained were similar to those analyzed in paragraph /3.8 

ii (figure 3.9) as the velocities at the base area were insufficient. 

It also appeared that the emission line (marked with the symbol 

"a"), which was located downstream from the base area, participated in 

the lateral rollup. This seems to be in contradiction with the exper- 

imental measurements, which show that this part of the base area behaves 

like the following edge of a wing (Chapter 2). 

3.4 Conclusion 

The body of results presented here shows the possibility of 

calculating separated flow past thick bodies through the use of a 

theoretical model based on a discrete wake-vortex representation. 

The calculations carried out specify the profound changes in the 

wake when the base area angle is large. 

Our results constitute an as yet incomplete first approximation of 

the pressure on the base area and show that an in-depth analysis of the 

mechanism of three-dimensional separation is necessary. This work is 

in progress. 
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